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Abstract
This paper investigates the problem of finite-time stability (FTS) for a class of delayed genetic regulatory networks with
reaction-diffusion terms. In order to fully utilize the system information, a linear parameterization method is proposed. Firstly,
by applying the Lagrange’s mean-value theorem, the linear parameterization method is applied to transform the nonlinear
system into a linear one with time-varying bounded uncertain terms. Secondly, a new generalized convex combination lemma
is proposed to dispose the relationship of bounded uncertainties with respect to their boundaries. Thirdly, sufficient conditions
are established to ensure the FTS by resorting to Lyapunov Krasovskii theory, convex combination technique, Jensen’s
inequality, linear matrix inequality, etc. Finally, the simulation verifications indicate the validity of the theoretical results.
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Introduction

With the deepening research on biological network, neu-
ral network, gene network and other excellent achievements
have been produced in recent years [1–6]. Especially, as
a powerful research tool for cell recognition, metabolism
and signal transduction in the growth and reproduction pro-
cesses of organisms, a mess of experts and scholars pay a
widely sight of genetic regulatory networks (GRNs) in the
field of biomedical and bioengineering [1,2]. There exist two
common phenomenons in the process of gene regulation.
The first is hysteresis by slow conduction of gene regula-
tion [7]. The second is reaction-diffusion phenomenon by the
nonuniform concentration distribution of cell components in
various regions, which means that the concentration changes
of mRNA and protein in time and space from one layer to
another must be considered. In recent years, some related
research results have been presented for these dynamic char-
acteristics of GRNs [8–12].
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Since 1961, P. Dorato proposed the detailed finite-time
stability (FTS) theory to describe the system performance
indicators and state trajectories in a short time area in [13],
the study of FTS has attractedwide attention in various fields.
As we all know, Lyapunov theory is very important and
universal to study the various dynamic characteristics of com-
plex systems, and a large number of excellent results have
been produced on the basis of this theory [14–19]. There-
fore, it is convenient and effective to use Lyapunov theory
to study the FTS of GRNs. Several excellent results for FTS
analysis of the delayed GRNs with reaction-diffusion terms
(DGRNs-RDTs) have proposed in [10–12,20]. By applying
the secondary delay-partition approach to divide the time-
delay interval into two subintervals, the FTS conditions of
DGRNs-RDTs are established in [10]. The problem of FTS
for uncertain DGRNs-RDTs is analyzed by using the recon-
structed uncertainties in [11,20]. In [12], the FTS criteria
of DGRNs-RDTs in relation to the character of delay and
reaction-diffusion is established based on an LKFwith quad-
slope integrations. The common goal of the above literatures
is to obtain the stability criterion with low conservatism,
which is also the research purpose of this paper.

In the aspect of reducing the conservativeness of stabil-
ity, delay information is often used to construct different
LKF and different stability criteria have been obtained. For
example, by introducing a fraction of the time delay, a novel
stability result is obtained [21,22]. In [10,23], using such an
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idea that the whole delay interval is nonuniformly decom-
posed into multiple subintervals, several stability criteria are
proposed. In [24], along with the routine of dynamic pro-
gramming, amultiple dynamic contractionmapping idea and
homeomorphism theory are combined and a nonuniformly
weighting-delay-based analysis method is developed to ana-
lyze the stability of neural networks. In the above literatures,
the stability of the system is analyzed by constructing a com-
plex LKF. However, it is also an effective way to analyze
stability, that is, to construct a simple LKF that contains
system information as completely as possible. In addition,
the utilization of the information on the slope of the regula-
tory function plays an important role in conservativeness as
[25]. Currently, the slope information of nonlinear regulatory
function is used by transforming it into the state-dependent
inequality like (G1x − F(x))(G2x − F(x)) ≤ 0 in FTS
analysis. Namely, only the minimum slope matrix G1 and
the maximum slope matrix G2 of the nonlinear regulatory
function are used in [10–12,20]. To this end, we will make
a breakthrough in the use of nonlinear regulatory function,
and construct an LKF with low complexity. The determinis-
tic nonlinear regulator function informationwill be converted
into polytope information based on a linear parameterization
analysismethod,whichwill increase the utilization of system
information in the analysis process.

The main contributions of this paper can be summarized
as follows: (i) the nonlinear DGRNs-RDTs is transformed
into an equivalent linear one with time-varying bounded
uncertainties based on the proposed linear parameterization
method; (ii) a new generalized convex combination lemma
is proposed to deal with the multiple bounded uncertainties;
(iii) a FTS criterion of DGRNs-RDTs is established.

The remainder of this paper is distributed as follows. In
Sect. 2, the problem description and some preliminaries,
assumptions, definition are introduced. In Sect. 3, two main
results are proposed, i.e., a linear parameterization method
and sufficient FTS conditions of DGRNs-RDTs. In Sect. 4,
two numerical examples are given to prove the validity of the
theoretical results. Some summaries are drawn in Sect. 5.

