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Abstract
Human gait analysis is a novel topic in the field of computer vision with many famous applications like prediction of osteo-
arthritis and patient surveillance. In this application, the abnormal behavior like problems in walking style is detected of 
suspected patients. The suspected behavior means assessments in terms of knee joints and any other symptoms that directly 
affected patients’ walking style. Human gait analysis carries substantial importance in the medical domain, but the variability 
in patients’ clothes, viewing angle, and carrying conditions, may severely affect the performance of a system. Several deep 
learning techniques, specifically focusing on efficient feature selection, have been recently proposed for this purpose, unfor-
tunately, their accuracy is rather constrained. To address this disparity, we propose an aggregation of robust deep learning 
features in Kernel Extreme Learning Machine. The proposed framework consists of a series of steps. First, two pre-trained 
Convolutional Neural Network models are retrained on public gait datasets using transfer learning, and features are extracted 
from the fully connected layers. Second, the most discriminant features are selected using a novel probabilistic approach 
named Euclidean Norm and Geometric Mean Maximization along with Conditional Entropy. Third, the aggregation of the 
robust features is performed using Canonical Correlation Analysis, and the aggregated features are subjected to various clas-
sifiers for final recognition. The evaluation of the proposed scheme is performed on a publicly available gait image dataset 
CASIA B. We demonstrate that the proposed feature aggregation methodology, once used with the Kernel Extreme Learning 
Machine, achieves accuracy beyond 96%, and outperforms the existing works and several other widely adopted classifiers.

Keywords Gait recognition · Osteoarthritis · Video surveillance · Public security · Feature fusion · Transfer learning · Deep 
learning · Extreme learning machine

Introduction

Nowadays, medical and biomedical image processing has 
attracted a lot of attention due to its importance in health 
care. [1, 2]. The primary goal of medical and biomedical 
image processing is to detect abnormalities in organs and 
body of patients [3, 4]. It allows us to detect many dangerous 
diseases such as cancer. The abnormalities can be controlled 
through the patient monitoring system. In the area of com-
puter vision, human gait analysis (HGA) is a new research 
area for patients monitoring. In this approach, the patients 
are detected based on their walking styles such as their knee 
joint issue or any other symptoms which are affected by the 
patient’s walking style. This change in patient walking style 
is described as gait analysis [5]. Osteoarthritis (OA) is the 
most common joint disorder in the elderly. In the United 
States alone, symptomatic knee arthritis occurs in 10% of 
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men and 13% of women aged sixty [6]. OA often causes per-
sistent pain and poor quality of life for the elderly. Further-
more, it also makes it more difficult to walk for them. Today, 
with advances in technology, HGA is an effective method to 
predict OA [7]. Human gait analysis for classifying OA on 
the elderly plays an important role in applications of com-
puter vision for medicine. In this article, we focus on the 
problem of HGA for patients based on their walking style. 
Moreover, it has also been used for a wide variety of tasks 
such as patients monitoring under the sensitive condition and 
any injury. The identification of suspect behavior of patients 
in Closed Circuit Television (CCTV) footage is important to 
ensure public safety in both indoor and outdoor locations [8]. 
For example, in the case of a pandemic such as COVID, it is 
possible to track people through their gait and if any unusual 
circumstances are found, one can act promptly [9]. A similar 
search may be performed over multiple records from other 
locations, to reconstruct the travel history of the suspected 
patients, or to match it with the gait patterns of known indi-
viduals stored in the hospital databases [10]. The gait pat-
terns or some external characteristics of subjects (such as 
specific clothes or carried objects) can be used for real-time 
monitoring of crowds to identify their moving history [11].

Although, many methods exploit unique attributes of 
a person, such as facial, ear and iris, and Electroencepha-
lography (EEG) for biometric recognition [12], the gait 
analysis enjoys an advantage in that it does not require the 
subject’s cooperation to assist in the recognition process. 
Analyzing someone’s unique walking patterns, also, allows 
identifying them at larger distances [13]. The gait analysis 
has become an active research area for medical and assisted 
living applications [14], but also user identity verification 
biometric applications because of its robustness and useful-
ness in many domains such as clinical analysis, airports, 
forensic, bus stations, and bank surveillance systems [15, 
16]. Tracking and identification of subjects between differ-
ent un-calibrated non-overlapping stationary CCTV cameras 
based on gait analysis have been shown in [17].

