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Abstract
This paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are 
employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred 
to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved 
using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme 
to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as 
the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, 
a global best solution update strategy, which updates the global best solution depends on different phases so as to balance 
the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart 
algorithms to verify its efficiency.
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Introduction

The development of the global economy has financially 
benefited many countries in the world, but also initiated 
numerous environmental issues. One of its biggest side 
effects could be the raise of disasters that critically damage 
human’s life, properties, and production [1]. Many disasters 
have natural causes, for instance: earthquakes, hurricanes, 
and floods. Many others are human-caused, or non-natural, 
disasters such as explosions, nuclear incidents, and building 
collapses. Sometimes, the disasters occurred in a very abrupt 
and erratic way, sometimes led to massive havoc, whilst their 
sources and causes were unforeseeable. Therefore, the post-
catastrophe support and rescue are equally important as the 
disaster prediction and warning process. Autonomous and 

intelligent assistive systems have been prevalent in carry-
ing on supportive missions in many hostile environments 
after disasters [2–4]. Non-human agents such as robots are 
increasingly exploited in such situations, especially in work-
ing in toxic and hazardous zones. Improving robots’ effec-
tiveness and efficiency in rescuing becomes an interesting 
research area.

The research scopes and ideas in robot rescue are diverse, 
two of the topics most focused on could be: rescue struc-
ture design, and motion model and control [5]. The first one 
considers the big picture by designing an overall structure 
for robots to perform a series of rescuing tasks [5–8], for 
example: walking, driving, or delivering medical equipment 
and food. The second group focuses on the details of each 
task and aims at improving the robots’ speed, accuracy, and 
stability [9–11]. Significant studies in the latter one have 
been published, in which several robot control algorithms 
were proposed, for instance: simultaneous localization and 
mapping (SLAM) [12], particle filter (PF) [13], Kalman 
filter (KF) [13, 14], proportional integral derivative (PID) 
controller [15, 16], and sliding mode [17]. Those algorithms 
are considered the backbone of robot rescue performance 
theory these days.

Although the above methods can obtain valuable results 
in many simulated situations when the time factor is 
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neglected, they are unable to address some practical issues. 
In simulated cases, the key questions for designing rescue 
and controlling robots would be and “How to pass stability 
through an uneven terrain?”, “How can the robots smoothly 
follow the setting rescue route?”, “How to rise the robot 
system’s reliability and survivability effectively by multi-
sensor information fusion” When the survival time is tight, 
for example when some seriously injured people are trapped 
in a place after a chemical fire accident, there would be more 
complicated questions such as “What is the rescue route?”, 
“How can the survival time be estimated?”, “What is the 
priority order of tasks?” and “How can the rescue route be 
altered if some task time values are changed?”, these prob-
lems can be treated as a task allocation problems. Very lim-
ited evidence can be found in the literature that rigorously 
assesses the time factor in robot rescue. Some of our previ-
ous researches show positive outcomes in handling complex 
rescue routes in real-world situations with an assumption 
that survival time values are stable [18, 19]. Still, estimating 
the survival time in destructive locations remains a chal-
lenging issue.

It is noticed that the changing rate of survival time is not 
uniform under the condition of emergency rescue but pre-
sents as an exponential function with respect to time [20]. 
Different physical qualities and environments make the sur-
vival time uncertain while considering that it only gener-
ates minor differences in the survival time value, the value 
can be treated as an interval without loss of generality. That 
important evaluation suggested that the change of survival 
time can be modelled by establishing an interval function of 
survival time changing over time. With few related studies, 
and considering that rescue after a disaster is a key issue for 
security and emergency management, research on the rescue 
problem with uncertain deadlines is essential.

Based on the above analysis, the rescue task allocation 
problem—how to rescue survivors within an uncertain and 
limited survival time—is studied in this paper. Rescue task 
allocation actually is a nondeterministic polynomial hard 
(NP-hard) problem, its solving method is much complex, 
one common-used way to solve it is intelligent optimiza-
tion algorithms, such as particle swarm optimization (PSO) 
algorithm, genetic algorithm (GA) and so on.

In light of PSO algorithm is simple to implement, has 
fewer tuning parameters and fast convergence speed, and 
can obtain the global optimal or suboptimal solution of the 
problem as well [19]. Moreover, the PSO algorithm and its 
variants require fewer evolutionary populations than other 
swarm intelligence algorithms. Considering the numerous 
advantages of PSO algorithm, PSO algorithm is employed 
to solve this problem.

This paper proposes an innovative robot rescue task 
allocation algorithm that robust in real-world situations 
when survival time is limited and uncertain. Inheriting the 

advantages of PSO algorithm, that algorithm establishes a 
mathematical model for task allocation variable, thus named 
TAPSO (task allocation PSO). TAPSO tackles this task allo-
cation problem by taking the number of successful survivors 
(tasks) as an objective function. Moreover, TAPSO improves 
the particle decode method in the original PSO algorithm to 
define the rescue route, also upgrades the global best update 
method by estimating the differences in different evolution-
ary phases between it and local best solutions.

The organization of the rest of this paper is as follows: 
The next section reviews some researches on robot rescue 
task allocation topic. Section 3 defines the particular prob-
lems that need to be solved before converting them into a 
mathematical domain; followed by a demonstration of the 
TAPSO algorithm in Sect. 4. Section 5 provides the simula-
tion results and analysis, whilst the conclusion and future 
work are presented in the final section.

Related work

A wide variety of approaches have been reported for solving 
the problem of rescue task allocation and achieved meaning-
ful results. Traditional methods of addressing task allocation 
problems include behavior-based algorithms [21], market-
based algorithms [22], linear planning methods [23], and 
intelligent optimization algorithms [24–26]. Technically, 
the behavior-based algorithm has the advantages of real-
time, fault-tolerance, and robustness, but unable to obtain 
the global optimal solutions. Moreover, market-based algo-
rithms are suitable for solving the task allocation problem 
in small- and medium-sized heterogeneous distributed col-
laborative robots, whilst the optimal global solution is not 
always be computed in reasonable time; unfortunately, it is 
resource-consuming—once communication is interrupted, 
its performance drops significantly. Linear planning methods 
apply matrix operations for presenting robots’ information 
and batch computing for a robot route, while the numbers 
of robots and tasks are considerable, the computing expense 
grows exponentially. Further, other hybrid linear planning 
methods [27–29] can find the optimal solution but are inef-
ficient when the scale of the problem is large. Intelligent 
algorithms primarily employ GA, PSO, and other algorithms 
to solve the problem, several empirical reports suggested 
that this type of algorithms could be an answer for the per-
plexing issues of low convergence speed and easily converge 
at a local optimal solution [24–26].