Problem formulation and preliminaries

Consider the following DGRNs-RDTs:

∂Õi (t, ε)

∂t
=

m∑

�=1

∂

∂ε�

(
Ki�

∂Õi (t, ε)

∂ε�

)
− aiÕi (t, ε)

+
n∑

j=1

bi j f j (H̃ j (t − A(t), ε)) + qi , (1a)

∂H̃i (t, ε)

∂t
=

m∑

�=1

∂

∂ε�

(
K ∗
i�

∂H̃i (t, ε)

∂ε�

)
− ci H̃i (t, ε)

+diÕi (t − L(t), ε), (1b)

where i ∈ In = {1, 2, . . . , n}, Õi (t, ε) and H̃i (t, ε) are
the i-th node mRNA and protein concentrations at time t ,
respectively, ε = (ε1, ε2, . . . , εm)T ∈ Ω ⊂ R

m represents
the space variable, Ω = {ε : |ε�| ≤ M�,� ∈ Im} is a
compact set in R

n with smooth boundary ∂Ω , M� > 0 is
constant, Ki� > 0 and K ∗

i� > 0 are the positive definite
matrices; di represents the translation rate, ai and ci are the
degradation rates, bi j is represented as follows:

bi j =
⎧
⎨

⎩

αi j , if transcription factor j activates gene i,
0, if there is no link from node j to node i,
−αi j , if transcription factor j represses gene i,

qi = Σ j∈Ziαi j stands for the basal metabolic rate, Zi rep-
resents the set of repressers of gene i , f j (s) = ( s

β j
)λ j /(1 +

( s
β j

)λ j ) denotes the Hill feedback regulation function, where
β j > 0 and λ j > 0 are the constants; A(t) and L(t) are the
time-varying delays and satisfying:

0 ≤ A(·) ≤ Ã, Ȧ(·) ≤ μA, A ∈ {0, Ã},
0 ≤ L(·) ≤ L̃, L̇(·) ≤ μL, L ∈ {0, L̃}, (2)

where Ã, L̃, μA and μL are non-negative real constants.
Let

O∗(ε) = col
(
O∗

1(ε), O∗
2(ε), . . . , O∗

n(ε)
)
,

H∗(ε) = col(H∗
1(ε), H∗

2(ε), . . . ,H
∗
n(ε))

be the equilibrium point of DGRNs-RDTs (1). Obviously,
we can easily transfer (O∗(ε),H∗(ε)) to the origin through
the following transformations

Oi (t, ε) = Õi (t, ε) − O∗
i (ε),

Hi (t, ε) = H̃i (t, ε) − H∗
i (ε), i ∈ In .

Then, DGRNs-RDTs (1) is converted into a compact matrix
form:

∂O(t, ε)

∂t
=

m∑

�=1

∂

∂ε�

(
K�

∂O(t, ε)

∂ε�

)
− AO(t, ε)

+BF(H̄(t − A(t), ε)), (3a)

∂H(t, ε)

∂t
=

m∑

�=1

∂

∂ε�

(
K ∗

�
∂H(t, ε)

∂ε�

)
− CH(t, ε)

+DO(t − L(t), ε), (3b)

where A = diag(a1, a2, . . . , an),C = diag(c1, c2, . . . , cn),
B = [bi j ] ∈ R

n, D = diag(d1, d2, . . . , dn), K� =
diag (K1�, K2�, . . . , Kn�), K ∗

� = diag (K ∗
1�, K ∗

2�, . . . ,

K ∗
n�), O(t, ε) = col(O1(t, ε), O2(t, ε), . . . On(t, ε)),
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H(t, ε) = col(H1(t, ε), H2(t, ε), . . . , Hn (t, ε)), F(H̄ (z,
ε)) = col (F1(H̄1 (z, ε)), F2 (H̄2 (z, ε)), . . . , Fn (H̄n (z,
ε)), Fj (H̄ j (t−A(t), ε)) = f j (H̃ j (t−A(t), ε))− f j (H∗

j (ε)).

Assumption 1 [12] The DGRNs-RDTs (3) satisfy the fol-
lowing Dirichlet boundary conditions and initial conditions:

Oi (t, ε) = 0, ε ∈ ∂Ω, t ∈ [−h,+∞),

Hi (t, ε) = 0, ε ∈ ∂Ω, t ∈ [−h,+∞), i ∈ In,

Oi (t, ε) = φi (t, ε), ε ∈ ∂Ω, t ∈ [−h, 0),

Hi (t, ε) = ϕi (t, ε), ε ∈ ∂Ω, t ∈ [−h, 0),

where h = max{Ã, L̃}, φ(t, ε), ϕ(t, ε) ∈ C1([−h, 0] ×
Ω,Rn), C1([−h, 0] × Ω,Rn) is a continuous function in
Banach space , and the norm on this map is defined as

‖y(t, ε)‖h = max

{
sup

t∈[−h,0]
‖y(t, ε)‖, sup

t∈[−d,0]

∥∥∥∥
∂ y(t, ε)

∂t

∥∥∥∥ ,

sup
t∈[−h,0]

∥∥∥∥
∂ y(t, ε)

∂ε�

∥∥∥∥

}
.

Assumption 2 The activation function f j (·) is a monotoni-
cally nondecreasing Hill feedback regulation function, and
satisfies the peculiar formulas (see [26,27]):

f j (0) = 0, g j1 ≤ f j (χ1) − f j (χ2)

χ1 − χ2
≤ g j2 (4)

for any distinct χ1, χ2 ∈ R , where g j1 and g j2 are nonneg-
ative constants.

