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Abstract

Federated learning is a recently proposed distributed machine learning paradigm for privacy preservation, which has found
a wide range of applications where data privacy is of primary concern. Meanwhile, neural architecture search has become
very popular in deep learning for automatically tuning the architecture and hyperparameters of deep neural networks. While
both federated learning and neural architecture search are faced with many open challenges, searching for optimized neural
architectures in the federated learning framework is particularly demanding. This survey paper starts with a brief introduction
to federated learning, including both horizontal, vertical, and hybrid federated learning. Then neural architecture search
approaches based on reinforcement learning, evolutionary algorithms and gradient-based are presented. This is followed by
a description of federated neural architecture search that has recently been proposed, which is categorized into online and
offline implementations, and single- and multi-objective search approaches. Finally, remaining open research questions are
outlined and promising research topics are suggested.

Keywords Federated learning - Deep learning - Privacy preservation - Neural architecture search - Reinforcement learning -

Evolutionary algorithm - Real-time optimization

Introduction

Deep neural networks (DNNs) have made great success
in the fields of image classification, natural language pro-
cessing, autonomous driving systems, and many others.
However, designing DNNs with high-quality architectures
usually requires to manually try a large number of different
hyperparameters, which is always a tedious task requiring
broad expertise in both machine learning and the applica-
tion area. Therefore, neural architecture search (NAS) has
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become increasingly popular in recent years [1], which aims
to automatically search for good neural architectures.
Conventional centralized learning systems, however,
require that all training data generated on different devices
be uploaded to a server or cloud for training a global model,
which may give rise to serious privacy concerns. To address
this concern, federated learning [2] has been proposed to
protect user’s data privacy by communicating the model
parameters or other model information instead of the raw
data between the server and local devices. Naturally, per-
forming NAS in a federated learning environment becomes
of particular importance, although it is still in its infant stage.
This survey aims to provide an overview of research work
both on federated learning and neural architecture search,
focusing, however, on the emerging area of federated neu-
ral architecture search. We categorize federated learning
systems into offline and online approaches, where online fed-
erated neural architecture search is more challenging due to
additional requirements on the performance of the networks
during the search process and stronger constraints on the
computational resources. In addition, we briefly discuss the
differences between single- and multi-objective search neu-
ral architecture search methods to highlight different ways
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of handling multiple objectives in federated learning, such as
accuracy, communication costs, model complexity and mem-
ory requirements on the local devices. Finally, we outline the
main remaining challenges in federated neural architecture
search.

Federated learning

Federated learning [3] distinguishes itself from distributed
learning in three aspects. First, the main purpose of federated
learning is to protect user’s private information while dis-
tributed learning aims to accelerate training speed. Second,
federated learning cannot determine the data distribution of
any client devices. By contrast, distributed learning is able to
arbitrarily allocate subsets of the whole learning data. Finally,
federated learning faces a more challenging training environ-
ment as it may contain millions of unbalanced participating
clients whose connections to the server are probably unstable.
For example, edge devices like mobile phones are frequently
offline.

Federated learning is often categorized based on the distri-
bution characteristics of the data [2] which is originally used
in distributed learning. Strictly speaking, federated learning
does not have the concept of the whole dataset’; therefore,
it is hard to accurately describe the federated data distribu-
tion to some extent as defined in distribute learning. In the
following, we will discuss the data distributions in federated
learning in greater detail.

Horizontal federated learning

Horizontal federated learning is proposed for the scenarios in
which datasets on the participating clients share the same fea-
ture space but have different samples. The name "horizontal’
originates from instance distributed learning [4] as shown in
Fig. 1a, where the whole dataset is horizontally partitioned
over data samples and allocated to two clients. Similarly, as
indicated by the part surrounded by the two dashed lines in
Fig. 1b, the data can be considered as horizontally partitioned
in federated learning, when different data are generated on

Fig. 1 Instance distributed
learning (a) and horizontal
federated learning (b)

different clients that have the same attributes (features). For
instance, two hospitals in different regions may have differ-
ent patients, although they performed the same tests for each
patients and collected the same personal information such as
the name, age, gender and address.

There are three main differences between instance dis-
tributed learning and horizontal federated learning. First, data
are typically independent and identically distributed (IID) in
distributed learning but may be non-IID in horizontal fed-
erated learning. As mentioned before, distributed learning
is mainly designed for reducing the training time; there-
fore, designers can manually allocate every subsets of the
client data to be IID to enhance the convergence. However,
in horizontal federated learning, the central server has no
access to any raw data, which are usually non-IID on dif-
ferent clients. Second, horizontal federated learning always
contains massive connected clients, but instance distributed
learning often does not have a very large number of workers,
because too many workers will worsen the performance of
distributed training, when the total amount of data is fixed
[5]. Finally, global model update mechanisms are slightly
different. In instance distributed learning, such as multi-
GPU training (GPUs are always embedded inside a server,
communication effects can thus be ignored), a deep neural
network tends to synchronously update the global model once
the local gradients of the mini-batch data are calculated, to
ensure the correct distributed model learning direction. This
global model updating approach is intrinsically not suited for
horizontal federated learning because frequent upload and
download of data are not desirable due to the constraints on
the communication costs.

Typical horizontal federated learning (Fig. 2) algorithms,
such as the FedAvg proposed in [3], consist of the following
main steps.

1. Initialize the global model parameters on the server and
download the global model to every participating (con-
nected) clients.

2. Every connected clients learn the downloaded global
model on its own data for several training epochs. Once
completed, the updated model parameters or gradients
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Fig. 2 Flowchart of federated learning. 6 is the global model parame-
ters, ny is the data size of client k, K is the total number of clients and
t is the communication round in federated learning. We just initialize
global model parameters randomly at the beginning of the communica-
tion round and use updated model parameters afterwards

(gradients here means the difference between the down-
loaded model and updated model) would be sent to the
server. Note that the clients may have different amounts
of training data and unbalanced computational resources.
As a result, the server is not able to receive the uploads
from different clients at the same time.

The server aggregates the received uploads (synchronously
or asynchronously) to update the global model.

Repeat the above two steps until convergence.

et

&

From the above steps, we can find that the central server can
only receive model weights or gradients of the participating
clients and has no access to any local raw data. Therefore,
users’ privacy is immensely protected in horizontal federated
learning.

