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Abstract
Applying risk assessment approaches to improve quality in enterprises is of great importance especially for sectors that are
labor-intensive and thus frequently encountered failures. One of the methods frequently used to take precautions against
failures caused by high variability in this type of sector is failure mode and effects analysis (FMEA). In this study, a hybrid
FMEA approach is proposed so as to takemeasures against failures in the textile sector where there are high-quality differences
due to its structure and failures frequently occurred. Since the different combinations of risk parameters’ scores may produce
the same risk degree based on the function of the FMEA’s basis, misleading results for the risk analysis in the practical risk
management can be occurred. Moreover, the risk priority number (RPN) function has a limitation in the weight determining
process, since it assigns the equal weight for each risk parameter in the classical FMEA. To overcome these shortcomings
in the RPN calculation for the risks in the FMEA approach, a multi-criteria decision-making (MCDM) approach is applied
under the framework of fuzzy logic. Through that, in this study, we aimed to prove an expert system based on the rules that
specifically focusing on the risk sources of the woven fabric industry. To create such a rule-based system, inputs are generated
using fuzzy AHP and modified fuzzy TOPSIS. A case study is carried out with the method proposed in a textile mill, and it is
determined which risks arising from failures are higher. For the validation of the results, a comparative analysis is conducted.
Moreover, for the robustness of the decisions, one-at-a-time sensitivity analysis with respect to different scenarios are applied.
As a result of the analyses, it is shown that our proposed model can be used as an efficient proactive risk calculator for the
managers or researchers to make useful inferences, judgments, and decisions of the production processes for eliminating the
shortcomings of the traditional FMEA.
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Introduction

Risk assessment is a comprehensive process to evaluate the
possible impact of an event or outcome [1]. Applying to risk
assessment applications to prevent poor quality within the
enterprises is a crucial step to prevent losses in the market.
High variability in quality characteristics, especially in labor-
intensive sectors, has adverse consequences for the purpose
of producing defect-free products of businesses and obliges
preventive actions to be taken to prevent failures. Textile is
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among the sectors where quality variations are intensive due
to its structure and where failures are also frequently encoun-
tered. Despite increasing automation, the textile industry
performs a labor-intensive production, so variability caused
by human or process can cause production failures [2]. In
addition, textile companies have long production lines, from
raw material to complex, which are effective on many exter-
nal factors, and due to this complex structure, it is natural to
encounter errors [3]. Therefore, risk analysis studies to pre-
vent errors are very important in textile sector where errors
are frequently encountered.

FailureModes andEffectsAnalysis (FMEA),which is fre-
quently used in risk analysis studies, is a powerful method
that can prohibit failures by estimating the risks of avoid-
ing failures [4]. FMEA is an approach that provides great
convenience to businesses to predict the error and its possi-
ble effects in different processes of production [2]. FMEA
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analyzes the system or process to determine potential failure
modes and their causation and effects on system or process
performance [5]. The primary purpose of FMEA is to fix
the most critical failure modes before they reach the cus-
tomer, instead of solving them after the failures are occurred
[6]. FMEA method can be applied to many different areas to
analyze the causes and effects of risks, increase the reliability
and security of the systems, and take appropriate proactive
measures [7]. FMEA was originally developed by the USA
in the 1960s for the aerospace industry and then applied by
FordMotor for the quality and safety improvements in design
and manufacturing [8]. In FMEA, failure modes are assessed
based on risk factors which are probability of occurrence (O),
severity of effects (S), and chance of detection (D). Risk pri-
oritization of failure modes is computed by calculating the
risk priority numbers (RPNs) obtained by multiplying the O,
S, and D risk factors [6]. While determining the risk priority
number in the traditional FMEA, these factors are determined
as crisp numbers between 1 and 10. At this point, fuzzy logic
is used to overcome this weakness of traditional FMEA [7].
Experts identify three risk factors O, S, and D in fuzzy lin-
guistic terms in fuzzy FMEA [9].

It has been clearly seen that MCDM approaches are fre-
quently used in risk analysismethods.Due to the flexibility of
decision-makers to overcome some of the traditional risk pri-
oritizationmethods’ shortcomings,MCDMapproaches have
been used extended with fuzzy logic, especially in risk anal-
ysis and assessment studies [9–11]. In the classical FMEA,
the different combinations of risk parameters’ scores may
produce the same risk degree, which will lead to a mislead-
ing result of risk analysis in practical riskmanagement. Also,
classical FMEA has a limitation in the weight determining
process, since it assigns the equal weight for each risk param-
eter. Therefore, amore sophisticated approach is essential for
a more valid results.

In this study, an integrated fuzzydecision-makingmethod-
ology consists of Buckley’s fuzzy AHP, fuzzy TOPSIS, and
Fuzzy Inference System (FIS) is introduced to prioritize the
risk sources of the woven fabrics industry. Buckley’s fuzzy
AHP is applied to determine weights of the experts. Fuzzy
TOPSIS is conducted to calculate the risk parameter scores
of risk sources based on the each FMEA parameter. After,
FIS is constructed based on the decision-makers’ knowledge
and evaluations. Therefore, calculated risk parameter scores
are used as input of the system and the final risk magnitudes
of risk sources are obtained.

Rest of the paper is organized as follows: In section “Lit-
erature Review”, it reviews the studies, which related with
MCDMmethods and risk analysis applications are discussed.
In section “Methodology”, appliedmethodology and its basic
preliminary definitions are presented. In section “Applica-
tion”, the application and its basic steps are given. In section
“Discussion”, sensitivity analyses and interpretation of the

results are presented. The paper ends with conclusions and
for further study suggestions.

Literature review

One of the most commonly used approaches in risk analysis
studies is MCDM approaches. Fuzzy logic is also applied
in studies where uncertainty exists and linguistic evaluations
are needed. Therefore, fuzzy logic and MCDM methods are
frequently used together. The highlights of these studies can
be summarized as follows. Bao et al. suggested a model that
includes the concept of knowledge to the risk calculation
in addition to the consequence and probability [1]. In this
context, fuzzy multi-criteria decision-making method was
used to evaluate the effectiveness of knowledge. Yłlmaz et
al. integrated fuzzy logic and MCDM methods into the risk
analysis process, thus increasing the effectiveness of tradi-
tional risk analysis approach [12]. In the first step, cost factor
was included to risk analysis, and then, hazards were pri-
oritized with Fuzzy–AHP. In the second stage, the priority
order of the measures was determined using Fuzzy–TOPSIS.
Wang presented a fuzzy multi-criteria decision-based frame-
work including fuzzy entropy and fuzzy TOPSIS to improve
traditional FMEA and applied the proposedmethodology for
the printed circuit board manufacturing process [8]. Ilbahar
et al. proposed an integrated approach including Fine Kin-
ney, Pythagorean fuzzy AHP, and fuzzy inference system
for analyzing risks of an excavation process in a construc-
tion yard [13]. Tian et al. proposed an integrated fuzzy
MCDM approach to improve the performance of the clas-
sic FMEA [5]. For this purpose, fuzzy best method was used
to obtain the weights of risk factors, a fuzzy proximity, and
fuzzy similarity entropy weight-based model developed to
obtain the weight of FMEA teammembers, and eventually, a
fuzzy VIKOR approach is used to acquire the risk priorities
of failure modes. Jozi et al. determined the environmen-
tal and human health risks caused during the construction
period of Balarood Dam [14]. First, all risks were identified
using a Delphi Survey, and then, criteria were prioritized
using AHP and TOPSIS methods. AHP and TOPSIS results
revealed a mismatch in priorities, so an integrated method
which hybridizesMean-Rank, Borda, andCopelandmethods
was applied. Wang et al. evaluated the risk of failure modes
by hybridizing COPRAS and ANP methods under interval-
valued intuitionistic fuzzy environment [6]. Ilangkumaran
et al. suggested fuzzy ANP (Analytic Network Process)
method for assessing occupational safety in hot environ-
ments [15]. Ouédraogo et al. introduced a new methodology
for Risk analysis named as Laboratory Assessment and Risk
Analysis—LARA—to assess risks in the research/academia
environment with using AHPmethod [16]. Shariat et al. ana-
lyzed risk in urban rainwater systems with using Multiple
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CriteriaDecision-Making (MCDM), geographic information
systems (GIS), and fuzzy sets [17]. Tesfamariam and Sadiq
assessed the decision-maker’s risk attitude and related con-
fidence in the choice of drilling fluid/sludge for offshore oil
and gas operations using fuzzy-based AHP method with a
hypothetical example [18]. Yan et al. applied the cost-benefit
ratio and fuzzy TOPSIS methods to identify the congestion
risks of theYangtzeRiver tomake flexible decisions based on
the dynamics of congestion risks and to make temporary risk
analysis to prioritize congestion risk control options [19].