Definition 1 [28] For given positive constants c1, c2 and T,
the trivial solution of DGRNs-RDTs (3) is finite-time-stable,
if

‖φ(t, ε)‖2h + ‖ϕ(t, ε)‖2h ≤ c1,

⇒ ‖O(t, ε)‖2 + ‖H(t, ε)‖2 ≤ c2,

for

‖ỹ(t, ε)‖ =
(∫

Ω

ỹT (t, ε)ỹ(t, ε)dε

)1/2

, ỹ(t, ε)

∈ {O(t, ε),H(t, ε)}, t ∈ [0, T ].

Remark 1 Under the assumptions of the Dirichlet boundary
conditions and theLipschitz conditions of f j (·), the existence
of the equilibrium point (O∗(ε),H∗(ε)) can be easily derived
by using the fixed point theory (see, [29,30]).

Remark 2 Under normal circumstances, the concentrations
inside and outside of the cell are inconsistent. Tomore mean-
ingfully and truthfully study the problem of GRNs, it is

necessary to consider the influence of concentration changes
during the movement of genes. At present, many excellent
results have been proposed on DGRNs-RDTs [10–12,20,31,
32]. This paper studies the DGRNs-RDTs (1), which con-
sider the gradient of mRNA and protein concentration like

the termsof ∂
∂ε� (Ki�

∂Õi (t,ε)
∂ε� ) and ∂

∂ε� (K ∗
i�

∂H̃i (t,ε)
∂ε� ). In addi-

tion, the lower boundary g j1 of nonlinear regulation function
slope property is defined as 0 in [11,12,20,31,32]. In this
paper, the regulation function slope property is defined to
satisfy the condition (4) to comprehensively consider the sta-
bility problem.

Main results

In this section, the nonlinear DGRNs-RDTs (3) is translated
into an equivalent linear one with bounded uncertainties, and
a new generalized convex combination lemma is proposed.
Then, FTS criterion of the new linear model is established
under Dirichlet boundary conditions in terms of LMIs.

A linear parameterization approach

In order to dispose the nonlinearity in DGRNs-RDTs (3), we
propose the following linear parameterization method based
on the Lagrange’s mean-value theorem (LMVT)

By using the LMVT, there exist variable ξ j (t, ε) ≥ 0,
between H̃ j (t − L(t), ε) and H∗

j (ε), j ∈ In , such that

Fj (H̄(t − A(t), ε))

= f ′
j (ξ j (t, ε))(H̃ j (t − L(t), ε) − H∗

j (ε))

= f ′
j (ξ j (t, ε))H j (t − L(t), ε)

= θ j (t, ε)H j (t − L(t), ε), (5)

where f ′
j (ξ j (t, ε)) = θ j (t, ε).

According to Assumption 1 and the definition of function
derivative, it follows that g j1 ≤ θ j (t, ε) ≤ g j2 for all t ≥
0 and j ∈ In . These variables θ j (t, ε) will be defined as
uncertainties in the rest of this paper.

For simplicity of notations, we define θε j (t), Oε(t) and
Hε(t) to replace θ j (t, ε), O(t, ε) and H(t, ε). Then, we can
transform DGRNs-RDTs (3) to

∂Oε(t)

∂t
=

m∑

�=1

∂

∂ε�

(
K�

∂Oε(t)

∂ε�

)

−AOε(t) + Bθε(t)Hε(t − A(t)), (6a)

∂Hε(t)

∂t
=

m∑

�=1

∂

∂ε�

(
K ∗

�
∂Hε(t)

∂ε�

)
− CHε(t)

+DOε(t − L(t)), (6b)
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where θε(t) = diag(θε1(t), θε2(t), . . . , θεn (t)).
Based on the linear parameterization method above, the

nonlinear GRNs is transformed into an equivalent linear one
with uncertain forms.

Remark 3 Linearization refers to finding the linear approxi-
mation function of the nonlinear function at the fixed point
or equilibrium point x0. The most widely used Lineariza-
tion method is the Taylor series expansion, that is, the
Taylor series expansion is performed at fixed point x0 and
the higher-order terms are ignored to obtain a linear func-
tion with increment as the variable like f (x) − f (x0) =
(
d( f (x))

dx )x0(x − x0) in [33]. This method requires the vari-
ation range of the variable near the fixed point x0 is small,
and the resulting linear function changes with the choice of
fixed point. The linear parameterization method above is to
transform the nonlinear regulation function into an equiv-
alent linear uncertainty function that satisfies the principle
of superposition. In addition, the linear parameterization
method is obtained by using the information of equilib-
rium point, but there is no requirement for the changes of
state variable near the equilibrium point. Then, the linear
parameterization method proposed is not a strict lineariza-
tion method, but it is more accurate to convert the nonlinear
function into a linear one, and the method can better reflect
the slope information of the nonlinear function. The pro-
posed linear parameterization method is the main highlight
and key point of this paper, and promotes the subsequent FTS
analysis.

Remark 4 Improving the utilization of system information
can effectively reduce the conservativeness. As shown in
[25], the activation function is divided into two parts to
improve the utilization of its slope information, thereby
reducing the conservativeness of the stability criterion. In
this paper, in order to increase the utilization of system infor-
mation, the nonlinear regulation function is transformed into
equation (5) based on the linear parameterization method.
That is, the slope information of the regulation function
is converted into the uncertainties boundary information.
Then, the 2n uncertainties boundary information matrices
like G = diag(g1s j , g2s j , . . . , gns j )(s j ∈ I2) will be con-
sidered to replace the upper and lower bound matrices in
[10–12,25]. Therefore, based on the linear parameterization
method, a more accurate feasible region of the FTS con-
ditions can be obtained by using the above 2n boundary
information matrices.