The above steps of the horizontal federated learning algo-
rithm appear to be very similar to those in synchronous dis-
tributed systems. However, these two schemes have different
learning environments and purposes. Horizontal federated
learning is performed in a more complex environment since
the connected edge devices like mobile phones may become
frequently offline and the global learning performance cannot
be guaranteed. In contrast to federated learning, distributed
learning systems are often designed and run in a more stable
environment to ensure a good learning performance. Apart
from that, the purpose of federated learning is to protect
local user’s private data, while distributed learning is mainly
designed to accelerate the learning speed.

Horizontal federated learning has three additional main
challenges compared to the traditional centralized learning:

(1) it must reduce the communication resources as much as
possible, (2) it needs to improve the convergence speed, and
(3) it must make sure that no private information is leaked
in passing the model information. Much research work has
focused on reducing communication costs, such as client
updates sub-sampling [6—8] and model quantization [9,10].
More recently, Chen et al. [11] propose a layer-wise asyn-
chronous update algorithm to reduce the communication
costs by decreasing the update frequency of the deep lay-
ers in the neural network. In addition, Zhu et al. [12] use a
multi-objective evolutionary algorithm (MOEA) to simulta-
neously enhance the model performance and communication
efficiency. Learning a good model in horizontal federated
learning is not an easy task since the training data on different
clients are usually non-IID, leading to possible model diver-
gence. To solve this issue, Zhao et al. [13] empirically explore
the effect of non-IID data and provide a statistical analysis
of divergence. Li et al. [14] propose a FedProx algorithm to
alleviate negative impacts of the system’s heterogeneity by
injecting a proximal term into the original loss on each client.
Apart from it, an attentive aggregation method [15] is used
to minimize the weighted distance between the server model
and client models on non-IID datasets.

The central server is often regarded as honest but curi-
ous (follow federated learning protocol but try to infer client
data information) in horizontal federated learning, and the
revealed gradients of each client may potentially leak the
data information [6]. For this reason, Phong et al. [16] math-
ematically prove that model gradients (especially the first
hidden weights) are proportional to the original data and
adopt additive homomorphic encryption [17] to encrypt and
protect model gradients. In their method, the secret key is
kept confidential to the server but known to all participating
clients and the central server can easily get the plain model
gradients as long as one of connected clients uploads its secret
key. In order to mitigate this issue, secure multiparty compu-
tation (SMC) [18,19] is proposed to partition an intact secret
key into several key shards and each client can just hold one
shard. As a result, the server must get at least ¢ shards (¢ is
the threshold value) for decryption. Consequently, privacy
preserving is significantly improved.

However, homomorphic encryption will increase the com-
putation load, and SMC consumes much more communica-
tion resources, since encrypted model weights need to be
downloaded and uploaded between the server and at least ¢
clients for partial decryption. Therefore, a more light-weight
privacy-preserving technique called differential privacy [20]
can also be used in horizontal federated learning. Such as
the methods used in [6,21], a Gaussian or Laplacian noise is
added to the gradients of each client before sending them to
the central server. Note, however, that the learning process
may be interrupted if the accountant [22] exceeds a pre-
defined threshold value. Most recently, Truex et al. suggest a
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hybrid approach that combines differential privacy together
with homomorphic encryption.

Vertical federated learning

In contrast to horizontal federated learning, vertical feder-
ated learning is applicable to the situations where the datasets
share the same sample space but have different feature space,
as shown by part of surrounded by the dashed lines in Fig.
3b. For example, two different financial agents may have
the same customers but provide different services. Different
from horizontal federated learning, vertical federated learn-
ing is similar to feature distributed learning [4] to some extent
which ’vertically’ partitions the training data, as shown in
Fig. 3a upon the feature space. Moreover, the central server
is often called a coordinator [23] in feature distributed learn-
ing or vertical federated learning since its main task is to
calculate the total loss rather than aggregating the uploaded
weights.

Vertical federated learning is first introduced in [23], in
which the overall framework contains one trusted coordinator
and two parties, where each party represents one client. The
coordinator computes the training loss and generates encryp-
tion key pairs. Homomorphic encryption is adopted for the
privacy-preserving purpose and the effect of entity resolu-
tion is also discussed. More recently, a two-party architecture
[24,25] is proposed by removing the trusted coordinator
which greatly reduces the complexity of the system. A typi-
cal two-party framework of vertical federated learning using
a simple logistic regression model includes the following
steps:

1. Assume Party A contains the data labels. Party A creates
a homomorphic encryption key pair and sends the public
key to Party B. Both parties initialize their local model
parameters according to their feature dimensions of local
training data.

2. Both parties compute their local inner products of data
and the model. Then Party B sends its results to Party A.

3. Party A sums two inner products and calculates the loss
function by data labels. The loss is encrypted with a public

Fig.3 Feature distributed
learning (a) and vertical
federated learning (b)
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key and is sent to Party B. The model gradients of Party
A are also calculated.

4. Party B calculates the encrypted model gradients from the
received loss and encrypt. In addition, a random number
is encrypted and added to the encrypted gradients. The
summation should be sent to Party A for decryption.

5. Party A uses a secret key to decrypt the summation value
and sends it to Party B.

6. Update both model parameters of the two parties.

7. Repeat Step 2 to Step 6 until convergence.

In Step 3, the training loss is encrypted before being sent
to Party B, because it contains the information of the data
labels in Party A which cannot be revealed to Party B. As a
result, Party B needs to calculate its local model gradients on
the encrypted loss and a Taylor approximation is commonly
used [23,25] for simplifying this computation.

From the above discussions, we can see that vertical
federated learning is dramatically different from horizontal
federated learning. The central server in horizontal federated
learning is used for model aggregation, while in vertical fed-
erated learning the server plays the role of calculating the loss
or collecting features. In addition, the server can be removed
in vertical federated learning, e.g., summing the training loss
within one of participating parties (clients). Apart from the
above, we often assume that not all parties contain the data
labels in vertical federated learning, e.g., only Client B con-
tains data labels in Fig. 3b and those parties with no data
labels are not able to update their models locally. Therefore,
we call the server ’coordinator’ that coordinates the feature
predictions from all parties for calculating the training loss
in vertical federated learning.

