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Abstract
To deploy deep neural networks to edge devices with limited computation and storage costs, model compression is necessary
for the application of deep learning. Pruning, as a traditional way of model compression, seeks to reduce the parameters of
model weights. However, when a deep neural network is pruned, the accuracy of the network will significantly decrease. The
traditional way to decrease the accuracy loss is fine-tuning. When over many parameters are pruned, the pruned network’s
capacity is reduced heavily and cannot recover to high accuracy. In this paper, we apply the knowledge distillation strategy
to abate the accuracy loss of pruned models. The original network of the pruned network was used as the teacher network,
aiming to transfer the dark knowledge from the original network to the pruned sub-network.We have applied threemainstream
knowledge distillation methods: response-based knowledge, feature-based knowledge, and relation-based knowledge (Gou et
al. in Knowledge distillation: a survey. arXiv:200605525, 2020), and compare the result to the traditional fine-tuning method
with grand-truth labels. Experiments have been done on the CIFAR100 dataset with several deep convolution neural network.
Results show that the pruned network recovered by knowledge distillation with its original network performs better accuracy
than it recovered by fine-tuning with sample labels. It has also been validated in this paper that the original network as the
teacher performs better than differently structured networks with same accuracy as the teacher.

Keywords Model compression · Network pruning · Knowledge distillation · Deep neural networks

Introduction

Deep neural networks have achieved excellent results that
traditional machine learning can difficultly match in various
fields, such as computer vision [20], point cloud processing
[15,34], medical data processing [19], speech recognition
[17], and so on. With the continuous development of deep
learning, the artificial neural networks are becoming more
and more deep, wide and complicated. Then the amount
of neural network parameters is also explosively growing.
However edge devices, like microphones and embedded sys-
tems, have limited computing resources, running memories,
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and storage space. The contradiction between the tremen-
dous resource requirement of new deep learning technology
and limited resource of hardware devices is hindering the
application of deep learning technology. In order to enable
deep learning applications deployed on these devices, various
neural network compression strategies have been proposed
including network pruning [9,22], quantization [16], and
knowledge distillation [14].

It is considered that very deep neural networks are often
over-parameterized [1] with many redundancy. The redun-
dancy in over-parameterized network improves the gener-
alization performance, but also leads to low efficiency and
difficulties on edge deployment. To reduce the redundancy
and obtain efficient neural networks, the method of prun-
ing was proposed. The main idea of pruning is to remove
the unimportant parameters of deep learning models. As the
most effective model compression strategy, network prun-
ing can reduce network parameters to less than a tenth. To
a certain extent, pruning can reduce the parameters without
impacting the accuracy of the model. However, when the
percentage of pruned parameters is too large, the accuracy
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of the model will inevitably decrease to a deficient level. In
traditional methods, pruned models are retrained by the fine-
tuning method after it is pruned, or in other case models are
iteratively pruned and trained, to recover the model’s accu-
racy. However this process below is often difficult to recover
the accuracy of excessively pruned networks.

Knowledge distillation, as another compression strategy,
aims to transfer dark knowledge in logits outputs [14], feature
maps [13,18], and relationship diagrams [26] from a larger
pre-trained teacher network to a smaller student network,
allowing the student network to mimic the teacher network
performance. The strategy of knowledge distillation can bet-
ter improve some smaller networks’ accuracy than directly
training them with one-hot labels.

In this paper, we motivate to solve the accuracy loss prob-
lem in pruning, and merge the two pruning method. We
propose a new strategy to recover the pruned neural network:
we replace the fine-tuning procedure in pruning pipeline to
knowledge distillation and transfer the knowledge from the
original un-pruned network to the pruned network to increase
the accuracy of the pruned network. We pruned an over-
parameterized network and then used the original network as
the teacher, and the pruned network as a student for knowl-
edge distillation. As the teacher network and the student
network have the same structure (the student network can
be seen as a sub-network of the teacher network), the stu-
dent network can better fit the representation of the teacher
network [5,31]. So the proposed method is more effective
than simply mechanically combining network pruning and
knowledge distillation.