Lemma 1 For a matrix σ = {
diag(σ̃1, σ̃2, . . . , σ̃n) : u j1

≤ σ̃ j ≤ u j2, j ∈ In
}
andany appropriate dimensional con-

stant matrices Ã, B̃ and C̃, the following inequality holds:

Ã + B̃T σ C̃ < 0, i f and only i f , Ã + B̃TUs1,s2,...,sn C̃ < 0,

where Us1,s2,...,sn = diag(u1s j , u2s j , . . . , uns j ), s j ∈ I2.
That is, Us1,s2,...,sn represents 2

n matrices formed by the ran-
dom combination of the upper and lower boundaries of σ̃ j

in the matrix σ .

Proof The above lemma is equivalent to

Ã +
n∑

j=1

B̃T σ j C̃ < 0, j ∈ In (7)

if and only if

Ωs1,s2,...,sn := Ã+
n∑

j=1

B̃TU js j C̃<0, s j ∈ {1, 2}, j ∈ In,

(8)

where σ j and Ujs j are diagonal matrix belong to Rn×n with
σ̃ j and u js j in the j-th site and 0 elsewhere, respectively.

The “only if” part follows immediately derived from
u j1 ≤ σ̃ j ≤ u j2, j ∈ In . Now we show the “if” part.

According to the convex combination lemma [34], and
u j1 ≤ σ̃ j ≤ u j2, there exist positive X j1 and X j2 satisfying
X j1 + X j2 = 1 such that σ̃ j = X j1u j1 + X j2u j2, j ∈ In .

The left and right sides of inequality (8) are multiplied by
X11 and X12 for s1 = 1 and s1 = 2, respectively. Then, we
can derive Θs2,...,sn := X11Ω1,s2,...,sn + X12Ω2,s2,...,sn < 0,
that is,

Θs2,...,sn = X11( Ã +
n∑

j=2

B̃TU js j C̃ + B̃TU11C̃)

+ X12

⎛

⎝ Ã +
n∑

j=2

B̃TU js j C̃ + B̃TU12C̃

⎞

⎠

= Ã + B̃T σ1C̃ +
n∑

j=2

B̃TU js j C̃ < 0.

Likewise, we can get Θs3,...,sn := X21Ω1,s3,...,sn + X22

Ω2,s3,...,sn < 0, that is,

Θs3,...,sn = X21

⎛

⎝ Ã+ B̃T σ1C̃+
n∑

j=3

B̃TU js j C̃+ B̃TU21C̃

⎞

⎠

+ X22

⎛

⎝ Ã + B̃T σ1C̃ +
n∑

j=3

B̃TU js j C̃

+B̃TU22C̃
)

= Ã +
2∑

j=1

B̃T σ j C̃ +
n∑

j=3

B̃TU js j C̃ < 0.
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Continuous calculation based on the above algorithm, and
ultimately we can obtain Ã + ∑n

j=1 B̃
T σ j C̃ < 0, the proof

is completed. ��
Remark 5 The lemma above is a new result of convex
combination with multiple bounded uncertainty parameters.
Specifically, the convex combination lemma in [34] is a spe-
cial case of above lemma, for j = 1, and X j1, B̃TU j1C̃ ,
B̃TU j2C̃ are defined as α, X1, X2, respectively. That is,
Ã + αX1 + (1 − α)X2 < 0 if and only if Ã + X1 < 0 and
Ã + X2 < 0. Therefore, the lemma above generalizes the
corresponding results in [34] to a situation with n bounded
uncertainties.

FTS analysis for DGRNs-RDTs

For notational ease, set

ηε(t) = col

(
Oε(t)Oε(t − Ã)Oε(t − A(t))

1

Ã − A(t)
∫ t−A(t)

t−Ã
Oε(s)ds Hε (t − L̃)

Hε(t − L(t))
∂Oε(t)

∂t
∂Hε(t)

∂t
Hε(t)

1

A(t)

∫ t

t−A(t)
Oε(s)ds

1

(Ã − A(t))2

∫ t−A(t)

t−Ã

∫ t−A(t)

t−α

Oε(s)dsdα

1

A2(t)

∫ t

t−A(t)

∫ t

α

Oε(s)dsdα

1

L̃ − L(t)

∫ t−L(t)

t−L̃
Hε(s)ds

1

(L̃ − L(t))2

∫ t−L(t)

t−L̃

∫ t−L(t)

α

Hε(s)dsdα

1

L(t)

∫ t

t−L(t)
Hε(s)ds

1

L2(t)

∫ t

t−L(t)

∫ t

α

Hε(s)dsdα

)
,

li = col(0(i−1)n×n, In, 0(16−i)n×n), i ∈ I16,

Υ� = [Γ� Γ�+1](� ∈ I2)

Γ1 = [l3 − l2 l3 + l2 − 2l4 l3 − l2 + 6l4 − 12l11],
Γ2 = [l1 − l3 l1 + l3 − 2l10 l1 − l3 + 6l10 − 12l12],
Γ3 = [l6 − l5 l6 + l5 − 2l13 l6 − l5 + 6l13 − 12l14],
Γ4 = [l9 − l6 l9 + l6 − 2l15 l9 − l6 + 6l15 − 12l16],
Γ5 = [l1 − l10 l1 + 2l10 − 6l12],
Γ6 = [l3 − l4 l3 + 2l4 − 6l11],
Γ7 = [l9 − l15 l9 + 2l15 − 6l16],
Γ8 = [l6 − l13 l6 + 2l13 − 6l14].

