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Abstract
The mains signal is a complex fusion of various electrical equipment load signals in a building. In the non-intrusive load 
monitoring recognition, our main aim is to be able to extract as much load features as possible from the complex aggregate 
mains signal in a simpler way through a computer vision-based approach as opposed to the powers series signal approach. 
Power series methods, which are one dimensional in nature, suffer from poor aggregate and load signal feature localiza-
tion necessitating a larger training dataset spanning very long time periods and normally require signal formatting and 
pre-processing. We use Gramian angular summation fields to transform the power series into a reduced image dataset that 
contains a rich set of localized signal features. A computer vision approach allows us to capture as much information as pos-
sible, and then propose an image-based mains load recognition system with high performance. In this paper for the entire 
recognition system, we use convolutional neural networks that very well adapted to vision recognition. The load signal 
image disaggregation is achieved through the powerful stacked denoising autoencoder noise extraction network. To test the 
proposed system, some simulations and comparisons are carried out and the results show that our easier to handle method 
can achieve acceptable performance.

Keywords Image disaggregation · Mains supply load recognition · Convolutional neural network · Stacked denoising 
autoencoder · Image recognition

Introduction

The proliferation of using power systems loads in buildings 
has resulted in high energy demand within the buildings. 
With more and more users and more and more loads there is 
a need to manage the energy within the buildings. The main 
focus point of mains disaggregation and load recognition 
is to achieve an automatic energy management in mainly 
residential and commercial buildings as these are the high 
consumers of electrical energy. However, there are various 
other electrical load equipment usage expectations by dif-
ferent users. The electrical mains supply signal on which 
the energy management system can be developed is a fusion 
into a complex form of the various electrical equipment load 

signals within a building. Through the non-intrusive-load-
monitoring (NILM) [1–4] method we are able to extract each 
load signal from this composite thereby establishing the 
equipment ‘s’ exact operational status. The contemporary 
NILM mains power series signal disaggregation and load 
recognition approach focuses on deep learning (DL) algo-
rithms that are modeled on speech recognition and natural 
language processing recognition systems. Some examples of 
NILM power series based recognition systems include: (1) 
the “sequence-to-point learning” where the output is made 
up of one point of the target appliance and input is made up 
of a window of the aggregate signal as raw data, (2) one-
dimensional convolutional differential input systems, and 
3) stacked denoising autoencoders (sdAEs) with the ability 
to reconstruct a good signal from a composite of noise and 
signal [4–9]. The NILM method has traditionally been based 
on the power series format of the equipment signal [6, 7, 10] 
in labeled or unlabeled form, often with a detailed incorpo-
ration of event detection mechanism [11, 12]. The appliance 
features that are used in NILM systems broadly fall in the 
following categories of steady state (power change, time and 
frequency domain voltage-current (V–I), V–I trajectory), 
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transient state (transient power, start-up current waveforms, 
voltage noise), combined steady and transient states features, 
and features obtained or inferred from the behavior of the 
appliance [13].

In NILM recognition systems, power series spanning 
over long time periods are often required to avail sufficient 
features for model training, since power series methods suf-
fer poor signal feature localization, and normally require 
involved signal formatting and pre-processing. A shapelets 
learning method that can benefit the NILM power series 
based recognition scheme is proposed by [14] to improve 
on the recognition of general time-series with very limited 
data samples. These shapelets represent tendencies in the 
signal thereby placing the signal in a certain class. However, 
the shapelets method is still power series signal based. In 
this paper for improved recognition based on the power-
ful computer vision model(s) we change the power series 
feature space to image space. The image equivalent to the 
power series contains a rich set of localized signal features. 
We transform the power series into image through the use 
of the Gramian angular summation fields (GASF). However, 
it is also possible to encode the power series to image using 
Gramian angular difference fields (GADF) and Markov tran-
sition fields (MTF). The main advantage of Gramian angular 
fields (GAF) over other time series visualization methods 
is that we can readily reconstruct the power series from the 
image parameters [15]. Some researchers [16, 17, 22] have 
proposed image-based NILM recognition systems with vary-
ing degrees of success. However, the image-based approach 
was mainly implemented in the classification stages rather 
than the entirety of the NILM recognition to include the 
disaggregation.

Having reviewed the related literature we propose the 
development and improvement of the image-based NILM 
recognition system. In this paper, we introduce an improved 
feature extraction image based approach that performs both 
disaggregation and classification of power systems load sig-
nals via less complex deep learning model configurations 
having reduced computation times. The developed system 
is completely evaluated in the laboratory setup. We then 
propose the installation of the designed NILM recognition 
system at the mains powerpoint into the building housing the 
appliances as a practical implementation of the system. The 
appliance classification is achieved through the Oxford Vis-
ual Geometry Group (VGG) convolutional neural network 
(VGG–CNN) [16] due to its very high image classification 
count. The load signal image disaggregation is achieved 
through the powerful stacked denoising autoencoder noise 
extraction network applied to images. In this study, we gen-
erated our own dataset from three mains lamps, a refrig-
erator and a microwave oven. In future, we can extend the 
image-based NILM recognition strategy to the recognition 
of multi-state appliances.

In literature, the traditional two-dimensional (2-D) con-
volutional neural network (CNN or ConvNet) is a common 
feature in most if not all NILM image-based recognition 
systems. To improve the performance of NILM image-based 
designs it is necessary to modify the basic CNN structure 
[17–22]. Based on a twenty-one appliance dataset, the 
authors of [17], proposed a 2-D CNN composed of a residual 
model and a Batch Normalization layer to correct the gradi-
ent disappearance issue during training. For the transforma-
tion of the time series signals to 2-D GADF images in their 
NILM recognition system, in [17], the authors recommended 
GADF over GASF or MTF images as GADF capture and 
represent more signal event/timing information than the 
other two. However, there is a need to improve the NILM 
recognition system performance of [17] which hovered at 
97.2%.

The authors in [18] proposed a GASF image-based CNN 
NILM disaggregation strategy for the standard Dataport 
dataset. The model in [18] was able to achieve reasonable 
disaggregation with image pixel sizes of 30 × 30 for micro-
wave and 100 × 100 for air conditioner. However, the disag-
gregation performance relative error in total energy varied 
from 14% for microwave to 32% for the air conditioner. 
Clearly, there is a need to improve the NILM disaggregation 
performance in [18]. The event-driven NILM recognition 
method proposed in [19] captures event-based information 
that includes establishing the signal’s zero-crossing point, 
the similarity between current signals, threshold measure 
and point at which event starts and stops. All these event 
current characteristics are converted to gray-scale images 
as an input of a VGG-16 CNN model. The method in [19] 
achieved high NILM image-based recognition performance 
for a considerably reduced signal dataset when the number 
of appliances is few. However, there is a need to further 
improve the method in [19], as the NILM recognition accu-
racy degrades with an increase in the number of appliances. 
Furthermore, image-based event algorithms improve the 
complexity of the NILM design.

Voltage–current (V–I) trajectories constitute a form of 
2-D NILM signature recognition scheme [20]. The V–I 
trajectories provide a characteristic image for each appli-
ance. The image is then recognized through the Hierarchical 
clustering classifier [20]. The authors of [4, 5] developed a 
much more robust NILM vision-based V–I trajectories rec-
ognition method based on the convolutional and Siamese 
neural networks. The Siamese neural network is composed 
of two similar CNN networks in parallel feeding one out-
put label. The inputs of these networks are single identical 
images. Siamese neural networks can also be successfully 
implemented in one-shot learning [5]. The aim is to find the 
similarity between two inputs for example that of the ground 
truth signal and the disaggregated signal. The constructive 
loss function gives a quantitative measure of the relationship 
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between the Siamese network inputs. A clustering algorithm 
known as the density-based spatial clustering of applications 
with noise (DBSCAN) [5] is then used to place the inputs 
into their classes. However, in [4, 5] the F1-measure which 
requires improvement was low for similar signature appli-
ances. The authors in [21] proposed an image-based NILM 
recognition approach premised on the vector projection 
classification (VPC) technique that was formally applied to 
human faces recognition. In this case, appliance data images 
are projected onto some 2-D vector surface and their simi-
larity noted, the closer the images to each other the more 
probable that there are in that class and hence recognized.

