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Abstract
Real-time water quality monitoring is a complex system as it involves many quality parameters to be monitored, the nature of
these parameters, and non-linear interdependence between themselves. Intelligent algorithms crucial in building intelligent
systems are good candidates for building a reliable and convenient monitoring system. To analyze water quality, we need to
understand, model, andmonitor the water pollution in real time using different online water quality sensors through an Internet
of things framework. However, many water quality parameters cannot be easily measured online due to several reasons such
as high-cost sensors, low sampling rate, multiple processing stages by few heterogeneous sensors, the requirement of frequent
cleaning and calibration, and spatial and application dependency among different water bodies. A soft sensor is an efficient
and convenient alternative approach for water quality monitoring. In this paper, we propose a machine learning-based soft
sensor model to estimate biological oxygen demand (BOD), a time-consuming and challenging process to measure. We also
propose a system architecture for implementing the soft sensor both on the cloud and edge layers, so that the edge device
can make adaptive decisions in real time by monitoring the quality of water. A comparative study between the computational
performance of edge and cloud nodes in terms of prediction accuracy, learning time, and decision time for different machine
learning (ML) algorithms is also presented. This paper establishes that BOD soft sensors are efficient, less costly, and
reasonably accurate with an example of a real-life application. Here, the IBK ML technique proves to be the most efficient
in predicting BOD. The experimental setup uses 100 test readings of STP water samples to evaluate the performance of the
IBK technique, and the statistical measures are reported as correlation coefficient = 0.9273, MAE = 0.082, RMSE = 0.1994,
RAE = 17.20%, RRSE = 37.62%, and edge response time = 0.15 s only.
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Introduction

Intelligent system development for environment monitoring
remains a challenge due to the complexity of a large num-
ber of parameters and the difficulty associated with their
measurement. Water quality monitoring is one of the most
critical aspects of environmental monitoring, apart from air
quality monitoring. Access to safe drinking water is essen-
tial for health and also for good quality of life. It is not only
important for human beings but equally important for the
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aquatic life and other living beings. Water Quality monitor-
ing is themost important global risk interception [1], because
it directly avoids public health-related issues. The World
Health Organisation (WHO) has set up the guidelines of
drinking water quality for several specific circumstances [2].
While performing the water treatment, the primary functions
of a water treatment plant are to satisfy water demand, qual-
ity, anduniformity [3]. This needs qualitative andquantitative
analysis ofwater in both the inlets and outlets. Artificial Intel-
ligence (AI)/Machine Learning (ML) models have recently
been widely used to predict the water quality parameters
apart from many other significant applications [4–7]. These
are pioneering works in this domain, but the authors mostly
used cloud environment for analyzing the data and come
out with the predictions. However, to ensure the safe sup-
ply of the drinking water, the quality of the water needs to
be monitored in real time. Various low-cost systems exist
for real-time monitoring of the water quality in the Internet
of things (IoT) environment. The existing system can sense
physical and chemical parameters of water through sensors,
process it through the edge layer, and store the processed
data in the cloud layer to monitor the water quality [8–10].
However, while analyzing and monitoring the water qual-
ity, the accuracy and reliability of the sensors are of primary
concern [11]. The complex behavior of the measured param-
eters through each sensor is also a challenge in water quality
management [12]. In water quality monitoring system, the
important parameters which influence the quality of water
are permeate-hydrogen concentration (pH), turbidity, dis-
solved oxygen (DO), bio-chemical oxygen demand (BOD),
chemical oxygen demand (COD), total organic compound
(TOC), total suspended solid (TSS), salinity, electrical con-
ductivity, oxidation reduction potential (ORP), free chlorine,
residual chlorine, heavy metals (iron, magnesium, cadmium,
nickel, copper,mercury, and zinc ), fluoride, arsenic, cyanide,
nitrate, pathogens, and bacteria (E. coli). BOD is one of the
vital parameters used to determine the quality of water [13].
There are a lot of low-cost sensors that exist in the market to
measure water quality parameters. Still, some water param-
eters require a laboratory approach for analysis due to the
lack of online real-time sensors. The reasons are high sen-
sor cost, high sampling time, the requirement of frequent
calibration and cleaning process, and regular sensor replace-
ment due to a lesser lifetime of sensors [14]. For example,
when we are focusing on the water quality parameter BOD,
its sensor is of very high cost and also not quite reliable.
The offline laboratory-based approach for measuring BOD
is a time-consuming process. IoT-based Water quality mon-
itoring setup always needs real-time sensing. Therefore, a
significant delay in laboratory testing affects the performance
of the system and defeats the basic objective of an IoT-based
water quality monitoring system.

These problems,mentioned above, can be addressed using
the soft sensor technique. The soft sensors approach is
becoming a way to deal with these types of situations in the
absence of specific sensors. Soft sensor is a virtual sensing
technique that creates an inferential model to estimate differ-
ent parameters of interest, based on other available measured
parameters to provide feasible and economical alternatives
to costly or impractical physical measurement sensors [3,15–
18]. Soft sensor technique demands computation at the back
end to perform its task. Therefore, it uses high computational
server (cloud computing) for different applications [3,16–
21]. Cloud computing provides a centralized pool of storage
and computing resources. It has a global view of the network
[22], but it is not suitable for applications that demand real-
time response with low latency and high quality of service
(QoS) [23]. However, almost all IoT application demands a
response in real-time. Thus, there is a need for a modified
computing environment for soft sensor to ensure real-time
response of the IoT applications.

For computation, IoT applications adopt two techniques
called cloud computing and edge computing. These two
emerging paradigms can handle the massive amount of
distributed data generated by IoT devices. However, these
paradigms have their pros and cons. Cloud computing is not
suitable for applications that demand real-time response with
low latency and QoS, but it provides enough computational
capabilities and a global storage concept [23]. On the other
hand, edge computing is suitable for applications that need
a real-time response, mobility support, and location aware-
ness. Still, it does not have sufficient computing and storage
resources [24,25].Merging these two techniques (edge-cloud
processing) together with effective machine learning algo-
rithms can lead to an intelligent solution for enabling live
data analytic in IoT applications [26]. In this work, we pro-
pose a BOD soft sensor model using edge-cloud processing
of IoT framework,which is effective, scalable, and intelligent
for real-time monitoring of water quality.