Theorem 1 For given constants Ã, L̃, μA and μL satisfying
(2), and positive scalarsρ, c1, c2 and T, theDGRNs-RDTs (6)
is finite-time-stable under Assumption 1 and 2, if there exist

real symmetrical positive definite matrices Qι, diagonal pos-
itive definite matrices Jς , Yς , and appropriate dimensional
matrices Ĥς (ι ∈ I10, ς ∈ I2) such that the following LMIs
hold:

Π1s1,s2,...,sn
(A,L) := Φ1s1,s2,...,sn

+
3∑

h̄=2

Φh̄ + Φ4(A,L) + Φ5(A,L)−ρl1 J1l
T
1

− ρl9 J2l
T
9 < 0, s j ∈ I2 (9)

Π2 := c1e
ρT (λ1 + λ2) − c2λmin(J ) ≤ 0, Θς ≥ 0, (10)

where

Φ1s1,s2,...,sn
= Φ11s1,s2,...,sn

+ Φ ′
11s1,s2,...,sn

+ Φ12, Φ11s1,s2,...,sn

= l1 J1BGs1,s2,...,sn l
T
6 + l7Y1B

× Gs1,s2,...,sn l
T
6 ,

Φ12 = 2l1

(
−π2

4
J1KM − J1A

)
lT1

+ 2l9

(
−π2

4
J2K

∗
M − J2C

)
lT9

− 2(l7Y1l
T
7 + l8Y2l

T
8 ) − l7Y1Al

T
1 − l1AY1l

T
7

+ l9 J2Dl
T
3 + l3DJ2l

T
9 − l8Y2Cl

T
9 − l9CY2l

T
8

+ l8Y2Dl
T
3 + l3DY2l

T
8 ,

Φ2 = l1(Q1 + Q2)l
T
1 + l9(Q3 + Q4)l

T
9 − l2Q2l

T
2

+ (μA − 1)l3Q1l
T
3 − l5Q4l

T
5

+ (μL − 1)l6Q3l
T
6 , Φ3 = Ãl7Q5l

T
7 + L̃l8Q6l

T
8

− Υ1Θ1Υ
T
1 − Υ2Θ2Υ

T
2 ,

Φ4(A,L) = Φ41 + Φ42(A,L),

Φ41 = Ã2

2
l7 Q̃7l

T
7 + L̃2

2
l8 Q̃8l

T
8 ,

Φ42(A,L) = −Γ5 Q̃7Γ
T
5 − Γ6 Q̃7Γ

T
6

− Ã − A

Ã
Γ2 Q̂7Γ

T
2 − Γ7 Q̃8Γ

T
7 − Γ8 Q̃8Γ

T
8

− L̃ − L

L̃
Γ4 Q̂8Γ

T
4 ,

Φ5(A,L) = Ã3

6
l7Q9l

T
7 + L̃3

6
l8Q10l

T
8

− (Ã − A)Γ5 Q̃9Γ̃5 − (L̃ − L)Γ8 Q̃10Γ̃8

− 3A

2
(l1 − 2l12)Q9(l1 − 2l12)

T

− 3(Ã − A)

2
(l3 − 2l11)Q9(l3 − 2l11)

T

− 3L

2
(l9 − 2l16)Q10(l9 − 2l16)

T

− 3(L̃ − L)

2
(l6 − 2l14)Q10(l6 − 2l14)

T ,

123



748 Complex & Intelligent Systems (2022) 8:743–752

KM = diag

( m∑

�=1

K1�
M2�

,

m∑

�=1

K2�
M2�

, · · ·
m∑

�=1

Knk

M2�

)
,

K ∗
M = diag

( m∑

�=1

K ∗
1�

M2�
,

m∑

�=1

K ∗
2�

M2�
, . . .

m∑

�=1

K ∗
n�

M2�

)
, J = diag(J1, J2),

Q̃6+i = diag(2Q6+i , 4Q6+i ), i ∈ I4,

Q̂6+j = diag(Q6+j, 3Q6+j, 5Q6+j),

Θς =
[
Q̂4+ς Ĥς

Ĥ T
ς Q̂4+ς

]
, j ∈ I2,

λ1 = λmax (J1) + Ãλmax (Q1) + Ãλmax (Q2)

+ 1

6
Ã3λmax (Q7) +

m∑

�=1

λmax (Y1)λmax (K�)

+ 1

2
Ã3λmax (Q5) + 1

24
Ã4λmax (Q9),

Gs1,s2,...,sn = diag(g1s j , g2s j , . . . , gns j ), λ2

= λmax (J2) + L̃λmax (Q3) + L̃λmax (Q4)

+ 1

6
L̃3λmax (Q8) +

m∑

�=1

λmax (Y2)λmax (K
∗�)

+ 1

2
L̃3λmax (Q6) + 1

24
L̃4λmax (Q10).

Proof Define an LKF candidate for DGRNs-RDTs (6) as:

V (t,O,H) =
5∑

i=1

Vi (t,O,H),

where

V1(t,O,H) =
∫

Ω
OT

ε (t)J1Oε(t)dε +
∫

Ω
HT

ε (t)J2Hε(t)dε

+
m∑

�=1

∫

Ω

∂OT
ε (t)

∂ε�
Y1K�

× ∂Oε(t)

∂ε�
dε +

m∑

�=1

∫

Ω

∂HT
ε (t)

∂ε�
Y2K

∗�
∂Hε(t)

∂ε�
dε,

V2(t,O,H) =
∫

Ω

∫ t

t−A(t)
OT

ε (s)Q1Oε(s)dsdε

+
∫

Ω

∫ t

t−Ã
OT

ε (s)Q2Oε(s)dsdε

+
∫

Ω

∫ t

t−L(t)
HT

ε (s)Q3Hε(s)dsdε

+
∫

Ω

∫ t

t−L̃
HT

ε (s)Q4Hε(s)dsdε,

V3(t,O,H) = Ã

∫

Ω

∫ 0

−Ã

∫ t

t+ν

∂OT
ε (s)

∂s
Q5

∂Oε(s)

∂s
dsdνdε

+ L̃

∫

Ω

∫ 0

−L̃

∫ t

t+ν

∂HT
ε (s)

∂s
Q6

∂Hε(s)

∂s
dsdνdε,

V4(t,O,H) =
∫

Ω

∫ 0

−Ã

∫ 0

λ

∫ t

t+ν

∂OT
ε (s)

∂s
Q7

∂Oε(s)

∂s
dsdνdλdε

+
∫

Ω

∫ 0

−L̃

∫ 0

λ

∫ t

t+ν

∂HT
ε (s)

∂s
Q8

∂Hε(s)

∂s
dsdνdλdε,

V5(t,O,H) =
∫

Ω

∫ 0

−Ã

∫ 0

λ

∫ 0

α

∫ t

t+ν

∂OT
ε (s)

∂s

Q9
∂Oε(s)

∂s
dsdνdαdλdε

+
∫

Ω

∫ 0

−L̃

∫ 0

λ

∫ 0

α

∫ t

t+ν

∂HT
ε (s)

∂s
Q10

∂Hε(s)

∂s
dsdνdαdλdε.

Computing the derivative ofV (t,O,H) along the trajectories
of DGRNs-RDTs (6), then

∂V (t,O,H)

∂t
=

5∑

i=1

∂Vi (t,O,H)

∂t
, (11)

with the specific differentials as follow:

∂V1(t,O,H)

∂t
= 2

∫

Ω

OT
ε (t)J1

(
m∑

�=1

∂

∂ε�
(K�

∂Oε(t)

∂ε�

)

− AOε(t) + Bθε(t)Hε(t − L(t)))dε

+ 2
∫

Ω

HT
ε (t)J2

(
m∑

�=1

∂

∂ε�
(K ∗

�
∂Hε(t)

∂ε�

)

− CHε(t) + DOε(t − A(t)))dε

+ 2
m∑

�=1

∫

Ω

∂OT
ε (t)

∂ε�
Y1K�

∂

∂ε�

(
∂Oε(t)

∂t

)
dε

+ 2
m∑

�=1

∫

Ω

∂HT
ε (t)

∂ε�
Y2K

∗
�

∂

∂ε�

(
∂Hε(t)

∂t

)
dε,

(12)
∂V2(t,O,H)

∂t
≤

∫

Ω

ηTε (t)Φ2ηε(t)dε,

∂V3(t,O,H)

∂t
= Ã2

∫

Ω

∂OT
ε (t)

∂t
Q5

∂Oε(t)

∂t
dε

− Ã

∫

Ω

∫ t

t−Ã

∂OT
ε (s)

∂t
Q5

∂Oε(s)

∂ε�
dsdε

+ L̃2
∫

Ω

∂HT
ε (t)

∂t
Q6

∂Hε(t)

∂t
dε

− L̃

∫

Ω

∫ t

t−L̃

∂HT
ε (s)

∂t
Q6

∂Hε(s)

∂ε�
dsdε,

∂V4(t,O,H)

∂t
= Ã2

2

∫

Ω

∂OT
ε (t)

∂t
Q7

∂Oε(t)

∂t
dε

−
∫

Ω

∫ 0

−Ã

∫ t

t+λ

∂OT
ε (s)

∂s
Q7

× ∂Oε(s)

∂s
dsdλdε
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+ L̃2

2

∫

Ω

∂HT
ε (t)

∂t
Q8

∂Hε(t)

∂t
dε

−
∫

Ω

∫ 0

−L̃

∫ t

t+λ

∂HT
ε (s)

∂s
Q8

∂Hε(s)

∂s
dsdλdε,

∂V5(t,O,H)

∂t
= Ã3

6

∫

Ω

∂OT
ε (t)

∂t
Q9

∂Oε(t)

∂t
dε

−
∫

Ω

∫ 0

−Ã

∫ 0

α

∫ t

t+λ

∂OT
ε (s)

∂s
Q9

∂Oε(s)

∂s
dsdλdαdε

+ L̃3

6

∫

Ω

∂HT
ε (t)

∂t
Q10

∂Hε(t)

∂t
dε

−
∫

Ω

∫ 0

−L̃

∫ 0

α

∫ t

t+λ

∂HT
ε (s)