In [22], the authors proposed to represent event-based 
NILM V–I appliance features in image form fusing the 
weighted recurrence graphs (WRGs). Traditional V–I mod-
els are capable of only representing the phase relationships 
with the exclusion of the signal magnitude of the appliances. 
According to [22], the traditional V–I trajectories approach 
is incapable of extracting adequate V–I trajectories informa-
tion on a purely resistive load. However, the WRGs approach 
is capable of combining and representing both the signal 
magnitude and V–I trajectories into a single image which is 
then processed through an image-based CNN. By so doing, 
extracting adequate V–I trajectories information from purely 
resistive loads can be addressed. Although the method in 
[22] is capable of very high NILM recognition performance 
there are some appliances that it wrongly identifies.

We have shown the diversity of NILM image recognition 
methods that often achieve high performance. The contin-
ued development of NILM image recognition systems has 
been made possible by the technological advancements in 
computing that has allowed for the development of deep 
machine learning algorithms with computer vision capable 
of outperforming human biological-based vision. One deep-
learning image detection algorithm and its variants, which 
stands out of the rest and are used in most image recogni-
tion systems, are the CNN and its variants. The CNN has 
enhanced image feature extraction capabilities that allow it 
to achieve advanced levels of image recognition [23–25]. 
In this paper, we propose an improved NILM image disag-
gregation framework that is based on the staked denoising 
autoencoder (sdAE) using CNN layers. The effectiveness of 
an image recognition system is in its ability to obtain a clean 
image from a poor and noisy representation of the image. 
Although a number of image cleaning techniques have been 
proposed [26], with the deep image denoising concept pio-
neered in 2015 [27], the CNN based sdAE has achieved very 
high image cleaning performance [26]. Hence, we aim to 
exploit this property of the sdAE to obtain a clean appli-
ance signal image from the mains supply signal composite 
image. Furthermore, we aim to address some of the image-
based NILM deficiencies [17–22]. As the authors in [18] 
we proposed GASF generated images for the disaggregation 

strategy, however, in our case we use an in-house gener-
ated dataset and go a step further to include the image-based 
equipment classification part which was not done in [18] 
who use a standard dataport dataset. In the final analysis, we 
compare the performance of our proposed image recognition 
system to that of a power series one, also based on the con-
volutional neural network. The procedure involves measur-
ing the current, real power and power factor load parameters 
for the aggregate and each appliance power series based 
signal, and converting each parameter power series into an 
image representation. We performed rigorous NILM recog-
nition experimentation with the images generated from all 
the three signal parameters. The current and power signals 
do, in fact, individually provide all the features required to 
provide unique signal identity. However, it is also possible to 
provide signal identification by considering the PF. We get a 
boost on the signal recognition performance if we consider 
an increased dataset that includes current and power factor 
or active power and power factor. We then train the pro-
posed sdAE disaggregation and VGG–CNN classification 
networks. Finally, we perform image-based disaggregation 
and recognition of each appliance based on the power series 
images. We make the following contributions in our study:

• Development and improvement of the NILM recognition 
scheme by basing it on a powerful computer vision appli-
ance signal disaggregation and classification technique.

• Compare the performance of our proposed image based 
NILM recognition scheme to that of the power series 
signal system.

The remaining sections are structured as follows: “Meth-
odology” details the design of the proposed image-based 
non-intrusive load monitoring system. The disaggregation 
is achieved through a number of trained stacked denoising 
autoencoders (sdAE) equal to the number of target mains 
loads and the classification through a single multiclass 
trained deep convolutional neural network (DCNN). We also 
show the intended application of the designed image-based 
NILM recognition system. We detail the experimental setup 
in relation to the creation of our in-house laboratory dataset 
from power series to image form, performance measure, pro-
posed method pseudo code, model training/testing approach 
framework and procedure. A breakdown of the model archi-
tectures in terms of the deep learning network layers, and the 
comparison or relationship between the encoding, decoding, 
ConvNet classification and power series classification are 
also given here. “Discussion of experimental results” gives 
an in-depth presentation and analysis of the results. “Conclu-
sion” gives a conclusion of the developed system. We also 
give an insight into future work related to the outcomes of 
this paper.
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Methodology

Proposed overall topology

The proposed topology in Fig. 1 is made up of two parts, 
the disaggregation and classification. The disaggregation is 
made up of five sdAE networks, whilst the classification 
is made up of one ConvNet VGG network. The aggregate 
signal image is input into five trained sdAE networks, each 
is capable of disaggregating only one target appliance signal 
image. The output of each sdAE is a clean target appliance 
signal image. The image is the input into the trained VGG 
classifier for recognition.

In the classification part, we train the model to recognize 
and classify only the ground truth signature images of the 
appliances. In this case, we consider only the refrigerator 
and microwave oven input images. However, we can gener-
ate relevant signature images for the other appliances in the 
entire experiment. Both the disaggregation and classification 
networks are built around the CNN. The CNN can extract 
detailed image features and reduce the overall dimension of 
an image but preserve the image identity through the lin-
ear convolution of the input image. The CNN employs a 
number of filters whose dimensions are much smaller than 
the image to scan the entire image at intervals known as 
strides, thereby obtaining a representative mapping of these 
scanned areas. Nonlinearity is introduced into the convolu-
tion result through the application of a Rectified Linear Unit 

(ReLu) operation which effectively removes all negatives in 
the result. The produced CNN + ReLu feature image is then 
passed through a pooling layer to reduce the dimensionality 
of the convolution result but maintaining the essential parts 
of the input information. For image recognition, the CNN 
uses max or sum pooling method. [4, 23–25]. To increase 
the number of detected image features the CNN requires an 
increase in the number of filters connected in parallel, with 
each filter detecting a specific image feature. The CNN can 
be made deeper by adding successive convolution layers and 
pooling layers to extract as much information as possible 
from the data. The pooling layers introduce blurring of the 
image hence it needs to have deeper networks to extract as 
much relevant information as possible. Figure 2 shows a 
28 × 28 input image, the convolved output image and finally 
the image from a 2 × 2 max pooling based on 16 filters.