Based on the communication topologies of robots, exist-
ing methods of task allocation can be classified into two 
categories: centralized and distributed. The centralized algo-
rithm has a manager reacting like a server to assign tasks to 
each robot, and it can achieve the optimal solution; however, 
the performance of a centralized system deteriorates when 
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the number of tasks is large, the computational load becomes 
heavy; therefore, a centralized algorithm is suitable for solv-
ing such task allocation problems where it is easy to obtain 
information about the environment and tasks for a relatively 
small scale. In contrast, the distributed algorithm has no 
manager; a few robots cannot communicate directly with 
each other, and the task allocation scheme is determined by 
the cooperation of robots that can communicate with each 
other. The distributed method can effectively improve the 
shortages of the centralized controller with heavy loads and 
poor fault tolerance; however, the communication cost of 
the distributed robot system is high, and the algorithm eas-
ily falls into the local optimum owing to the lack of global 
information. The following relevant literature offers support-
ing evidence.

In [30], Whitbrook et  al. modified the performance 
impact (PI) task-allocation algorithm with ε-greedy and 
softmax auction selection methods to explore assignments 
with less rescue time; furthermore, in [31] the researchers 
presented a new algorithm based on the work in [30] to solve 
the problem of being trapped into the local minima and a 
static structure. To maximize the number of task allocations 
in a multi-robot system under strict time constraints, Turner 
et al. [32] proposed an effective algorithm to improve the 
solutions’ performance. However, they primarily focus on 
the application of market-based algorithms rather than gen-
erating global optimal solutions. Robot rescue task alloca-
tion is an optimization problem in reality, an optimal alloca-
tion strategy can help rescue effectively.

Different from market-based algorithm, PSO, an central-
ized algorithm, can offer the global optimal solution, and 
it has been implemented to the field of task allocation, for 
example, Yu [33] presented an improved particle swarm 
optimization (IPSO) algorithm to improve the efficiency of 
resource scheduling, and this IPSO algorithm can overcome 
the problem of premature; Nethravathis et al. [34] proposed 
a permutation optimization strategy based on PSO algorithm 
to solve the resource sharing among device-to-device com-
munication problem; Lin et al. [35] illustrated a new group 
method to divide rescue tasks into groups according to their 
distances, and employed an improved PSO algorithm to 
assign the grouped tasks to robots, results indicated that the 
proposed method can increase the success rate of rescue; 
Singh et al. [36] presented a novel PSO algorithm for solving 
multi-objective flexible job-shop scheduling problem with 
the goal of finding approximations of the optimal solutions, 
and its results verified its effectiveness. From the above stud-
ies, PSO-based algorithms are effective to gain the optimal 
solutions, However, they are centralized algorithms, the 
global information is needed to present the optimal solution.

At present, Unmanned Aerial Vehicle (UAV) detection 
technology is a relatively mature method [37], accordingly, 

in this paper, the environmental information after a disaster 
is assumed to be known in advance. Because of the noise and 
other communication interference issues, the information is 
uncertain, and the interval is reasonable as a representation 
of the data. Further, the data obtained from the environment 
after a disaster are the survival time of each survivor, which 
are critical constraints for the robots to perform the rescue 
mission, as a result, the survival time is treated as an uncer-
tain constraint. Hence, the problem of rescue task allocation 
with uncertain constraints is considered in this paper.

Description and modeling

Problem description

In this paper, uncertainty refers to the situation where the 
tasks’ survival time can only be estimated from the detected 
data, which we consider an interval based on the experi-
ence—a constraint when the robots provide emergency sup-
port to the survivors.

The ultimate target of the rescue task allocation is maxi-
mizing the number of survivors rescued (successful tasks). 
This paper focuses on solving the problem of uncertainty 
survival time constraints. For simplicity, the following 
assumptions are made:

1.	 Robots: all robots are identical. Their batteries are suf-
ficient and their communication is maintained during the 
rescue process. A robot uses an equal amount of time on 
completing a rescue mission, once it reaches a survivor’s 
location.

2.	 Survivors: their survivor times are different but their 
locations are known in advance and remain unchanged 
during the rescue process. Each survivor can only be 
rescued by one robot.

3.	 Rescue route: a robot takes a rescue route in which it can 
rescue several survivors before returning to its initial 
position. The rescue routes of the two robots are not 
overlapped.

4.	 If a robot can reach a survivor before his survival time 
ends, a successful task is recorded. Otherwise, it is a 
failed task.

Accordingly, the task allocation problem in this study 
can be described as follows: After a disaster, the location 
and survival time of each survivor is acknowledged, each 
robot needs to construct a route to accomplish the rescue 
process. Under the time constraints (limited survival time), 
the robot should maximize the number of overall success-
ful tasks, so that the successfully rescued survivors are 
maximum.
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Problem modeling

Given that N tasks are allocated to M robots, the related nota-
tions are used in this research, which are listed in Table 1.

To formulate the problem mathematically, a set of M res-
cued routes are represented by rs1 rs2 ⋯ rsi ⋯ rsM , where 
rsi = (rsi1, rsi2,⋯ , rsij,⋯ , rsi⌈N∕M⌉) , and the route formed by 
all robots’ rescue routes is RS = [rs1 rs2 ⋯ rsi ⋯ rsM]

T.
As depicted in Fig. 1, there are 13 survivors and 3 robots 

in an environment after a disaster, and their rescue route is 
represented as.

RS =

⎡
⎢⎢⎢⎣

rs1

rs2

rs3

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

2, 6, 10, 0, 0

7, 4, 12, 3, 9

1, 11, 5, 8, 13

⎤
⎥⎥⎥⎦
 , where the first robot exe-

cutes the rescue in the sequential order of T2 → T6 → T10 , 
t h e  s e c o n d  r o b o t ’s  s e q u e n t i a l  o r d e r  i s 
T7 → T4 → T12 → T3 → T9 , and the last route for the third 
robot is T1 → T11 → T5 → T8 → T13 , where 0 in RS is to 
complete the matrix. The routes for all the three robots are 

depicted in Fig. 1, where the arrows illustrate the direction 
that robots are heading.