Most studies of vertical federated learning only support
two parties (with or without a central coordinator) using
a simple binary logistic regression model. Feng et al. [26]
adopt the idea of multi-view learning to extend the previous
scheme into a multi-participant multi-class vertical federated
learning framework. Besides, Liu et al. introduce a federated
stochastic block coordinate descent algorithm, where all par-
ticipating parties update their local models for multiple times
to reduce the total number of communication rounds. In addi-

Features
Data on
Client A
W f—————— — —————————— ]
% Vertichl
g federated I¢arning
Data on Data on (2 *********
Client A Client B Data on
Client B

(b) Horizontal federated learning



Complex & Intelligent Systems (2021) 7:639-657

643

Fig.4 a Symmetric federated Features Features
learning, and b asymmetric
federated learning Data on Data on
Client A Client A

R g

= Q@

£ £

s - ©

e Data on L

Client B ez
—‘ Client B

(a) Symmetric federated learning

tion, Chen et al. propose an asynchronous vertical federated
learning method and differential privacy is also used for pri-
vacy protection.

Hybrid federated learning

Hybrid federated learning is more realistic in the real world
and it assumes that datasets on different clients not only
have different sample spaces but also different feature spaces.
Therefore, in this scenario, different parties need to share the
data identity (ID) information to find the intersection part
for distributed training, which is a threat to local clients’ pri-
vacy. Since participants in hybrid federated learning are often
asymmetric [27], for instance, some participants are small
companies always requiring to protect their ID information,
while some participants are large companies that have no
concern about the ID privacy. Symmetric federated learning
and asymmetric federated learning are illustrated in Fig. 4.

Secure ID alignment protocol is significant for hybrid
federated learning, such as the commonly used Private Set
Intersection (PSI) protocol. In standard PSI, all participants
want to collaboratively find the intersection (the part indi-
cated by the dashed lines in Fig. 4) and keep unintersected
parts private. The PSI protocols can be implemented by a
classical public-key cryptosystem [28,29] or other similar
techniques.

Federated model training is similar to vertical federated
learning; however, for asymmetric federated learning, Gen-
uine with Dummy (GWD) approach [27] is used to ensure
the correctness of computation results.

Neural architecture search

Since the quality of deep neural networks (DNNs) heav-
ily depends on their architecture, increasing research efforts
have been committed to design of novel structures in the
deep learning community. However, manually designing
deep neural networks requires considerable expertise in the
field of deep learning and the investigated problem, which is
unrealistic for many interested users. Not until recently has

(b) Asymmetric federated learning

automated machine learning (Auto ML), in particular neu-
ral architecture search (NAS) become very popular to allow
interested users without adequate domain knowledge to profit
from the success of deep neural networks. The framework of
NAS methods involves three dimensions [1], namely search
space, search strategies, and performance estimation strate-
gies.

The search space is a collection of network architec-
tures, which has a major influence on the performance of
the generated networks and search efficiency. The search
strategy defines the method used to automatically design the
optimal network architecture. To be specific, these search
strategies can be divided into at least three categories: rein-
forcement learning (RL), evolutionary algorithms (EAs), and
gradient-based (GD) methods. In addition, a few additional
methods, such as random search [30,31], Bayesian optimiza-
tion [32,33] and multinomial distribution learning [34], fall
outside of the above categories. The search strategy aims
at finding architectures that can obtain high performance on
the test dataset. To guide searches effectively, these strategies
utilize a performance estimation strategy to evaluate the qual-
ity of candidate architectures. Early work uses a simple way
of performance estimation, for example, by iteratively train-
ing a candidate architecture on the training dataset with the
stochastic gradient descent (SGD) [35] and evaluating its per-
formance on the validation data [36—41]. Such an evaluation
strategy typically results in a prohibitively high computa-
tional cost. For example, to design a good performance of
neural network, the automatic evolving convolutional neural
network (AE-CNN) [40] algorithm consumes 27 GPU-days
and the neural architecture search approach [36] consumes
22400 GPU-days on the CIFAR10 dataset. Because ineffi-
cient search strategies require a large number of GPUs, many
NAS methods cannot be implemented given limited compu-
tational resources. To address these challenges, much recent
work dedicates to developing effective methods which can
reduce the computational costs of performance evaluation,
e.g., surrogate-assisted evolutionary algorithms (SAEAs)
[33,42,43], information reuse [44,45], one-shot neural archi-
tecture search [46-50], among many others.
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NAS based on reinforcement learning

Early work on NAS depends on RL to search for high-
performance neural architectures [36—38]. The design of a
network model is considered as an agent’s action, which spec-
ifies the architecture of the network (i.e., a child model). The
network is then trained and its performance on the validation
data is returned as the agent’s reward.

A policy gradient method has attempted to approximate
some nondifferentiable reward function to train a model
which needs parameter gradients. Zoph et al. [36,38] first
adopt this algorithm in NAS to train a recurrent neural net-
work (RNN) model that generates architectures. As is shown
in Fig. 6, the controller as a navigating tool to find more
promising architectures in the search space. The original
method in [36] uses a macro-search space that generates the
entire network at once. As is shown in Fig. 5, the whole archi-
tecture consists of n sequential layers where the dashed lines
indicate skip connections. Hence, the macro-search space
aims to design the entire CNN architecture in terms of the
number of hidden layers n, operations types (e.g. convo-
lution), network hyper parameters (e.g., the convolutional
kernel size), and the link methods (e.g. skip connections).
However, this method is expensive when the data set is large.
To reduce the computational cost, Zoph et al. [38] propose
a more structured search space, called micro-search space.
The micro-search space only covers repeated smaller mod-
ules, called normal cell and reduction cell, and then connects
them together to form an entire network. As shown in Fig.
5, these cells are built in complex multi-branch operations
(e.g. convolution). Each cell structure contains two inputs

hli — 1] and h[i — 2] coming from two previous layers.
Hence, the micro-search space aims to design structures of
these two types of cells. In addition, the cell structures should
have a good capability of generalizing to other related tasks.
For example, the proposed method searches for optimal cell
structures on the CIFAR10 data set and transfers them to the
ImageNet data set by stacking together multiple copies of
this cell. After that, the NASNet [38] method is extended
to a multi-objective optimization variant to simultaneously
optimize the classification performance and computational
cost using different scalarization parameters.

Q-learning [51], as a class of popular RL methods, has
been widely used for NAS. Baker et al. [52] employ an e-
greedy Q-learning strategy to train a policy that sequentially
chooses a type of layers (e.g. convolutional layer, pooling
layer, and fully connected layer) and their corresponding
hyperparameters. Zhong et al. [53] extend this method to
a block-wise network generation approach, which designs
blocks with the same Q-learning paradigm. After that, the
optimal blocks are repeated and stacked to construct the
entire network architecture. To accelerate the search pro-
cess, a distributed asynchronous strategy and an early-stop
approach are adopted.