In the power series-based NILM recognition the net-
work input is the aggregated power series signal and the 
target is the specific appliance signature. In the proposed 
system, the number of disaggregation networks is equal to 
the number of appliances under test, where the input power 
series is equal to the entire appliance activation. In disag-
gregation, the output power series length is also equal to 
the entire appliance activation. In our proposed method, the 
disaggregation output is the image equivalent of the power 
series output. Instead of power series based partial disag-
gregated signals (that are combined through some recon-
struction filter or through addition and finding the mean) 
defined by the number of sliding windows, our proposed 

Fig. 1  Proposed complete 
NILM recognition system show-
ing five dAE networks and one 
ConvNet VGG classifier. The 
following are identified a aggre-
gate input, b FR, c MW, d L1, e 
L2, and f L3 target images, with 
g the load identity output
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system outputs an image representing the entire ground truth 
activation characteristics of the disaggregated image equiva-
lent to the signature. To improve gradient convergence and 
avoid instability it is necessary to normalize all power series 
data and then apply standardization [zero mean (µ) and 
unit standard deviation (σ)] to the data. The disaggregated 
signals are then fed into a trained multi-class power series 
classification network. Long-short-term-memory (LSTM) 
recurrent networks that find wide application in speech rec-
ognition and language processing are highly adaptable to 
time-series disaggregation. Furthermore, whilst ConvNets 
are highly adapted to spatial based recognition they can also 
be used in one-dimensional (1D) power series univariate 
and multivariate based NILM disaggregation and classifica-
tion systems [6] with acceptable performance. Power series 
deep learning NILM recognition systems are often based on 
(1) combined convolutional and recurrent neural network 
(CNN–RNN), and (2) autoencoder (AE) [7, 10, 13] that are 
well adapted to complex feature extraction, sequence pre-
diction and signal reconstruction, all requirements that are 
crucial in signal disaggregation. In applications where we 
need to detect feature trends within the data (fixed sequence 
length) without worrying about the specific location of that 
feature we use one dimensional (1-D) CNN. RNN that is 
based on memory cells can direct the output predictions to 
be in the order determined by the position of the input signal 
elements. However, due to the vanishing gradient problem 
of the RNN, an enhanced form of the RNN known as the 
long-short-term-memory (LSTM) network is used instead 
[28]. In the backpropagation, weights are updated according 
to the gradient descent where a vanishing gradient deprives 
layers close to the input of error signal making these lay-
ers less effective in training, whilst an exploding gradient 
error signal causes instability in the same layers [29]. In the 

multi-layer perceptron (MLP) as the hidden layers go wider 
and deeper, a number of issues arise. Wider implies more 
weights, hence strenuous computations. Deeper implies a 
vanishing and exploding gradient. The autoencoder (AE), 
which is made up of the same number of input neurons as 
output neurons and having a significantly reduced deep layer 
count that form an extension of the input, can address the 
pitfalls of the deep MLP. Disaggregation by ‘denoising’ the 
unwanted parts of the aggregate signal is an effective way of 
extracting the required load signal [6]. Our proposed system 
uses 2-D CNN based classification as opposed to 1-D CNN 
classification in the power series system.

The proposed system samples data from the common 
mains power cable supplying three mains lamps, a refrig-
erator and a microwave oven in the house. The hardware/
software components include digital signal processing pro-
cessors, main system processor, embedded system develop-
ment board/platform, IoT module and python with Keras 
deep learning library. There is also a need to convert the 
high-level language to low-level format or machine code for 
loading the NILM program into the embedded system. The 
power supply for the whole recognition unit is tapped from 
the mains power cable. In implementation we consider both 
manual and online capture of signal information for training 
and disaggregation, respectively.

Disaggregation framework

Inspired by the ability of autoencoders to reconstruct 
a good signal from a composite of noise and signal, an 
NILM disaggregation system based on the stacked image 
denoising autoencoders (dAEs) [9] is proposed. The dAE 
will effectively disaggregate the required load image from 
a noisy environment due to other (aggregate) loads from 

Fig. 2  Convolution on refrigerator GADF image..a Input image, b convolution + ReLu image, and c blurred first max pooling resultant image
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the aggregate image. We obtain the full benefits of the dAE 
by developing stacked dAEs which are basically deep dAE 
structures. By implementing stacked dAEs we obtain a bet-
ter generalization of the recognition system. Our proposed 
stacked dAE recognition system is given in Fig. 3 with a 
number of hidden layers.

The aggregate signal x(t) can be represented in-terms of 
appliance j signature zj(t) and an overall noise term due to 
the other appliances zi(t) and a spurious noise term e(t) as 
[30]

where

The dAE will remove the vj(t) term from the aggregate 
signal so that there remains with only the appliance j signa-
ture zj(t) term. The dAE comprises of an aggregate input xi 
followed by an encoder which gives an internal representa-
tion of the input to an encoding hidden layer yh and then a 
decoder which moves this internalized representation to the 
target output zi provided i > h the number of neurons in the 
respective layers. These are actually back to back connected 
full networks where the first full network based on CNN 
incorporates max pooling and the second full network incor-
porates up-sampling [9, 31–33]. Normally during training 
the network a Gaussian or Salt-and-Pepper noise is added to 
the input to give a noisy term x′ . Then a nonlinear encoding 
layer y [9] is given in Eq. 3 as

(1)x(t) = zj(t) + vj(t) for j = 1, 2,…N,

(2)vj(t) =

N∑

i=1

zi(t) + e(t) i ≠ j.

where b is an encoding layer bias, W is the i × h weight 
matrix, and � is the ReLU activation function. The mapping 
to z from the output y is

where b′ is decoding layer bias, W ′ is the h × i weight 
matrix that translates to WT , s is a softplus activation func-
tion. � = {W, b} for encoding layer yh and �� =

{
W �, b;

}
 for 

decoding layer zi . For training and optimizing the parameters 
Θ = {W, b, b� } we apply the objective loss function

where vi is the clean signal.

Classification framework

The classification model was premised on a simplified three-
section Oxford Visual Geometry Group (ConvNet VGG) in 
[16]. This is a multilayer very deep CNN structure that has 
achieved a very high level of multiclass recognition and 
good generalization of a large varying image dataset count. 
The ConvNet VGG model is a good benchmark classifica-
tion model. Figure 4 shows our proposed VGG classification 
model.

(3)y = f
�

(
x�
)
= �

(
Wx� + b

)
,

(4)z = g
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Fig. 3  Image denoising autoencoder for the NILM disaggregation. a Aggregate image. b encoder, c encoding hidden layer, d decoder, e target 
image, f decoder hidden layer, g encoder hidden layer, and h Gaussian added noise equivalent due to loads other than the target load



907Complex & Intelligent Systems (2021) 7:901–927 

1 3

Dataset creation

A number of public datasets exist for experimenting on 
developing NILM recognition systems. However, most of 
the load equipment in these datasets is either obsolete or 
advancement in technology has altered slightly their sig-
nature characteristics. This in itself is not a major issue for 
developing the models, but how to apply and validate these 
models becomes a problem. Also some datasets have varied 
data acquisition sampling time and are defined for activa-
tion periods of days and even months. This would generate 
enormous data which is beyond the scope of the CPU com-
putations platform that we are using in this paper. To this 
end, we propose a simpler dataset, however, not necessarily 
less important for our experiment.

The data used in the experiments were obtained in a labo-
ratory setup using the following appliances:

• Hisense refrigerator (RF),
• SMW20E Salton microwave oven (MW),
• Philips 5 W (60 W) LED lamp (L2),
• Radiant 12 W (100 mA) CFL lamp (L1) and
• Radiant 14 W (110 mA) CFL lamp (L3).

The data were acquired at a sampling rate of 1 Hz by 
using a Tektronix PA1000 Power Analyzer [34]. The pro-
gramming environment was based on 64 bit python 3.6.3 64 
bit software, keras 2.2.4, tensorflow 1.5.0 backend, numpy 
1.17.0, pandas 0.20.3, pyts 0.8.0, scipy 1.3.1, and scikit-
learn 0.20.1 packages, on an  Intel® CPU 2.30 GHz 4.00 GB 
Ram 64bit HP ProBook 450 G3 laptop. Figure 5 shows the 

Fig. 4  Proposed CNN clas-
sification network. a Disaggre-
gated input images, b convolu-
tion + ReLu, c feature maps, d 
max pooling, e fully connected 
network, f class outputs, and g 
backpropagation network path

Fig. 5  Photo of experiment 
setup for RF, MW, L1, L2 and 
L3 parameter measurement. a 
RF, and b MW
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experiment setup for acquiring the data using the PA1000 
Power Analyser.