The gait extraction is usually rather easy, making the rec-
ognition process quite convenient [18]. However, there are 
many factors, such as different clothing [19], variation in 
view angle [20], carrying conditions [21], and poor light-
ing, which degrade the performance of the analysis system. 
Several Machine Learning (ML) and Computer Vision (CV) 
techniques are available for HGA; they are primarily classi-
fied into two wide categories: model-based [22] and model-
free [23] approaches. In the former, a model based on the 
structure of the human body is used for recognition. The 
parameters of such a model are used as attributes like the 
angle of joints. These techniques work well for factors such 
as variation in view, clothing, carrying luggage, and shadow 
effects that degrade the performance of recognition [24]. 
Although, it is advantageous to have a high-level model, it 

bears a high computational cost. The model-free approach, 
in contrast, works on the silhouette of the human body. This 
approach usually proves more cost-effective. This approach 
is more sensitive towards different covariants such as shad-
ows, carrying conditions, and different clothing [25]. There-
fore, we need to find and justify a tradeoff between the two 
components in the time-and-accuracy argument—making 
the HGR systems still an active area of research.

In the literature, various techniques are available for HGA 
to overcome the problem of different covariants, as listed 
above. Generally, a simple HGR method involves several 
steps, including preprocessing of image frames through dif-
ferent approaches [19], applying different methods of seg-
mentation on the silhouette of the image frames [26], extrac-
tion of gait attributes and recognition of the gait [27]. Since 
an image may include several problems, such as low resolu-
tion, noise, and complex background, the preprocessing step 
is supposed to rectify these issues, and enhance the quality 
of the image for the next step—feature extraction [28, 29]. 
Since, the irrelevant features may drastically degrade the 
performance of the system, the main concern, in the fea-
tures extraction step is to extract the most relevant and robust 
features for reasonably accurate recognition. Unfortunately, 
the larger the dimensionality of the features, the smaller the 
system’s accuracy and the higher the computational cost will 
be [30]. To address this disparity, several features reduc-
tion methods have been reported in the literature. Some of 
the famous reduction and selection techniques are entropy-
based [31], correlation-based [32], Wavelet Transform [33], 
Genetic Algorithm-based [34], nature-inspired optimization-
based [35], and a few more [36].

The aggregation of features is another important step 
that increases the information of an object in the image. 
The main purpose of this step is to improve the classifica-
tion accuracy of the system. But on the other side, this step 
decreases the system performance due to high dimensional 
features [37]. The aggregated features are finally embedded 
in a classification engine for the classifying selected clas-
sification problem.

Major contributions

Here, we propose a framework for human gait analysis that 
exploits the aggregation of robust deep learning features in 
Kernel Extreme Learning Machine (KELM). Two different 
angles of CASIA B dataset are used for the validation of 
the proposed scheme. In this dataset, three different situa-
tions are considered: wearing a coat, carrying a bag, and a 
normal walk. A few sample frames of both angles are shown 
in Figs. 1 and 2.

The principal contributions of this work are enlisted 
below.
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 (i) We modify the VGG16 Net and AlexNet Convolu-
tional Neural Networks (CNN) models for gait recog-
nition and trained on the CASIA B database (54° and 
90°) using Transfer Learning (TL). Subsequently, 
we extract the deep learning features from the Fully 
Connected (FC) layers instead of middle layers.

 (ii) A novel Euclidean Norm and Geometric Mean Maxi-
mization along with Conditional Entropy (ENGM-
wCE) approach is proposed for the selection of maxi-
mum score features. A Fine-KNN classifier is used as 
a fitness function for the selection of robust features.

 (iii) We perform aggregation of the selected deep learn-
ing features using the Canonical Correlation Analysis 
based approach and embed the aggregated vector in 
KELM for final recognition.