Motivation

Real-time water quality monitoring in the twenty-one cen-
tury is complex and challenging because of the large number
of chemicals and waste exhausted from the industries and
commercial institutes; those make their way into the local
water bodies and rivers. Although few commercially avail-
able sensors are available to measure the water quality, there
are a few limitations in their real-time usage for all param-
eters due to high cost, different sampling rates, increased
measurement time, frequent maintenance requirements, and
environmental dependency. Soft sensor models are used in
industrial processes for a long time as a replacement of hard-
ware sensors in different deterministic environments. Using
the IoT environment, soft sensing techniques, and edge intel-
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ligence concept, an attempt is made to develop a low-cost,
robust IoT water quality monitoring system to address the
current limitations.

Contributions

According to the existing literature, the complete soft sen-
sor concept (both training and inference model) is complex
and mostly implemented in the cloud architecture. However,
the IoT application of a water quality monitoring system
demands a real-time, uninterrupted, and reliable response. If
the complete soft sensor concept runs on the cloud, the sys-
tem cannot respond in real time due to in-network processing
delay that includes propagation delay and transmission delay,
connectivity loss, and network routing load. The present
research proposes the distribution of soft sensor models in
between cloud and edge to facilitate real-time action by the
complete IoT setup. To respond to the environmental problem
in real time, the prediction in the setup should be immediate.
However, the training of the system can be performed peri-
odically offline. To train the system, the BOD is calculated
offline from the water samples using the standard laboratory
approach. The main contributions of this paper are:

– Proposed a soft sensor model for BOD measurement
which can act as an alternative to commercially avail-
able BOD sensor or as an additional method to validate
the BOD sensor.

– Implemented the BOD soft sensor where the training
algorithm can run on the cloud to train the system offline
and periodically.

– Inference algorithm is executed on edge tomake the edge
intelligent and decide in real time.

– Determined efficient machine learning algorithm for
soft sensor modeling using the experimental data before
implementing the complete system.

– The developedmodel is validatedwith the data of sewage
water treatment plant of the institute and the data col-
lected from river “Ganga”, an important river in India.

The rest of the paper is organized as follows; “Related
works” describes the related work in water quality moni-
toring. “Problem statement and objective” focuses on the
problem statement and objective of the paper. “Proposed
system architecture for IoT water quality monitoring setup”
describes the detailed system architecture for water quality
monitoring, and “Experimental set-up and detailed steps for
data collection” is focused on the experimental setup and
the data collection steps. “Proposed methodology” proposes
the methodology for the development of the BOD sensor
for water quality monitoring, and “Experimental result and
discussion” contains the analysis of results and discussions.

Moreover, conclusions and future scope of this research are
discussed in “Conclusions and future scope”.

Related works

Several types of research have addressed the development
of soft sensors with fairly large numbers of real-time appli-
cations [3,27–29]. Different approaches exist to develop
a soft sensor like the model-based approach or empirical
approach [30]. Model-based approaches describe the fun-
damental physical and chemical phenomena taking place in
the process. It needs detailed knowledge about the system, as
well as an accurate estimate for all the parameters involved,
which is difficult in many modern contexts. On the other
hand, the data-driven or empirical approach build predictive
models based on historical data using different domains of
data science [31]. Examples of methodology used in these
approaches are principal components regression [32], arti-
ficial neural network [33], neuro-fuzzy systems [34], ML
algorithms [35] like IBK, random forest, random tree, Kstar,
REPTree, support vector machine (SVM) [21,36], and Gaus-
sian processes [37,38]. The soft sensor concept is nowwidely
being used in different application areas, such as biologi-
cal wastewater treatment [19], bioprocess monitoring [29],
bio-chemical systems [39], and many complex process pre-
dictions [16,30].

However, only considering water, Haimi et al. [19] have
focused on data derived soft sensor applications in bio-
logical wastewater treatment and given a general guideline
for soft sensor designing process. Huang et al. [20] have
investigated the wastewater treatment using a genetic algo-
rithm, a fuzzy neural system based soft sensor. The process
can reliably estimate the nutrient dynamics of anoxic/oxic
operations using online measured parameters like DO, pH,
and ORP. A soft sensor method combined with Particle
Least Square (PLS) and Neural Network, designed to real-
ize the real-time online detection of the concentration of DO
is given by Wei et al. [21]. Lamrini et al. [40] presented
a soft sensor model using multi-layer perceptron (MLP),
which can predict the coagulant dosage from raw water
quality measurements from drinking water treatment plants.
Wang et al. [41] developed a soft sensor model using radial
basis function (RBF), to estimate the parameters of water,
such as pH concentration, residual hydrogen concentration,
and permeate gas flux. Petri et al. [42] presented a novel
dynamic computational approach for predicting the turbidity
of treated water using both linear and non-linear regression
techniques.

Zhang et al. [43] considered the inflow (Q) as well as
the COD, pH, TSS, and the total nitrogen (TN) to model
a feed-forward three-layer multiple inputs and single out-
put (MISO) neural network named as adaptive growing
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and pruning (AGP) network using back propagation (BP)
algorithm. This soft sensor model was used to predict
the BOD concentration. Luo [39] proposed an online soft
BOD measurement method based on Laplacian Eigenmaps-
relevance vector machine (LE-RVM). LE technique was
used to process the pre-processed parameters and then is
applied as the input of SVM to build the BOD soft sen-
sor model. In this case, the prediction accuracy is not
sufficient enough to be used in the real-time environ-
ment.