The appliances are connected in parallel as per PA1000 
instructions to an alternating-current (A.C) mains power 
source. Each appliance is connected to the mains power 
cable through switched mains power extension cables incor-
porating lamp holders in the case of lamps. For measurement 
reproducibility, each appliance and plug point is assigned a 
specific label. USB data logging, for datasets creation is at 
a frequency of 1 Hz. This sampling frequency determines 
whether we implement high transient, slow transient, event 
detection or non-event detection based, feature extraction 
algorithms. However, in the event of designing a data acqui-
sition signal processing hardware we can make use of much 
higher sampling frequency since provision for buffer storage 
can be incorporated.

Power series signals

Figure 6 shows the current (I_rms) aggregate appliances 
signal for a laboratory experiment whose objective was to 
disaggregate and classify each appliance specified in this 
diagram using deep learning method.

The diagram gives the aggregate profile of a refrigerator 
(FR), a microwave oven (MW), and mains 12 W (L1), 5 W 
(L2) and 14 W (L3) lamps. The appliances under consid-
eration have various activation periods. In the experiment, 
the refrigerator’s activation period before the next appliance 
(microwave oven) is switched ON spans 1170 s. However, 
from about 28 s to 1170 s its response is fairly constant. The 
microwave oven is switched on to operate at idle for 120 s 
after the 1170 s of refrigerator operation. Figure 7 shows the 
point at which we switch on the microwave oven idle status 
into the circuit.

After 120 s the microwave oven is timed for a period 
of another 120 s to bring 100 ml of water to the boil and 
then switched off. The refrigerator continues to run and after 

Fig. 6  Aggregate current (I_
rms) profile showing the appli-
ance activations in the labora-
tory experiment. The following 
are the load operational status: 
At point a FR “ON”, intervals b 
FR + MW on idle, c MW boils 
100 ml of water, d FR + MW, 
point e MW “OFF”, intervals 
f FR + L1, g FR + L1 + L2, 
h FR + L1 + L2 + L3, i FR 
“OFF” + L1 + L2 + L3, j 
L2 + L3, k L2, and at i. All 
loads “OFF”

Fig. 7  Refrigerator and micro-
wave oven activation points. a 
Refrigerator switch “ON”, b 
microwave oven switch “ON”, 
and c refrigerator and micro-
wave oven “ON” but operating 
at idle
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operating for 120 s L1 is switched on to operate with the 
refrigerator for a period of 360 s before L2 is added into the 
circuit and the combination operates for 300 s. We then add 
another lamp L3 into the circuit comprising RF, L1, and L2 
to operate for an additional 300 s before the refrigerator cuts 
off automatically leaving L1, L2 and L3 switched on. The 
remaining L1, L2 and L3 combination operates for 120 s 
after which we switch off L1. Now we remain with L2 and 
L3 in the circuit for 240 s after which we disconnect L3. L2 
operates for a short period before we finally remove it from 
the supply to remain with no connected appliances.

The data acquisition unit automatically samples addi-
tional load parameters that include voltage, frequency, active 
power (Watts), and power factor (PF) for both the aggregate 
and ground truth signals. The active power load profile was 
similar in shape to the current load profile. Figure 8 shows 
the PF aggregate profile for the experiment in this paper. PF 
which is the ratio of real power to apparent power (
PF =

watts

voltage×current

)
 normally measurements the energy effi-

ciency of the appliance. As can be seen from the preceding 
expression the PF in appliance steady-state operation is a 
consequence of the active power, current and voltage. We 
performed rigorous NILM recognition experimentation with 
the images generated from all the three signal parameters. 
The PF energy efficiency characteristics in principle can be 
used to provide recognition of an appliance since PF varies 
as the active power which is directly related to the current. 
However, the I_rms and Watts signals give a direct represen-
tation of the operational features of the appliance and are 
therefore more appropriate parameters for the recognition. 
Hence, the I_rms and Watts parameters do, in fact, individu-
ally provide all the features required to provide unique signal 
identity. We get a boost on the signal recognition perfor-
mance if we consider an increased dataset that includes cur-
rent and power factor or active power and power factor.

The power series signals are taken as raw data spanning 
the entire aggregate signal sample length and target load 
activation windows. The pyts package in python facilitates 
the generation of the signal images from power series rep-
resentation. We consider gramian angular fields (GAFs) to 
transform the power series into image equivalent form for 
input into our image-based NILM recognition system.

Gramian angular fields

The Gram Matrix (Gramian or metric) matrix [35] is the 
basis for encoding appliance power series signal to an 
image. The appliance signals are encoded to GAF using 
the procedure in [15, 36], and then rescaling the signals 
X =

{
x1, x2,… , xn

}
 to fit in the ranges of − 1 to 1 or 0 to 1 

as given in Eqs. (6) and (7) respectively.

After rescaling, the time series is converted to polar coor-
dinate as given in Eq. (8), where the value is the angular 
cosine and the time stamp 

(
ti
)
 is the radius r ∅ is the polar 

coordinates angle and N is the regularization constant factor 
for the span of the polar coordinate system [15, 20]. On the 
polar plot advancing time scale concentric circles are accom-
panied by time scale values that warp through the various 
angular points. The angular limit for the scale [0, 1] is [0,�] , 
and for [−1, 1] is 

[
0,

�

2

]
 [15].

(6)X̃i
−1

=
(xi −max (X)) +

(
xi −min (X)

)

max (X) −min (X)
,

(7)X̃i
0
=

xi −min (X)

max (X) −min (X)
.

(8)
{

� = ar cos
(
x̃i
)
, −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

r =
ti

N
, ti ∈ N.

Fig. 8  Aggregate PF appliances 
profile for the laboratory experi-
ment. Operating points and 
intervals are defined as in Fig. 1 
since the time scale is the same
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A Gramian Matrix [15] is realized from the polar coordi-
nate vectors. Either, the image-based Gramian Angular Sum-
mation Field (GASF) or the Gramian Angular Difference 
Field (GADF) as defined in Eqs. (9)–(12) [15, 20] image 
form of the matrix is possible,

where I is the unit row vector [1, 1,… , 1].
Equation (13) shows how the time series can be accu-

rately reconstructed from the GASF main diagonal [20].

In Fig. 9, we show a typical polar plot and the respective 
gramian angular field 28 × 28 images generated from the 
experiment PF composite signal.

The disaggregation algorithm is evaluated based on the 
training and validation/testing. To this end, we create a data-
base composed of training and aggregate validation/testing 
images. We created the aggregate training dataset by adding 
synthetic power series data to the real validation data in the 
ratio 50:50. The validation data remains as only real data. 
Figure 10 shows aggregate training and validation images 
for the current parameter.

The outlook of poorly outlined transformed images can 
be improved by applying the logarithmic transform [37] to 
the image values using the expression in Eq. (14).

where IGASF is the GASF image after the time series polar 
plot transformation, and ĨGASF is the log transformed image. 
A method of improving the image contrast is suggested in 
[37].

Markov transition fields

The Markov transition field (MTF) involves the encoding of 
time series into quartile bins. A Markov transition matrix is 
produced and the MTF result is given as in [15]. The MTF 
captures well, time-series dynamics as opposed to GAF that 
is good at static time series transformations. However, MTF 
has poor capability to reconstruct the time series from the 
image as opposed to GAF. This necessitates a future holistic 

(9)GASF =
[
cos

(
�i + �j

)]
,

(10)= X̃
�

⋅ X̃ −
√
I − X̃2

�

⋅

√
I − X̃2,

(11)GADF =
[
cos

(
�i − �j

)]
,

(12)=
√
I − X̃2

�

⋅ X̃ − X̃�
⋅

√
I − X̃2,

(13)cos
(
�
)
=

√
cos

(
2�

)
+ 1

2
� ∈

[
0,

�

2

]
.