Literature review studies have also been revealed by
researching and compiling MCDM methods used in risk
analysis. For example, Almeida et al. reviewed the litera-
ture to identify the state-of-the-art research guidelines for
multi-criteria models applied in risk management [20]. Gul
organized a review about the risk assessment studies applied
inOccupational Health&Safety (OHS) usingMCDM-based
approaches [21]. Liu et al. reviewed the papers which exam-
ine the FMEA studies using MCDM approaches to evaluate
and prioritize failure modes [22].

FMEA analysis is one of the techniques frequently used
in studies where the risks related to failures are analyzed.
In addition, studies using FMEA in the textile industry
are examined and summarized as follows. Nguyen et al.
suggested an extension of FMEA taking into account the
associated quality cost and additional determinants to indi-
cate the priority level of the fault detection system for each
fault mode [23]. An empirical analysis was applied at the
non-woven fabric manufacturer to measure the performance
of extended version of FMEA. Erdil and Tacgin applied the
FMEA approach to take into account the risks in providing
a higher quality in meeting the clothing needs of the house-
hold while reducing the environmental, economic, and social
problems of the clothing industry’s sustainable supply chain
and extending the life of the clothing [24]. Lingam et al.
implemented various lean tools such as value stream map-
ping, kaizen, failure mode effect analysis, time, and motion
study to reduce the cycle time of T-shirt production [25].
Mutlu and Altuntas proposed an approach that combines the
benefits of the fault tree analysis and the fuzzy probability
estimates of the time algorithm to advance the performance
of the FMEA method [26]. Dedimas and Gebeyehu tried
to demonstrate the economic increment of decreasing high
downtime in the case company using the benefits of FMEA,
and identified and prioritized failure modes, causes, and
effects in a particular segment of the company using RPNs
[27]. Ozyazgan determined the failure probabilities, weight
values, and detectability values of failures arising in a factory
producing fabric using process FMEA and presented sug-
gestions for detection according to the current failures types
[28]. Esmaeilian et al. suggested a new model to decrease
RPNs by increasing overall equipment efficiency using the
heuristic math model based on the total productive mainte-

nance index and a company producing products for the seat
cover was used for the case study [29]. Sivakumar received
data from various experts, field experts, and engineers, and
analyzed fuzzy RPNs for efficiency and quality dimensions
was determined using an Experimental analysis in the textile
industry [30]. Efe et al. aimed to handle the disadvantages
of traditional FMEA using an integrated intuitionistic fuzzy
MCDMmethod and linear programming in creating an occu-
pational health and safety policy [31]. Yucel determined the
factors that produce errors within the factory by applying the
FMEAmethodwith a teamestablished in a garment company
and systematic FMEA approach applied to eliminate sewing
errors [2]. Sabir applied to FMEA technique in textile dyeing
finishing business and three types of errors/defects that have
priority in the enterprise identified and preventive actions
are suggested [3]. Ozyazgan and Engin presented a process
FMEA approach to obtain the error probabilities, severity
values, and detectability values of the errors encountered
in a knitting business [4]. Correction measures were spec-
ified according to the types of errors based on the RPNs
determined. Pazireh implemented the FMEA approach to
design and implement a quality control system on apparel
production lines, identify and sort out possible challenges,
and then issue correct commands to quality control stations
[32]. Tekez carried out fuzzy TOPSIS application in the knit-
ting process as failure type and effects to detect, eliminate,
or minimize errors to ensure customer satisfaction [33].

Risk analysis studies that have attracted attention recently
in the textile field can also be summarized in the following.
Mutlu and Altuntas developed an approach based on FMEA
and Fault Tree Analysis (FTA) to analyze the ring yarn man-
ufacturing process in the textile industry [34]. Fithri et al.
proposed an approach to reduce defects at PT Unitex using
FMEA, Pareto analysis, and fishbone diagrams in a textile
company [35]. Grundmann et al. applied FMEA in the fully
automatic thermoplastic tape laying process and aimed to
obtain high-quality products [36]. Thawkar et al. adopted
the FMEA approach to the analysis of machine failures in
developing a reliability centered maintenance methodology
to improve card usability in the textile industry [37]. Shafira
and Mansur used the FMEA AHP hybrid method in the pro-
duction quality improvement analysis of gray cambric using
the six sigma approach and determined the most critical fail-
ures based on RPNs [38]. Similar to the previous study,
Purnama et al. carried out a risk analysis study by applying
fuzzy AHP and FMEA methods within the scope of the six
sigma project [39]. Ghoushchi et al. developed an integrated
BWMandMOORAmethod under uncertain environment for
the consideration of risk sources’ magnitudes with respect to
FMEA parameters [40].

Fuzzy inference system is a frequently used approach
to risk assessment in different areas. For example, Elsayed
applied the FIS approach in the risk assessment of liquefied
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natural gas carriers during loading/unloading at the terminals
[41]. Carreño et al. proposed an approach to assess physical
risks using a fuzzy inference system called an MuHRA in an
urban area [42]. Kim et al. provided a model that hybridizes
the AHP and FIS approaches to risk assessment of overseas
steelmill projects and tomitigate these risks [43]. Ramkumar
et al. integrated SWOT analysis with ANP-based fuzzy infer-
ence system in risk assessment of outsourcing e-procurement
services [44]. Elsayed et al. applied to the qualitative risk
matrix method in the fire and explosion risk assessment of
the floating storage and unloading vessel, and then applied
to the fuzzy inference system [45]. As a result of the study,
it was seen that the FIS approach provides a more robust
framework for more output information than the qualita-
tive matrix approach. Azimi et al. proposed a comprehensive
model based on the FIS approach to determine the landslide
risk more reliably and accurately [46]. Tsai and Yeh used
a mixed model of FMEA and FIS to identify the sources
of critical soldering failures and evaluate their risks in sur-
face mounting assembly [47]. Jamshidi et al. presented an
FIS-based approach on relative risk score methodology in
risk assessment for the pipeline [48]. Rezaee et al. offered
a hybrid approach based on the linguistic FMEA, FIS, and
Fuzzy Data Envelopment Analysis model to overcome the
shortcomings in calculating the traditional risk priority num-
ber and prioritize health, safety, and environmental risks [49].
When the studies conducted by applying the FIS approach in
different fields for risk assessment are examined, no studies
using the hybrid approach adopted for the textile industry
have been found. At this point, it can be said that this study
fills an important gap in the literature and will be a study
guiding researchers and practitioners.

When the application-based studies and literature stud-
ies are examined, it can be revealed that this study has the
following aspects unlike the others.

– The proposed study consists of an integrated methodol-
ogy,which collects the data froma group decision in form
of linguistic information.

– Since the data consist of linguistic information, fuzzy sets
are used to represent them in the mathematical calcula-
tions.

– In comparisonwith the classical FMEA, constructed rule-
based system is sensitive to the changes in the inputs.
For example, let be P = 7, F = 3, D = 8 for a risk, and
P = 3, F = 8, D = 7 for the other one. Since the results
of them are equal, classical FMEA cannot provide an
accurate solution. In our model, each input is evaluated
with respect to the determined rules by a consensus.

In the traditional FMEA, neither the lack in calculations
steps nor the results scale cannot respond the all-risk areas.
Moreover, outcome of a risk in heavy industry differs from

the outcome of the textile industrywith respect to riskmagni-
tudes. Through that, in this study,we aimed to prove an expert
system based on the rules that specifically focusing on the
accident environment. To create such a rule-based system,
inputs are generated using F-AHP andF-TOPSIS.Utilization
of these methods may not be novel for the FMEA technique,
but different from the other case studies, a modified TOPSIS
method is conducted with respect to the each FMEA param-
eter. F-AHP is conducted to determine the experts’ weights.
The experts act as the evaluation criteria during the TOPSIS
calculations. Based on their weights, most ideal solutions
both for negative and positive are determined. Moreover, the
risk sources act as alternatives. Through the results of the
TOPSIS method, we obtained 3 scores with respect to each
risk sources based on the each FMEA parameter. Instead
of scalar multiplication, construction of a rule-based system
based on the stated reasons above is more reliable for the
risk environment.In addition to all these, for the first time in
this study, an FIS-based FMEA study was carried out in the
analysis of failures for the textile industry.