Our new method combines the advantages of several
model compression methods. Compared to the latest knowl-
edge distillation methods [2,33], our method focuses on
generating a student model from the original model by prun-
ing. Therefore, we get a generated student network better
suits the teacher network than manually selected network in
simple knowledge distillation methods. Then compared to
the simple pruning methods [7,22,37], the idea of knowl-
edge transfer is used to retraining the pruning network in our
proposed method. With the help of effective knowledge dis-
tillation methods, we can significantly improve the pruned
model performance. To maximize the use of both methods,
Wecarefully designed themethod framework and the training
pipeline. An end-to-end high efficiency model compression
method is proposed in the paper.

Contributions:

– We proposed a new pruning pipeline combined with
knowledge distillation, inwhich knowledge is transferred
from un-pruned network to pruned network.

– We demonstrated the results of choosing different net-
works as the teacher when practicing knowledge distil-
lation. It is verified that original model as the teacher in

our method perform better than other irrelevant models
as the teacher.

– We verified the effectiveness of the proposed pipeline
with different knowledge distillation methods and prun-
ingmethods.Experiments show that our proposedmethod
increased accuracy of several pruned networks by 0.5%
to 1.5%, compared with traditional methods.

The rest of this paper is organized as follows. In “Related
works”, various researches related to our work are intro-
duced. Then detailedmethodologies and the proposed frame-
work are described in “Preliminary” and “Main method”
sections. In the ’Experiment’ section,we introduce the exper-
iment and demonstrate the result of the proposed method.
Finally, in ’Discussion’ and ’Conclusion’, we make a con-
clusion and present further thinking about this work.

Related works

Model compression

With the increasing amount of network parameters, various
model compression strategies have been proposed: model
pruning, parameter sharing, knowledge distillation, quanti-
zation, and low-rank decomposition [3]. And these various
strategies have achieved excellent results. In recent years, in
the study ofmodel compression to reach higher performance,
methods combining different strategies have been gradually
proposed. [10] combines pruning, quantization, and Huff-
man encoding to compress the model parameters by over
40×. Wei[32] applies knowledge distillation to quantization
to improve accuracy. However, they did not consider improv-
ing the performance of pruning by incorporating knowledge
distillation into the pruning process.

Network pruning

As early as 1990, Lecun [21] proposed the idea of pruning
parameters, and various pruning methods and pipelines were
brought out. The most used strategy is the saliency-based
method [8], which is to, sort parameters by importance, and
then remove the less important parts of parameters. The eval-
uationmethod of “the importance of parameters” has become
the object of study by scholars. A simple method is to define
the absolute value of weight as a measure of its importance
[22]. Another essential issue in pruning is that when the
model is undergoes pruning, it generally brings accuracy loss,
so we also need to consider the recovery of accuracy while
pruning. The traditional one-shot pruning process generally
recovers the accuracy by the three-stage method “training,
pruning, and fine-tuning,” as shown in Fig. 1. Whereas it is
difficult to recover the accuracy when too many parameters
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Fig. 1 A typical three stage pruning pipeline. A network is first well
trained in a target dataset, and then the pre-trained model is pruned with
certain method. After pruning, the pruned model is fine-tuned, in which
the model is retrained with lower learning rate on the dataset

are removed at one time. The iterative pruningmethod is then
proposed, in which the pruning is not done at once. In iter-
ative pruning, every step, the model is slightly pruned and
retrained for a few times. The pruning and retraining process
is iteratively done many times to recover a better accuracy,
such as in [37] Zhu proposes automated gradual pruningwith
an iterative process.

Knowledge distillation

Knowledge distillation is a knowledge transfer technology
widely used in computer vision [23], natural language pro-
cessing [24], and other deep learning fields. The vanilla
knowledge distillation strategy was proposed by Hinton in
2015 [14]. In the vanilla method, the softened outputs of
the logits layer of a robust, high-accuracy, and well pre-
trained network, are used to guide and supervise the outputs
of the student network (often a smaller network). It is con-
sidered that the dark knowledge hidden in the output of
the teacher network’s logits layers is used to improve the
student network’s performance. Knowledge distillation has
achieved outstanding results. In the continuous develop-
ment, response-based knowledge, feature-based knowledge,
relation-based knowledge [6], and other knowledge distil-
lation methods based on different knowledge have been
gradually proposed. Despite the different knowledge def-
initions and distillation methods, the goal is similarly to
approximate the representation of the student network to the
teacher network. When it comes to the effects of knowledge
definition, the structural differences between the networks
are very important. [25] also finds that networks with similar
structures are easier to transfer knowledge. Therefore, in this
paper, the knowledge distillation between the sub-networks
of the original network is used to minimize the structural
differences.