(14)ĨGASF = log10
(
1 + IGASF

)
,

approach to our neural network image dataset creation to 
include both the GAF and MTF as done in [15].

Ground truth signals

The appliances various activation periods define the number 
of images that can be produced. The steady-state operation 
of the refrigerator is defined between 28 and 1170 s. Fig-
ure 11 shows the refrigerator switch ON characteristics and 
active microwave oven activation period.

The refrigerator dataset images are created from Fig. 11 
and from various data lengths up to 1170 s Likewise, the 
microwave oven dataset is created from the respective micro-
wave oven power series. In this experiment, the refrigerator 
plus microwave oven on idle are ON for 120 s whilst in the 
active mode heating 100 ml of water the microwave oven 
is ON for 120 s Hence, with an image set of 30 s (approxi-
mated from the 28 s above) long we can realize a minimum 
of four microwave ON images. These images are the training 
labels in the supervised learning case. Figure 12 shows typi-
cal refrigerator and microwave oven I_rms and PF GASF, 
and GADF ground truth images.

Performance metrics

We use the receiver operating characteristic (ROC) Curve 
to evaluate our classification performance. The area under 
curve (AUC) of the ROC characteristics gives the probabil-
ity of correctly discriminating between two entities. The 
AUC in Fig. 13 is interpreted as [38, 39]

• 0.5–0.6 failed,
• 0.6–0.7 poor,
• 0.7–0.8 fair,
• 0.8–0.9 good, and
• 0.9–1 excellent discrimination.

Multiclass classification can also be achieved through the 
ROC curve [40].

We compliment the ROC classification metrics with 
accuracy, precision, recall, F-measure [13], and confusion 
matrix. These metrics are defined as,

(15)Recall =
TP

TP + FN
,

(16)Precision =
TP

TP + FP
,

(17)Accuracy =
TP + TN

TP + FP + TN + FN
,



911Complex & Intelligent Systems (2021) 7:901–927 

1 3

where TP is true positives, FP is false positives, FN is false 
negatives and TN is true negatives.

Accuracy defines the output popularity of an expected 
outcome in relation to the total possible outcomes in a sam-
ple. Say we have 480 TN outcomes in one class and 20 TP 
outcomes in another class. Then 480 outcomes over 500 total 
outcomes will give us an accuracy of 96%. This translates 
to TN = 480, FN = 20, TP = 0 and FP = 0. A classification 

(18)F - measure
(
F1

)
=

2 × Precision × Recall

Precision + Recall
,

model trained on this unbalanced data may give a high accu-
racy in favor of the higher sample count hence accuracy on 
its own will not provide a good measure of the models’ per-
formance. The precision and recall determine how good the 
TP is acknowledged by the model. By looking at Eqs. (15) 
and (16) the preferred values of precision and recall are 
unity. Hence, precision and recall are preferred classifica-
tion metrics so as to obtain the classification outcomes we 
want. This takes us to Eq. (18) the F-measure. The  F1 which 
contains the values of precision and recall give a better 
representation of the performance of the model in terms of 

Fig. 9  PF aggregate signal transformed to image. We show a polar plot, b GASF, and c GADF generated images
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providing the right classification. The preferred value of  F1 
score is unity. The confusion matrix gives a summary result 
of the expected against the predicted outcomes.

To evaluate the disaggregation performance we use the 
binary cross entropy (BCE) loss [41]. The cross-entropy loss 
(CE) is given as

(19)CE = −

w∑

i

zi log
(
qi
)
,

where w is number of classes, q is class i predicted prob-
ability and zi class i true probability. The CE gives the inter-
pretation of the log-likelihood for zi given a function qi . The 
BCE is then given as in Eq. (20), for two classes.

(20)

BCE = −

w=2∑

i=1

zi log
(
qi
)
= −z1 log

(
q1
)
−
(
1 − z1

)
log

(
1 − q1

)
.

Fig. 10  Disaggregation training and validation aggregate I_rms based images. a Training GASF, b Training GADF, c validation GASF, and d 
validation GADF images
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The kappa index which represents the level of agreement 
between two raters is defined in the range [− 1, 1]. A value 
of − 1 is no agreement at all, 0 is a chance agreement and 
1 is perfect agreement. The code based on the confusion 
matrix in [42] was taken as the basis for formulating the 
kappa index calculations which have been included in our 
Results.

Description of proposed method

Pseudo‑code for proposed method

Pseudo-code for proposed method In the proposed method 
we verify the performance of an image-based NILM 

disaggregation and classification scheme of five appliances 
from the aggregate mains supply. We use an image-based 
denoising autoencoder for the disaggregation and a Con-
vNet VGG architecture for the classification of the denoised 
appliance signature images. In our method, we identify five 
image-based disaggregation networks and one image based 
multi-class classification network. This basically translates 
to two main algorithms in our method given by Pseudocode 
1, and Pseudocode 2 for the disaggregation and classification 
respectively. We also compare the classification performance 
of our system to a power series based on using the same 
ConvNet VGG model.

Fig. 11  Close up refrigerator and microwave oven operating characteristics: a refrigerator at switching “ON” and b microwave oven high power 
activation period

Fig. 12  Refrigerator and microwave oven ground truth signal images. 
a Refrigerator PF GASF, b refrigerator PF GADF, c microwave oven 
PF GASF, d microwave oven PF GADF, e Refrigerator I_rms GASF, 

f refrigerator I_rms GADF, g microwave oven I_rms GASF, and d 
microwave oven I_rms GADF
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Model architectures

Encoding The encoder model is made-up of three 2-D CNN 
layers. The first CNN layer which accepts the aggregate 
image input of shape of 28 × 28 × 3 has 64 filters each of 
dimensions of 3 × 3. The output of this layer is acted upon 
by a ReLU activation function. The ReLU plus CNN out-
put is then operated on by a 2-D max pooling operator of 

dimensions of 2 × 2. The second CNN layer which accepts 
the 2-D max pooling output of the first CNN layer has 32 
filters each of dimensions of 3 × 3. The output of this layer 
is acted upon by a ReLU activation function. The ReLU 
plus CNN output is then operated on by a 2-D max pooling 
operator of dimensions of 2 × 2. The third CNN layer which 
accepts the 2-D max pooling output of the second CNN 
layer has 16 filters each dimensions of 3 × 3. The output of 
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this layer is acted upon by a ReLU activation function. The 
ReLU plus CNN output is then operated on by a 2-D max 
pooling operator of dimensions of 2 × 2 to give the encoded 
output.

Decoding The decoder model is made-up of three 2-D CNN 
layers. The first CNN layer which accepts the encoded input 
from the encoder has 16 filters each of dimensions of 3 × 3. 
The output of this layer is acted upon by a ReLU activa-
tion function. The ReLU plus CNN output is then operated 
on by a 2-D up sampling operator of dimensions of 2 × 2. 
The second CNN layer which accepts the 2-D up sampling 
output of the first CNN layer has 32 filters each of dimen-
sions of 3 × 3. The output of this layer is acted upon by a 
ReLU activation function. The ReLU plus CNN output is 
then operated on by a 2-D up sampling operator of dimen-
sions of 2 × 2. The third CNN layer which accepts the 2-D 
up sampling output of the second CNN layer has 64 filters 
each of dimensions of 3 × 3. The output of this layer is acted 
upon by a ReLU activation function. The ReLU plus CNN 
output is then operated on by a 2-D up sampling operator 
of dimensions of 2 × 2. The output is a CNN layer which 
accepts the 2-D up sampling output of the third CNN layer 
and has three filters each of dimensions of 3 × 3 acted upon 
by a sigmoid activation function.