Accordingly, the survivor’s initial survival time is 
denoted as �0j =

[
�j − �, �j + �

]
 . Survival time changes over 

Table 1   The notations in this 
paper

Notation Meaning

M Number of robots, with each being indexed by i = 1,2,…,M
N Number of survivors (tasks), with each being indexed by j = 1,2,…,N
RS Rescue sequence with the matrix of M ∗ ⌊N∕M⌋
SR Reference rescue sequence with the matrix of 1 ∗ N

Ri i-th robot
rsi Rescue sequence of the i-th robot
Tj j-th task
rsij j-th task of the i-th robot
�ij Deadline of Tj when the i-th robot reaches to it
Δ Threshold of survival time
�−
ij

Lower bound of survival time when the i-th robot reaches to Tj
�+
ij

Upper bound of survival time when the i-th robot reaches to Tj
�j Survival time of the j-th task
� A constant setting artificially
�j0 Initial survival time of the j-th task detected by UAVs in advance
tij The elapsed time for the i-th robot reaching rescue Tj
yij Successful rescued number of tasks by the i-th robot, if Tj is rescued 

by the i-th robot, yij is 1; otherwise, 0
SNi The actual number of Ri assigned
F Total number of successful tasks rescued by all robots
F− Lower bound of F
F+ Upper bound of F
Xi Location of the i-th particle
xij Location of the j-th dimension of the i-th particle
Vi Velocity of the i-th particle
νij Velocity of the j-th dimension of the i-th particle
lbest Local best solution
gbest Global best solution for the particle swarm

Robot 3

Robot 1
Robot 2

1

13

11

5

8

2
6

10

3

9

12

4

7

Fig. 1   Rescue environment with 13 survivors and 3 robots
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time [20], when time tij elapses, the survival time of task Tj 
when the i-th robot Ri reaching it, �ij , can be represented as 
follows:

where � is a real number between 0 and 1, based on the result 
in reference [20]; in this paper �= 0.037,tij = disij∕vr , disij is 
the total distance that robot Ri goes from its initial position 
to task Tj.

Each robot performs its respective tasks, and the merit is 
estimated by the number of successful tasks. Accordingly, 
each robot needs to construct an optimal route to gain the 
maximal number of successful tasks (successfully rescued 
survivors) under the time constraints.

Therefore, the objective in this paper is to maximize the 
number of successful tasks, under the previous assump-
tions and notations, the mathematical model is constructed 
as follows:

s.t.

where

Equation (2) maximizes the number of successful tasks. 
Constraint (3) restricts each robot starting from the initial 

(1)�ij =
[
�
−
ij
, �+

ij

]
=
[
(�i − �)e−�tij , (�i + �)e−�tij

]

(2)Max[F−(yij),F
+(yij)]

(3)
M∑
i=1

y0i = 1, i = 1, 2,… ,N

(4)

M∑
j=1

y+
ij
≤ 1, i = 1, 2,… ,N

M∑
j=1

y−−
ij

≤ 1, i = 1, 2,… ,N

(5)
⋂

rsi = �, i = 1, 2,… ,M

(6)y+
ij
, y−

ij
∈ { 0, 1 }, i, j = 1, 2,… ,N, i ≠ j

(7)SNi ≤ N, i = 1, 2,… ,M

F−(y−
ij
) =

M∑
i=1

SNi∑
j=1

y−
ij

F+(y+
ij
) =

M∑
i=1

SNi∑
j=1

y+
ij

,
y−
ij
= sgn(max(0, 𝜎−

ij
− Δ))

y+
ij
= sgn(max(0, 𝜎+

ij
− Δ))

, and sgn(x) =

⎧⎪⎨⎪⎩

1, x > 0

0, x = 0

−1, x < 0

.

,

.

position, which is a necessity-node for each robot. Constraint 
(4) ensures that each survivor can be rescued no more than 
once. Constraint (5) illustrates that the rescue route of any 
robot cannot be in conflict with another. Constraint (6) limits 
the rescue result to 0 or 1, where 0 represents failure and 1 
is success. Constraint (7) guarantees that the rescued task 
number is smaller than the original task number.

The mathematical model of the problem is a model with 
an interval function. In the next section, PSO is employed 
to optimize this model to generate an optimal or suboptimal 
rescue assignment to satisfy (2) ~ (8). Significantly, there 
may exist more than one rescue routes with the same value 
of the objective function.

The proposed algorithm

The proposed algorithm, TAPSO, is presented in Algo-
rithm 1, where the maximal iteration number is regarded 
as the stopping criterion. The proposed algorithm consists 
of three stages. In the first stage, the particles are generated 
randomly, and a decoding method is presented to estimate 
the particles, referring to lines 1–4. In the second stage, lbest 
and gbest are updated to balance the exploitation and explora-
tion, as listed in lines 5–9. Finally, the particles are evolved 
by updating the formulae of velocity and position in lines 
10–13. The algorithm will be elaborated in the following 
sections.

Furthermore, several improvements are made, primarily 
with the particle decode method and gbest update strategy. 
The highlighted lines are the work will be performed in this 
paper.

The main difference between the canonical PSO and 
TAPSO is the interval fitness, where the particles’ fitness 
values are intervals; thus, comparing with exact values, it is 
more difficult to distinguish which one is better. Moreover, 
it has an impact on the result of task allocation, so the com-
parison method between two intervals is essential and dif-
ficult. Once the superior particle is chosen, PSO can proceed 
based on the steps in Algorithm 1.
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Algorithm 1 The framework of the proposed algorithm
Input: the parameters used in the proposed algorithm
Output: the optimal solution gbest
1: Initialize the particles, and determine lbest and gbest
2: While the stopping criterion is not met, do
3:   For each particle
4:       Decode and calculate its fitness 
5:       Compare the current particle with lbest
6:       If the fitness value is better than lbest in history
7:          Update the lbest as the current particle
8:       End if
9:    End for
10:  Update the gbest
11:  For each particle
12:     Update particle’s velocity and position
13:  End for
14: End while
15: Output gbest

Canonical PSO

PSO algorithm is inspired by a flock of birds seeking food. 
It treats each solution of the optimization problem as a 
bird that flies at a certain velocity in the search space, and 
its velocity is adjusted dynamically [38–40]. The bird is 
abstracted as a particle without weight and volume, and the 
location of the i-th particle in all the n dimensions is repre-
sented as Xi = (xi1, xi2,⋯ , xin) . Its velocity is represented as 
Vi = (vi1, vi2,⋯ , vin) , which is the distance to be traveled by 
the particle from its current position. Each particle owns a 
fitness value determined by the objective function that needs 
to be optimized, and a record of one particle’s best location 
so far is stored, lbest, denoted as Pi = (pi1, pi2,⋯ , pin) . All par-
ticles also know their global best location, gbest, denoted as 
Pg = (pg1, pg2,⋯ , pgn) . The particles determine their further 
movements based on the experiences of their companions and 
themselves. Taking the canonical PSO (CPSO) algorithm [40] 
with inertia weight as an example, the updated formulae of a 
particle’s velocity and location are as follows:

where w is the inertia weight, a user-specified parameter. A 
large inertia weight influences the particles toward global 
exploration by searching new areas, whereas a small inertia 
weight influences the particles toward detailed exploitation 
in the current search areas. c1 and c2 are positive constants 

(8)
vij(t + 1) = wvij(t) + c1r1(pij(t) − xij(t)) +c2r2(pgj(t) − xij(t))

(9)xij(t + 1) = xij(t) + vij(t + 1)

called acceleration coefficients. Suitable inertia weight and 
acceleration coefficients can provide a balance between 
exploration and exploitation. r1 and r2 are random numbers 
within the range of [0,1].

Formula (8) is used to update the particle’s velocity based 
on its previous velocity and the distances between its cur-
rent position and lbest along with gbest. The particle then flies 
toward a new position based on Formula (9).