Preliminary

In this section, we will introduce the detailed preliminary
methodology used in our method and experiment. This sec-
tion starts from two parts: the methodology used for pruning,
and the methodology of knowledge distillation.

Fig. 2 The schematic illustration of two types of network pruningmeth-
ods according to granularity. a In unstructured pruning, neuron leveled
connections are pruned. b A type of structured pruning on the right
shows a example that filters are pruned

Pruningmethods

The goal of pruning is to reduce the maximum amount of
parameters with a certain small loss of precision, or the least
loss of precision with a small specific amount of parame-
ters. When parameters are pruned, they are removed from
a model and will not participate in the reference process.
Generally more parameters are pruned, the model becomes
more efficient and small. However when more parameters
are pruned, the model performance are more affected and
the accuracy decreases more. So it is important to balance
the degree of pruning and loss of accuracy. The optimization
target is shown as:

min
ω

L (D;ω) s.t. ‖ω‖0 < κ, (1)

where ω denotes the weight of the network. D denotes the
dataset. L is the loss function of the network. κ is a hyperpa-
rameter given by us to limit the number of non-zero weight
parameters of a model. When κ is set small, the model
becomes more efficient and has a smaller size. Besides, a
sparsity ratio, whichmeans the proportion of parameterswith
a value of 0 to the total parameters, is also used to describe
the sparsity of the model.

According to the granularity, pruning can be mainly
divided into structured pruning and unstructured pruning as
shown in Fig. 2. In unstructured pruning, the connections at
the level of individual neurons are pruned. In structured prun-
ing, on the other hand, larger parts, such as filters, channels,
and layers are pruned.

A rigorously done research [4] found that unstructured
pruning can find better sub-networks, and the unstructured
pruning preserves more local structure information of the
original network than structured pruning. Noting that the
remaining structure of pruned sub-network is essential in
our experiment, only unstructured pruning experiment was
implemented in our paper.
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Fig. 3 Three types of knowledge in knowledge distillation. Response-
based knowledge is distilled from outputs logits layers; feature-based
knowledge is distilled from middle layers; relation-based knowledge is
often distilled from some relational representation of the whole network

Fig. 4 Schematics of vanilla knowledge distillation for a pre-trained
teacher network and a smaller student network. The same image data
is input into the two networks, and then the different results generated
are used to calculate the loss function

In our experiment, for unstructured pruning, we first
obtain a sparsemodel by trainingwith �2 regularization. Then
we used magnitude-based weight pruning to perform global
unstructured pruning with specified sparsity, and remove the
weight parameters with a small �1-norm.

Knowledge distillationmethods

Based on different knowledge, knowledge distillation are
mainly divided into three categories [6]: response-based
knowledge, feature-based knowledge, and relation-based
knowledge [6]. An illustration of three different knowledge
is shown in Fig. 3. We applied the three types of knowledge
distillation methods separately.

Response-based knowledge

Response-based knowledge makes the most of the knowl-
edge from neural units response. The main goal is to let the
output of the student network to mimic the output of the
teacher network. For this method, we apply the vanilla and
also very effective knowledge distillation method by Hinton
[14], as shown in Fig. 4.

The training loss for knowledge distillation usually has
two parts: classic cross-entropy loss and distill loss. Classic
cross-entropy loss is the classic loss used for classification
model training and can be calculated as the cross-entropy of
softmax outputs of neural networks and grand truth labels.
Distill loss is the knowledge distillation loss between the
student network and the teacher network. Distill loss is care-
fully designed and varies with the definition of knowledge.
The two parts loss functions for vanilla knowledge distilla-
tion are defined below:

Classic cross-entropy loss:

L(WS, x) = CrossEntropy(zS, ytrue) (2)

Distill loss:

LDistill = τ 2 · KLdiv(QS, QT) (3)