The encoding and decoding model used the adam opti-
mizer and binary_crossentropy loss function with early stop-
ping based on the minimum validation loss.

ConvNet classification The ConvNet classification model 
is made-up of three 2-D CNN layers, followed by a flatten 
operation, and finally by two fully connected layers. The 
first CNN layer which accepts the disaggregated appliance 
image inputs of shape of 28 × 28 × 3 has 8 filters each of 

dimensions of 3 × 3. The output of this layer is acted upon 
by a ReLU activation function. The ReLU plus CNN output 
is then operated on by a 2-D max pooling operator of dimen-
sions of 2 × 2. The second CNN layer which accepts the 2-D 
max pooling output of the first CNN layer has 16 filters each 
of dimensions of 3 × 3. The output of this layer is acted upon 
by a ReLU activation function. The ReLU plus CNN output 
is then operated on by a 2-D max pooling operator of dimen-
sions of 2 × 2. The third CNN layer which accepts the 2-D 
max pooling output of the second CNN layer has 64 filters 
each dimensions of 3 × 3. The output of this layer is acted 
upon by a ReLU activation function. Then a Flatten layer 
operates on the 2-D max pooling output of the third CNN 
layer. The flattened output is input into a fully connected 
dense layer with 16 neurons, followed by a ReLU activation 
function and a dropout factor of 0.25. The output of the first 
fully connected dense layer is then channeled into the input 
of another fully connected layer with N output neurons (N 
is equal to 2 for binary classification, and N is equal to 4 for 
classification of four appliances). The output of this layer is 
then operated on by a softmax activation function for class 
output. We can use the sigmoid activation function which 
outputs probability values instead of the class values for the 
classification. The classification model used the RMSprop 
optimizer with a learning rate of 0.001.

(The Adam optimizer can be used with the sigmoid 
function).

Power series classification model for comparison The 1-D 
CNN classification model is made-up of five 1-D CNN lay-
ers, followed by a single output dense layer. The first CNN 
layer which accepts the disaggregated appliance power 
series inputs of shape of (4, 1) has eight filters each of 
dimension of 1. The output of this layer is acted upon by 

Fig. 13  Information from two ROC curve representations with true positive rate (P (TP)) and false positive rate (P(FP)) axis. a Comparing ROC 
Curves [39], and b Diagonal line, empirical and Gaussian (solid line) curves on the ROC [38]



917Complex & Intelligent Systems (2021) 7:901–927 

1 3

a ReLU activation function. The second CNN layer which 
accepts the output of the first CNN layer has 16 filters each 
of dimension 1. The output of this layer is acted upon by a 
ReLU activation function. The ReLU plus CNN output is 
then operated on by a 1-D max pooling operator of dimen-
sion 1. The third CNN layer which accepts the output of 
the second CNN layer has 16 filters each of dimension 1. 
The output of this layer is acted upon by a ReLU activation 
function. The ReLU plus CNN output is then operated on 
by a 1-D max pooling operator of dimension 1, followed 
by a dropout factor of 0.5. The fourth CNN layer which 
accepts the output of the third CNN layer has 16 filters each 
of dimension 1. The output of this layer is acted upon by a 
ReLU activation function. The ReLU plus CNN output is 
then operated on by a 1-D max pooling operator of dimen-
sion 1, followed by a dropout factor of 0.5. The fifth CNN 
layer which accepts the output of the fourth CNN layer has 
16 filters each of dimension 1. The output of this layer is 
acted upon by a ReLU activation function. The ReLU plus 
CNN output is then operated on by a 1-D GlobalAverage-
Pooling layer, followed by dropout factor of 0.25. The final 
output layer which follows is a dense layer with 1 neuron and 
a sigmoid activation. The power series model used RMSprop 
optimizer with the hyperparameter settings: lr = 0.001, 
ρ = 0.9, ε = none, and decay = 0.0.

A comparison between the encoding, decoding, ConvNet 
classification and power series models is shown in Table 1.

Training framework and procedure

With reference to the architecture of the CNN we added 
experiments where we changed the learning rate, type 
of optimizer, the number of epochs, the number of layer 
neurons and the batch size. In the sdDAE, we started with 
three CNN layers in the encoder having the numbers of fil-
ters (neurons) of 1024, 512, and 256, respectively. In the 
decoder, we had three CNN layers with the numbers of fil-
ters (neurons) of 256, 512, and 1024, respectively. Increasing 
the number of CNN layers above three layers for the encoder 
and decoder, respectively, did not provide any noticeable 
improvement in the performance of the model. However, 
a decrease below three layers for the encoder and decoder, 
respectively, did adversely affect the performance of the 
model. We trained the sdAE so that the binary cross-entropy 
(BCE) loss function was minimized between the disaggre-
gated output image and the ground truth appliance image. 
The BCE loss parameter calculates the error to be used in 
the weights and bias updates. To address overfitting we 
used the adam algorithm with early stopping and a learning 
rate that varied from 1e−5 to 0.01. We initially started with 
thirty epochs but the model had no noticeable convergence. 
We gradually increased the epoch count to 350 epochs and 
we incorporated early stopping facility based on minimum 

validation loss and a patience of 10. The model achieved 
acceptable disaggregation results for learning rates of 0.01 
and 0.001 with training batch size equal to one and early 
stopping at 200 epochs. We experimented with the Adadelta, 
Adamax, Adam and Adagad optimizers, but the Adam opti-
mizer provided better convergence results. When we gradu-
ally increased the number of CNN layer neurons above the 
ones that we initially had specified, we obtained overfitting 
with increased program running time. Consequently, we 
gradually reduced the number of CNN layer neurons until 
we obtained best results when the encoder CNN layers had 
the numbers of filters (neurons) of 64, 32, and 16 in each 
layer, respectively. In the decoder best disaggregation results 
were obtained when the CNN layers had the numbers of 
filters (neurons) of 16, 32, and 64 in each layer, respectively. 
With this new CNN layer count, the microwave disaggrega-
tion achieved best results at a learning rate of 0.01. How-
ever, the refrigerator and lamps disaggregation achieved best 
results at a learning rate of 0.001. For a batch size of 1 and 
120 epochs the program running time was also considerably 
reduced. Increasing the batch size reduced the performance 
of the model. Also to increase the learning (faster execution 
time) and lower the usage of system memory we set our ini-
tial batch size to 1 (online learning). In this case, the network 
weights are updated after each training instance. In all our 
experimentation to account for non-linearity we introduced 
the ‘relu’ non-linear function into the convolution process.

Our classification model is decided on by the set structure 
of the ConvNet VGG high rate image classifier with defined 
3 × 3 filter dimensions. However, we had to limit the num-
ber of layers to three and had to reduce the number of CNN 
neurons to 16, 32, and 64 for each of the layers, respectively. 
Too high a number of CNN neuron layers resulted in overfit-
ting and too low CNN neuron layers resulted in underfitting. 
The dropout was varied from 0.25 to 0.5. The output activa-
tion function was set to the multi-class ‘softmax’ function. 
We experimented with various optimizers that included the 
RMSprop, adam and stochastic gradient descent (SGD) for 
learning rates that varied from 0.001 to 0.00001. To real-
ize the 1D CNN power series model we experimented with 
various filter numbers in the range 4 to 128 and found best 
results for five CNN layers with the number of filters (neu-
rons) of 8, 16, 16, 16, and 16 per layer from the input respec-
tively. We experimented with various dropouts from 0.25 to 
0.5. The third and fourth CNN layers from the input were 
each followed by a regularization dropout factor of 0.5, and 
the fifth CNN layer by a dropout factor of 0.25. The output 
activation function of the 1D CNN model was set to the 
‘sigmoid’ which can be used for both regression and clas-
sification analysis. The power series model used RMSprop 
optimizer with the hyperparameter settings: lr = 0.001, 
ρ = 0.9, ε = none, and decay = 0.0. The image datasets for 
all the models were produced as 400 × 400 images that were 
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then reshaped to 28 × 28 normalised images before input 
into the CNN.