As a result of the literature research, studies that deal with
hybrid multi-criteria decision-making methods with uncer-
tainty in risk analysis approach have been focused in more
detail. In this step, in which it was investigated whether the
proposed method was adopted by another study before, the
originality of the method was examined. For this reason, a
literature table has been created as in Table 1, focusing on the
characteristics of the studies closest to the proposed approach

In the studies that are the subject of the literature table,
especially the methods of determining the weights of the risk
factors, the methods adopted when listing the failure modes,
and the approaches to handling uncertainty were emphasized
in columns. No similar studies were found among the exam-
ined studies in terms of both method and application area.
Moreover, since the categorized risk sources are grouped
into 3 main areas and the number of risk sources are 8, 4,
and 20, respectively. In this kind of environment, making a
consistent matrix for a 20 × 20 size for the weighting the
risk sources is almost impossible without making manipu-
lations in the evaluations. Besides, considering the FMEA
environment, the lowest probability and the severity are the
most desirable levels for the risk sources. On the other hand,
the highest detectability for a risk source is the most desir-
able. Therefore, it is essential to find the risk sources’ places
between the minimum and maximum with respect to each
parameter. BWM method can be a good alternative under
the circumstance of a feasible number of risk sources in the
main areas, which is lower than 10 risk sources. Therefore,
instead of pairwise comparison evaluations such as AHP and
BWMmethods, we applied a distance-based method, which
is fuzzy TOPSIS. It can be seen that the proposed study is the
first and pioneering work in its field with the methodology
and application area adopted.
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Table 1 Characteristics of the reference studies

# Authors Adopted methodology Level of uncertainty

For determining weights of risk factors For prioritizing failure modes

1 Bao et al. An entropy-based optimization Weighted scored method Crisp data

2 Yılmaz et al. Fuzzy AHP Fuzzy TOPSIS One dimensional

3 Wang Fuzzy entropy Fuzzy TOPSIS One dimensional

4 Tian et al. Fuzzy best–worst method Fuzzy VIKOR One dimensional

5 Ilangkumaran et al. Fuzzy ANP Fuzzy ANP One dimensional

6 Ouédraogo et al. AHP LARA Crisp Data

7 Shariat et al. Fuzzy SAW Fuzzy TOPSIS One dimensional

8 Yan et al. Fuzzy TOPSIS One dimensional

9 Purnama et al. Fuzzy AHP FMEA One dimensional

10 Ghoushchi et al. Fuzzy best–worst method Z-MOORA Two-dimensional

Through the advantages of our proposed model, it can be
used as an efficient proactive risk calculator for the man-
agers or researchers to make useful inferences, judgments,
and decisions of the production processes. Moreover, since
our model can handle uncertain information, which can be
both represented as linguistic information or fuzzy numbers,
it can be useful for the production plants, where have uncer-
tain and vague data for decision-making processes.

Methodology

In this section, an integrated methodology consists of Buck-
ley’s Fuzzy AHP and Fuzzy TOPSIS, and fuzzy inference
system (FIS) to calculate risk magnitudes based on FMEA
is presented.

Ordinary fuzzy sets

Zadeh introduced fuzzy logic and fuzzy sets in 1965 [50].
The basic idea of it is to represent uncertain environments
in mathematical formulations without loss of information.
This idea is developed and extended in many types such as
intuitionistic fuzzy sets [51], neutrosophic sets [52], hesitant
fuzzy sets [53], Pythagorean fuzzy sets [54], and spherical
fuzzy sets [55]. Based on the extensions, there is no superior-
ity one to another, but some sophistic advantages based on the
available data. Since there is no hesitancy among the experts
for our data, usage of ordinary fuzzy sets for the uncertainty
is a proper way of representing the data for our application.

Definition 1 If X is a collection of elements denoted by a,
then a fuzzy set Ã in X is a set of ordered pairs can be
represented as in Eq. (1) [50]:

Ã = {(
a, μ Ã(a)|a ∈ X

)}
, (1)

where μ Ã is membership function of A–X .

In the real case applications, μ Ã is extended with many
forms such as interval-valued, triangular, and trapezoidal
fuzzy numbers. Since we used triangular fuzzy forms, the
basic arithmetical operations for the them are presented.

Let C̃ = (cL , cM , cR) and K̃ = (kL , kM , kR) be positive
triangular fuzzy numbers (TFNs). The arithmetic operations
of these fuzzy numbers can be given as below:

Addition: C̃ ⊕ K̃ = (cL + kL , cM + kM , cR + kR).
Subtraction: C̃ � K̃ = (cL − kL , cM − kM , cR − kR).
Multiplication: C̃ ⊗ K̃ = (cLk1L , cMkM , cRkR).
Division: C̃ � K̃ = (cL/kL , cM/kM , cR/kR).

Definition 2 Let C̃ = (cL , cM , cR) and K̃ = (kL , kM , kR)

be positive triangular fuzzy numbers (TFNs). Hamming Dis-
tance (H

(C̃,K̃ )
) between these two fuzzy numbers are defined

as in Eq. (2):

H(
C̃,K̃

) = |cL − kL | + |cM − kM | + |cR − kR |
3

. (2)

Buckley’s fuzzy AHP

AHP is introduced by Saaty to solve the complex hierarchies
by considering both evaluation criteria and alternatives based
on the qualitative and quantitative data [56]. Buckley’s Fuzzy
AHP is an extension of Saaty’s AHP method to reflect the
uncertainty while representing it in the mathematical model
[57]. For our methodology, Buckley’s fuzzy AHP is used
to calculate experts’ weights based on the judgments of the
company’s managerial consensus. During the evaluations,
the scale given in Table 2 is used [58].

The pseudocode of the method is presented as in Algo-
rithm 1:
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Table 2 Linguistic scale for Buckley’s fuzzy AHP

Linguistic term Corresponded
triangular fuzzy
number

Absolutely low importance—ALI (0.11, 0.11, 0.14)

Very low importance—VLI (0.11, 0.14, 0.2)

Low importance—LI (0.14, 0.2, 0.33)

Weakly low importance—WLI (0.2, 0.33, 1)

Exactly equal—1 (1, 1, 1)

Weakly high importance—WHI (1, 3, 5)

High importance—HI (3, 5, 7)

Very high importance—VHI (5, 7, 9)

Absolutely high importance—AHI (7, 9, 9)

Algorithm 1: Pseudorepresentation of Buckley’s Fuzzy
AHP
Input : n: number of experts, (n = 1, · · · , i)
Output: wi : weights of the experts

1 Step 1: Construct linguistic pairwise comparison matrix
(
R̃ = (

r̃i j
)
n×n

)
⇒

Based on Table 2
2 Step 2: Convert linguistic terms into corresponded triangular fuzzy numbers
where R̃ = (

r̃i j
)
n×n ⇒ Based on Table 2

3 Step 3: Defuzzification Procedure
4 Apply the defuzzification formula where
5 x = 0.5

(
τ

(
x̃l + x̃m

) + (1 − τ) (x̃m + x̃r )
)

6 τ is a trade off coefficient between lower and upper value of triangular fuzzy
number and x is the defuzzified value of x̃ .

7 Step 4: Normalization Procedure
8 for n ← 1 to i, j do

9
xi j∑n

i=1
∑n

j=1 xi j

10 end
11 Step 5: Calculate the arithmetic average of each row to obtain the weights
12 for n ← 1 to i, j do

13

xi j∑n
i=1

∑n
j=1 xi j

n
14 end
15 Step 6: Consistency Check Procedure
16 Apply the Saaty’s consistency algorithm.

17 CR = C I
RI where C I = λmax

n−1
18 if CR > 0.1 then
19 return Step 1;
20 else
21 finish Algorithm;
22 end

Since the experts will be used as evaluation criteria in the
fuzzy TOPSIS, the results of the fuzzy AHP are the inputs of
the fuzzy TOPSIS as criteria weights.