In classic cross-entropy loss, x and ytrue respectively
denote the input image data and the corresponding ground
truth labels, and WS denotes the student network weight
parameters, zS denotes the logits output of the student net-
works. In distill loss, a smoothed probability output Qs of
the student network is first calculated:

QS = exp(zS/τ)
∑n

i=1 exp
(
z(i)S /τ

) (4)

In which zS ∈ Rn is the logits output of the student
network. Then Eq. 4 is a softmax function with additional
parameter: temperature τ . τ controls the degree of smooth-
ness, andwhen τ=1Eq. 4 becomes a simple softmax function.
Similarly, the smoothed probability output of the teacher net-
work QT can be calculated. Here smoothed probability QS

and QT are used instead of direct outputs of networks to
better transferring knowledge. In the two loss functions, the
cross-entropy loss helps the student network learn to predict
the correct label of input images, then the distill loss is to
make sure the outputs probability distribution of the student
network imitates the outputs of the teacher network.

Then the total loss for vanilla knowledge distillation is the
weighted sum of the two losses below. α denotes the weight
hyperparameter and the total loss can be defined as:

LKD = αL(WS, x) + (1 − α)τ 2 · KLdiv(QS, QT) (5)

Feature-based knowledge

Feature-based knowledge regards the feature layer of the
middle layer of the deep neural network as the knowledge
that needs to be transferred, and aims that the student net-
work directly fits the feature layer of the teacher network.
For such methods, we use an attention-map based method
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Fig. 5 Schematics of a feature-based knowledge distillation for two
convolutional neural networks. The same image is input into two
networks, and networks generate several feature maps after different
convolution layer groups. The attention maps composited by the fea-
ture maps are used to calculate MSE (mean square error) loss

that Zagoruyko and Komodakis [35] proposed, as shown in
Fig. 5.

In thismethod, theMSEof attentionmaps at different con-
volution stages between two networks are defined as distill
loss. The MSE loss can be given by:

Lattention_MSE = 1

2

∑

j∈I

∥
∥
∥
∥
∥

Q( j)
S

‖Q( j)
S ‖2

− Q( j)
T

‖Q( j)
T ‖2

∥
∥
∥
∥
∥
p

, (6)

where Q( j)
S = vec

(
F

(
A( j)
S

))
and Q( j)

T = vec
(
F

(
A( j)
T

))

are respectively the j-th pair of student and teacher atten-
tion maps in vectorized form, and A( j)

S and A( j)
T respectively

denote the activation tensors of student and teacher network.
Then Eq. 6 is to calculate L2 distance for the mid-layer fea-
tures of two networks. Therefore to minimize this distance,
the student network will learn modeling the same feature
as the teacher network. As the same L(WS, x) denotes the
cross-entropy loss with one-hot labels, which is defined in
Eq. 2. Let β be the weight hyperparameter, and the total
attention transfer knowledge distillation loss can be defined
as:

LAT = L(WS, x) + β

2

∑

j∈I

∥
∥
∥
∥
∥

Q( j)
S

‖Q( j)
S ‖2

− Q( j)
T

‖Q( j)
T ‖2

∥
∥
∥
∥
∥
p

(7)

Relation-based knowledge

Relation-based knowledge does not focus on the value of
certain layers but explores the relationship between differ-
ent sample data or network feature layers. In our paper,
similarity-preserving knowledge distillation method [30] is
used, as is shown in Fig. 6. In this method a mini-batch
of images is input into networks. Every input image gen-
erates several feature maps. Then similarities are calculated

Fig. 6 Schematics of transferring knowledge from a pre-train teacher
network to a small student network with similarity-preserving knowl-
edge distillation method. A mini-batch of image are input into two
networks. The mid-layer activation tensors are reshaped to a feature
matrix with a size of b × (c · w · h). Matrix multiplication is done
between the feature matrix, and its transposition and a similarity matrix
is obtained. The MSE Loss is calculated between similarity matrices
from two networks

between featuremaps from every two input images of amini-
batch and a b×b (b denotes the batch size) similarity matrix
was generated. The teacher network and student network has
respective similarity matrices, and the MSE of these two
matrices is considered as the distill loss.