Support vector machine (SVM) [44,45] is a supervised
learning technique used in a different field to model the
soft sensor [46]. Extreme learning machine (ELM) is also a
recent fast learning techniquewith a single hidden layer feed-
forward neural network used for classification and regression
purposes [47]. ELM technique is used to model the soft
sensor for measuring DO concentration in the aquaculture
field application [48]. Here, the authors also compared the
ELM technique with backpropagation and SVM regression,
and concluded that the prediction accuracy of ELM is high
in this field compared to the other two approaches. Djeri-
oui et al. [49], in their paper, developed a soft sensor to
measure chlorine using a statistical learning technique to
identify the water quality. They compared the ELM and
SVM techniques where both methods require almost sim-
ilar time for decision-making, but ELM takes less time for
learning.

In all the above cases, the training (learning) and infer-
ence (prediction) algorithms for soft sensors run in the
high computational cloud server. The server evaluates the
data and train the system and make a decision whenever
required. However, IoT-based solutions demand a real-time
response. This is because sending data to the cloud for
computation and decision-making is time-consuming due
to communication overhead, network failure, and network
latency. In the recent past, with the advancement in the
IoT domain [50–53], the edge node is also becoming capa-
ble of performing a fairly large amount of computation.
If the prediction takes place in edge by running an infer-
ence algorithm on the edge node itself, data do not need
to make any round trip to the cloud, which reduces latency
and leading to real-time, automated decision-making [54].
The learning (training) algorithms require heavy compu-
tation and, hence, are modeled to run in the cloud server
periodically.

As a step forward, this work analyzes the water quality
data collected and figures out the ML regression algorithm,
which is best suited to implement the BOD soft sensor con-
cept. This paper also performs a comparative study between
cloud and edge training and prediction time required to run
the suitable regression algorithms. Finally, this paper final-
izes a system architecture for BOD sensors where the ML
algorithm runs in a distributed manner to develop a BOD

soft sensor that can make a prediction and decision in real
time.

Problem statement and objective

Problem statement

The IoT-based water quality analysis and monitoring system
aims to analyze different parameters present in water that
influences the quality of the water like BOD, COD, DO, tur-
bidity, ORP, pH, and temperature. Measuring BOD online
through sensors is a challenge due to economical or tech-
nical limitations. However, to give a real-time response to
computing quality of the water, it is essential to have real-
time sensing. Therefore, this paper tries to model the BOD
soft sensor, which can estimate the BOD value based on the
parameters of other available sensor measurements. The soft
sensor also provides feasible and economical alternatives to
costly or impractical physical measurement sensors.

With the assumption that the oxygen consumption rate
is directly proportional to the concentration of degradable
organic matter remaining at any time, the expression for
BOD, according to the first-order reaction kinetics can be
represented as: [55]:

dLt/dt = −K Lt , (1)

where Lt is the amount of first-orderBODremaining inwaste
water at time t; K is the BOD reaction rate constant, time−1.

Integrating both sides:

∫ t

0
dLt =

∫ t

0
−K Lt · dt (2)

[
logLt

]1
0 = −K · t, (3)

where Lt /L0=e−Kt or 10−Kt , where L0 or BODu at time t
= 0, i.e., BOD initially present in the sample. The amount of
BOD remaining at time ‘t’ equals:

Lt = L0(e
−Kt ). (4)

The amount of BOD that has been exerted (oxygen con-
sumed) at any time t is given by:

BODt = L0 − Lt = L0(1 − e−Kt ). (5)

And the 5-day BOD is equal to:

BOD5 = L0 − L5 = L0(1 − e−K5). (6)

For polluted water and wastewater, a typical value of
K (base e, 20 ◦C) is 0.23 per day and K (base 10, 20 ◦C) is
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0.10 per day. The ultimate BOD (L0) represents the max-
imum BOD exerted by the wastewater. Theoretically, it
is challenging to achieve L0, because it takes an infinite
time. However, practically, the concentration of BOD can
be expressed by measuring the concentration of degradable
organic matter based on the total oxygen required to oxidize
it. Therefore, using offline laboratory approach, the initial
DO after collecting the sample for experiment needs to be
checked (DO1) and kept inside the darkroom at 20 ◦C and
again checked for the DO value after 5 days (DO5) and the
BOD can be calculated after 5 days as:

BOD5 = (DO1 − DO5)/P, (7)

where ‘P’ is a volumetric fraction of wastewater and
expressed as volume of the sample divided by the volume
of the container.

Due to the 5-day test period, BOD5 cannot be considered
as a suitable parameter for a real-time water quality monitor-
ing system.

As an alternative, a soft sensor (virtual sensors) technique
can be preferred to predict the BOD5 of a water sample
in real time from the BOD-dependent parameters with ML
regression analysis. Regression analysis is a mathematical
approachwhere it considers a dependent variable that ismore
difficult to determine, as a function of the independent vari-
able(s) easy to measure directly. The relationships between
the dependent variable with the independent variable(s) can
be expressed as linear or non-linear functions [56]. Math-
ematically, regression uses a linear function to predict the
dependent variable given as:

Y = β0 + β1X + ε, (8)

where Y—dependent variable, the variable we predict; X—
independent variable, the variable use to make a prediction;
β0—intercept, it is the prediction value when X = 0; β1—
slope, it represents the change in Y whenX changes by 1 unit;
ε—error, i.e., the difference between actual and predicted
values.

Above is the equation of simple linear regression. In mul-
tiple regression, there are many independent variables (Xs).
Error is a non-negligible part of the prediction-making pro-
cess. The regression model can be evaluated using variety of
performance matrices [57,58]. To benchmark performances
of the proposed technique in this study, correlation coeffi-
cient, mean absolute error (MAE), root-mean-square error
(RMSE), relative absolute error (RAE), and root relative
squared error (RRSE) are used.

Correlation coefficient is used in statistics to measure the
strong relationship between two variables. It returns the value
between−1 to + 1. The value is + 1 if there is a strong positive
relationship between variables, and −1 if there is a strong

negative relationship between variables. Also, a result of zero
indicates no relationship between variables.