∂s

Q10
∂Hε(s)

∂s
dsdλdαdε. (13)

Firstly, by applying Lemma 3 in [32], Green formula and
Assumption 1, we derive

∂V1(t,O,H)

∂t
≤

∫

Ω

ηTε (t)(Φ12 + Φ̃11(t) + Φ̃ ′
11(t))ηε(t)dε,

(14)

where Φ̃11(t) = l1 J1Bθε(t)lT6 + l7Y1Bθε(t)lT6 .
Then, based on the second inequality in (10), according

to reciprocally convex technique andWirtinger-type integral
inequality in [35] and [36], respectively, we obtain

∂V3(t,O,H)

∂t
≤

∫

Ω

ηTε (t)Φ3ηε(t)dε, (15)

∂V4(t,O,H)

∂t
≤

∫

Ω

ηTε (t)Φ4(A(t),L(t))ηε(t)dε. (16)

In addition, based on Jensen’s inequality and Wirtinger-type
integral Lemma in [36] and [37], respectively, one can derive

∂V5(t,O,H)

∂t
≤

∫

Ω

ηTε (t)Φ5(A(t),L(t))ηε(t)dε. (17)

Therefore, substituting (12)-(17) into (11), we obtain

∂V (t,O,H)

∂t
≤

∫

Ω

ηTε (t)Π̂1(A(t),L(t))ηε(t)dε, (18)

where

Π̂1(A(t),L(t)) = Φ̃11(t) + Φ̃ ′
11(t) + Φ12 + Φ2 + Φ3

+Φ4(A(t),L(t)) + Φ5(A(t),L(t)).

According to the formula (18), we have

∂V (t,O,H)

∂t
≤

∫

Ω

ηTε (t)Π̃1(A(t),L(t))ηε(t)dε

+ ρ

∫

Ω

OT
ε (t)J1Oε(t) + HT

ε (t)J2Hε(t)dε

≤
∫

Ω

ηTε (t)Π̃1(A(t),L(t))ηε(t)dε

+ ρV (t,O,H), (19)

where Π̃1(A(t),L(t)) = Π̂1(A(t),L(t))−ρl1 J1lT1 −ρl9
J2lT9 .

Apparently, Φ̃11(t), Φ4(A(t),L(t)) and Φ5(A(t),L(t))
are closely related to A(t), L(t) and the diagonal matrix
compose of n time-varying bounded uncertain terms θε(t),
respectively. Then, applying the lemma 1 to inequality (9),
and using inequality (2), we can derive

Π̃1(A(t),L(t)) < 0, (20)

and

∂V (t,O,H)

∂t
≤ ρV (t,O,H). (21)

Integrating from 0 to t on the both sides of the inequality
(21), and t ∈ [0, T ], we obtain

V (t,O,H) ≤ V (0,Oε(0),Hε(0)) +
∫ t

0
ρV (s,O,H)ds.

(22)

From Gronwall inequality in [10], we derive V (T ,O,H) ≤
eρT V (0,Oε(0),Hε(0)). Noting that V (0,Oε(0),Hε(0)) =∑5

i=1 Vi (0,Oε(0),Hε(0)) ≤ λ1‖φ(t)‖2h + λ2‖ϕ(t)‖2h ≤
(λ1 + λ2)(‖φ(t)‖2h + ‖ϕ(t)‖2h).

Then, we get

V (T ,O,H) ≤ eρT (λ1 + λ2)(‖φ(t)‖2h + ‖ϕ(t)‖2h), (23)

and

V (T ,O,H) ≥ λmin(J1)‖Oε(t)‖2 + λmin(J2)‖Hε(t)‖2
≥ λmin(J )(‖Oε(t)‖2 + ‖Hε(t)‖2). (24)

Now, based on inequality (24), we can get that

‖Oε(t)‖2+‖Hε(t)‖2≤ eρT (λ1+λ2)(‖φ(t)‖2h+‖ϕ(t)‖2h)
λmin(J )

.

Therefore, we can derive that the DGRNs-RDTs (6) is finite-
time-stable according to Definition 1 and inequality (9)-(10).
The proof is completed. ��
Remark 6 In this paper, the slope information of regulatory
function is more fully utilized rather than the fixed lower
bound matrix like G1 = diag(g11, g21, . . . , gn1) and the
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upper matrix like G2 = diag(g12, g22, . . . , gn2) in [10–
12,25]. In detail, compared with the two slope information
matrices mentioned above, the applicable slope information
matrices can be increased to 2n by random combination
of upper and lower boundaries of n uncertain items like
Gs1,s2,...,sn = diag(g1s j , g2s j , . . . , gns j ), s j ∈ {1, 2}. That
is, the condition (9) represents 2n inequalities. Although the
method proposed in this paper increases the computational
burden, it also obtains amore accurate feasible region of FTS
criterion.