Parameter sharing introduced in efficient NAS (ENAS)
[46] is a promising approach for speeding up the search pro-
cess for RL-based NAS methods, which treats architectures
as different sub-graphs (sub-net) of a larger graph (super-net)
and forces all sub-graphs to share a common set of weights
that have edges of this larger graph in common. Pasunuru
et al. [54] propose a multi-task architecture search (MAS)
approach based on ENAS [46] for finding a cell structure that

Fig.5 Illustration of the marco-
and micro-search spaces

Macro search space

node 3

Normal cell

space.pdf *

Lisllase cllad .
bes Shenas Q) Springer



Complex & Intelligent Systems (2021) 7:639-657

645

Fig.6 An overview of
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performs well across multiple tasks. Hence, the cell struc-
ture generated by NAS can transfer to a new task. Bender
et al. [55] propose a thorough comparison between random
search NAS methods and ENAS [46] on a larger search
spaces for image detection and classification tasks, respec-
tively. In addition, a new reward function is suggested, which
can effectively improve the quality of the generated networks
and reduce the difficulty for manual hyperparameter tun-
ing. Liu et al. [56] present a novel knowledge distillation
[57] approach to NAS, called architecture-aware knowledge
distillation (AKD), which finds student models (compressed
teacher models) that are best for distilling the given teacher
model. The authors employ a RL-based NAS method with
a KD-guided reward function to search for the best student
model based on a given teacher model.

NAS based on EAs

EAs are a class of population-based, gradient-free heuristic
search paradigms, which have been widely used in solving
various complex optimization problems [12,58—60]. His-
torically, EAs have already been used for simultaneous
optimization of the topology, weights of the connections
and hyperparameters of artificial neural networks (ANNs)
[61,62,62—64]. The neuroevolution with augmenting typolo-
gies (NEAT) algorithm [65] is one of the popular early
methods that have shown powerful performance. However,
the traditional approaches are not well suited for optimizing
DNNs due to the complex network architectures and large
quantities of connection weights. EA-based NAS approaches
to optimizing deep network architectures have started gain-
ing momentum again recently [66,67], mainly because they
can simultaneously explore multiple areas of the search space
and their relative insensitiveness to a local minimum [68,69].
Figure 7 shows a generic framework of EA-based NAS algo-
rithms. Broadly speaking, the whole process of an EA-based
NAS algorithm follows the procedure of an EA contain-
ing at least four-steps: population initialization, offspring
generation, fitness evaluation, and environmental selection.

Compute gradient of p and scale it
by R to update the controller

Generally, each neural network in the search space is encoded
as a chromosome, and crossover and mutation operations
of the chromosomes are performed in the exploration. Then
each chromosomes is transformed into a corresponding neu-
ral network, and iteratively trained on the training dataset.
The trained network is evaluated on the validation dataset to
get their fitness value.

Xie et al. proposed a genetic CNN [39] method that
is one of the early studies using an EA for optimizing
convolutional neural networks (CNNs). The genetic CNN
algorithm searches over the entire architecture space and
employs a fixed-length binary string to represent the connec-
tion between a number of ordered nodes (e.g. a convolutional
operation). Although this early algorithm has some limita-
tions, including a limited number of nodes as well as limited
sizes and operations of convolutional filters, the generated
structures have not only achieved competitive results on the
CIFAR and SVHN datasets, but also shown excellent trans-
ferability to the ImageNet dataset [70].

Miikkulainen et al. [71] propose a coevolution DeepNEAT
(CoDeepNEAT) method by extending the NEAT algorithm
[65] to DNNs. In CoDeepNEAT, each neural network is
assembled by modules and blueprints. A coevolutionary
method is adopted that evolves two populations of modules
and blueprints separately, in which each module chromo-
some represents a small DNN. The blueprints chromosome
represents a graph where each node contains a pointer to
a particular module species. The assembled networks are
trained and evaluated in an ordinary way of NAS. The fitness
of the network is the average fitness of the entire candidate
models containing the blueprints or modules. In addition,
Liang et al. found that the CoDeepNEAT also achieves
promising performance in the Omniglot multi-task learning
domain [72].

In fact, the length of a chromosome usually represents
the depth of the corresponding neural network and a fixed
encoding scheme may limit the performance of the optimized
network. To address this issue, some recent NAS algorithms
have attempted to use a variable-length encoding scheme.
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Fig.7 A generic EA-based
NAS framework
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Real et al. [73] propose a large-scale evolutionary NAS
method, which utilizes a variable-length encoding method
in which the network architectures can adaptively change
their depths. Sun et al. [40] propose an AE-CNN algorithm
that can fully automatically design CNN architectures, with-
out requiring any pre-processing or post-processing. Inspired
by the ResNet [74] and DenseNet [75], AE-CNN'’s search
space is defined by some predetermined building blocks,
including ResNet block and DenseNet block, max pool-
ing layer and mean pooling layer. Then, the authors design
an EA-based NAS framework, including the variable-length
encoding and a novel crossover and mutation operators based
on the variable-length encoding, as the search strategy to
search the optimal depth of the CNN. Given the nature of
the variable-length encoding strategy, the algorithm employs
a repair mechanism that avoids to produce invalid CNNs.
Inspired by directed acyclic graph (DAG), William et al.
[76] introduce a DAG-based encoding strategy, which can
represent CNNs of an arbitrary connection structure and an
unlimited depth.

Suganuma et al. [77] propose a CGP-CNN algorithm to
design CNN architectures using genetic programming. The
search space of CGP-CNN is represented by a DAG, where
the nodes represent either convolutional blocks or concatena-
tion operations. Then CGP-CNN uses the Cartesian genetic
programming (CGP) [78,79] encoding scheme to represent
network architectures and their connectivity. This encoding
scheme can represent variable-length network architectures
and skip connections.
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Most EA-based NAS methods aim at finding better topolo-
gies for DNNs while leaving the learning of weights to SGD.
It is known that the SGD optimizer heavily relies on the ini-
tial values of the weights. To alleviate this problem, Sun et
al. [80] propose an EA-based NAS method, named Evolving
Deep CNNs (EvoCNN), to automatically design CNN archi-
tectures and corresponding connection weight initialization
values without manual intervention. To reduce the search
space, two statistical measures, including the mean and stan-
dard deviation of the connection weights, are encoded in the
chromosome to represent tremendous numbers of the con-
nection weights. In addition, the incomplete training scheme
is employed to accelerate the fitness evaluation. According
to the Occam’s razor theory [81], the number of connection
weights is also considered as an indicator to scale the quality
of candidate networks.