Similarly, MAE is the average of the absolute error. It is
the average difference between the actual and the predicted
output value:

MAE = 1/n
n∑

i=1

(yi − ŷi ), (9)

where n is the number of samples used, yi is the actual output,
and ŷi is the predicted output by the model.

RMSE is a measure to express the difference between the
predicted value and actual value. It is the square root of the
average of all squared error:

RMSE =
√∑n

i=1(yi − ŷi )2

n
, (10)

where n is the number of samples, yi is the actual output, and
ŷi is the predicted output by the model:

RAE =
∑n

i=1 |yi − ŷi |∑n
i=1 |ȳi − ŷi | , (11)

where n is the number of samples under taken, yi is the actual
output, ŷi is the predicted output by the model, and ȳi is the
average value of all the actual output samples:

RRSE =
√∑n

i=1(yi − ŷi )2∑n
i=1(ȳi − ŷi )2

, (12)

where n is the number of samples of the model, yi is the
actual output, and ŷi is the predicted output by the model. ȳi
is the average value of all the actual output samples.

To develop a soft sensor model using ML regression, an
ML algorithm needs to select where MAE, RMSE, RAE,
and RRSE errors are minimized, and correlation coefficient
value ismaximized, so that themodel gives an accurate result.
The developed soft sensor model needs to predict the value
of water parameter, i.e., BOD in real time, to monitor and
control the quality of the water. Therefore, a distributed IoT
system architecture needs to recommend where the soft sen-
sor computation is distributed between edge and cloud to
make the system respond in real time.

Objective

The objective of this paper is to evaluate different ML tech-
niques in termsof accuracy, time to predict, and then to design
a suitable predictive BOD soft sensor model for IoT applica-
tions. Themodel computation is distributed between the edge
and cloud layer to respond in real time, and to monitor and
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control the quality of the water before it can cause any sub-
stantial damage. Here, the BOD soft sensor model considers
DO, pH, electrical conductivity, turbidity, ORP, and temper-
ature as input, and predicts the BOD in real time using edge
intelligence.

Proposed system architecture for IoT water
quality monitoring setup

In the proposed architecture, the ML task of soft sensing
technique (training and inference) is distributed between the
edge layer and cloud layer of IoT to achieve a real-time
response from the developed BOD soft sensor. Here, Fig.
1 represents the detailed system architecture for the soft sen-
sor model as well as control in real time. To train the system,
all online sensors, as well as laboratory sensors, present in
the edge are used for measuring different parameters of the
water resource. The measured parameters are pushed to the
cloud server through the edge node. The server sitting in the
cloud performs the data processing with recorded data, and
generates a trained model file by running the ML training
algorithm and sends back the model file to the edge node for
future real-time decision-making. The comprehensive train-
ing approach is a periodic process with a specific interval of
time, technically termed as incremental learning. The edge
node fetches the data from the physical sensors. With the
fetched data and trained model file (model file periodically
sent through the cloud) by running an inference algorithm,
the edge node evaluates the estimated value of BOD. The
online physical sensor data, along with predictive BOD (soft
sensor) value, decide the quality of the water.

According to the proposed architecture, the inference
algorithm runs in edge and training algorithm runs in the

cloud to achieve a real-time response. The proposed system
analyzes and validates with different datasets in “Experimen-
tal result and discussion”.

Experimental setup and detailed steps for
data collection

Experimental setup 1

A solar-powered and self-navigated buoy with slots to
install multiple sensors in a bay having access to water sam-
ples has been put inside the discharging tank of the sewage
water reservoir of the sewage treatment plant (STP) at authors
institute which is shown in Fig. 2. A controller act as an edge
node helps to fetch the sensor data and push it to the cloud.

Fig. 2 Experimental setup 1 in the STP reservoir

Fig. 1 Complete system
architecture for water quality
monitoring IoT setup
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The experimental buoy is fitted with the primary water qual-
ity sensors as DO, Temperature, pH, Electrical Conductivity,
ORP, and turbidity. BOD sensor is not included in the sen-
sor batch because of its high cost, and the value for BOD of
the sample is extracted using an offline laboratory approach.
Here, the sample from the STP is taken to the lab (10 ml of
water in 300 ml container); the DO is checked (DO1) and
kept inside the darkroom at 20 ◦C and again checked for the
DO value after 5 days (DO5). The BOD is calculated after
5 days, as represented in Eq. 7.

The primarywater quality parameters, includingBOD, are
recorded for 400 such samples following the above approach.
The model file is generated after the recorded data are pre-
processed and trained, which helps to predict the BOD value
(real-time estimated) in the future from the real-time data
retrieved from the sensor batch installed on the buoy.

Experimental setup 2

To validate the suggested architectural model more, in this
setup, the real-time water quality monitoring data of river
Ganga are recorded. The live data are provided by the
Ministry of Environmental, Forest and climate change and
Ministry ofWaterResources, RiverDevelopment, andGanga
Rejuvenation (available website link: http://122.166.234.
42:8992/cr/). We collected the data published during the
“KumbhMela” time,which happened fromFebruary toApril
2019. Five hundred records containing the primary water
quality parameters, namelyDO, pH, Temp, TSS, andBODof
different locations of Ganga, are recorded from the website
and pre-processed. With this pre-processed data, the model
is trained, and a model file is generated for future samples
collected by the edge node.

Proposedmethodology

The experimental setup discussed in “Experimental set-up
and detailed steps for data collection” contains several sen-
sors and fetches the corresponding data. In water quality
monitoring, if the number of sensors installed in the setup is
more, it fetches a vast number of attributes. It may consume
more time in the processing stage, and the cost of the com-
plete setup increases, as well. Therefore, using input variable
selection thePrincipalComponentAnalysis (PCA) technique
is used in this paper to minimize the number of attributes and
data from the massive number of samples collected from the
water source, so that the data processing time reduces as well
the entire system setup cost.

Although PCA [32] is the best known and most widely
used dimension reduction technique, it can also be applied
for selecting a subset of inputs based on their associationwith
the output [15,59]. It helps to perform statistical data anal-

ysis, feature extraction from the given dataset, and identify
the correlation between the attributes for data compression
and data selection. In [15,60], the detail procedure for input
selections using PCA is described.