Fuzzy TOPSIS

TOPSIS is introduced by Hwang & Yoon to rank alterna-
tives with respect to evaluation criteria based on the available
data [59]. Its fuzzy extension is introduced by Chen to
make a more comprehensive evaluation by adding linguistic

Table 3 Linguistic scale of probability for fuzzy TOPSIS

Linguistic term Corresponded trian-
gular fuzzy number

Probability Parameter

Practically impossible—PI (0.05, 0.1, 0.15)

Extremely remote—ER (0.4, 0.5, 0.6)

Remotely possible—RP (0.8, 1, 1.2)

Unusual—UU (2.5, 3, 3.5)

Quite possible—QP (5, 6, 7)

Most likely—ML (8, 9, 10)

Detectability parameter

Almost impossible—AI (0.05, 0.1, 0.15)

Very difficult—VD (0.4, 0.5, 0.6)

Difficult to detact—DtD (0.8, 1, 1.2)

Easy to detact—EtD (2.5, 3, 3.5)

Very easy—VE (5, 6, 7)

Almost certain—AC (8, 9, 10)

Frequency parameter

Very rarely—Vra (0.05, 0.1, 0.15)

Rarely—Rae (0.4, 0.5, 0.6)

Unusually—Unu (0.8, 1, 1.2)

Occasionally—Occ (2.5, 3, 3.5)

Frequently—Fre (5, 6, 7)

Continuously—Con (8, 9, 10)

information to solution process [60]. For our methodol-
ogy, fuzzy TOPSIS is used to obtain risks’ scores based
on the each FMEA parameter. Experts are used as evalua-
tion criteria and their weights are calculated in fuzzy AHP
method. During the evaluations, three scales for each FMEA
parameter are used during the evaluations and given as in
Table 3.

The pseudocode of the method is presented as in Algo-
rithm 2:1

1 During the calculations in fuzzy inference system (FIS), it was noticed
that using the scores of fuzzy TOPSIS method conducting the classical
positive and negative ideal solutions makes interrelated results which
are dispersed around the average risk magnitude value (in our case, it is
5). To eliminate this relationship, the equations presented in Step 4 and
Step 5 are used. The values in the equations are taken from the linguistic
scale given in Table 3.
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Algorithm 2: Pseudo Representation of fuzzy TOPSIS
Input : n: number of evaluation criteria, (n = 1, · · · , i)

m: number of risks, (m = 1, · · · , j)
k: FMEA parameters (k = 1, 2, 3) where 1: Probability, 2:

Detectability, 3: Frequency
Output: skj : score of the risk i based on the parameter k

1 for k ← 1 to 3 do
2 Step 1: Construct linguistic decision matrix (L̃) ⇒ Based on Table 3
3 Step 2: Convert linguistic terms to their corresponded triangular fuzzy

numbers to construct fuzzy decision matrix (F̃ = ( f̃ ki j )(n×m)) ⇒ Based on
Table 3

4 Step 3: Obtain the weighted fuzzy decision matrix using the following
equation

5 x̃ki j = w j × f̃ ki j
6 Step 4: Determine the Positive ideal solution (P I Ski = (l∗i ,m∗

i , r∗i ) 2

7 for n ← 1 to i do
8 if COST type parameter then
9 Left: wi × min(0.05, 0.4, 0.8, 2.5, 5, 8)

10 Mid: wi × min(0.1, 0.5, 1, 3, 6, 9)
11 Right: wi × min(0.15, 0.6, 1.2, 3.5, 7, 10)
12 else
13 Left: wi × max(0.05, 0.4, 0.8, 2.5, 5, 8)
14 Mid: wi × max(0.1, 0.5, 1, 3, 6, 9)
15 Right: wi × max(0.15, 0.6, 1.2, 3.5, 7, 10)
16 end
17 end
18 Step 5: Determine the Negative ideal solution (N I Ski = (l−i ,m−

i , r−i ) 1

19 The same equations given in Step 4 are used. If Cost take maximum, else
take minimum. Step 6: Calculate the distances to positive ideal solution
D∗
j for each alternative by using the following equation

20 D(x j , P I Si ) = ∑n
i=1 d(xi , P I Si ) =

(∣∣∣xi j−l∗i
∣∣∣+

∣∣∣xi j−m∗
i

∣∣∣+
∣∣∣xi j−r∗i

∣∣∣
)

3
21 Step 7: Calculate the distances to negative ideal solution D−

j for each
alternative by using equation which is given in Step 6 by replacing ∗ with
− values which are calculated in Step 4 and Step 5.

22 end

23 Step 8: Calculate the scores by using the following equation skj =
D−
j

D−
j +D∗

j

The results of the TOPSIS methods are used as inputs of
the FIS.

Fuzzy inference system

For the applications of fuzzy logic, fuzzy sets theory, and
their extensions, fuzzy inference systems (FISs) are one of
the most appropriate, and most used applications. There is
two types of FISs: Mamdani’s FIS and Tagaki-Sugeno’ FIS
[61,62]. They can be practical to fulfill the many objectives
in decision-making such as ranking and classification tasks,
offline process simulation and diagnosis, online decision sup-
port tools, and process control [63]. In our study, Mamdani’s
FIS is used for the application, since they are mostly appro-
priate for the expert system applications where the rules are
generated from the experts’ knowledge.

In this work, we constructed a inference system based on
rule generation technique with linguistic concepts to utilize
the results of the fuzzy TOPSIS methods. The outputs of the
TOPSIS methods are used as inputs of the rule based system.

Since the score values in three TOPSIS methods are
labeled as probability, detectability, and frequency param-
eter, these values are converted to membership degrees using

Fig. 1 Process of assigning membership values

Fig. 1. In the figure, x- and y-axis score of the riskwith respect
to FMEA parameter and membership degree, respectively.

After that, the membership degrees are used as inputs
with respect to each FMEA parameter in rule-based system
instead of scalar multiplication. To achieve this, the mini-
mum of membership degree of each dimension are taken,
respectively, as in Eq. (3):

XPDS = min
(
(μs)

P
j , (μs)

D
j , (μs)

S
j

)
, (3)

where μs represents fuzzy input of rule-based system of j th

risk with respect to dimension P, D, or S.
Then, the risk classes are determinedwhich areNg (Negli-

gible),Mi (Minor),Md (Medium),Ma (Major),Cr (Critical),
and Ct (Catastrophic).

For each class, maximum values of XPDS are determined
using the Eqs. (4–9):

Ng = max (XPDS) ∀XPDS ∈ Negligible Class (4)

Mi = max (XPDS) ∀XPDS ∈ Minor Class (5)

Md = max(XPDS) ∀XPDS ∈ MediumClass (6)

Ma = max(XPDS) ∀XPDS ∈ MajorClass (7)

Cr = max(XPDS) ∀XPDS ∈ Critical Class (8)

Ct = max(XPDS) ∀XPDS ∈ CatastrophicClass. (9)
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Defuzzify the Ng, Mi, Md, Ma, Cr, and Ct values using
Eq. (10) to obtain the risk magnitudes (RMs) [64]:

RM = 1 × Ng + 3 × Mi + 5 × Md + 7 × Ma + 9 × Cr + 10 × Ct

Ng + Mi + Md + Ma + Cr + Ct
.

(10)

Finally, prioritize the risks according to results and deter-
mine the possible development steps to reduce it.

Proposedmethodology

Based on the above methods, we developed an FMEAmodel
to evaluate risks.

During the observations in the production plant, experts
could not assign an exact value for their evaluations. In most
of the cases, contrary to the ordinary FMEA analysis, they
assign linguistic terms, which are created from the literature
to evaluate the risk as in Table 3. Since the fuzzy sets are one
of the most appropriate way of representing linguistic terms
with their corresponded fuzzy numbers in the mathematical
formulations, ordinary fuzzy sets are utilized to the proposed
methodology to reflect the data with highest level.

Since the proposed methodology based on expert system
evaluation, determining experts’ weights is a vital and impor-
tant phase for the results. Through that, in terms of their
academic degree, work experience, and their study in the
field, based on the comparison with respect to managerial
consensus evaluation, Buckley’s fuzzy AHP is conducted to
obtain the weight of the experts.

After that, for the evaluation of the failures, three TOP-
SIS decision matrices are constructed based on the experts’
evaluations. Each decision matrix are corresponded to each
parameter of FMEA, which are Probability, Frequency, and
Detectability. Different from the ordinary TOPSIS method
context, experts are utilized as the evaluation criteria and the
failures are the evaluated alternatives. Therefore, outputs of
the TOPSIS methods are the scores of the failures based on
the expert evaluations with respect to each FMEA param-
eter. Based on these calculations, inputs of the FMEA are
calculated by considering uncertainty.