Remark 7 As shown in [12], the fourth-order integral term
can more completely reflect the system state information.
Then, the same fourth-order integral term like

∫
Ω

∫ 0
−Ã

∫ 0
λ

∫ 0
α∫ t

t+ν

∂OT
ε (s)
∂s Q9

∂Oε(s)
∂s dsdνdαdλdε is introduced into the

LKF in this paper. However, different from the LKF in [12],
the item like

∫
Ω

∫ t
t−σ(t) f T (p(s, x))Q5 × f (p(s, x))dsdε of

LKF is removed because the information of f (·) is trans-
formed into the information of uncertainties and system
states. Then, the LKF will be more simple and can fully
reflect the system information. In addition, the slope infor-
mation of the nonlinear regulation function is used more
complete and flexible like Gs1,s2,...,sn than the fixed form
like (G1x − F(x))(G2x − F(x)) ≤ 0. Therefore, the less
conservative FTS criterion will be obtained by utilizingmore
information of GRNs in this paper.

Numerical example

To demonstrate the effectiveness of the theoretical, we will
consider two numerical examples.

Example 1 Consider the following DGRNs-RDTs (3):

∂Oε(t)

∂t
= ∂

∂ε�

(
0.1

∂Oε(t)

∂ε�

)
− 0.8Oε(t)

−0.5F(H̄ε(t − A(t))), (25a)
∂Hε(t)

∂t
= ∂

∂ε�

(
0.2

∂Hε(t)

∂ε�

)
− 0.3Hε(t) + Oε(t − L(t)),

(25b)

Assume β1 = 1, λ1 = 2, f1(s) = s2

1+s2
, g11 = 0.1, g12 =

0.65, M1 = 1, ρ = 0.001, μA = μL = 2, c1 = 0.0878,
c2 = 8, T = 20, and the initial conditions are φε(t) =
ϕε(t) = 1.3.

Then, we can testify the FTS conditions (9)-(10) are
feasible by using the Toolbox YALMIP of MATLAB for
Ã = L̃ ∈ (0, 1.5696]. Furthermore, a set of feasible solu-
tions for conditions (9)-(10) are listed as follows:

J1 = 0.3309, J2 = 0.0386, Y1 = 0.2379, Y2 = 0.0766,

Q1 = 5.7004 × 10−7,

Fig. 1 The trajectory of mRNA concentrationOε(t) for DGRNs-RDTs
(3)

Q2 = 7.2424 × 10−5, Q3 = 1.2048 × 10−7,

Q4 = 0.0212, Q5 = 0.0964, Q6 = 0.0311,

Q7 = 1.3461 × 10−6, Q8 = 1.8126 × 10−6,

Q9 = 5.6286 × 10−4, Q10 = 1.8126 × 10−6,

Ĥ1 =
⎡

⎣
0.0002 0.0001 0
0.0001 0.0636 0.0001

0 0.0001 0.1178

⎤

⎦ ,

Ĥ2 =
⎡

⎣
0 0 0
0 0.0211 0
0 0 0.0364

⎤

⎦ .

Next, when A(t) = L(t) = 0.5, the state trajectories of
DGRNs-RDTs (3) are shown in Figures 1 and 2. They reflect
that the concentration trajectories of protein andmRNAgrad-
ually converge to the zero equilibrium point under T = 20s,
which also show that the theoretical results of this paper are
valid.

Example 2 Weconsider theDGRNs-RDTs (3) and its param-
eters as follow:

K1 = K2 = diag(0.1, 0.1), K ∗
1 = K ∗

2 = diag(0.2, 0.2),

A = diag(0.2, 0.2), B = diag(−0.55,−0.55),

C = diag(0.3, 0.3), D = diag(1, 1),

Assume β j = 1, λ j = 2, f j (s) = s2

1+s2
, g j1 = 0, g j2 =

0.65, Mj = 1, ρ = 0.002, μA = μL = 2, c1 = 0.0878,
c2 = 8, T = 10, Ã = L̃ ∈ (0, 1.068], j ∈ I2.
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Fig. 2 The trajectory of protein concentrationHε(t) for DGRNs-RDTs
(3)

We verify the FTS criterion (9)-(10) is viable by apply-
ing the Toolbox YALMIP of MATLAB under the numerical
example mentioned above. In addition, we test the FTS con-
ditions of this system are also feasible in [12].

Comparing the two slope information matrix in [12],
we obtain four boundary matrices from two time-varying
bounded uncertain term formed by the two regulation func-
tion F1(s) and F2(s) based on the proposed linear parame-
terization method.

However, substituting Ã = L̃ ∈ (0, 1.152], and all
other parameters of the mentioned model above remain the
same, we testify the FTS conditions (9)-(10) proposed in this
paper are solvable.Meanwhile, the corresponding conditions
proposed in [12] are infeasible, which declare the stability
criterion is ineffective for the considered system.

The simulation results of this example demonstrate the
effectiveness of the theoretical verification in this paper, and
attest the stability criterion proposed has a less conservative
than the conditions in [12], and allows a larger time-delay
upper bounds.

Conclusion

A linear parameterization method is proposed to study the
finite-time stability (FTS) of delayed genetic regulatory net-
works with reaction-diffusion terms. The main contributions
of this paper are as follows. (1) Based on the proposed
linear parameterization method, the nonlinear system is
transformed into an equivalent linear one with time-varying
bounded uncertain terms. (2) The slope information of regu-
latory function is transformed into the boundary information
of uncertain terms, which can make the information more
fully andflexibly used.And a newgeneralized convex combi-
nation lemma with multiple bounded uncertainty parameters

is proposed. (3) A stability criterion is established to guar-
antee FTS based on the proposed technique lemma. In the
future, how to extend the method proposed in this paper to
the study of state estimation and control problems, see [3,5,8]
are the further research topics.
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