Sunetal. [41] use a genetic algorithm (GA) to design CNN
architectures (CNN-GA). In CNN-GA, the standard convo-
lutional layer is replaced by a novel building block, called
the skip layer. The skip layer consists of two convolutional
layers and one skip connection. Hence, the genotype encodes
information of the skip layers and pooling layers. The fully
connected layers are discarded, mainly because they easily
result in the overfitting [82].

Rather than generating the entire CNNs, the micro-search
space [46] has also been successfully employed by many
recent EA-based NAS algorithms [83-87]. Real et al. [85]
propose an extension of the large-scale evolution [73], called
AmoebaNet, which has achieved better results on ImageNet
compared with hand-designed methods for the first time.
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Since EAs are a class of population-based search meth-
ods, the main computational bottleneck of EA-based NAS
approaches lies in evaluating the fitness of the individuals
by invoking the lower-level weight optimization. One such
evaluation typically takes several hours to days if the net-
work is large and if the training dataset is huge. For instance,
on the CIFAR10 datasets, the AE-CNN [40] consumed 27
GPU days, CNN-GA [41] consumed 35 GPU days, and the
large-scale evolutionary algorithm [73] consumed 2750 GPU
days, AmoebaNet [85] consumed 3150 GPU days. This seri-
ously limits the practical usability of most evolutionary NAS
methods under a constrained search budget.

Therefore, various techniques have been suggested to
accelerate the fitness evaluation, such as information reuse
[44,47] and SAEAs [88]. SAEAs have been popular to solve
computationally expensive optimization problems, which
use cheap classification and regression models, e.g., radial
basis function networks (RBFNs) [89,90] and Gaussian pro-
cess (GP) models [91,92], to replace the expensive fitness
evaluation [93]. Generally, the candidate networks are trained
from a few number of expensive fitness evaluations, and then
the trained networks are used to build a fitness predictors to
reduce the cost of fitness evaluations. In the area of evolution-
ary NAS, Swersky et al. [33] adopt Bayesian optimization
[94] to speed up evolutionary optimization, which is called
freeze—thaw Bayesian optimization. Unfortunately, this algo-
rithm is based on Markov chain Monte Carlo sampling and
also suffers from high computational complexity. Sun et al.
proposed a performance predictor termed E2EPP, which is
based on a class of SAEAs method [43] meant for offline
data-driven evolutionary optimization of expensive engineer-
ing problems. Specifically, E2EPP builds a surrogate that
can predict the quality of a candidate CNN, thereby avoid-
ing the training of a large number of neural networks during
the search process. Compared with AE-CNN, a variant of
AE-CNN assisted by E2EPP (called AE-CNN+E2EPP) can
achieve a 2.3x and 2.1x reduction in GPU days on CIFAR100
and CIFARI10, respectively. Lu et al. [95] adopt two surro-
gates to address the bi-level NAS problem. On the one hand, a
fine-tuning method is adopted at the weight level to improve
the efficiency of SGD training. On the other hand, an online
learning method is used to improve the sample efficiency for
the search space at the neural architecture level.

Knowledge inheritance [44,47] is another promising
approach to accelerate fitness evaluations. Zhang et al. [44]
propose an EA based on asexual reproduction to find bet-
ter typologies for deep CNNs and knowledge inheritance to
reduce the computation cost. Once the topology of an off-
spring individual is generated by its parent, the weights of
offspring networks are directly copied from its parents. For
edges that do not appear in its parent network, the weights
are randomly initialized.

To reduce the computational burden for fitness evalua-
tions, another widely adopted approaches are to train and
evaluate individuals using proxy metrics [85-87]. The per-
formance of the proxy models is used as the surrogate
measurements to guide the evolutionary search. Such proxy
metrics include reducing the width (the number of channels)
and the depth (number of layers) for the intended network
architecture to create a small-scale network, shortening the
training time, reducing the resolution of input images, and
training on a subset of the full training dataset. However,
these simple proxy model constructing methods may result
in a low correlation in prediction mainly because they may
introduce biases in fitness estimation. Zhou et al. [86] have
conducted extensive experiments on different combinations
of proxy metrics to investigate their behaviors in maintaining
the rank consistency in NAS, based on which a reliable hierar-
chical proxy strategy is proposed to accomplish economical
neural architecture search (EcoNAS). The hierarchical proxy
strategy aims at discarding less promising candidate individ-
uals earlier with a fast proxy and estimates more promising
individuals with a more expensive proxy. Hence, the ECONAS
method is able to achieve a 400x reduced search time in
comparison to AmoebaNet [85] without sacrificing the per-
formance. Lu et al. [87] empirically establish the trade-off
between the correlation of proxy performance to true perfor-
mance and the speed-up in estimation.

Evolutionary multi-objective NAS methods considering
multiple conflicting objectives have been reported. One of
the earliest evolutionary multi-objective methods to design
CNNs is NEMO [96], which simultaneously optimizes clas-
sification performance and inference time of a network based
on NSGA-II [97]. Inspired by NEMO, Lu et al. [84] con-
sider classification error and computational complexity as
the two objectives. In addition, they empirically test multiple
computational complexity metrics to measure the inference
time of a network containing the number of active layers, the
number of activating connections between layers, and the
number of floating-point operations (FLOPs). And then, the
FLOPs are used as a second conflicting objective for opti-
mization. Moreover, a Bayesian network (BN) is adopted to
learn the knowledge about promising architectures present
in the search history and then guide the future exploitation in
generating new architectures. Subsequently, Lu et al. suggest
NSGANet-v2 [87], an extension of NSGANet [84], where a
comprehensive search space including more layer operations
and one more option that controls the width of the model is
introduced. Dong et al. [98] present a DPP-Net on the basis of
[99] that optimizes both GPU memory usage and the model
performance. Elsken et al. [100] proposed the LEMON-
ADE method, which formulates the NAS as a bi-objective
optimization problem that maximizes the performance and
minimizes the required computational resources. Inspired
by [101], LEMONADE reduces computational cost through
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Fig.8 A generic pipeline GD-based NAS method

a custom-designed approximate network morphisms, which
makes offspring individuals to share weights with their fore-
runners, avoiding training new networks from scratch. Note
that evolutionary multi-objective structure optimization of
shallow networks can be traced back to a decade ago [102].
Lu et al. [103] proposed a method that integrates multi-
objective evolutionary algorithm and online transfer learning
for designing task-dependent network architectures trading-
off model performance and computational complexity. The
authors first train a task-specific one-shot model covering the
search space once, then specialized sub-models can be sam-
pled from the search space without additional training. And
then they adopt an online regressor as a surrogate model to
predict the performance of sub-models in the one-shot model.