To be applicable to the problem to be solved, a variant 
PSO, TAPSO, is employed to gain the optimal assignment of 
rescue task allocation. The details of TAPSO will be elabo-
rated in the following subsections.

Decode method

In TAPSO, one particle represents one solution, which can 
be decoded as the assigned tasks of all robots, denoted as 
matrix RS.

As set forth, the rescue route is combined by a series of 
integers; hence, the particles are coded in integers, and the 
dimension of the particles is set to N.

Caution should be exercised in this decode process 
to avoid an infeasible solution. Accordingly, a refer-
ence rescue sequence SR is set in this paper, denoted as 
SR = (sR1, sR2, sR3,⋯ , sRj,⋯ , sRN),SR is a sequence of all N 
tasks without overlap. Assume a particle can be represented 
as Xi = (xi1, xi2,⋯ , xij,⋯ , xiN) , 1 ≤ i ≤ Np , where Np is the 
number of the particles in the swarm, and the dimension 
of each robot’s rescue sequence is set to ⌈N∕M⌉ so as to 
assign the tasks averagely to each robot. After decode, we 
can gain the rescue sequence of the i-th particle,RSi , denoted 
as follows:

Taking Fig. 1 for example, there are 3 robots and 13 
tasks, so, N = 13, M = 3,⌈N∕M⌉=5 . Therefore, assume the i-
th particle can be represented as Xi = (xi1, xi2,⋯ , xij,⋯ , xiN)

= (5, 13, 22, 16, 77, 9, 22, 45, 68, 4, 3, 12, 83) , correspond-
ingly, assume its rescue sequence is:

RSi =

⎡⎢⎢⎢⎣

rsi
1

rsi
2

rsi
3

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

2, 6, 10, 0, 0

7, 4, 12, 3, 9

1, 11, 5, 8, 13

⎤⎥⎥⎥⎦
.

Then two questions arise: How to decode a particle into a 
solution of different size? and How to guarantee the rescue 

RSi =

⎡⎢⎢⎢⎢⎣

rsi
1

rsi
2

⋯

rsi
M

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

rsi
11
, rsi

12
,⋯ , rsi

1j
,⋯ , rsi

1⌈N∕M⌉
rsi

21
, rsi

22
,⋯ , rsi

2j
,⋯ , rsi

2⌈N∕M⌉
⋯

rsi
M1

, rsi
M2

,⋯ , rsi
Mj
,⋯ , rsi

M⌈N∕M⌉

⎤⎥⎥⎥⎥⎥⎦
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sequence contains all tasks and have no overlap tasks among 
all robots?

Once overlap occurs, which means one task is rescued 
more than once, and it will create an unfeasible solution. 
Accordingly, the following decode method is designed to 
avoid this situation and satisfy the above requirements, 
which is as illustrated in Algorithm 2.

First, one dimension in particle i, denoted as xij , is selected 
to perform the mod and add operations; therefore, the obtained 
result should be an integer number between 1 and N. Next, the 
task corresponding to the gained integer number is selected and 
deleted from the reference rescue sequence SR , listed in lines 
2–4. Thus, we can obtain a sequence of integers by repeating 
the previous operations N times.

The number of elements in SR is N, they are all N tasks 
without overlap, the dimension of the particle is N as well. 
When performing the above decode steps one time, one task 
can be selected and then deleted from the SR , the delete opera-
tion guarantee that the decode sequence has no overlap. When 
performing the above operations N time, all survivors can be 
selected and deleted from the SR , as a result, the number of the 
tasks in SR decreases one compared with the previous opera-
tion. Therefore, when repeat N times, it can guarantee that all 
N tasks can be selected without overlap, there is hence the 
decode method can avoid the occurrence of unfeasible solu-
tions, which can meet the requirement in this paper.

From the above operations, a sequence of N integers is 
gained, further, tasks need to assign to each robot, to assign 
averagely, the maximum number of tasks assigned to each 
robot is set to ⌈N∕M⌉ . Firstly, the distances between the first 
task and all M robots are calculated, the task is then assigned 
to the robot with the shortest distance. Next, for the second 
task, we calculate the distance between it and the remaining 
(M-1) robots except for the selected one, the robot with the 
shortest distance is assigned to the task. Repeating the previ-
ous procedure M times, we can obtain a rescue sequence. For 
the remaining tasks, the same operations and a new round are 
performed, and then we can obtain the rescue routes, as listed in 
lines 8–13. Figure 2 depicts the assignment procedure for each 
robot. Overall, the rescue sequence for each robot is gained.

Position and velocity update method

The particle is decoded as a series of integers, a ceil func-
tion is performed on the original position update formula to 
guarantee the updated position is an integer. Therefore, the 
particle’s position and velocity update formulae in this paper 
are listed as follows:

where ⌈ ⌉ indicates the ceil function.

Comparison between particles

In this paper, lbest and gbest are updated by comparing the 
fitness values between them and other particles. Because all 

(11)
vij(t + 1) = wvij(t) + c1r1(pij(t) − xij(t))

+ c2r2(pgj(t) − xij(t))

(12)xij(t + 1) =
⌈
xij(t) + vij(t + 1)

⌉



880	 Complex & Intelligent Systems (2021) 7:873–890

1 3

fitness values are in the form of intervals, how to select the 
optimal one is essential.

Consequently, the comparison between the two inter-
vals is given in this subsection. To select the optimal one, 
several criteria are determined; two common-used criteria 
definitions—the midpoint and distance of an interval—are 
given. For an interval [a—, a+], its midpoint and distance are 
(a− + a+)∕2 and |a+ − a−| , respectively.

The principle of intervals comparison is that the larger 
the midpoint of an interval and the smaller the interval dis-
tance, the better the interval is. In this TAPSO algorithm, 

the particle with a larger midpoint and smaller distance will 
be elected as the candidates of lbest or gbest. The midpoint 
relates to the interval’s two bounds: the larger the better—it 
represents more successful tasks. The interval distance rep-
resents the difference between the upper and lower bounds, 
where a smaller value represents a smaller difference, and 
the rescued number is significantly more precise.

Assume two particles, Xi and Xj , whose fitness is [F−
i
,F+

i
] 

and [F−
j
,F+

j
] , respectively. The following formula is used to 

find the better one:

Fig. 2   The assignment proce-
dure for each robot
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Based on Formula (13), one can well perceive that A is 
better than B in Fig. 3a; in Fig. 3b, A is better; in Fig. 3c, B 
is better than A; in Fig. 3d, A is better than B.

 lbest and gbest update strategies

During the search, gbest spreads information to particles, 
guides them to fly, and guarantees the particles find the 
optimal solution. gbest plays a significant role in the search 
process; consequently, the selection of gbest is particularly 
important, as discussed in this section.