If xi is a set of dataset where i = 1, 2, 3, 4 . . . n and X
is the observed data matrix. Therefore, the calculated mean
value vector is:

X̄ = 1/m
n∑

i=0

xi , (13)

where m is the size of the data. The co-variance matrix is
found out through the formula:

S = 1/m
n∑

i=0

(xi − X̄)(xi − X̄)T. (14)

After applying the Eigen decomposition on the co-variance
matrix:

S = E ∧ E−1. (15)

Here, E is the eigenvector matrix, and ∧ is an eigenvalue’s
diagonal matrix. After this step, data points can calculate as
well as the latent variables.

After pre-processing, the real-time data are ready to train
and inferred using the ML algorithm to model Soft Sensors.
Here, the authors have considered few popular algorithms
[35] to train the pre-processing dataset like linear regression,
multi-layer perceptron, SVM-SMO, Lazy-IBK, KStar, ran-
dom forest, random tree, and REPTree.

Linear regression works by estimating coefficients for a
line or hyperplane that best fits the training data. It is a simple
regression algorithm where training can perform faster. It
gives better performance if the output variable for the dataset
is a linear combination of the inputs [35].

Themulti-layer perceptron algorithms support both regres-
sion and classification problems. It is an algorithm derived
by a model of biological neural networks in the brain where
small processing units called neurons are organized into lay-
ers that, if configured well, are capable of approximating any
function. In regression problems, the interest is to approxi-
mate a function that best fits the real value output [35].

Support vectormachinemodelswere developed for binary
classification problems. As an extension, this technique has
been made to support multi-class classification and regres-
sion problems. SMO is further used to solve quadratic
problems. SVM automatically convert nominal values to
numerical values. SVM-SMO regression is an optimization
process that works by finding a line of best fit that minimizes
the error of a cost function. It considered only those instances
in the training dataset closest to the line with the minimum
cost. These instances are called support vectors. In almost all
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problems of interest, a line cannot be drawn to fit the data
best; therefore, a margin is added around the line to relax the
constraint. Sometimes, a line with curves or even polygonal
regions needs to be marked out; this can be done by project-
ing the data into a higher-dimensional space to draw the lines
and make predictions. Different kernels are used to control
the projection and flexibility in this technique [35].

Lazy-IBK is a k-nearest neighbor approach that marks
an unclassified instance with the label of the majority of
k-nearest neighbors. The distance between instances is mea-
sured using the Euclidean metric. If k = 1, the instance is
assigned to the class of its closest neighbor in the training set
[35]. This algorithm is quite useful in real-world applications
where most of the data may not follow any distribution.

KStar is an instance-based classifier. It classifies the
test instances based on the similarity function in training
instances. It uses an entropy-based distance function to
identify the similarity between the test set and training set
instances [35].

Randomforest is an extension of bagging for decision trees
that can use for classification or regression. Random forest is
an improvement technique that disrupts the greedy splitting
algorithm during tree creation, so that split points can only
be selected from a random subset of the input attributes [35].

Random tree constructs a tree that considers K randomly
chosen attributes at each node and performs no pruning. It
also can allow estimation of class probabilities or targetmean
in case of regression based on a hold-out set using back-fitting
[35].

REPTree is the fast decision tree learner. It builds a deci-
sion/regression tree using back-fitting. It only sorts values
once for numeric attributes. Missing values are dealt with,
splitting the corresponding instances into pieces [35].

These algorithms run in a distributed manner in the cloud
as well as edge as proposed in “Proposed system architecture
for IoT water quality monitoring setup” to develop soft sen-
sor modeling in the proposed system, and the performance
of the algorithm is discussed in “Experimental result and
discussion”.

Experimental results and discussion

As the first step of the analysis, this paper performs PCA to
determine which variables have the most substantial influ-
ence on the soft sensor and to reduce the number of sensors
used in the real-time implementation. This process smooths
the visualization of the dataset. The relevant datasets with the
use of different ML methods predict the BOD concentration
online to monitor the quality of the water. In Experiment 1,
this paper is trying to monitor the water quality of the STP
reservoir of the author’s institute. In Experiment 2, it vali-

dates the proposed model with the real-time water quality
data of the Ganga River.

The hardware and software used to perform the experi-
ments are set up as follows. The complete IoT setup contains
a cloud server and an edge node having all communication
setups and protocols to connect to the cloud server. The cloud
layer contains a Virtual Machine (VM), which is working in
the Linux environment with the specification of 4 cores 4GB
of RAMandUbuntu 16.04Operating System. The edge node
is a Raspberry Pi3 with Raspbian operating system, kernel
version 4.14 (CPU configuration 1 GHz and 1 GB RAM)
onboard connectivity with wireless LAN and Bluetooth. The
complete setup program is written in Python, and theWEKA
tool is used to cross-verify the results.

Experimental results and discussion for setup 1

Experiment 1 is conducted with an edge device (Pi3), which
is connected with a set of water quality checking sensors like
electrical conductivity, ORP, temperature (temp), DO, and
turbidity. The cloud and edge layers communicate with each
other through the REpresentational State Transfer (REST)
Application Program Interface (API).

In this work, with the experimental setup, a total of
400 samples with eight attributes of water quality data are
recorded. Table 1 represents the descriptive statistic of the
recorded variables. For this experiment, BOD data are mea-
sured through an offline laboratory approach, and all other
attributes are collected through physical sensors.

The input variables DO, temp, pH, Electrical Conductiv-
ity, ORP, turbidity, and output variable BOD are selected to
analyze the water quality and to develop a BOD soft sensor
model. Before applying the PCA to the dataset, the dataset is
standardized and then feed-forward for the PCA approach.
PCA application for the total dataset is depicted in Table 2,
and the histogram representation is shown in Fig. 3.