The loss of similarity-preserving knowledge distillation
can be defined as:

LSP(QT, QS)

= L(WS, x)

+ β · 1

b2
∑

(l,l ′)∈I

∥
∥
∥Q

(l)
S · Q(l)�

S − Q(l)
T · Q(l)�

T

∥
∥
∥
2

F
(8)

where Q(l)
T ∈ Rb×(c·w·h) is a reshaping of A(l)

T , and

A(l)
T ∈ Rb×c×w×h denote the after-activation feature map

of a particular layer l. b denotes the batch size while train-
ing. L(WS, x) denotes the cross entropy loss defined in Eq.
2.

Mainmethod

In this section, we introduce the proposed framework of
recovering pruned models with knowledge distillation. A
schematic illustration is shown in Fig. 7. In the part of net-
work pruning, an over-parameterized network is well-trained
on a given dataset, and then the pre-trained model is pruned
to a smaller model. In the part of knowledge distillation, the
pre-trainedmodel is seen as the teacher and the prunedmodel
as the student. Different knowledge distillation methods are
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Fig. 7 Proposed framework of recovering pruned model with knowl-
edge distillation

Fig. 8 The pipeline of one-shot process pruning with knowledge dis-
tillation framework

used and different knowledge is transferred from the teacher
model to the student model. To apply our proposed method
to the retraining process of the pruned model and recover
the accuracy, we add the distill loss to the original loss of
fine-tuning.

The proposedmethod can be seen as a self knowledge dis-
tillation framework with pruning. The whole process starts
with one pre-trainedmodel, and no othermodels are used.All
the intermediate models are generated from the same origi-
nal model, so they have high similarity and compatibility in
structure and parameter weights. Then the knowledge distil-
lation is practiced between the models at different stages of
pruning, and knowledge at different time steps in the pro-
cess is transferred. Due to the similarity of the intermediate
models, the dark knowledge from the original model helps
to recover a better final model more easily.

There are two kinds of training strategies: one-shot prun-
ing and iterative pruning. In this paper, both the one-shot
process and iterative process are applied in our experiment.
The pipeline of one-shot process is shown in Fig. 8. A model
is well trained, and pruned to obtain a small student model
with certain sparsity. Then we retrain the pruned model with
knowledge distillation, in which the original model is the
teacher. The pipeline of iterative process is shown as algo-
rithm flow in Algorithm 1. In iterative process, pruning and
retraining are iteratively performed. Each time a part of the
parameters is pruned, the model will be retrained to recover
before the next pruning step. These two steps are performed
several times until the model reaches the target sparsity.

Algorithm1Framework of Iterative Pruning andKnowledge
Distillation.
1: Input: Pre-trained model T ;

student model sparsity ratio at step t : st%;
final sparsity ratio s f%;
training epoch between two pruning step n1;
additional retraining epoch after pruning n2;

2: Output: efficient model S
3: # Initialization
4: S ← T
5: while sparsity of S: st% >s f% do
6: prune (st+1 − st )% weight parameters of S;
7: for i = 1 to n1 do
8: retraining model S with distillation loss with T
9: end for
10: t ← t + 1
11: end while
12: for epoch = 1 to n2 do
13: retraining model D with distillation loss with T
14: end for
15: return S;

Table 1 baseline Top-1 accuracy of ResNet32x4, VGG13, and
WRN_40_2 on CIFAR100 dataset

Model ResNet32x4 VGG13 WRN_40_2

Top-1 acc. (%) 79.42 74.64 75.61

Experiment

Knowledge distillation compared to fine-tuning in
retraining

We choose three networks to prune: simple CNNs (VGG13),
residual network v1 (ResNet32x4), andWide ResNet (WRN
_40_2) [11,28,36]. We use the pre-trained model of these
networks from [29]. We perform all the experiments on
CIFAR100 dataset as all the networks above can’t reach
extremely high accuracy on this dataset, and the Top-1 accu-
racy is listed in Table 1. Different target sparsity is used as
a goal to verify the completeness. To validate the effective-
ness , we chose three very high sparsity: 0.9, 0.95, and 0.975.
In these sparsity, the network capacity is definitely abated.
On the retraining process, the step decay learning rate is
used. The learning rate is initialized as 0.001, and reduced
by 50% every 40 epochs. The max retraining epoch is set
to 120. The optimizer is SGD with weight-decay=5e−4 and
momentum = 0.9. All the experiments are done in Pytorch
1.5, CUDA 10.1 and CUDNN 7.6.5, with NVIDIA GeForce
GTX 1080Ti(Pascal) GPU and Intel i7 9700k CPU.