Since gbest is selected from lbest, before update gbest, lbest 
should be determined in advance. If the current particle’s fit-
ness is larger than or equal to lbest, then lbest updates to the cur-
rent particle, and saves it in a set called the lbest set, which is 
used to update gbest later. Otherwise, lbest remains unchanged.

gbest is selected from the lbest set, but due to the particular 
nature of the problem, there may exist two situations while 
updating gbest: (1) only one lbest lbest in the set; (2) more than 
one lbest in the set. For these different cases, gbest update 
method is different and given as follows:

1.	 Only one lbest in the set
	   If there is only one lbest in the set, compare it with the 

current gbest. If its fitness value is larger than or equal to 
gbest gbest, then, gbest updates to lbest; otherwise gbest stays 
the same.

(13)fmax(Xi,Xj) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Xi,

�
F−
i
+ F+

i

2
>

F−
j
+ F+

j

2

�
or

�
F−
i
+ F+

i

2
=

F−
j
+ F+

j

2
and F+

i
− F−

i
< F+

j
− F−

j

�

Xj, otherwirse

2.	 More than one lbest in the set

There may exist three different cases:
Case 1: all lbest s in the set have different fitness values but 

are smaller than gbest.
In this case, gbest stays the same.
Case 2: all lbest s in the set have different fitness values.
In this case, gbest updates to the lbest with the largest fit-

ness value.
Case 3: more than one lbest lbest have the same fitness, and 

their fitness values are larger than or equal to gbest.
In this case, lbest s may have different rescue sequences, so 

how to select one from many lbest s with the same fitness value 
is a problem that needs to be solved. To guarantee the swarm’s 
diversity and convergence, gbest updates dynamically.

At the initial stage of the search process, lbest which is equal 
to or larger than gbest, and having the greatest difference with 
gbest, is selected as the new gbest to guarantee the diversity of 
the swarm. In the later phase, the particle that is equal to or 
larger than gbest, but having the least difference with gbest, is 
selected as the new gbest to guarantee the swarm’s conver-
gence. This ensures the swarm’s diversity and guarantees 
the algorithm’s convergence. This update method balances 
exploitation and exploration more effectively.

The difference between the two particles is defined and 
estimated by the method presented in Algorithm 3.

Fig. 3   Four cases

A
B

B

(a) the same midpoint, but B’s distance is greater (b) A’s midpoint is greater and B’s distance is greater 

(c) A’s midpoint and distance are smaller (d) the same distance, but A’s midpoint is greater 

B
A

A B
A
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Assume the fitness value of lbest is equal to or larger than 
gbest, in which case gbest should update. gbest is denoted as 
gbest = (pg1, pg2,⋯ , pgl,⋯ , pgN) . First, select a lbest from the 
lbest set, denoted as lbestk = (pk1, pk2,⋯ , pkj,⋯ , piN) . After 
decoding, the rescue route of the current gbest, Sgbest , and one 
lbest, RSlbestk , are

Sgbest =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rs
g

11
, rs

g

12
,⋯ , rs

g

13
,⋯ , rs

g

1⌈N∕M⌉
rs

g

21
, rs

g

22
,⋯ , rs

g

23
,⋯ , rs

g

2⌈N∕M⌉
⋯

⋯ rs
g

ij
⋯

⋯

rs
g

M1
, rs

g

M2
,⋯ , rs

g

M3
,⋯ , rs

g

M⌈N∕M⌉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a n d  RSlbestk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rslk
11
, rslk

12
,⋯ , rslk

1j
,⋯ , rslk

1⌈N∕M⌉
rslk

21
, rslk

22
,⋯ , rslk

2j
,⋯ , rslk

2⌈N∕M⌉
⋯

⋯ rslk
pq

⋯

⋯

rslk
M1

, rslk
M2

,⋯ , rslk
Mj
,⋯ , rslk

M⌈N∕M⌉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,respectively. Based on these, the difference between Sgbest 
and RSlbestk can be calculated. The particle having the great-
est or least difference with gbest is selected as the new gbest 
based on the algorithm’s running phase, listed in lines 8–13.

The difference calculating method is described as follows: 
the indexes of the same tasks in both lbestk and gbest are 
found, and the deviation between the two indexes is calcu-
lated. Assuming rslk

pq
= rs

g

ij
 , their index difference (one task’s 

deviation value), off, is presented as follows:

where index(rsg
ij
) is the index of rsg

ij
 in Sgbest , and index(rslk

pq
) 

is the index of rslk
pq

 in RSlbestk.
Consequently, based on formula (14), the difference 

between lbestk and gbest is calculated by formula (15):

Hence, the particle with the maximum or minimum value 
of offs is selected as gbest based on the algorithm’s running 
phase, listed in lines 14–15.

The index definition is set as formula (16) shown, from 
which, any two particles’ difference can be calculated. 
The difference between formula (16) and normal matrix 
lays on the additional labels below each element, which 
are used to mark the sequence number for each element, 
where aij denotes the jth task of robot i, (i − 1)⌈N∕M⌉ + j 
is the sequence number of aij , i.e., index(aij) . Therefore, the 
sequence number in formula (16) is designed to calculate 
offs in formula (15).

(14)index(rs
g

ij
) − index(rslk

pq
)

(15)offs =

N∑|index(rsg
ij
) − index(rslk

pq
)|

(16)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
⏟⏟⏟

1

, a12
⏟⏟⏟

2

, a13
⏟⏟⏟

3

, ⋯ , a1(⌈N∕M⌉−1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

⌈N∕M⌉−1

, a1⌈N∕M⌉
⏟⏟⏟

⌈N∕M⌉
a21

⏟⏟⏟

⌈N∕M⌉+1

, a22
⏟⏟⏟

⌈N∕M⌉+2

, a23
⏟⏟⏟

⌈N∕M⌉+3

, ⋯ , a2(⌈N∕M⌉−1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

2⌈N∕M⌉−1

, a2⌈N∕M⌉
⏟⏟⏟

2⌈N∕M⌉
⋯ aij

⏟⏟⏟

(i−1)⌈N∕M⌉+j

⋯

aM1
⏟⏟⏟

(M−1)⌈N∕M⌉+1

, aM2
⏟⏟⏟

(M−1)⌈N∕M⌉+2

, aM3
⏟⏟⏟

(M−1)⌈N∕M⌉+3

,⋯ , aM(⌈N∕M⌉−1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

M⌈N∕M⌉−1

, aM⌈N∕M⌉
⏟⏟⏟

M⌈N∕M⌉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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To better illustrate the process of calculating offs, an exam-

ple is given as following: suppose lbestk and gbest are decodes 

as Sgbest =

[
1, 2, 3

4, 5, 0

]
 and RSlbestk =

[
5, 2, 0

4, 1, 3

]
 , offs can be 

gained by formula (16), hence, 
Sgbest =

⎡⎢⎢⎢⎢⎣

1
⏟⏟⏟

1

, 2
⏟⏟⏟

2

, 3
⏟⏟⏟

3

4
⏟⏟⏟

4

, 5
⏟⏟⏟

5

, 0
⏟⏟⏟

6

⎤⎥⎥⎥⎥⎦

 

and 
RSlbestk =

⎡⎢⎢⎢⎢⎣

5
⏟⏟⏟

1

, 2
⏟⏟⏟

2

, 0
⏟⏟⏟

3

4
⏟⏟⏟

4

, 1
⏟⏟⏟

5

, 3
⏟⏟⏟

6

⎤⎥⎥⎥⎥⎦

 . Firstly, start from task 1, 

find its indexes in Sgbest and RSlbestk , they are 1 and 5, respec-
tively, and its off is |5 − 1| = 4 ; then, task 2, the indexes are 2 
and 2, respectively and its off is 0; task 3′s off is |3 − 6| = 3 ; 
after that, task 4′s off is |4 − 4| = 0 ; finally, it’s task 5, and its 
off is |5 − 1| = 4 ; as a result, offs = 4 + 0 + 3 + 0 + 4 = 11.