For the last phase of the methodology, a reasonable out-
come, which is entitled as risk magnitude, is obtained using a
fuzzy rule based system. Even the scores with respect to each
parameter for the failures are calculated flawlessly, utilizing
scalar multiplication leads to a misleading result for the risk
analysis in practical risk management because of the differ-
ent combinations of the risk parameters’ scores may produce
the same risk degree in classical FMEA method. Moreover,
classical FMEA has a limitation in the weight determining
process, since it assigns the equal weight for each risk param-
eter. In rule-based systems, based on the field experiences,
and expert knowledge in the area, experts create a pattern that

Table 4 Type of failures encountered in textile mills

Main area Risk sources

F1—Failures
resulting from
the weaving
machine

Temple mark —F11

Foot ladder—F12

Stop marks—F13

Shrunk selvedge—F14

Baggy selvedge—F15

Bowed selvedge—F16

Thick–thin selvedge—F17

Weft pattern failure—F18

F2—Weaving
preparation
failures

Interlacing point— F21

Drawing-in, pattern, repeat failure—F22

Sliver marks—F23

Reed marks—F24

F3—wrap &
Weft failures

Wrap breaks—F31

Hollow wrap—F32

Double wrap—F33

Loose wrap thread—F34

Tight wrap thread—F35

Thin or thick wrap—F36

Thread irregularity in the wrap—F37

Pile - F38

Selvedge mark—F39

Mesh—F310

Breaking of weft thread—F311

Shuttle slap—F312

Tight, loose weft—F313

Unraveled weft mark—F314

Crushed weft thread—F315

Weft ladder—F316

Weft loop—F317

Weft skip—F318

Weft deformity (defect)—F319

Weft column (weft band)—F320

Table 5 Pairwise comparison matrix for expert evaluation

Goal Exp1 Exp2 Exp3 Exp4 Exp5

Exp1 EEI EEI WHI HI HI

Exp2 EEI EEI WHI HI HI

Exp3 WLI WLI EEI WHI WHI

Exp4 LI LI WLI EEI EEI

Exp5 LI LI WLI EEI EEI
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Table 6 Decision matrix for Probability (P) parameter

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

F11 ER ER QP RP UU F35 UU QP ML PI UU

F12 RP PI ER PI ER F36 RP QP RP QP PI

F13 ER QP RP PI ML F37 QP ML RP ER PI

F14 UU ML UU ER UU F38 RP RP QP UU RP

F15 PI ML RP UU RP F39 RP RP ML QP PI

F16 ML ML RP ER RP F310 UU UU ML ER ER

F17 QP ER PI RP PI F311 PI UU QP QP ML

F18 PI UU ER UU QP F312 QP ER RP ML QP

F21 ML RP UU UU ML F313 ML ER QP UU ML

F22 ML ML PI ML PI F314 PI ML ER ML ML

F23 RP QP QP QP RP F315 QP PI ML ML QP

F24 ML PI ML ER ER F316 PI PI QP PI UU

F31 QP RP UU PI QP F317 ER ML ER PI UU

F32 UU RP RP PI QP F318 PI QP RP RP ML

F33 ER ER ML ER QP F319 UU PI PI ML PI

F34 ML RP RP ER PI F320 RP UU QP PI PI

Fig. 2 Framework of the
proposed methodology
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Table 7 Decision matrix for Detectability (D) parameter

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

F11 AC AC VE EtD DtD F35 AC AC VE AI AC

F12 AI VE EtD VE AI F36 EtD VE DtD AC VD

F13 DtD AI AI DtD EtD F37 AC AC AI EtD AC

F14 DtD AC DtD VD EtD F38 AC DtD VD EtD EtD

F15 DtD AC VE DtD DtD F39 AC EtD VD AC VE

F16 AC AC DtD AC EtD F310 EtD DtD VD EtD VE

F17 VE DtD EtD AI AC F311 DtD AI AC VE VE

F18 DtD EtD EtD AI AI F312 AI EtD DtD VE AC

F21 AC DtD AC AC VE F313 EtD AC VD VD EtD

F22 AC VD VE AC AC F314 EtD AI EtD AC DtD

F23 AC DtD EtD DtD DtD F315 AI VE VD DtD VE

F24 VD EtD VE DtD DtD F316 VE AC VD VE AI

F31 DtD VD AI VE VE F317 EtD VD VD DtD DtD

F32 VD AI DtD EtD VE F318 DtD AI EtD VE DtD

F33 VD VD VE VE AC F319 DtD VE EtD VE AC

F34 DtD VE DtD EtD AC F320 EtD EtD DtD VD EtD

aims to evaluate the failures efficiently. Therefore, a fuzzy
inference system based on expert assessments is constructed
to obtain more valid results. To interpret the results of the
proposed approach, sensitivity analyses are conducted. The
framework of the proposed methodology is given in Fig. 2.

Application

Risk analysis is an essential approach, especially in labor-
intensive industries, to increase quality and to take precau-
tions before failures occur. At this point, one of the frequently
encountered approaches is the FMEAmethod. However, this
method has some handicaps. To avoid these handicaps, they
are usually used with fuzzy sets. It is also used with MCDM
methods to increase the effectiveness of the method. Thus, it
is ensured that RPNs can be calculated more accurately and
efficiently. In this paper, the failures encountered in textile
companies producingwoven fabrics were investigated exten-
sively and a risk assessment study was carried out to take
precautions about them before the failures occurred in a tex-
tile mill as a case study. At this point, RPNs were calculated
for each failures and it was tried to find out which failures
constitute a higher risk. First, all the failures encountered in
the related textile mills were investigated, and it was tried
to make sure that all the failures were handled by also dis-
cussing with the textile workshop employees to be involved
in the case study as decision-makers.

The decision matrix for Detectability parameter is given
in Table 7.

Finally, the decision matrix for frequency parameter is
constructed as in Table 8.

Woven fabric is created by connecting wrap and weft
at right angles to each other with a specific system called
“knitting”. Wraps from these two yarn groups can be called
“active” yarn system; wefts can be called “passive” yarn sys-
tem [65,66]. During weaving, three basic movements and
two complementary actions are made to ensure that the wrap
and weft threads intersect with each other [65]. 1. Shedding:
By separating the wrap wires into two layers, large enough
to pass the weft carrier element, called shed is the creation
of a tunnel. 2. Weft insertion: It is the transportation of the
weft thread along the shed [65]. 3. Tufting (tamping): It is
the inclusion of the weft, which is moved to the mouthpiece,
to the fabric formation line, to the previously woven fabric
[65]. These three operations are called basic movements of
the fabric and should be applied in the order given above [65].
4. Wrap release: In this movement, the wrap is released from
the weaving beam at the required speed, at a suitable and
constant tension, and is transferred to the weaving area [65].
5. Fabric wrapping: In this movement, the fabric is pulled
from the weaving area to provide the desired weft density
and wrapped around the fabric beam [65]. When these pro-
cesses are completed, a weaving cycle is completed [65].

This hybrid risk analysis approach has been applied to be
valid for woven fabric products manufactured in the textile
mill and it is aimed to carry out a detailed, comprehen-
sive, and holistic analysis by taking into account the failures
encountered in all production stages of the product. In other
words, a total quality improvement is aimed throughout the
mill by considering all failures for all products.
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Table 8 Decision matrix for Frequency (F) parameter

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

F11 Occ Rae Vra Occ Unu F35 Fre Occ Occ Vra Fre

F12 Fre Occ Rae Occ Unu F36 Fre Occ Vra Con Rae

F13 Unu Rae Unu Occ Unu F37 Vra Unu Con Occ Occ

F14 Fre Unu Fre Rae Rae F38 Unu Fre Unu Occ Occ

F15 Vra Occ Fre Rae Unu F39 Unu Rae Vra Occ Vra

F16 Occ Rae Rae Occ Rae F310 Occ Fre Con Fre Rae

F17 Vra Fre Vra Occ Vra F311 Rae Occ Occ Rae Vra

F18 Fre Vra Occ Unu Unu F312 Rae Rae Unu Rae Rae

F21 Fre Occ Rae Unu Unu F313 Fre Vra Unu Rae Unu

F22 Unu Fre Fre Unu Fre F314 Occ Rae Occ Rae Occ

F23 Unu Unu Vra Unu Fre F315 Fre Rae Unu Vra Fre

F24 Occ Rae Fre Fre Occ F316 Occ Rae Occ Unu Occ

F31 Rae Fre Fre Unu Fre F317 Vra Occ Rae Vra Rae

F32 Fre Rae Vra Unu Unu F318 Occ Fre Unu Occ Unu

F33 Rae Rae Fre Fre Occ F319 Occ Rae Occ Rae Occ

F34 Con Occ Rae Rae Fre F320 Con Con Unu Rae Unu

According to the explanations of decision-makers and
related literature, 32 types of failures are determined as in
Table 4.