Related work

Deep learning is a hot research area of machine learning 
and is employed in several applications such as biometrics, 
visual surveillance, medical, and image classification. Gait 
recognition is an important biometric process, and several 
techniques in this regard have been developed and presented 
in the literature. These existing techniques are specific and 
have been developed to overcome various gait recognition 
challenges such as clothing, carrying conditions, shadow, 
and view angles [24]. Castro et al. [39] presented a new 

technique for gait recognition in video sequences using a 
CNN based approach. For the learning of high-level gait 
features, activation was performed on the fully connected 
(FC) layer of the CNN. Next, the spatio-temporal cuboids 
were fed in the CNN for final recognition. The TUM GAID 
dataset was considered for the evaluation of the presented 
techniques, which managed to achieve recognition accuracy 
of 88.9%. Habiba et al. [40] presented an optical flow-based 
framework for gait recognition along with Beysian Model 
and Normal Distribution. The motion vectors were calcu-
lated using optical flow and then quartile deviation was used 
to segment the human region. Later, the texture information 
was extracted from the segmented regions, and the impor-
tant features were selected using Beysian Modeling. The 
presented method was validated on CASIA B dataset and 
achieved an accuracy of 87.7%. Li et al. [41] presented an 
HGR approach named DeepGait to overcome the problem 
of covariant factors. A Joint Bayesian (JB) model was used 
to deal with the problem of variation in a viewpoint. Firstly, 
the gait cycle was estimated using the Normalized Auto Cor-
relation (NAC) to represent the deep convolution of gait. The 
VGG16 pre-trained architecture was used for the learning 
process. Next, the JB model was used for gait identifica-
tion. The OULP gait dataset was used for the experimental 
process, and an accuracy of 89.3% was achieved. Mehmood 
et al. [42] presented a novel approach to overcome the prob-
lems associated with clothing variation and walking style. 
A four-step method was developed. In the first step, the 

Fig. 1  Sample frames from 
CASIA B dataset (90° angle) 
[38]

Fig. 2  Sample frames from 
CASIA B dataset (54° angle) 
[38]
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preprocessing was performed, which was followed by the 
features extraction step using the pre-trained CNN model 
named DenseNet201. Next followed the dimensionality 
reduction using skewness and firefly algorithm. In this step, 
the authors tried to select only the relevant features, which 
were embedded in “One-vs-All SVM” for final recognition. 
The evaluation of this technique was conducted on CASIA B 
dataset and attained an accuracy of 94.3%, 93.8%, and 94.7% 
for 180°, 360°, and 540° angles, respectively. Arshad et al. 
[43] presented a deep learning framework for HGR, in which 
they tried to resolve the problems brought in by clothing and 
view. The feature extraction was performed using two pre-
trained deep learning models named AlexNet and VGG19. 
Secondly, entropy and skewness were calculated to construct 
a fused feature vector. Next, a novel concept called Fuzzy 
Entropy Controlled Skewness was proposed for selection of 
the best features. The presented framework was evaluated on 
four HGR databases CASIA A, CASIA B, CASIA C, and 
AVAMVG gait, and accuracies of 99.7%, 93.3%, 92.2%, and 
99.8% were achieved respectively. Alotaibi et al. [44] also 
presented a CNN based HGR system. This work claimed 
to resolve the problems of common degradation and small 
data handling. The presented CNN model was based on four 
max pool and four fully connected layers. For evaluation, 
the CASIA B dataset was used, and accuracies of 98.3%, 
83.87%, and 89.12% were achieved respectively for the 
walking normally (nm), wearing a coat (cl), and carrying a 
bag (bg) cases. Zhang et al. [45] presented an HGR system 
based on an encoder architecture to overcome the problems 
of variations such as clothing, view, and carrying things. 
The CNN and LSTM networks were used for feature extrac-
tion. Later, information on both systems was combined and 
performed the final recognition. Three HGR datasets named 
CASIA B, USF, and FVG were used for the evaluation, and 
accuracies of 81.8%, 99.5%, and 87.8% respectively were 
achieved. Yu et al. [46] introduced a novel technique to con-
quer the problems of different variations. Features based on 
CNN are extracted in this method. An auto encoder based 
on stack progressive method is used to address the problem 
of variation. PCA is utilized for the selection of best features 
and leaving the irrelevant features. Finally, KNN algorithm 
is used for the recognition. The system is assessed using 
SZU RGB D and CASIA-B datasets and achieved improved 
performance.