There are three phases when running the algorithm: pro-
phase, metaphase, and anaphase. The greatest and least dif-
ferences at the prophase and anaphase can be selected to 
complete the gbest update, respectively. For the metaphase 
of the algorithm, the gbest update method is the same as the 
traditional update method, listed in lines 16–17.

Local search method

In this paper, local search methods are adopted to speed up 
the convergence to improve the solution’s superiority. Several 
classic local search methods could apply to the problem of 
task allocation in [41–43]. To find the best solutions and guar-
antee the algorithm against being trapped in the local opti-
mum, the following local search method is used to improve 
this approach.

First, randomly select two elements in gbest, pgl and pgk , 
and add a random number to each element;pgl becomes 
pgl ⋅ (1 + rand) and pgk becomes pgk ⋅ (1 + rand) . Second, 
calculate the fitness of the newly generated particles, and 
once the fitness is larger than gbest, gbest updates to the new 
one; otherwise, exchange some portions of the two particles 
depicted in Fig. 4. Then, calculate the fitness of the new 
particle; if its fitness is better, gbest updates to the new one; 
otherwise, gbest remains the same. Repeat the above opera-
tions until reaching the stopping iterations.

Simulations

Parameter setting

To verify the proposed method, several scenarios are presented 
in this section, and different methods were used to compare 
with the proposed method. All the methods were run in Matlab 
R2013a, and parameters were set the same as [44]: population 
size of 100, evolutionary generation of 400, and �= 0.037 . In 
all experiments, the world x and y coordinates ranged from 
-5000 m to 5000 m; the initial survival time was 2000s; the 
threshold was 100 s; the velocity of the robot was 3.0 m/s.

In this section, 10 different scenarios were generated in 
different 2-Dimensional planes for 5 trails: 50 cases were 
tackled to determine the reference sequence. Furthermore, 
18 difference cases were generated in different trails to deter-
mine the three phases. The contributions of the gbest update 
method were illustrated by 63 different cases.

Three comparison methods were used to verify the 
method in this paper. One method is the canonical PSO algo-
rithm (CPSO); other strategies are the same with TAPSO. 
The second method is the Genetic Algorithm (GA), using 
the same strategies as TAPSO; the crossover and mutation 
probability were 0.80 and 0.10. The last comparison method 

Fig. 4   Exchange operation

xk1 xk2 … xk(i-1) xki … xkl … xkj xk(j+1) … xkN

FA FB

xk(j+1) … xk(i-1)xkN xki … xkl … xkj xk1 xk2 …

FB FA

exchange 

random select
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Table 2   Results and running time for different reference sequences

Case M N Randomly Order Survival time Distance

Results CPU time Results CPU time Results CPU time Results CPU time

1 10 20 19 9.53 19 9.15 19 9.00 19 9.16
5 30 25 10.70 [24 25] 11.65 24 11.34 [22 24] 11.33
5 40 [23 24] 14.17 [25 26] 14.69 24 14.98 [22 23] 15.27
5 50 [24 25] 17.51 25 18.19 [24 26] 18.41 23 18.27
13 39 35 17.48 35 18.19 [34 35] 18.19 35 18.28
14 56 [48 53] 24.51 [47 51] 22.32 [48 50] 22.59 52 22.72
17 51 50 20.31 [46 49] 20.97 48 21.33 [47 48] 21.5
6 60 28 24.00 [27 29] 25.07 [27 29] 25.07 [27 28] 25.25
10 60 [42 43] 24.85 [43 45] 25.87 [40 45] 25.97 [43 44] 26.15
3 60 [14 15] 24.62 [14 15] 25.87 [15 16] 25.58 15 25.55

No. of best 3 8 2 0 1 1 2 0
2 10 20 20 18.08 20 17.84 20 17.83 20 17.79

5 30 [24 25] 22.34 [22 23] 23.25 24 23.47 [22 23] 23.53
5 40 [25 26] 29.22 [25 26] 30.63 [24 25] 30.82 [22 25] 30.79
5 50 24 37.08 [22 24] 38.66 [22 24] 38.87 [24 25] 38.89
13 39 35 33.37 [33 35] 34.76 34 34.83 [34 35] 34.74
14 56 [44 46] 48.56 [44 46] 50.26 [43 46] 50.49 [45 46] 50.21
17 51 [45 46] 44.74 [44 45] 45.97 45 46.58 46 46.46
6 60 26 44.36 [24 27] 46.31 [25 26] 46.76 25 46.75
10 60 [42 43] 47.85 [38 43] 49.97 [39 44] 50.05 40 50
3 60 [15 16] 46.12 [14 16] 47.88 [14 15] 48.62 14 48.26

No. of best 6 9 1 0 0 0 3 1
3 10 20 20 9.11 20 8.97 20 8.92 20 9.16

5 30 [23 24] 11.35 [22 23] 11.71 23 11.83 23 11.98
5 40 [23 27] 14.85 [24 26] 15.42 [24 25] 15.47 23 15.57
5 50 [23 24] 18.72 24 19.56 22 19.61 24 19.73
13 39 35 26.80 34 17.49 [33 34] 17.52 34 17.79
14 56 [45 46] 24.52 [42 46] 25.23 [43 45] 25.37 [45 46] 25.6
17 51 45 22.45 44 23.28 45 23.54 46 23.72
6 60 [24 27] 22.52 [25 29] 23.28 [26 28] 23.52 [25 27] 23.65
10 60 [40 42] 24.21 40 25.04 [39 44] 25.29 [38 41] 25.33
3 60 [14 15] 23.17 14 24.08 [13 14] 24.5 [13 14] 24.3

No. of best 5 8 3 2 0 0 3 0
4 10 20 [20 20] 9.29 [20 20] 20.52 [20 20] 9.93 [20 20] 8.56

5 30 [22 26] 11.50 [22 24] 11.68 [22 23] 11.92 [21 22] 11.53
5 40 [23 26] 15.36 [23 23] 16.14 [23 23] 15.47 [22 25] 15.49
5 50 [23 25] 19.02 [24 24] 20.65 [23 24] 19.76 [24 24] 19.8
13 39 [37 38] 16.43 [37 37] 17.96 [36 36] 16.56 [37 37] 16.73
14 56 [48 50] 23.27 [47 49] 25.44 [46 48] 24.03 [46 48] 25.09
17 51 [47 48] 22.16 [46 47] 22.36 [45 47] 22.97 [45 48] 22.98
6 60 [29 31] 23.29 [29 31] 25.13 [27 31] 24.00 [28 31] 23.69
10 60 [44 47] 25.16 [44 48] 26.73 [43 47] 25.34 [43 44] 24.29
3 60 [18 18] 22.46 [16 17] 24.94 [17 17] 23.15 [17 19] 23.32

No. of best 7 9 3 0 0 0 1 1
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is the consensus-based bundle auction (CBBA), which is 
based on a market auction strategy [45].