NAS based on GD

Compared with the above gradient-free optimization meth-
ods, the GD-based methods (Fig. 8) have become increas-
ingly popular recently, mainly because their search speed
is much faster than RL-based and EA-based methods.
Early GD-based methods [104-107] implement this idea for
optimizing layer hyperparameters or connectivity patterns,
respectively. Lorraine et al. [108] introduce an algorithm for
inexpensive GD-based hyperparameter optimization. Liu et
al. [109] employ GD in the DARTS algorithm, which opti-
mizes both the network weights and the architecture. The
authors use relaxation tricks to make a weighted sum of
candidate operations differentiable, and then apply the gra-
dient descent method to directly train the weights. Inspired
by DARTS [109], Dong et al. [110] introduce gradient-
based search using the differentiable architecture sampler
(GDAS) method. The authors develop a differentiable archi-
tecture sampler which samples individual architectures in a
differentiable way to accelerate the architecture search proce-
dure. Stochastic NAS (SNAS) [111] optimizes a probability
distribution of the connections between different candidate
operations. Li et al. [112] observe that models with a higher
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performance during the search phase may perform worse in
the evaluation. Hence, they divided the search process into
sub-problems and proposed sequential greedy architecture
search (SGAS) based on DARTS, which chooses and prunes
candidate operations (e.g. convolutional layers) greedily. The
authors apply SGAS for CNNs and graph convolutional net-
works (GCNs) and have achieved competitive performance.
Xu et al. [113] present Partially-Connected DARTS (PC-
DARTS), which samples a small part of super-network to
reduce the redundancy in exploring the network space. Com-
pared with DARTS, PC-DARTS not only enjoys both faster
speed and higher training stability but also a highly com-
petitive learning performance. Gao et al. [114] propose the
first GD-based NAS method in generative adversarial net-
works (GANS), called adversarial neural architecture search
(AdversarialNAS), which can search the architectures of gen-
erator and discriminator simultaneously in a differentiable
manner.

One bottleneck of the above GD-based NAS methods (e.g.
DARTS) is that it requires excessive GPU memory during
search in that all candidate network layers must be explicitly
instantiated in the GPU memory. As a result, the size of the
search space is constrained. To address this issue, Wan et
al. [115] propose DMaskingNAS, a memory and computa-
tionally efficient DARTS variant. DMaskingNAS employs a
masking mechanism for feature map reuse. Hence, although
the search space of DMaskingNAS is expanded up to 10'%x
over conventional DARTS, memory and computational costs
stay nearly constant.

Another way to address the above problem is to utilize
proxy tasks, e.g., learning with only a small number of build-
ing blocks or training for a small number of epochs [109,111].
However, these approaches cannot guarantee to be optimal on
the target task due to the restricted block diversity [107]. Cai
et al. [107] proposed ProxylessNAS method, which directly
designs the networks based on the target task and hardware
instead of with proxy. Meanwhile, the authors used path bina-
rization to reduced the computational cost (GPU-hours and
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GPU memory) of NAS to the same level of normal train-
ing. Hence, ProxylessNAS algorithm can generate network
architectures on the ImageNet dataset without any proxy.

Most recently GD-based NAS methods are formulated
as bilevel optimization problems, However, He et al. [116]
observe that bilevel optimization in the current methods is
solved based on a heuristic. For instance, solution of the
problem needs to get an approximation of the second-order
methods [109,110]. He et al. [116] demonstrate that the
approximation has a superposition influence mainly because
it is based on a one-step approximation of the network
weights. As a result, gradient errors may cause the algorithm
to fail to converge to a (locally) optimal solution. Hence, the
authors propose mixed-level reformulation NAS (MiLeNAS)
that uses a first-order method on the mixed-level formula-
tion. Experimental results show that MiLeNAS has achieved
higher classification accuracies than those achieved by the
original bilevel optimization methods.

Federated neural architecture search

Federated NAS aims to optimize the architecture of neu-
ral network models in the federated learning environment.
As discussed in section “Federated Learning”, distributed
model training is intrinsically more difficult than central-
ized training, and it becomes even more challenging for
NAS problems. In this section, we would like to introduce
the current research on federated NAS and discuss them
from two perspectives: online and offline optimization, and
single- and multi-objective optimization. It should be noticed
that research on federated NAS work is presently limited to
horizontal federated learning and federated NAS in vertical
federated learning has not been reported so far.

Offline and online federated neural architecture
search

Most NAS methods include two steps, i.e., search the archi-
tecture of the neural network model, and training the weights
of the found neural network model afterwards. And most
importantly, only the final performance matters. We define
these approaches as offline NAS, because the search and
training steps are typically separate and only an optimized
network will be used. By contrast, online NAS requires that
the architecture optimization and weight training be done at
the same time, and some of the models must be used dur-
ing the search process. As a result, the performance of the
models during the optimization must be acceptable.

This concept can be easily extended to federated learning.
In other words, federated NAS systems in which neural archi-
tecture search and weight training of the global model must
be performed simultaneously are called online or real-time

federated NAS, whilst federated NAS in which neural archi-
tecture search can be conducted at first and then the weights
of the found models are trained are offline. Similarly, online
federated NAS requires that the neural network models can
be used during the optimization process.

For example, the method proposed in [12] is a typical
offline federated NAS framework using a multi-objective
evolutionary algorithm. An offline evolutionary federated
NAS algorithm can be summarized as follows:

1. Initialize parents with a population size N and each indi-
vidual represents one architecture of the neural network.
Construct and train N neural network models in federated
learning with all participating clients to achieve the fitness
values (e.g., validation accuracy) of the parents.

2. Generate N offspring individuals by applying genetic
operators on the parents. Construct and train all the gener-
ated offspring models for fitness evaluations in federated
learning.

3. Combine the parent and offspring populations into one
population and perform environmental selection. Select
the best N individual from the combined population as
the new parents.

4. Repeat the above two steps until the evolutionary algo-
rithm converges.

5. Train the weights of the optimized neural network models
in federated learning.

It can be seen that all participating clients are used for
federated model training, i.e., at each generation, all partici-
pating clients must train each of the N individuals for certain
rounds for fitness evaluations, which significantly increases
both computation and communication costs. Client sampling
can be used to alleviate this issue, in which only subsets
of participating clients contribute to one individual’s model
training. For example in [117], all the connected clients are
divided into different groups and each sampled model use
one group of clients for local training. The overall process of
this approach is summarized as follows:

1. Initialize the global model and a list of resource budgets
in the server.

2. Generate a list of simplified global models by model
pruning [118] based on the current global model. And
then these global models are distributed to different group
clients.