The application starts with the determination of the
experts’weights. The experts have been selected from among
white collar workers in the textile mill. Experts are tex-
tile, industrial, and other engineers working in the respective
enterprise. All of them are working in various management
units. Therefore, the age-related experience factor came to
the fore as the determinable difference between the experts
in the mill who have knowledge about risk management and
work on this subject. For this reason, an age-based weight
assessment was carried out among engineers working on risk
management in the mill. The values are assigned based on
the mentioned criteria. The linguistic pairwise comparison
matrix is constructed using the scale given in Table 2 as in
Table 5.

The Algorithm 1 is applied to the pairwise comparison
matrix and the weights are calculated as follows: Exp1=
0.347, Exp2=0.347, Exp3= 0.169, Exp4= 0.068, and Exp5=
0.068.

After that, we constructed the decision matrices for each
FMEAparameter. Thedecisionmatrix for Probability param-
eter is given in Table 6.

After applying the Algorithm 2, the scores of each risk
based on each parameter are calculated as in Table 9.

Table 9 shows the calculation results for fuzzy TOPSIS
in crisp version for probability, detectability, and frequency.
These results constitute the inputs for the FIS calculations.
These results are the inputs of FIS process. During the
process, each FMEA parameter for every risks is defuzzi-

fied using the conversion function which is represented in
Fig. 1. For an illustrative example, defuzzifications of FMEA
parameters for F11-Temple Mark risk are given as follows.

For the Probability, the result of TOPSIS is equal to 0.84.
This value is used in the conversion function to find the inter-
section points with the limits. Through the calculation, the
defuzzified value is equal to 0.67 for High (H), and 0.37 for
Very High (VH). The values for Detectability are 0.66 for
High (H), and 0.34 for Very High (VH). Finally, for Fre-
quency, it is 0.67 for High (H), and 0.37 for Very High (VH).
These are the final values for the input of FIS with respect to
F11-Temple Mark risk. The constructed FIS based on three
decision-makers is given in Table 10.

Table 10 shows the structure created for the proposed FIS
process. The outputs of the FIS process for different levels for
probability, detectability, and frequency inputs can be seen
from this table. These inputs are run and the risk magnitudes
are obtained as in Table 11.

Table 11 shows the RPN degrees of each risk source in the
applied FIS-based hybrid risk analysis approach. As can be
seen from the table, failures with high RPN are Foot Ladder–
F12, Stop Marks–F13, Weft Pattern Fault–F18, Hollow
Warp–F32 Double Warp–F33, Selvedge Mark–F39, Break-
ing of Weft Thread–F311, Shuttle Slap–F312, Unraveled
Weft Mark–F314, Weft Loop–F317, and Weft Deformity
(Defect)–F319.

The most crucial risks encountered in the textile mill
which are marked in red in Table 11 are foot ladder, stop
marks, weft pattern failure, hollow wrap, double wrap,
selvedge mark, breaking of weft thread, shuttle slap, unrav-
eled weft mark, weft loop, and weft deformity. To deal
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Table 9 Results of the TOPSIS methods based on each FMEA param-
eter

Magnitudes
based on
probability

Magnitudes
based on
detectability

Magnitudes
based on
FREQUENCY

Risk Magnitude Risk Magnitude Risk Magnitude

F11 0.827 F11 0.835 F11 0.842

F12 0.954 F12 0.331 F12 0.62

F13 0.669 F13 0.064 F13 0.903

F14 0.459 F14 0.424 F14 0.617

F15 0.607 F15 0.508 F15 0.765

F16 0.279 F16 0.802 F16 0.838

F17 0.748 F17 0.389 F17 0.748

F18 0.812 F18 0.203 F18 0.701

F21 0.472 F21 0.665 F21 0.636

F22 0.238 F22 0.612 F22 0.57

F23 0.57 F23 0.451 F23 0.878

F24 0.478 F24 0.255 F24 0.691

F31 0.634 F31 0.141 F31 0.59

F32 0.789 F32 0.1 F32 0.741

F33 0.751 F33 0.257 F33 0.789

F34 0.598 F34 0.373 F34 0.484

F35 0.465 F35 0.875 F35 0.556

F36 0.672 F36 0.432 F36 0.586

F37 0.403 F37 0.785 F37 0.751

F38 0.788 F38 0.434 F38 0.673

F39 0.715 F39 0.581 F39 0.927

F310 0.598 F310 0.223 F310 0.439

F311 0.661 F311 0.295 F311 0.813

F312 0.624 F312 0.244 F312 0.946

F313 0.435 F313 0.493 F313 0.743

F314 0.509 F314 0.244 F314 0.791

F315 0.487 F315 0.29 F315 0.692

F316 0.865 F316 0.63 F316 0.787

F317 0.608 F317 0.15 F317 0.876

F318 0.678 F318 0.143 F318 0.611

F319 0.819 F319 0.434 F319 0.791

F320 0.74 F320 0.269 F320 0.279

with the risks encountered in the textile mill successfully,
a two-sided approach has been proposed. The first side is
the operational dimension and the second is the management
dimension. Operational dimension includes technical recom-
mendations regarding rawmaterials, semi-finished products,
or machines. The second dimension is the training activities
and induction program efforts to be provided by the man-
agement. The following preventive measures can be listed
for operational dimension. Through literature review and
expert advice, ongoing measures are proposed for each crit-
ical source of risk [28,67–69]. The first important risk foot

ladder failure is caused by the feet not moving upwards due
to the failure of the magnets in the weaving machine. As a
measure, the maintenance of the weaving machine should be
done at frequent intervals and replacement of the machine
should be also made if necessary. Stop mark failure happens
if the loom stops and restarts with strike or carding errors
may occur, as the loom will give the wrong apron. As a pre-
ventive action, the keel settings must be set correctly. Weft
pattern failure caused by making different colors and num-
bers of wefts from the weft color report. To prevent this,
the drawing should be done carefully and the drawing plan
accuracy and weft report should be checked. Hollow wrap
occurs caused when hollow ends during one or more weft
threads caused by falling of one or more frames. Mainte-
nance and repairs related to the weaving machine should be
again done properly. Breaking of weft thread failure happens
if there is a burr or something to cause snagging in the parts
where the thread used in the loom passes, the weft breaks,
and the machine stops. To prevent this risk, feeders, brakes,
and other devices should be controlled. Double wrap when
a broken warp end is wrapped around the adjacent end and
the loom begins to make the same movement without stop-
ping. It is a failure generally caused by the weaver. Selvedge
marks are the failures caused by the bending or folding of
one edge of the fabric. It may occur due to incorrect thread-
ing of the weft thread, incorrect loom settings, or the temple
setup and mostly originates from the weaver. Breaking of
weft thread failure is the formation of gap in that part of the
fabric as a result of a weft thread breakage. Weft bobbins and
machine settings should be checked to prevent this failure.
Shuttle slap occurs when the shuttle breaks several wraps or
wefts on the shuttle looms. Weft loop failures are the small
loops formed by the weft thread on its surface because of
excessive twisting or failure of the braking function in the
thread. Weft deformity is the error caused by deformation in
the weft thread. Working with higher quality yarns can be
preventive for this failure. Apart from these technical sug-
gestions, training of employees and having an occupational
health and safety specialist in the mill to analyze risks are
also administrative preventive measures. Measures should
be taken in both dimensions for the risks with high RPN, as
shown in Table 11.

Discussion

To check the effects of the experts’ weights, we constructed
two different scenarios based on the case of equal weighted
experts, and case of evaluating working experience together
with being in an FMEA study before. For the first one,
weights of the experts are directly assigned as 0.2. For the
second one, a new comparison matrix is added to evaluation
process of Buckley’s fuzzy AHP, and then, experts’ weights
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are re-calculated. Through the scenarios, fuzzy TOPSIS and
FIS calculations are re-made, and then, results are discussed.