For the hyperparameters in knowledge distillation loss
function, we choose them with common used values based
on previous studies [27,29]. In Eq. 5 the weight hyperparam-
eter α is set to 0.9, and temperature τ is set to 4. In Eq. 7 we
set β = 100. In Eq. 8 we set β = 1000.
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Table 2 The Top-1 accuracy on
CIFAR100 dataset of three
different networks, the networks
were one-shot pruned to a
sparsity of 90%, 95% and 97.5%
(percentage of weight
parameters pruned), and then
retrained by 4 different methods:
fine-tuning with grand truth
labels (FT), vanilla knowledge
distillation (KD), attention-map
based knowledge distillation
(AT), similarity-preserving
knowledge distillation (SP)

Models Top-1 acc.(%)

Sparsity = 90% Sparsity = 95% Sparsity = 97.5%

ResNet32x4 pruned, FT 77.270 75.990 73.770

ResNet32x4 pruned, KD 78.550 76.270 74.260

ResNet32x4 pruned, AT 78.610 77.000 73.900

ResNet32x4 pruned, SP 78.100 76.390 73.940

VGG13 pruned, FT 73.890 72.540 68.510

VGG13 pruned, KD 73.430 72.700 69.490

VGG13 pruned, AT 73.460 71.270 64.630

VGG13 pruned, SP 74.070 73.120 67.190

WRN_40_2 pruned, FT 73.050 71.140 65.490

WRN_40_2 pruned, KD 73.650 71.300 66.240

WRN_40_2 pruned, AT 73.440 70.720 64.700

WRN_40_2 pruned, SP 73.230 70.500 63.890

And FT is the traditional fine-tuning method. The results in bold are the best result of 4 methods for the same
pruned model and sparsity

One shot pruning

In one-shot pruning, we pruned the pre-train models to a
certain sparsity (0.9, 0.95, 0.975) once, and then retrained
the pruned model with fine-tuning method (FT), vanilla
knowledgedistillation (KD), attention-mapbasedknowledge
distillation (AT), similarity-preserving knowledge distilla-
tion (SP). The overall results are shown in Table 2.

Results showed that in different CNNs, the prunedmodels
retraining with knowledge distillation strategy outperformed
the pruned models only fine-tuned (FT). The vanilla knowl-
edge distillation method (KD) had stable performance on
improving accuracy. However attention-based knowledge
distillation method (AT) and similarity-preserving knowl-
edge distillation (SP) respectively fitted ResNet32x4 and
VGG13, and performed poorly when models were heavily
pruned (sparsity over 97%).

We also visualized the activation attention maps of the
mid-layer in Fig. 12. The graph shows that the activation
attentionmaps of pruned-retrainedmodels evidently changed
from the original model. The model pruned and retrained
with fine-tuning seems less likely to focus on the momentous
information on the input images. However when retrain-
ing with knowledge distillation strategy, the new attention
maps more closely resembled the original attention maps.
The attention maps reconstruction effect performs the best
on the AT method as the original attention maps are directly
used to guide the retraining of pruned model.

Iterative pruning

In iterative pruning,we performed the pruning every 5 epochs
for 30 times in total, and the density for parameters exponen-

Fig. 9 Themodel sparsity during iterative pruning process. The sparsity
is finally stabilized at 0.95 at step 150

Fig. 10 a The proposedmethod of training a prunedmodel with knowl-
edge distillation from the original model. b Simply combine pruning
and knowledge distillation

tial declined. So the sparsity can be calculated as:

st = 1 − (1 − sf)
t−α (9)

sf donates the final sparsity ,which is set to 95%, st is the
model sparsity after pruned for t times. the course of sparsity
during the iterative pruning is shown in Fig. 9. The sparsity
ratio increases following the Eq. 9, and reaches the highest
value 0.95 at epoch 150. Then sparsity does not change in
the remaining training process.