3. For each communication round, every group of clients
train their allocated group models for a number of pre-
defined epochs and calculate the test accuracies on the
validation datasets. Then both local test accuracies and
validation data sizes are uploaded to the server. The server
aggregates the uploaded local models and calculates a
weighted accuracy for each group model. Remove o%
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of global models with the worst test accuracies (removed
global models that will not be trained and updated from
the next communication round). The remaining groups
of clients upload their calculated model gradients to the
server for aggregation.

4. Repeat the above step for a number of pre-defined com-
munication rounds.

5. Replace and store the global model with the first model
in the global model list.

6. Repeat the above four steps until convergence.

7. Perform federated training on any stored global model.

Although the above procedure uses different architecture
generation methods (model pruning) and search space com-
pared to the evolutionary approach, it is clearly a population
based offline federated NAS framework (weight training and
architecture search are separate). In addition to client sam-
pling, the authors also remove subsets of global models to
further reduce the communication costs. However, the test
accuracies of each global model in the list is calculated before
model aggregation, which sometimes cannot represent the
real test accuracies, especially for the cases when the clients’
data are particularly non-IID.

The overall framework of Offline federated NAS is shown
in Fig. 9 and it has two main difficulties: (1) the number
of communication rounds for federated model training of
each individual is hard to determine. Setting a small number
of communication rounds may make the individual’s model
under-trained and bias the fitness evaluations. On the other
hand, setting a very large number of communication rounds
consumes too many communication resources. (2) Train-
ing the candidate neural network models consume additional

communication resources, which should be avoided in fed-
erated learning. For the above reasons, online federated NAS
frameworks need to be developed to solve the above issues.

Online federated NAS trains the model and does the archi-
tecture optimization simultaneously (shown in Fig. 10). To
the best of our knowledge, there are currently two approaches
to online federated NAS. One is gradient-based method
proposed in [119], and the other is an EA-based method
proposed in [120]. The gradient-based method adopts the
idea of DARTS [109], which is implemented in the feder-
ated environment. The global model here is called supernet
which consists of repeated directed acyclic graphs (DAGs)
and each DAG contains all candidate operations. And relax-
ation tricks [121] are used to make a weighted sum of the
candidate operations differentiable so that the architecture
parameters can be directly updated by the gradient descent
algorithm. A brief description of this method is given below.

1. The server initializes the supernet and its architecture
parameters.

2. All connected clients download the supernet and its archi-
tecture parameters from the server.

3. Each client trains and updates the supernet with fixed
architecture parameters on mini-batch training data at
first. Then update the architecture parameters with fixed
model parameters on mini-batch validation data. These
two procedures are performed alternately within one local
training epoch.

4. After local training for several epochs, all participating
clients upload both model and architecture parameters to
the server. The server performs weighted averaging upon
the supernet and architect parameters.

Fig.9 Overall framework of Server
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Fig. 10 Overall framework of online federated NAS. Client sampling
are often used to ensure all offspring models are evaluated within one
communication round

5. Repeat from step 2 to step 4 until convergence.

Unlike aforementioned two offline federated NAS frame-
work, this scheme is not population based since all candidate
operations are jointly optimized. In addition, architecture
search and weight training of the supernet model are
conducted alternately during the period of federated train-
ing. Therefore, no additional communication resources are
required for training the candidate models. However, jointly
optimizing the supernet on local clients requires much more
computation and memory resources, which is not well suited
for the edge devices like mobile phones.

To reduce the memory usage of local devices, a more
light-weighted real-time evolutionary NAS framework (RT-
FedEvoNAS) is proposed in [120]. Different from the previ-
ous gradient-based approach, RT-FedEvoNAS adopts model
sampling technique [47,122] in federated learning, where
only one path of repeated cells in the global model is sam-
pled and downloaded to local clients. As a result, both local
computation and uploading costs are significantly reduced.
The overall process is described as follows:

1. Initialize the supernet in the server. Generate the parent
population containing N individuals, each representing a
one-path subnet sampled from the supernet using a choice
key. Do client sampling to allocate L clients evenly into
N groups.

2. Download the subnet of each parent individual to each
group of clients for training. Once the training is com-

pleted, upload the L local subnets to the server for
aggregation to update the supernet model.

3. Generate N offspring individuals using crossover and
mutation. Similarly, generate a choice key for each off-
spring individual to sample a one-path subnet from the
supernet. And then use client sampling technique to down-
load sampled subnets (download the choice keys from the
second generation) for training and uploading the trained
subnets to the server for aggregation.

4. Download the supernet together with the choice keys of
all parent and offspring individuals to all participating
clients to evaluate the objectives. Upload all the objective
values to the server and calculate the weighted average of
the validation errors for each individual.

5. Combine the parent and offspring individuals into a whole
population. Perform environmental selection to select N
new parents.

6. Repeat Step 3 to Step 4 until the generation number
reaches the pre-define maximum value.

Since only one path of the supernet needs to be trained on
each client, this sampling approach can significantly reduce
both upload and local computation costs. There is a small
detail in Step 4 that downloads all the supernet model to every
client to calculate the validation accuracies; thus, only choice
keys are downloaded in the next generation since the whole
supernet has been already downloaded in the last generation.

Online methods enable federated NAS systems to perform
architecture search and train the model simultaneously. Both
fitness evaluation thresholds, e.g. the number of communi-
cation rounds in federated learning and extra communication
resources for training the searched models are not required
using online approaches, which are highly desired for feder-
ated learning. However, the search space of online federated
NAS is fairly limited, which affects the diversity of the archi-
tecture search.

Single- and multi-objective search

The aforementioned gradient-based federated NAS frame-
work only considers and optimizes the model performances,
which is usually not enough for federated learning, because
federated NAS is naturally a multi-objective optimization
problem. In addition to the maximization of the model perfor-
mance, the payload (communication costs) to be transferred
between the server and clients should be minimized. Single-
objective optimization often aggregates conflict objectives
into one objective using hyperparameters, while Pareto
approaches aim to obtain a set of models presenting trade-off
relationships between the conflicting objectives.