From Table 2 and Fig. 3, it can be observed that the Eigen-
value decreases rapidly, so the variance proportion decreases
simultaneously. The first five Principal Components (PC) of
Table 2 represent 96.8% portion of the total variance, (PC1
represents 43.101%, PC2 represents 23.48%, PC3 represents
15.11%, PC4 represents 8.63%, and PC5 represents 6.478%
portion of the total variance). Therefore, the six input vari-
ables are simplified into five variables, which are retrieved
from the first five principal axes, and shown in Table 3, which
represents the first five PCs and the correlation between the
variables in the first five axes. Here, we can observe that there
is no correlation among variables in PC1, PC2, and PC3. PC4
correlateswith two variables turbidity, andORPandPC5 cor-
relate with the two variables DO and temp. Finally, to reduce
the number of sensors and sensor costs, this paper considered
four input variables only, i.e., turbidity, DO, pH, and temp,
to predict BOD value.
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Table 1 Descriptive statistic of
the recorded variables of STP
water samples

Input (variables) Minimum Maximum Mean Standard deviation

DO (mg/l) 1.022 6.348 3.043 0.971

Temp (◦C) 21.9 29.03 26.097 1.836

PH 7.27 10.03 8.398 0.587

Electrical conductivity (µs/cm) 188.6 4426 1967.164 1048.539

ORP (V) − 0.83 0.87 0.436 0.333

Turbidity (NTU) 4.8 88.61 25.10 15.09

BOD (mg/l) 30.203 81.295 50.413 11.095

Table 2 Principal component
analysis of STP water sample (to
select the suitable parameters)

F1 F2 F3 F4 F5 F6

Eigen values 2.58607 1.40867 0.90666 0.51795 0.38866 0.19199

Proportion 0.43101 0.23478 0.15111 0.08633 0.06478 0.032

Cumulative proportion 0.43101 0.66579 0.8169 0.90323 0.968 1

Cumulative proportion (%) 43.101 66.579 81.96 90.323 96.8 100

Eigen vector V1 V2 V3 V4 V5 V6

DO − 0.1923 0.6229 0.505 0.164 0.5355 0.0799

Temp − 0.3602 − 0.5935 − 0.0464 − 0.0972 0.5714 − 0.4241

pH 0.1748 − 0.4969 0.7717 0.1504 − 0.0866 0.3113

Electrical conductivity − 0.5589 − 0.0634 − 0.237 0.18 0.1542 0.7558

ORP − 05198 − 0.0026 0.1036 0.56 − 0.5098 − 0.3814

Turbidity 0.4692 − 0.0936 − 0.2836 0.7714 0.3092 0.0034

Fig. 3 Histogram of component Eigenvalue of STP water samples

The functional dependence among input and output
parameters is represented in Eq. (16): [5].

BOD = f (Turbidity,DO, pH,Temp). (16)

After pre-processing using PCA, BOD is considering as
an output of the soft sensorwith the input of four sensors data,
i.e., turbidity, DO, pH, and Temp. To model the soft sensor,
different ML algorithms are used with the new features, and

the best one, which gives a competitive performance in terms
of accuracy, training, and prediction time, is selected.

The ML algorithm runs both on the cloud and edge layer
of IoT to analyze which layer is giving better prediction
accuracy and real-time response with less time. In terms of
accuracy, both edge and cloud perform the same, which is
observed and recorded in Table 4.

Table 4 shows the parameters like correlation coefficient,
MAE, RMSE, RSE, RAE, and RRSE by performing tenfold
cross-validationwith all 400 data points.Here, the data points
are divided into ten sets (called fold) out of which nine sets
are used for training, and one set is used for testing. The cross-
validation process is then repeated ten times, with each of the
ten subsamples used exactly once for the validation of data.
The ten results from the folds can then be averaged to produce
a single estimation. In this process, all observations are used
for both training and testing, and each observation thereafter
is used for validation (testing) exactly once. From Table 4,
it is observed that the Linear regression approach gives the
worst result among all approaches, which implies that input
variables are not linearly dependent on the output. Among
all other non-linear algorithms, the IBK (K nearest-neighbor
approach) gives better prediction accuracy or less error with
K = 1. The comparative analysis between actual BOD and
the predicted BODusing the IBK approach is performed, and
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Table 3 Correlation matrix,
Eigenvalue, variance proportion,
and the cumulative variance
proportion of the first four
principal components (PC) of
STP water

Input variables PC1 PC2 PC3 PC4 PC5

DO − 0.1923 0.6229 0.505 0.164 0.5355

Temp − 0.3602 − 0.5935 − 0.0464 − 0.0972 0.5714

pH 0.1748 − 0.4969 0.7717 0.1504 − 0.0866

Electrical conductivity − 0.5589 − 0.0634 − 0.237 0.18 0.1542

ORP − 0.5198 − 0.0026 0.1036 0.56 − 0.5098

Turbidity 0.4692 − 0.0936 − 0.2836 0.7714 0.3092

Eigen values 2.58607 1.40867 0.90666 0.51795 0.38866

Variance proportion (%) 43.101 23.478 15.111 8.633 6.478

Cumulative variance proportion (%) 43.101 66.579 81.69 90.323 96.8

Table 4 Prediction accuracy in both cloud and edge for STP water data points (by tenfold cross-validation approach)

Training algorithm Correlation coefficient MAE RMSE RAE (%) RRSE (%)

Linear regression 0.6622 0.3116 0.3921 68.4885 74.7244

Multi-layer perceptron (1 hidden layer) 0.8375 0.2385 0.2978 52.4275 56.7512

SVM-SMO (RBF kernel) 0.9996 0.004 0.0158 0.9104 3.0774

IBK (K = 1) 0.9998 0.0007 0.0117 0.1509 2.2282

Kstar 0.9983 0.0137 0.0308 3.0215 5.874

Random forest 0.9977 0.0124 0.0359 2.7199 6.8367

Random tree 0.997 0.0067 0.0407 1.4729 7.7665

REPTree 0.9858 0.023 0.0882 5.0488 16.8017

Fig. 4 BOD estimation error for experimental setup 1

the BOD estimation error, MAE, and RMSE are illustrated
in Fig. 4.