123



716 Complex & Intelligent Systems (2022) 8:709–718

Fig. 11 The validation Top-1 accuracy and training accuracy of retrain with fine-tuning (FT), vanilla knowledge distillation (KD), attention-based
knowledge distillation (AT), similarity-preserving knowledge distillation (SP) in iterative pruning process

Table 3 The baseline accuracy of two different residual network on
CIFAR100

Model ResNet32x4 ResNet50

Top-1 acc. (%) 79.42 79.34

Figure 11 shows the Top-1 accuracy results of training-
dataset and testing-dataset during iterative pruning. At the
last step, the test accuracy of three knowledge distillation
methods all achieves higher results than the test accuracywith
fine-tuning. However, fine-tuning strategy top the training
accuracy at the last step. It is considered that with knowl-
edge distillation in iterative pruning, the degree of overfitting
is reduced, and it is because the models relearned the dark
knowledge lost in the pruning process by knowledge distil-
lation.

Knowledge distillation with different teacher model

In this part, we experiment on the selection of the teacher
network. In the previous sections, we mentioned that in
the proposed pipeline, the original model with the original
parameters is used as the teacher network in knowledge dis-
tillation, because with a similar network structure and weight
parameters, the pruned model can better recover. The differ-
ence of proposed method and simply combine pruning and
knowledge distillation sketched in Fig. 10.

To validate the effect of different teacher models, two
different residual network was chosen: (1) ResNet32x4, (2)
ResNet50. Resnet32x4 is ResNet v1with 32 layers and chan-
nels widen to 4x, and ResNet50 is ResNet v2 [12]. These two
networks have almost the same accuracy as shown in Table 3.
Then the student networks are both pruned fromResNet32x4.
Iterative pruning method was used, and all the experimental
hyperparameter configurations are the same as the iterative
pruning in “Knowledge distillation compared to fine-tuning
in retraining” subsection. The results are shown in Table 4.

Table 4 The Top-1 accuracy(%) on CIFAR100 dataset with different
models as the teacher

Training method Teacher model
ResNet32x4 (Original model) ResNet50

KD 78.960 78.640

AT 78.400 77.500

SP 78.940 78.330

We can notice that the pruned model retrained with orig-
inal pre-pruned models as teacher performs better. When
retraining with other models, the accuracy significantly
decreased, and especiallywith attention-basedmethod, accu-
racy reduced to even lower than retraining by fine-tuning.
The pruned models performed to be more difficult to mimic
a teacher model which has a different structure than the orig-
inal model.

Discussion

Knowledge distillation in our proposed method generally
helps to recover the pruned models’ accuracy. However,
results interestingly showed that different knowledge distil-
lation methods suited different architecture of CNNs. For
example, attention-based knowledge distillation performs
poorly on CNNs without residual connections. Besides,
feature-based and relation-based knowledge distillation nei-
ther work well on extreme sparsity. The theory for the
unexpected result was not thoroughly studied in this paper.
Another work to be done is when the teacher and the student
have the same structure, whether model weight parame-
ters affect retraining performance. As the Lottery Ticket
Hypothesis [4] shows that the initial weight parameters lead
the training process, carefully selected parameters may also
improve the result of pruned models.
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Fig. 12 The activation attention
maps of the mid-layer in
VGG13 (sparsity = 95%). The
first column shows input images,
and results of the original
unpruned network corresponded
to column2. Results of retrained
by fine-tuning are corresponded
to column3, and the last 3
columns are results of the three
knowledge distillation methods.
All the attention maps are
converted into thermal maps and
then displayed

Conclusion

In this work, we focused on the enduring question of how
to recover pruned models. Knowledge distillation is used as
a perfect tool for transferring knowledge, increasing accu-
racy, and compressing models. We proposed an improved
integrated framework of pruning combining knowledge dis-
tillation strategy, and experimented on different image clas-
sification CNNs with three knowledge distillation methods.
The result showed that knowledge from the original net-
work of various forms helped the pruned network recover
with higher accuracy. We also observe that different knowl-
edge distillation methods suited different architecture of
CNNs. We hope the future work of knowledge distillation
interpretability could explain the mechanism and extend the
application of knowledge distillation in other fields.
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