All of the following simulation results are based on 20 
independent runs, with the best results highlighted in bold.

Selection of results under different scenarios

The reference rescue sequence,SR , influences the decode 
result; thus, generating SR is essential to exploring a good 
solution.

In this paper, four different methods of generating SR 
are presented: random generation method, generated by 
the order from small to large, generated by survival time 
from small to large, and generated by distance from near 

Table 2   (continued)

Case M N Randomly Order Survival time Distance

Results CPU time Results CPU time Results CPU time Results CPU time

5 10 20 [20 20] 42.45 [20 20] 39.98 [20 20] 40.1 [20 20] 39.97

5 30 [23 23] 51.79 [24 24] 54.09 [22 23] 54.07 [22 24] 54.08

5 40 [23 24] 67.86 [23 24] 71.09 [24 24] 70.97 [23 23] 71.87

5 50 [24 25] 88.20 [23 25] 89.5 [24 25] 89.65 [24 24] 89.67

13 39 [37 37] 72.20 [37 37] 74.14 [36 36] 74.53 [37 37] 74.82

14 56 [48 50] 105.07 [48 49] 108.47 [46 48] 109 [46 46] 108.5

17 51 [47 48] 101.14 [46 47] 102.52 [45 47] 102.27 [45 48] 101.91

6 60 [28 33] 105.42 [29 31] 106.94 [28 29] 107.76 [30 30] 107.37

10 60 [45 46] 109.38 [44 46] 111.66 [45 46] 111.55 [45 46] 111.03

3 60 [17 19] 104.69 [18 19] 106.78 [16 17] 106.69 [17 18] 107.35
No. of best 6 9 3 0 3 0 2 0
Total % of best 57% 86% 24% 4% 8% 2% 22% 4%

Table 3   Results and running 
time for different periods

Case Prophase (%) Metaphase (%) Anaphase (%) No. of best 
results

Total no. rescued

1 10 80 10 2 [257 264]
2 20 70 10 3 [257 267]
3 30 60 10 5 [259 271]
4 40 50 10 3 [255 270]
5 35 55 10 4 [258 271]
6 35 45 20 4 [257 273]
7 30 50 20 5 [259 271]
8 20 60 20 3 [257 267]
9 30 40 30 7 [260 272]
10 40 30 30 4 [256 270]
11 50 20 30 5 [259 270]
12 50 40 10 4 [257 268]
13 40 20 40 3 [254 265]
14 40 40 20 3 [254 268]
15 50 30 20 4 [258 268]
16 50 20 30 4 [255 262]
17 50 10 40 4 [257 267]
18 0 100 0 2 [257 265]
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to far. Assume there are N tasks, for the first method, SR 
is an integer array generated randomly within [1, N], and 
each integer can only appear once; for the second method, 
SR = (1, 2, 3,⋯ ,N) , and the other two methods are gener-
ated based on the N tasks’ survival time and distance from 
each task to the robots (in this paper, initial points are same 
for all robots).

Based on four different generation methods, we executed 
our TAPSO algorithm respectively, and the results are listed 
in Table 2.

Table 2 reports that, in different rescue environments, 
the random generation method performed best, and 57% of 
cases were better than the other three methods except for 
the scenarios in which all the four methods obtained the 

same results. Furthermore, the CPU running time was rela-
tively shorter than the other three methods, where 86% of 
cases obtained results in the shortest CPU running time. 
Survival time is the most important factor that affects the 
rescue results, however, among the 50 different cases, SR 
generated by survival time only beat its rivals 2 times, and 
its CPU running time performed best only 4 times. Although 
SR generation methods based on order and distance ranked in 
the middle, their CPU running time performed best 2 times, 
and the best results account for 24% and 22% of all cases, 
respectively. The random generation method for SR had the 
highest performance, as a result, in the following simulation, 
it was used to determine SR.

Determining different running phases for TAPSO

In this paper, the search process is divided into three phases: 
prophase, metaphase, and anaphase. However, what were the 
corresponding periods?

In this paper, 18 different cases are given to select the 
three phases, as listed in Table 3. Moreover, eight different 
scenarios are presented, and the corresponding results are 
illustrated in Fig. 5.

In Table 3, the percentage indicates how much each phase 
accounted for the maximum iterations, and Fig. 5 lists the 
comparison results for each scenario. For case 9, its lower 
and upper values of the total number of successful tasks are 
the largest at the range of [260 272]. Also, the number of 

23 23 23 24 23 24 23 24 23 25 23 25 23 24 23 24 23 24 22 24 24 24 24 24 23 23 21 24 24 24 24 24 24 24 23 24

23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24

24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 26
24

26 24 26 24 25 24 26
24

25 24 25 24 26 24 26 24 25

48 50 48
50

48
50

48
50

48
50

48
50

48
50

48
50

48
50

48
50

48
50

48 50
48

50
48

50 48 50 48
50

48
50

48 49

47
47

47
47

48
48

47
48

47
47

46
49

48
48

47
47

48
48

47
48

47
48

47
47

47
48

47
48

47
48

47
48

47
48

46
49

29
31

30
34

30
34

30
34

30
34

30

34
30

34
30

34
30

34

30

34
30

34
30

34
28

31
30

34
30

34
26

26
28

31
29

30

45
46

45
46

45
46

45

46

45

46

45

46

45
46

45
46

46

46

45

46

45

46

45
46

45
46

45

46
45

46

45
46

45
46

46
46

18
18

17

17
18

20

15

19

18

20

18

20

18

20

17

17
18

20

17

18

18

18

16

18

16

17

16

17

17

17

18
18

18

18

18
18

L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

comparison result for different phase setting

M=5,N=30 M=5,N=40 M=5,N=50 M=14,N=56 M=17,N=51 M=10,N=60 M=6,N=60 M=3,N=60

Fig. 5   Comparison results for different phase settings

Table 4   Results and running time for different gbest update methods

Case Proposed gbest update 
method

Common gbest update 
method

n m Result CPU time result CPU time

4 60 [182 192] 45.74  s [179 189] 45.84 s
4 56 [186 194] 47.38 s [179 187] 47.32 s
2 60 [109 115] 48.32  s [107 113] 48.12  s
30 60 [498 505] 62.22 s [498 504] 61.82  s
20 100 [608 645] 94.87 s [604 647] 94.28 s
5 100 [217 234] 82.00 s [219 228] 83.64 s
4 20 [155 159] 15.80 s [153 158] 16.90  s
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best results for case 9 is the largest. Because we are most 
interested in Case 9, so, prophase, metaphase, and anaphase 
are set as 30%, 40%, and 30% of the maximum iterations.