Discussion of experimental results

The models are first trained using the I_rms image Dataset 
A and then trained using the PF Dataset B. Both datasets are 
split into train and validation data in the ratio 3:1. However, 
the test data varies from as little as one image to a total of 
five images.

Dataset A

The disaggregation was simulated using the autoencoder 
image to image regression code idea in [43]. In this sec-
tion, we present the results of the disaggregation based on 
Fig. 3 that uses the denoising autoencoder. We present the 
disaggregated microwave, refrigerator and L2 lamp target 
load signals. We are also able to extend to the disaggrega-
tion of the other appliances namely L1 and L3, when their 
respective power series signals are transformed to image. 
In Fig. 14, we show the target refrigerator ground truth and 
disaggregated images and their respective power series rep-
resentation. During training, a learning rate of 0.01 produced 
a blank predicted image, but the result was satisfactory for 
a learning rate of 0.001.

The results in Fig. 14 show that we are able to success-
fully disaggregate (predict) the refrigerator I_rms from the 
complex aggregate mains signal. The image features rather 
than the color define the signal. In Fig. 2 we have shown 
the convolution and feature extraction where the colour is 

represented by varying shades of white to grey to black. So 
as far as the classification is concerned this predicted image 
is classified as a refrigerator. Figure 15 gives the BCE train 
loss characteristics for the refrigerator I_rms disaggregation 
model.

Dataset B

In Fig. 16 we show the target microwave oven image, the 
aggregate image for all the appliance activations and the pre-
dicted (disaggregated) microwave oven image for an Adam 
learning rate of 0.001.

The results in Fig. 16 show that we are able to success-
fully disaggregate (predict) the microwave oven from the 
complex aggregate mains signal. Unlike in the I_rms dataset, 
in this dataset there is an improvement in the disaggrega-
tion output as the learning rate approaches 0.01 as shown 
if Fig. 17. Figure 17 shows that the disaggregated image is 
identical to the target image for that load equipment.

It was observed that as the learning rate is decreased to 
1e−5 the disaggregation performance also significantly 
decreased until there was no recognition at all. In Fig. 18, 
we obtain a further decrease in the binary cross-entropy loss 
function as the learning rate is increased from 0.001 to 0.01. 
An increase in learning rate means that the loss function 
decreases faster to reach minima. However, due to the erratic 
behaviour of parameter updates local minima might not be 
achieved. Very low learning rates cause the loss function to 
stagnant, whilst very high learning rates can cause diver-
gence (increase) in the loss function.

We then evaluated the autoencoder model on disaggre-
gating the second load which is the refrigerator. Figure 19 

Table 1  Comparison between the encoding, decoding, ConvNet classification and power series models

Model Function Learning 
task

CNN layers Dropout Optimizer 
(learning 
rate)

Per layer CNN 
number of 
filters (filter 
size)

Out activa-
tion function 
(loss func-
tion)

No. of dense 
layers (neu-
rons)

Pooling/
upsampling

Encoder Compres-
sion of 
data (latent 
space)

Unsuper-
vised/
supervised

3 – Adam 
(0.001–
0.01)

64,32,16 
(3 × 3)

Relu (BCE) – Max pooling 
(2 × 2)

Decoder Mapping 
latent space 
to output

Unsuper-
vised/
supervised

3 – Adam 
(0.001–
0.01)

16,32,64 
(3 × 3)

Relu (BCE) – Upsampling 
(2 × 2)

ConvNet Classification Supervised 3 0.25 RMSprop 
(0.001)

8,16,32 (3 × 3) Softmax 
(BCE)

Flatten Max pooling 
(2 × 2) − 1 (16)

 − 1 (2)
Power series Classification Supervised 5 0.5 RMSprop 

(0.001)
8,16,16,16,16 

(3 × 3)
Sigmoid 

(BCE)
 − 1 (1) Ma xpooling 

(1)
0.5 GlobalA-

verage-
Poolin1D

0.25
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shows that our developed model is able to disaggregate the 
second appliance from the same aggregate image as the pre-
vious load appliance with very high accuracy. The cross-
entropy plot in Fig. 20 consolidates the high disaggregation 
capability of the network on the second load appliance.

In the third case, we evaluated the autoencoder model 
on disaggregating the LED mains lamp (L2) load. Once 
again Fig. 21 shows that our developed model is able to 
disaggregate the third appliance from the same aggregate 
image as the previous load appliances with high accuracy. 
The diagram in Fig. 21 shows switching bars around the 
image. However, there is a slight loss in detail at the upper 
right-hand corner of the predicted image. Nonetheless, the 
predicted image is a true representation of the target image 
as can be attested to the stable cross-entropy plot in Fig. 22.

Dataset B recognition performance

The initial model development entry point is based on 30 
training images, 8 validation images and 8 test images 
belonging to the two classes of refrigerator and microwave 
oven. Based on only one input channel of PF, the model 
achieved a 100% model evaluation capability and was able 

to accurately classify the eight test images that had not been 
seen before where class (0) is fridge and class (1) is micro-
wave oven. The ROC plot is shown Fig. 23.

The corresponding confusion matrix for the ROC plot 
above is shown in Fig. 24. The confusion matrix shows that 
all the eight test samples are accurately classified. The preci-
sion, recall and  F1 score values are all equal to unity imply-
ing a perfect classifier.

We compare the proposed image-based model to a one-
dimensional power series convolutional neural network 
(Conv1D) model based on 144 training samples (with a 
validation split of 0.2) and 40 test samples belonging to the 
two classes of the refrigerator and microwave oven. Based 
on only one input channel of PF, the model achieved a 100% 
model evaluation capability and was able to accurately clas-
sify the forty samples that were seen before where class (0) 
is fridge and class (1) is microwave oven. The ROC plot is 
shown in Fig. 25. Again here the precision, recall and  F1 
score values are all equal to unity showing that this is also a 
good classification model.

The respective confusion matrix related to the ROC plot 
information in Fig. 25 is shown below in Fig. 26.

Fig. 14  Disaggregation of the refrigerator I_rms parameter. a Ground truth signal image, b disaggregated image, c ground truth signal, and d 
disaggregated signal
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The situation changes when we test unseen data dur-
ing the training for the power series signal. We obtain the 
performance ROC plot in Fig. 27 and the confusion matrix 
in Fig. 28, with the resulting precision, recall and  F1 score 
values are all equal to eighty per cent (0.8) which is an aver-
age classification result. The results show that our image 
proposed model achieves higher performance than the uni-
variate power series which achieves eighty percent recogni-
tion for unseen test data. By implementing a multivariate 
based power recognition whether by fusion techniques or 
otherwise we can investigate to see if the performance of 
the power series method can improve. If it does we would 
have used more data points than in our proposed method. 
Power series redundancies can contribute to the lower per-
formance of the recognition network. Redundancies are not 

Fig. 15  BCE loss plot for the I_rms disaggregation

Fig. 16  Disaggregation of MW load signal from aggregate for an adam learning rate of 0.001. a Target MW load image without noise, b aggre-
gate image with noise, and c disaggregated microwave oven signal image

Fig. 17  Disaggregation of MW load signal from aggregate for an adam learning rate of 0.01. a Target MW load image without noise, b aggre-
gate image with noise, and c disaggregated MW signal image
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a major factor in the image recognition system as the gener-
ated redundancies images overlap into one during the power 
series to image transformation.