In Fig. 4, the bar graph shows the testing result of the first
twofold, i.e., BOD estimation errors of the first 80 samples
through the IBK approach. The line graph shows the final
MAE and RMSE of tenfold cross-validation approach.

To compare the efficiency of different ML algorithms in
terms of training and prediction time, a total of 400 samples
are taken for training, and one record is taken for prediction.
The time required to train the dataset and predict the result
in both the cloud and edge layer is recorded in Table 5.

FromTable 5, it is observed that for allML algorithms, for
both training and prediction, the cloud takes less time than
edge due to its high computational capability. Therefore, the
cloud is preferred over the edge to run an ML algorithm.
However, in the proposed IoT-based water quality monitor-
ing system, BOD concentration is required to be measured
in real time, and the cloud end prediction is always associ-
ated with latency, network overload, and network connection
failure. If the prediction is performed in the cloud, the raw
data file uploading time from edge to cloud for prediction
and the decision result downloading time from cloud to edge
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Table 5 Training and prediction time cloud and edge for STP water

ML algorithm Cloud training
time (in s)

Edge training
time (in s)

Cloud prediction
time (in s)

Edge prediction
time (in s)

Linear regression 0.01 0.05 0.01 0.01

Multi-layer perceptron (1 hidden layer) 0.11 1.74 0.01 0.01

SVM-SMO 0.3 0.52 0.01 0.01

IBK 0.01 0.01 0.01 0.06

KStar 0.01 0.01 0.14 0.6

Random forest 0.05 0.76 0.01 0.03

Random tree 0.01 0.02 0.01 0.01

REPTree 0.01 0.09 0.01 0.01

Table 6 Total prediction time including dual communication time in cloud layer and real-time prediction in edge layer of STP datasets

Training algorithm Prediction file
upload time (in
s)

Cloud prediction
time (in s)

Prediction
model file
download time
(in s)

Total time for
cloud end pre-
diction (in s)

Edge prediction
time (in s)

Linear regression 0.28 0.01 0.277 0.567 0.01

Multi-layer perceptron (1 hidden layer) 0.28 0.01 0.277 0.567 0.01

SVM-SMO 0.28 0.01 0.277 0.567 0.01

IBK 0.28 0.01 0.277 0.567 0.06

KStar 0.28 0.14 0.277 0.697 0.6

Random forest 0.28 0.01 0.277 0.567 0.03

Random tree 0.28 0.01 0.277 0.567 0.01

REPTree 0.28 0.01 0.277 0.567 0.01

after prediction are substantial and cannot be ignored. Table
6 shows the comparative analysis of total prediction time,
including communication time in the cloud and the prediction
time required by the edge node. The same is also represented
graphically in Fig. 5.

From Table 6 and Fig. 5, it is seen that the edge predic-
tion time is approximately 39 times faster than cloud end
prediction (with both upload and download communication
time). Here, the dual communication time in the cloud is in a
millisecond, which is tolerable for the intended application.

However, by supplementing the edge intelligence, the
proposed system can predict the demanded parameter inde-
pendently evenwhen the edge node is effected due to internet
connectivity loss or network congestion. Furthermore, in the
case of a large number of sensing nodes, if the prediction
algorithm runs on the cloud for each sensing node, then the
server might be overloaded, which can be avoided by dis-
tributing the load locally using edge intelligence. Therefore,
from the above analysis, it can be concluded that prediction
should be made at the edge node in real time for STP water
quality monitoring. Moreover, the training algorithm runs at
the beginning and periodically at a specified interval of time
to train and retrain the system and send the model file to
the edge for real-time prediction by the edge node. The real-

Fig. 5 Cloud vs edge prediction including dual communication time
(in s) of STP datasets

time BOD predicted using edge intelligence helps to trigger
an alert in terms of alarm in response to an abort change in
estimation.
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Table 7 Descriptive statistic of
the recorded Ganga data
samples

Input (variables) Minimum Maximum Mean Standard deviation

DO (mg/l) 0.14 11.06 6.09 4.13

pH 5.61 8.91 7.519 0.667

Temp (◦C) 9 25.89 18.385 2.666

Turbidity (NTU) 9 136.87 46.821 42.377

BOD (mg/l) 1.26 30.74 12.786 11.345

Table 8 Prediction accuracy in
both cloud and edge for Ganga
datasets (by tenfold
cross-validation approach)

Training algorithm Correlation coefficient MAE RMSE RAE (%) RRSE (%)

Linear regression 0.9769 1.3561 2.3962 14.3002 21.3489

Multi-layer perceptron 0.9838 1.0816 2.0174 11.4061 17.974

SVM-SMO 0.9863 0.678 1.8757 7.1499 16.7113

IBK 0.9966 0.143 0.9302 1.497 8.2877

Kstar 0.9929 0.2724 1.3355 2.8728 11.8985

Random forest 0.9905 0.3976 1.5427 4.1932 13.7446

Random tree 0.99 0.3203 1.5845 3.3771 14.1175

REPTree 0.9819 0.6188 2.1273 6.5251 18.9534

Fig. 6 BOD estimation error for experimental setup 2

Table 9 Training and prediction time cloud and edge for Ganga datasets

ML algorithm Cloud training
time (in s)

Edge training
time (in s)

Cloud prediction
time (in s)

Edge prediction
time (in s)

Linear regression 0.01 0.01 0.01 0.01

Multi-layer perceptron (5 hidden layer) 0.12 1.47 0.01 0.01

SVM-SMO 0.1 1.65 0.01 0.01

IBK 0.01 0.01 0.01 0.04

KStar 0.01 0.01 0.26 0.76

Random forest 0.04 0.55 0.01 0.04

Random tree 0.01 0.01 0.01 0.01

REPTree 0.01 0.09 0.01 0.01
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Table 10 Total prediction time including dual communication time in cloud layer and real-time prediction in edge layer for Ganga datasets