Sensitivity analysis

Scenario-1 Case of equal weighted experts

First, the experts weights are assigned as equal values. After
that, TOPSIS algorithm is re-run with respect to each FMEA
parameter. Therefore, risk scores are re-calculated, which are
given in Table 12.

Based on the new risk score values, inputs of FIS are
changed and the new risk magnitudes are obtained as in
Table 13.

Scenario-2Case of being in an FMEA study before situation

Since the being an FMEA study before is a Yes or No
question, following aggregation procedure of two evalua-
tions (work experience comparison matrix, and the being an
FMEA study before) is applied.

The responses and the results of the evaluations based on
the work experience are presented in Table 17.

Based on the discussions with the managerial consen-
sus, the weights of the evaluation areas are determined as
0.75 and 0.25, respectively. Also, since the total number of
experts, which being in an FMEA study is equal to 2, “Yes” is
assigned as 0.5 and “No” is assigned as 0 for the aggregation
procedure. Therefore, the new weights of the experts are cal-
culated as follows: Exp1=0.260, Exp2=0.385, Exp3=0.252,
Exp4=0.051, and Exp5=0.051.

Based on the new weights, TOPSIS is re-run for each
FMEA parameter. The results of them are presented in
Table 14.

Similarly to Scenario-1, new risk new inputs of FIS are
re-run and the risk magnitudes are re-obtained as in Table 15.

Interpretation of the results

Based on the main findings of our application, a sensitivity
analysis is carried out with respect to two scenarios. Com-
parison of the scenarios with the main findings are given in
Table 16.

F320-Weft Column (Weft Band) is the most affected risk
based on the Scenario-1 with 0.32 increase rate. On the con-
trary, F318-Weft Skip is the least affected risk with 0.018
increase rate.

Similarly, based on the Scenario-2, F35-Tight Wrap
Thread is the most affected risk with 0.21 decrease rate. On
the contrary, F312- Shuttle Slap is the least affected risk with
0.09 increase rate.

Since the differences are based on the weights of the
experts, the following aspects are observed. Based on the
analysis, in both scenarios, risk magnitudes of the F11, F13,

Table 10 Constructed FIS based on decision-makers

Table 11 Results of the application

F24, F33, F38, F39, F311, F314, and F317 are decreased.
When the weights are compared, it is certain that Expert-1
has a great impact on them, since the weight of it is decreased
in both scenarios.

In a similar way, Expert-3 weight has a regular uptrend
based on the main application, Scenario-1, and Scenario-2,
respectively.When this trend is analyzing, F21, F22, F32, and
F36 risks have the same trend. This concludes that Expert-3
has a great impact on them.
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Table 12 Results of TOPSIS methods with respect to each parameter
based on Scenario-1

Risk Risk scores Risk Risk scores

F D P F D P

F11 0.840 0.618 0.764 F35 0.604 0.733 0.537

F12 0.708 0.330 0.962 F36 0.593 0.427 0.694

F13 0.865 0.106 0.638 F37 0.649 0.665 0.638

F14 0.697 0.315 0.596 F38 0.697 0.360 0.742

F15 0.773 0.393 0.694 F39 0.906 0.607 0.627

F16 0.843 0.685 0.551 F310 0.461 0.292 0.652

F17 0.802 0.418 0.838 F311 0.852 0.485 0.470

F18 0.762 0.151 0.728 F312 0.944 0.418 0.506

F21 0.753 0.753 0.449 F313 0.818 0.348 0.393

F22 0.562 0.742 0.400 F314 0.787 0.351 0.391

F23 0.807 0.326 0.562 F315 0.706 0.294 0.335

F24 0.596 0.247 0.582 F316 0.775 0.474 0.802

F31 0.573 0.294 0.649 F317 0.917 0.124 0.717

F32 0.818 0.227 0.762 F318 0.697 0.238 0.627

F33 0.652 0.483 0.640 F319 0.787 0.551 0.735

F34 0.584 0.438 0.751 F320 0.551 0.225 0.782

Table 13 New outputs of FIS based on Scenario-1

When the results are interpreted, our model has ability
to represent even small changes such as weight changes of
Expert-4 and Expert-5. This reveals that it is very sensitive in
the changes of the inputs. Also, the trends of the changes and
their value affect the risk magnitudes with meaningful direc-
tions. This also proves that our decisions are robust based on
the direction of the changes and their values.

Comparative analysis

To demonstrate the advantages of the proposedmethod, com-
parative analyses with classical FMEAmethod and weighted
FMEA method are carried out. Based on the outputs of the
TOPSIS methods, RPNs with respect to classical FMEA and
weighted FMEA methods of the risk sources are calculated.

Table 14 Results of TOPSIS methods with respect to each parameter
based on Scenario-2

Risk Risk scores Risk Risk scores

F D P F D P

F11 0.876 0.834 0.782 F35 0.586 0.864 0.391

F12 0.669 0.371 0.960 F36 0.648 0.419 0.659

F13 0.909 0.048 0.656 F37 0.676 0.713 0.415

F14 0.617 0.456 0.429 F38 0.659 0.344 0.746

F15 0.700 0.589 0.567 F39 0.940 0.482 0.649

F16 0.868 0.739 0.322 F310 0.372 0.186 0.533

F17 0.728 0.345 0.805 F311 0.778 0.346 0.622

F18 0.735 0.234 0.812 F312 0.941 0.236 0.699

F21 0.680 0.636 0.551 F313 0.795 0.500 0.487

F22 0.512 0.547 0.303 F314 0.797 0.223 0.501

F23 0.896 0.392 0.512 F315 0.751 0.306 0.490

F24 0.680 0.315 0.483 F316 0.794 0.603 0.816

F31 0.527 0.112 0.672 F317 0.861 0.124 0.575

F32 0.800 0.088 0.817 F318 0.612 0.148 0.663

F33 0.753 0.281 0.683 F319 0.797 0.449 0.864

F34 0.567 0.375 0.673 F320 0.322 0.255 0.681

Table 15 New outputs of FIS based on Scenario-2

For the first comparison, the results of the classical FMEA
method are presented in Table 18.

Based on the Table 18, F18—Weft Pattern Failure and
F317—WeftLoophave the sameRPN, even theyhave the dif-
ferent FMEA parameter values. Similar to this results, F12—
-Foot Ladder and F311—Breaking of Weft Thread, F314—
Unraveled Weft Mark and F38—Pile, F39—Selvedge Mark,
and F23—Sliver Marks, F16—Bowed Selvedge, and F35—
Tight Wrap Thread have very close RPN values with respect
to very different parameter values. In this kind of analysis,
the worst and the best risk sources with respect to the RPN
numbers may be determined, but the risks cannot be catego-
rized. Since the aimof the risk analysis studies is to categorize
the risks using the available data with the highest accuracy,
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Table 16 Comparison of scenarios with the main findings

Risk Direction of change & rate

Scenario-1 Scenario-2

F11 Decreased, rate = 0.045 Decreased, rate = 0.025

F12 Increased, rate = 0.068 Increased, rate = 0.027

F13 Decreased, rate = 0.108 Decreased, rate = 0.071

F14 Increased, rate = 0.191 Decreased, rate = 0.054

F15 Increased, rate = 0.101 Decreased, rate = 0.15

F16 Increased, rate = 0.275 Decreased, rate = 0.044

F17 Increased, rate = 0.148 Increased, rate = 0.052

F18 Decreased, rate = 0.047 Increased, rate = 0.02

F21 Increased, rate = 0.111 Increased, rate = 0.158

F22 Increased, rate = 0.016 Decreased, rate = 0.116

F23 Increased, rate = 0.029 Decreased, rate = 0.059

F24 Decreased, rate = 0.109 Decreased, rate = 0.113

F31 Decreased, rate=0.059 Increased, rate = 0.033

F32 Increased, rate = 0.031 Increased, rate = 0.088

F33 Decreased, rate = 0.284 Decreased, rate = 0.079

F34 Increased, rate = 0.145 Increased, rate = 0.083

F35 Increased, rate = 0.104 Decreased, rate = 0.21

F36 Increased, rate = 0.038 Increased, rate = 0.054

F37 Increased, rate = 0.136 Increased, rate = 0.019

F38 Decreased, rate = 0.064 Decreased, rate=0.078

F39 Decreased, rate = 0.198 Decreased, rate = 0.128

F310 Increased, rate = 0.088 Increased, rate = 0.075

F311 Decreased, rate = 0.228 Decreased, rate = 0.094

F312 Decreased, rate = 0.224 Increased, rate = 0.009

F313 Increased, rate = 0.049 Increased, rate = 0.046

F314 Decreased, rate = 0.293 Decreased, rate = 0.052

F315 Decreased, rate = 0.128 Increased, rate = 0.058

F316 Increased, rate = 0.17 Increased, rate = 0.061

F317 Decreased, rate = 0.043 Decreased, rate = 0.097

F318 Increased, rate = 0.014 Increased, rate = 0.014

F319 Decreased, rate = 0.163 Increased, rate = 0.043

F320 Increased, rate = 0.327 Increased, rate = 0.081

Table 17 Scenario-2 expert values

Weights based on fuzzy AHP Being in an FMEA study

E1 0.347 E1 No

E2 0.347 E2 Yes

E3 0.169 E3 Yes

E4 0.068 E4 No

E5 0.068 E5 No

our proposed approach presents more appropriate result to
consider.