Comparative evaluation of our model based 
on the parameter type

A NILM recognition system can be developed bordering on 
various approaches of inputting data into the model. Primar-
ily our data is acquired as a univariate power series that is 
individually acquired. We can then feed the data into the 
neural network as a stream of one power series or as parallel 
data in what is commonly termed the multivariate approach. 
The parallel data can also be fused to produce one com-
posite data stream into the neural network. The multivari-
ate or fusion approach has the advantage of availing more 
recognition features at the expense of more data handling 
and more data storage required capacity. The univariate 
approach is simpler, has less memory requirements but has 

the disadvantage of availing less recognition features for the 
deep learning algorithm. Nonetheless in this paper for want 
of memory conservation and less data handling we used the 
univariate approach. Hence, we generate the required images 
from a single power series at a time and use this image in 
the designed recognition system. It is necessary to assess the 
developed models response to each signal image parameter. 
To this end, we evaluate the performance of the recogni-
tion model on the different parameters. The performance 
of a particular model on specific data can be improved by 
considering such aspects as transfer and ensemble learn-
ing. However, now we will not consider these approaches. 
Although we achieved excellent signature disaggregation the 
binary classification model results as can be seen in Table 2 
show a need to improve the classification model design as 
explained in the last part of this results section.

The results in Table 2 show that all three parameters can 
successfully be used in the image-based NILM recogni-
tion system developed here. The recognition based on the 

Fig. 18  MW Binary cross entropy loss for adam learning rate of 0.01

Fig. 19  Disaggregation of RF load signal from aggregate for an adam learning rate of 0.01. a Target RF load image without noise, b aggregate 
image with noise, and c disaggregated RF signal image

Fig. 20  RF binary cross entropy loss for adam learning rate of 0.01
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power signal parameter although somewhat less than that 
for PF produces acceptable average performance. In gen-
eral, the current and power-based parameters provide a 

more interpretable outcome, since it is easier to tell that the 
magnitude is high or low. On the other hand, PF is a more 
abstract energy efficiency measure parameter. The recogni-
tion model was trained with an RMSprop optimizer having a 
learning rate of 0.00001 arrived at through experimentation. 
The current accuracy and loss plots were noisy as shown in 
Fig. 29. In Fig. 30 we show the confusion matrix and the 
ROC plot for the Watt parameter.

By testing unseen data, the classification results show 
that our proposed model outperforms the power series based 
model with a dataset (Dataset B) of fewer image inputs as 
given by the kappa index in Table 3. The agreement between 
the raters is higher in the image-based system than for the 
power series system.

By carrying out more simulations and comparisons we 
were able to improve the results in Table 2 to those shown 
in Table 4 for I_rms based classification of four appliances.

In Fig. 31 we show the designed classification training 
and validation model characteristics for the refrigerator 

Fig. 21  Disaggregation of L2 load signal from aggregate for an adam learning rate of 0.01. a Target L2 load image without noise, b aggregate 
image with noise, and c disaggregated L2 signal image

Fig. 22  L2 Binary cross entropy loss for adam learning rate of 0.01

Fig. 23  ROC curve for PF RF and MW appliance classification

Fig. 24  Confusion matrix for PF RF and MW appliance classification
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(RF), microwave oven (MW), 12 W CFL (L1) mains lamp, 
and 5 W LED (L2) mains lamp.

We obtained 100% classification of three of the four 
appliance disaggregated images as shown in Fig. 32 confu-
sion matrix. The poor recognition result of the LED (L2) 
lamp could be attributed to an insufficiently designed sys-
tem which needs to factor in the low appliance signal which 
could be taken as noise in the system.

The results show that we can successfully implement an 
entirely image-based NILM mains load status recognition 
system and achieve acceptable results. This has the effect of 
considerably reducing the model dataset and pre-processing 
of raw data to be input into the neural network. In the clas-
sification model, we achieved acceptable values of accu-
racy, recall, precision and F-measure. We also achieved an 
overall appliance recognition rate of 75%. This is a good 
recognition rate considering that we had a model simulation 
platform which did not allow for extensively deeper mod-
els to be simulated. The disaggregation performance plots 
show the stability of the autoencoder model, and the training 
and validation losses decrease together as is expected in a 
good model. In the classification, we used balanced data to 
give a stable recognition model for the four appliances. To 
assess how good the disaggregation is we reconstructed the 
refrigerator I_rms disaggregated signal from the image gra-
mian diagonal matrix, and found that it closely resembles the 
refrigerator I_rms ground truth signal as shown in Fig. 14.

Conclusion

The research objective of designing an image-based NILM 
recognition systems has been achieved in this paper. We 
have managed to provide extraction of appliance signal fea-
tures in a simpler way by adopting an image-based deep 
learning self-feature extraction method. Secondly, by bas-
ing the recognition system on a computer vision approach 
that possesses a high input receptive field, we increase the 

Fig. 25  ROC curve for PF RF and MW appliance classification in 
power series recognition for data

Fig. 26  Confusion matrix for PF RF and MW appliance seen power 
series data classification

Fig. 27  ROC curve for PF RF and MW appliance classification in 
power series recognition for unseen data

Fig. 28  Confusion matrix for PF RF and MW appliance unseen 
power series data classification
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field and depth of the features that we can extract without 
much need of data preprocessing. Immediate outcomes of 
this approach are the dispensing with the direct power series 
method, the reduction in the dataset and a high-performance 
system that is easier to handle. Under the constrained CPU 
platform that we did our simulations, we show that all the 
appliance parameters are capable of achieving acceptable 
NILM appliance recognition performance. However, with 
a detailed model design it is possible to achieve higher rec-
ognition performance.

In this paper, we obtain a rich set of localized aggre-
gate and load features for more accurate NILM recognition 
through transforming the power series into the image by way 
of the Gramian Angular Fields technique. For recognition, 
we used a two-dimensional convolutional neural network 
that is very well adapted to computer vision applications and 
possesses a very high image feature extraction and detec-
tion capabilities. In this paper, the deep convolutional neural 
network is configured for both image classification and dis-
aggregation. The disaggregation is in the form of an image-
based denoising autoencoder model. We are able to harness 

Table 2  Comparative evaluation 
of model performance on 
different signal parameters 
generated images

Parameter (appliance) Precision Recall F1 Accuracy Train sample Test sample

I_rms (FR) 0.5 0.75 0.60 0.75 15 3
I_rms (MW) 0.5 0.25 0.33 0.75 15 3
Watt (FR) 1.00 0.67 0.80 0.8333 15 3
Watt (MW) 0.75 1.00 0.86 0.8333 15 3
PF (RF) 1.00 1.00 1.00 1.00 15 3
PF (MW) 1.00 1.00 1.00 1.00 15 3

Fig. 29  Arms performance plots. a Model accuracy, and b categorical crossentropy loss

Fig. 30  Watt performance diagrams. a ROC, and b confusion matrix
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the powerful denoising capabilities of the autoencoder to 
come up with an effective disaggregation method in the 
NILM recognition scheme. Our models perform excellent 
image-based disaggregation and classification respectively. 
In the final analysis, we compare the performance of our 
proposed recognition system to that of a one-dimensional 
power series convolutional neural network recognition sys-
tem. The results show that our proposed method achieves 
acceptable performance.

In future, to reduce power series noise and improve on 
recognition we will consider various sensor (information) 
fusion techniques that include the Kalman filter, fuzzy 
fusion etc., and image fusion of the various signal param-
eter images. We need to investigate a few short learning as a 
means of increasing the performance and reducing the data-
set of the NILM image-based recognition system.
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