Training algorithm Prediction file
upload time (in s)

Cloud prediction
time (in s)

Prediction model file
download time (in s)

Total time for
cloud end pre-
diction (in s)

Edge prediction
time (in s)

Linear regression 0.3 0.28 0.01 0.59 0.01

Multi-layer percep-
tron (1 hidden layer)

0.3 0.28 0.01 0.59 0.01

SVM-SMO 0.3 0.28 0.01 0.59 0.01

IBK 0.3 0.28 0.01 0.59 0.04

KStar 0.3 0.28 0.26 0.84 0.76

Random forest 0.3 0.28 0.01 0.59 0.04

Random tree 0.3 0.28 0.01 0.59 0.01

REPTree 0.3 0.28 0.01 0.59 0.01

Experimental results and discussion for setup 2

From the experiment setup 1, it is concluded that using four
different physical sensors as input, we can predict the BOD
in real time. In experiment 2, the same can be tested with
real-time data of the different locations of the Ganga River,
hosted by a Government hosted website. Here, we are con-
sidering only four sensors data as input data (DO, pH, Temp,
and Turbidity) to minimize sensor cost and cross-validate the
result of experiment 1. The collected raw data are stored in
the cloud as well as an edge for further analysis. Here, a total
of 500 samples are taken, and the statistics of the recorded
variables are shown in Table 7.

Soft sensor took four variables datasets as input to predict
the output variable BOD in real time for Ganga River. The
dataset is standardized before it is feed as input for the soft
sensor model. Here, Table 8 records the performance accu-
racy of the ML algorithm to select the appropriate algorithm
for developing soft sensor modeling for Ganga Dataset.

Table 8 depicts the parameters like correlation coeffi-
cient, MAE, RMSE, RAE, and RRSE Error after performing
tenfold cross-validation with all 500 data points. Here, cross-
validation is performed similarly, as done in “Experimental
Results and Discussions for setup-1”. From the above table,
it can observe that for Ganga data points also, IBK (with K
= 1) gives better prediction accuracy compared to all other
approaches. The comparative analysis between actual BOD
and the predicted BOD in terms of BOD estimation error,
MAE, and RMSE using IBK approach are represented in
Fig. 6. The bar graph of Fig. 6 illustrated the BOD estimation
error of first twofold (i.e., 100 records) and the line graphs
represent overall MAE and RMSE after performing tenfold
cross-validation approach with the dataset.

To compare the efficiency of different ML algorithms in
terms of training and prediction time, a total of 500 samples
are taken for training and a single record for prediction. Table

Fig. 7 Cloud vs. edge prediction including dual communication time
for Ganga dataset of experiment 2

9 records the time required to train the dataset and to predict
the result in the cloud and edge layer separately.

From Table 9, it is observed that for all ML algorithms,
when the algorithm requires more computation, edge takes
more time for training and prediction compared to the cloud.
Table 10 shows the comparative analysis results of total pre-
diction time, including communication time in the cloud and
the prediction time at the edge node. The same is also repre-
sented graphically in Fig. 7.

From Table 10 and Fig. 7, it is observed that the edge pre-
diction time is approximately 31 times faster than the cloud
end prediction. From the above analysis, it is verified that the
edge can predict the desired parameter independently in real
time. With the consideration of the performance of soft sen-
sor modeling for real-time Ganga River data and STP water:
the IBK approach is selected tomodel the soft sensor in terms
of prediction result accuracy and real-time response. Here,
the training algorithm can run offline in the cloud, and the
inference algorithm needs to run in edge to achieve a real-
time response. As a validation of the complete setup, the
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Table 11 Result analysis of real-time deployed system on STP water reservoir

Prediction
algorithm

Correlation
coefficient

MAE RMSE RAE (%) RRSE (%) Cloud prediction Time includ-
ing dual communication time
(in s)

Edge prediction
time (in s)

IBK 0.9273 0.0812 0.1994 17.20 37.62 0.57 0.15

Fig. 8 BOD estimation error after the system deployment

system is deployed in the STP water outlet of the institute,
and real-time BODvalues are predicted and recorded. A total
of 100 real-time values are recorded. The same water sam-
ples are collected and tested using the laboratory approach
from which the actual result are obtained after 5 days, i.e.,
BOD5. Figure 8 represents the comparison between 100
real-time BOD predicted values by the system with the BOD
value measured through the laboratory approach. The corre-
lation coefficient, MAE, RMSE, RAE, and RRSE between
the actual and predicted value are calculated and represented
in Table 11.

From Table 11, it is observed that the calculated correla-
tion coefficient between actual and predicted data using IBK
with K = 1 is high, i.e., 0.9273. MAE and RMSE are low
as per the requirement. The BOD estimation error is also
represented through the bar graph, as shown in Fig. 8. The
calculated MAE and RMSE are also shown in Fig. 8 through
line graph. The average prediction time in the cloud, includ-
ing uploading and downloading time, is quite higher than the
average prediction time at the edge.

Conclusions and future scope

Soft sensors have a practical impact on the design and devel-
opment of IoT-based water quality monitoring system. This
paper presents a BOD soft sensormodel that uses data-driven
ML techniques to estimate the value of BOD in real time.
A comparative study between different ML algorithms was
carried out to select a suitable regression technique for the

proposed system and it was found that the IBK algorithm is
a good fit. A comparison between cloud level and edge level
training and required prediction time is made to estimate
the values in real time. It is found that estimation time for
edge-based algorithms, which uses intelligence at the edge to
predict the BOD values, is within a tolerable limit to make a
decisions in comparison to the cloud based models. Finally,
the real-time water quality monitoring system is designed
using different physical hardware sensors and BOD soft sen-
sor. The BOD soft sensor is modeled using the IBK approach
with edge intelligence, which impacts directly on the cost of
the system, and real-time response time. Based on this study,
we can make decisions and take necessary actions as well as
control the water quality monitoring system in real time. We
also propose to develop soft sensor models for other water
and air quality parameters in the future.
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