The contribution of the gbest update method

To estimate the contribution of the gbest update method, we 
compare the proposed method with the method that uses the 
common gbest update method in this section. Seven differ-
ent scenarios, each with nine different cases, were used to 
verify the contribution of the gbest update method in TAPSO. 
Comparison results are listed in Table 4 and Fig. 6.

Table 4 reports that TAPSO always out-performed the 
common gbest update method in terms of the total number 
of successful tasks in 63 different cases. When the num-
bers of tasks are greater, the CPU running time of TAPSO 
made little difference from the common update method; in 
most instances, the CPU running time of TAPSO is even 
slightly shorter than the common method, since the new 
gbest update method can increase the convergence speed. For 
example, for all 9 cases when 4 robots rescued 56 tasks, the 
results for the two methods were [186 194] and [179 187], 
respectively. Their difference was 7; in the rescue situation, 
one more rescued survivor is of great value, not to mention 
7. Furthermore, their difference in CPU running time was 
0.06 s, which is extremely small compared with the entire 
rescue process.

Figure 6 illustrates the differences in results between 
TAPSO and the common gbest update method for 63 different 
cases, where the numbers denote the difference between two 

intervals of the two methods, the blue rectangle is the dif-
ference between the lower bounds of two intervals, and the 
orange rectangle is the difference between the upper bounds. 
Further, 0 represents two intervals being the same, and the 
larger of the difference represents the superior of the pro-
posed methods. From Fig. 6, 46% (29 cases) of the solutions 
were improved from the use of the gbest update method in 
this paper, while 6.35% of the solutions did not outperform 
its counterpart, and 46% of the solutions were the same as 
the common method, especially in some relatively simple 
scenarios. For example, 30 robots rescued 60 tasks, and 8 
cases out of 9 have the same results as the common method. 
For several complex scenarios, TAPSO performs better. 
From Table 4 and Fig. 6, we can assert that TAPSO handles 
certain complex scenarios better, and CPU running time 
makes little difference for the common gbest update method.

Comparisons with other methods

For the previous scenarios, the tasks can be assigned to 
the robot averagely. To better verify the proposed method, 
more complex scenarios should be considered. Furthermore, 
CPSO, GA and CBBA were employed as the comparison 
algorithms. For comparability, the parameters are the same 
for all algorithms, with simulation results listed in Table 5.

Based on Table  5, even though the tasks were not 
assigned equally to each robot, TAPSO still performed the 
best; CBBA was always the fastest to obtain the results in 
terms of CPU running time, which is important for rescue, 

Fig. 6   Result differences between the proposed and common gbest update methods for seven different trials
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and GA required the longest time to solve the problem, but 
without obtaining any best result.

We can conclude that all methods except CBBA are rela-
tive computationally expensive. Despite this, TAPSO has 
the highest performance and can be used to solve the task 
allocation problem effectively. It is slightly time-consuming; 
however, it is still acceptable.

Conclusion

This study introduced TAPSO, an upgraded version of the 
well-known algorithm PSO, to address the robot rescue task 
allocation in uncertain time constraints problem. The prin-
ciple ideas of the algorithm are establishing an objective 
function of the maximal number of successful tasks based 
on the change of the survival time; and building a mathe-
matical model of task allocation. On the other hand, TAPSO 
improves the decode method and the global best solution 
update strategy in the original PSO thus increases the effec-
tiveness of the robot’s performance in complex scenes.

Several experiments have been conducted in various sce-
narios where TAPSO was benchmarked against three meth-
ods CPSO, GA and CBBA. Among the algorithms, TAPSO 
was outstanding in identifying optimal solutions. For some 
non-optimal solutions, CPSO and CBBA show shorter CPU 
running time than TAPSO, but the differences are minor and 
do not really affect the overall rescue strategies.

Although TAPSO demonstrated effectiveness and effi-
ciency in handling task allocation with uncertainty time 
condition, the uncertainty of the robot’s velocity was not 
considered. In this paper, the velocity was declared as a 
constant, but it could be a variable. In many real-world sce-
narios, the velocity of moving robots might vary due to the 
complexity of the terrain and the accuracy of the detection 
of survivors’ locations. Like evaluating the allocated time, 
evaluating a robot’s velocity in different conditions remains 
a non-trivial work.

In the future, we attempt to address that uncertain veloc-
ity issue by integrating another function for the velocity 
changing over time. For rescuing in extremely complex 
environments, a modified approach powered by a distributed 
system will be investigated. Also, some latest technologies 

Table 5   Comparison results with methods in some more complex scenarios

Task no. Robot  no. TAPSO CPSO

Results CPU time Results CPU time

5 2 [4 5] 3.81s [4 5] 3.32s
13 2 [12 13] 6.11s [12 13] 5.84s
27 2 [26 27] 15.95s [21 27] 10.53s
13 5 [12 12] 8.23s [11 12] 6.04s
21 5 [18 21] 13.63s [16 19] 8.63s
33 5 [30 33] 19.62s [27 33] 13.69s
22 10 [21 22] 17.47s [18 20] 10.06s
44 10 [29 35] 26.70s [24 28] 16.38s
66 10 [53 64] 36.61s [35 53] 22.74s
55 20 [45 52] 38.16s [37 48] 27.00s
88 20 [58 64] 52.37s [48 57] 34.76s

Task No. Robot  No. GA CBBA

Results Results Results CPU time

5 2 [4 5] 7.36s [4 5] 0.18
13 2 [12 13] 13.86s [8 11] 0.34
27 2 [22 27] 25.65s [10 17] 0.40
13 5 [12 12] 14.16s [8 10] 0.37
21 5 [17 21] 20.77s [14 17] 0.60
33 5 [28 33] 30.21s [18 22] 1.20
22 10 [18 21] 24.65s [14 20] 0.95
44 10 [25 32] 43.61s [25 33] 1.93
66 10 [44 61] 62.22s [30 39] 2.74
55 20 [39 50] 58.44s [40 44] 5.58
88 20 [51 59] 87.69s [47 56] 9.57
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in AI and Machine Learning such as Transfer Learning and 
Reinforcement Learning will be considered to encounter 
some circumstances when the data about the locations and 
the survivors are incorrect or insufficient to train the robots.
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