For the second comparison, we checked the weighted
FMEA results based on the different weights of the FMEA
parameters to demonstrate the difficulty and uncertainty in
each case results. Through that, the results of the weighted

Table 18 Results of the classical FMEA

Risk RPN Risk RPN

F11 0.115 F35 0.032

F12 0.396 F36 0.224

F13 0.565 F37 0.065

F14 0.163 F38 0.300

F15 0.228 F39 0.278

F16 0.046 F310 0.204

F17 0.342 F311 0.379

F18 0.453 F312 0.446

F21 0.100 F313 0.164

F22 0.053 F314 0.304

F23 0.275 F315 0.239

F24 0.246 F316 0.252

F31 0.321 F317 0.453

F32 0.526 F318 0.355

F33 0.440 F319 0.366

F34 0.181 F320 0.151

FMEA methods with respect to three cases are presented in
Table 19.

Based on Table 19, the risk source such as F12—Foot
Ladder has very similar RPNs with respect to different
weight scenarios. Same case is also observed for the F13—
StopMarks, F18—Weft Pattern Failure, F32—HollowWrap,
F317—Weft Loop, and F320—Weft Column (Weft Band)
risk sources. Because of the different weights calculates the
very similar results even same results in some cases, this cre-
ates an uncertain situation, which yields the importance of
accurate weighting.

Another comparison is applied using an integrated BWM
and MOORA methodology. BWM is used to determine
experts’ weights and MOORA method is conducted to cal-
culate the risk magnitudes of the failures. As a result of the
BWM, weights of the experts are calculated as 0.34, 0.34,
0.18, 0.07, and 0.07. After that, the same decision matri-
ces are used for the MOORA method with respect to each
FMEA parameter. Different from the TOPSIS, objectives
are considered as FMEA parameters. Through that, experts
evaluations for each FMEA parameter are aggregated using
experts’weights for the applicability.Moreover, detectability
is considered as beneficial objective and the others are con-
sidered as non-beneficial objectives. For the weights of the
objectives, equal weighted rule is considered. Through that,
objectives’ weights are equal to 0.333. Through the calcula-
tions, scores are obtained.Using themin–max normalization,
the scores are converted to risk magnitudes which spreads
between the 0 and 10. The obtained results of the compari-
son are determined as in Table 20.
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Table 19 Results of the weighted FMEA cases

Case 1: P = 0.4, D=0.3, F = 0.3 Case 2: P = 0.3, D = 0.4, F = 0.3 Case 3 P = 0.3, D = 0.3, F = 0.4

Risk RPN Risk RPN Risk RPN

F11 0.633 F11 0.634 F11 0.567

F12 0.769 F12 0.735 F12 0.740

F13 0.819 F13 0.843 F13 0.846

F14 0.541 F14 0.557 F14 0.553

F15 0.620 F15 0.635 F15 0.608

F16 0.423 F16 0.479 F16 0.415

F17 0.707 F17 0.707 F17 0.693

F18 0.774 F18 0.763 F18 0.772

F21 0.480 F21 0.496 F21 0.466

F22 0.383 F22 0.416 F22 0.398

F23 0.656 F23 0.687 F23 0.654

F24 0.622 F24 0.643 F24 0.649

F31 0.688 F31 0.684 F31 0.711

F32 0.808 F32 0.803 F32 0.819

F33 0.760 F33 0.764 F33 0.759

F34 0.572 F34 0.561 F34 0.575

F35 0.391 F35 0.400 F35 0.357

F36 0.615 F36 0.606 F36 0.605

F37 0.451 F37 0.486 F37 0.432

F38 0.687 F38 0.676 F38 0.665

F39 0.690 F39 0.711 F39 0.660

F310 0.604 F310 0.588 F310 0.622

F311 0.720 F311 0.735 F311 0.724

F312 0.760 F312 0.792 F312 0.773

F313 0.549 F313 0.580 F313 0.556

F314 0.668 F314 0.696 F314 0.692

F315 0.615 F315 0.636 F315 0.638

F316 0.693 F316 0.685 F316 0.644

F317 0.761 F317 0.788 F317 0.785

F318 0.711 F318 0.705 F318 0.729

F319 0.734 F319 0.732 F319 0.709

F320 0.599 F320 0.553 F320 0.598

Through the results,most of the failures are obtained in the
same level when the proposed results are checked. However,
there are also differences. We believe that this yields again
the importance of assigning the most appropriate weights
to the FMEA parameters. Moreover, since the scores can
be negatives, we applied min–max normalization process to
determine the risk level of the sources. It caused to obtain 0
and 10 riskmagnitudes. Through that, the comparedmethod-
ology can be a good example for ranking of risk modes for a
comprehensive risk analysis.

In our proposed model, every rule is specifically con-
structed based on the expert knowledge with respect to
the FMEA parameters to obtain the RPNs. This offers to

researchers awide assessment area to allocate the risk sources
by considering even small changes. Thereby, it provides
sustainable and robust results, where risk sources can be cat-
egorized appropriately and prioritized based on the RPNs.

Conclusion

Risk assessment approaches are frequently applied to con-
sider the risk caused by failures, especially in labor-intensive
enterprises. The FMEA approach used in risk assessment
studies analyzes the system or process to identify possi-
ble failure modes and their causes and effects on system
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Table 20 Results of the case of integrated BWM MOORA approach

or process performance. Risk prioritization of failure modes
is determined by calculating RPNs obtained by multiply-
ing the probability of occurrence (O), severity of effects (S),
and chance of detection (D). While determining the num-
ber of risk priorities in the traditional FMEA, these factors
are determined as crisp numbers, but fuzzy logic is used to
overcome this shortcoming of FMEA. In addition, due to
the flexibility of decision-makers to overcome some of the
traditional RPN’s shortcomings, MCDM approaches have
been used within the framework of fuzzy logic in risk assess-
ment studies. In this paper, the failures encountered in textile
companies producingwoven fabrics were investigated exten-
sively and a risk assessment study was carried out to take
precautions about them before the failure occurred in a tex-
tile mill. For this purpose, integrated fuzzy decision-making
methodology including fuzzy AHP, fuzzy TOPSIS, and FIS

has been introduced to prioritize the risk sources. A case
study is carried out with the method proposed in a textile
mill, and it is determined which risks arising from failures
are higher. In the proposed integrated approach, linguistic
evaluations from experts have been converted to quantita-
tive values for calculations via fuzzy logic and it is aimed to
create an effective proactive risk calculator for managers or
researchers to make useful inferences, judgments, and deci-
sions about production processes, especially in sectors with
high-quality variability, such as textiles. Thus, a comprehen-
sive risk assessment study has been proposed in which it
can reflect expert opinions to calculations in the best way
and measures can be taken for risks arising from failures in
risk analysis studies to take measures against failures in the
process industries.

For future studies, different MCDM approaches or dif-
ferent extensions of fuzzy sets can be applied to conduct a
comparative analysis. Furthermore, the proposed methodol-
ogy can be applied to different manufacturing plants and a
road map for the proactive behavior for the risk assessment
can be constructed. The efficiency of the method can be mea-
sured using different distance calculations to calculate the
distances between fuzzy numbers.
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