For example in RT-FedEvoNAS, the validation accuracy,
model size and model floating point operations per second
(FLOPs) of the sampled subnets are considered as the objec-
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tives need to be optimized and NSGA-II [97] is used as the
basic search algorithm. Finally, after several generations of
evolutionary optimization, multiple well trained subnets can
be obtained chosen from the trade-off solutions based on the
user’s preferences.

Open challenges

Currently, research on federated NAS is still very preliminary
and several challenges remain to be solved.

Horizontally partitioned data

There is no general solution that can well solve the non-1ID
learning degradation problems in horizontal federated learn-
ing, let alone in federated NAS. The earliest work to explore
non-IID data effect is proposed in [13]. The authors analyze
the possible reasons for divergence in global model training
on non-1ID data and propose a strategy to mitigate this influ-
ence by globally sharing a small part of the data across all
connected clients. However, this kind of data sharing intrin-
sically violate the scope of privacy-preserving scheme.

The federated distillation approaches [123,124] also have
the potential risk of local data leakage. For the distillation, the
teacher models are evaluated on mini-batches of unlabeled
data on the server and their logits for mini-batch are used to
train the student model on the server. The server can get a
lot of local data information even on fake mini-batch data
generated by local GAN generators [125].

Some statistical aggregation methods [14,126] are pro-
posed to replace the original federated averaging algorithm
(FedAvg). Both mathematical and experimental results prove
that the proposed aggregation algorithms outperform the
FedAvg on non-1ID data. However, these approaches are
often limited to some specific models and datasets, and it
is unclear if they can show better performance for federated
NAS frameworks. Hsieh et al. discuss the effect of non-1ID
data for DNNGs in detail and different federated optimization
methods are used upon different DNNs, such as GoogleNet
[127],and ResNet [74]. Experiment results show that batch
normalization [128] performs really poorly on non-IID data,
but batch renormalization [129] and group normalization
[130] are much more robust for non-IID data, which are
much more suited for federated learning. Most recently, it
is shown in [10] that ternary quantization is helpful in alle-
viating model divergence in federated learning, although its
effectiveness remains to be validated on federated NAS.

Vertically partitioned data

Current federated NAS methods are all based on horizontal
federated learning. Unlike horizontal federated learning, it
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is really hard to determine whether the data are IID or non-
IID in vertical federated learning since they are ’partitioned’
towards the feature space.

Most existing vertical federated learning frameworks are
built on two-party systems using simple linear models. Since
only one party can hold the labels, the loss needs to be calcu-
lated on ciphertext; otherwise, the label information will be
revealed. Then the gradients are very hard to calculate since
the total loss is encrypted. Some approximation techniques
like Taylor expansions [23,25] are often used to simplify the
gradient calculations, which, however, may introduce strong
biases for complex models like DNNs.

Overall, vertical federated NAS is totally different from
horizontal federated NAS, which is in general still an unex-
plored research area.

Adversarial federated neural architecture search

Adversarial federated learning has two purposes: (1) infer-
ence of the client data information; (2) attack the global
model to conduct backdoor [131] elements or even let the
model unusable. And the adversary in federated learning can
be one of participating clients or the central server, since
we often assume the server is honest-but-curious. Thus, the
server should also be considered as a potential risk.

Federated learning is still fragile to white box attacks since
the model gradients and parameters still contain local data
information. Geiping et al. [132] showed that local images
can be reconstructed from the knowledge of model param-
eters (or gradients) by inverting gradients techniques. In
addition, an adversarial GAN [125] generator can be devel-
oped on either the server [133] or the client side [134]. The
adversary can reconstruct other participating clients’ private
data even if it has no knowledge of the label information.

Enthoven and Al-Ars [135] summarize most defence
strategies used in federated learning, which can be cate-
gorized into three types: (1) subsample or compress the
communicated gradients [6,7,136]; (2) differential privacy
and SMC [19], and (3) robustness aggregation [137] using,
e.g., the Byzantine resilient aggregation rule [138,139].

In general, finding robust model architectures in federated
learning to defend against the adversarial attacks is still a hard
task.

Encrypted federated neural architecture search

Homomorphic encryption technologies are often applied to
prevent privacy leakage from the gradient information sent
to the server. However, using homomorphic encryption in
federated NAS system has two main difficulties.

First, homomorphic encryption, including encoding and
encryption, is computationally expensive in federated learn-
ing. At first, all communicated model parameters need to
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be encoded into large inter numbers, because homomor-
phic encryption does not work on real numbers. Then the
encoded parameters need to do modulus calculations with
large prime numbers one by one. Unfortunately, modern
deep neural network models contain millions of parameters,
making the encryption process computationally extremely
intensive. Therefore, developing a light weighted encryption
method is an important yet challenging task for federated
learning, let alone for federated NAS.

Second, the original federated encryption is introduced
in which the server holds the public key and clients hold
the private key. This framework is unsafe, because only one
of clients uploads its secret key to the server. Therefore, a
more advanced SMC approach is adopted that divides the
whole secret key into several shards, and the server can-
not decrypt the gradients unless it collected ¢ (secret key
recover threshold) key shards. Unfortunately, the encrypted
gradients must be frequently transferred between the server
and clients, which significantly increases the communica-
tion costs, since the local clients can only partially decrypt
the gradients through their key shards. This is a big burden
to the communication resources, which needs to be solved in
the future.

Conclusion

In this survey paper, a brief overview of federated learning
and NAS is provided, and a combination of both tech-
niques, i.e., federated NAS is introduced. Given several
remaining challenges in both federated learning and NAS,
federated NAS becomes extremely challenging since many
techniques developed in centralized NAS are no longer suited
for federated NAS, and NAS will be subject to more con-
straints introduced by the federated learning environment.
Two approaches to federated NAS are discussed, one is
offline optimization and the other is online optimization.
It is noted that offline evolutionary NAS methods are not
applicable for many real-world scenarios, mainly because
the offline approach performs architecture search and weight
training separately and requires a large amount of communi-
cation costs. In addition, the performance of neural network
under optimization must be acceptable for application and
serious performance drop is not allowed. RT-FedEvoNAS
[120] offers a solution to the above challenges, although its
search space is highly constrained.

Despite that many grand challenges remain to be solved,
federated NAS is of paramount practical significance for
many real-world problems, where handcrafted deep neural
networks may fail to work properly. We hope that this survey
will help understand the promises and challenges in federated
NAS, thereby triggering more research interests in devel-
oping new theories and algorithms, thereby promoting the

application of Al techniques to a wider range of fields where
data privacy and security is a primary concern.
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