Marcin et al. [47] introduced a novel method to analyze 
the walking style of individual wearing different types on 
shoes. Different 81 individual and 2700 walking periods 
were used for the analysis and it is assessed that the style of 
walking changes according to the types of shoes. The system 
was evaluated based on the database of 81 individual and 
attained the accuracy of 99%. Khan et al. [48] presented a 
HGR system in which sequence of video is used for extrac-
tion of features. Codebook generation is done in this method 

and after that; vector is encoded using encoding based on 
fisher vector. Linear SVM is used for final gait recognition. 
The presented HGR method is assessed using CASIA-A and 
TUM GAID databases. In case of CASIA-A the attained 
accuracy was 100% and in case of TUM GAID the recogni-
tion rate was 97.74%. Few other studies also used CASIA-
B dataset and showed significant performance [49, 50]. In 
summary, the above listed techniques are tries to address 
the problem of HGA under different variations. The main 
challenge which they were faced is walking style like speed 
etc. To resolve these issues, few researchers focused on the 
region of interest detection for features extraction and rest of 
them passed raw video frames directly for feature extraction.

Proposed methodology

Here, a novel method is proposed for gait recognition using 
aggregation of deep learning features. The proposed design, 
as shown in Fig. 3, consists of a series of steps. First, two 
pre-trained CNN models (AlexNet and VGG16) are retrained 
on gait datasets using a transfer learning approach, and the 
features are extracted from the second last Fully Connected 
Layer (FC7) in each. Second, we select the most discri-
minant features using the proposed probabilistic approach 
ENGMwCE. Third, the aggregation of these features is per-
formed using Canonical Correlation Analysis (CCA) and the 
features are subjected to KELM for final recognition.

Dataset collection

Two datasets are used in this work named CASIA-B [38] 
and CASIA-A [51]. The CASIA-B is a dataset comprising 
sample images from an indoor environment. It comprises 
images with 124 actors, including 93 male and 31 female, 
and consists of 11 view angles such as 0°–360°. Three vari-
ations are considered in this dataset like a normal walk (nm), 
walk with a bag (bg), and walk with a coat (cl). Each subject 
records 10 videos–6 videos of a normal walk, 3 videos for a 
walk with a coat, and 2 videos for a walk with a bag. A sub-
ject has three statuses of walking: normal walk (nm), wear-
ing a coat (cl), and carrying a bag (bg). Each video is taken 
at 25 frames per second (fps), with each having a resolution 
of 352 × 240 pixels. In this work, we have selected 54° and 
90° camera view angles for the evaluation of our work. A 
few sample frames are shown in Figs. 1 and 2.

The CASIA-A dataset consists of a total of 240 video 
sequences. Twenty subjects are involved in this dataset, and 
each subject records 12 videos in three different directions 
like parallel, 45°, and 90°, respectively. The length of each 
video in this dataset is based on the subject walking speed.
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Convolutional neural network (CNN)

Deep learning shows a huge interest in computer vision 
research due to improved classification performance [52]. 
CNN is a deep learning architecture, which consists of sev-
eral layers (input, hidden, and output). It was functional in 
many industrial applications like visual surveillance and 
biometrics [53–55]. CNN builds the graphical view of the 
mechanism of the individual, which can perform super-
vised learning as well as unsupervised learning. The kernel 
parameters of a convolutional layer are connected with hid-
den layers that later enables the CNN into a smaller weight 
for learning. Features are extracted automatically from these 
layers without using any preprocessing step. A simple CNN 
design consists of various layers and the first layer is the 
input layer. After the input layer, the convolutional layer is 
added to perform the convolutional operation. The convolu-
tional operation is based on the convolutional kernel defined 
by k1 × a and stride s1 × s2 . Mathematically, the convolution 
operation is defined by Eq. (1):

where, �n
l
 is the size of the convolutional layer of dimension 

k ×M − k1 − N − a and ⊗ denotes convolutional operation, 
�(.) denotes activation function, h(x,y) represent input, Wi

l
 

represent weights matrix, and � i) denotes the bias matrix, 
respectively. The weights and bias are updated after the 

(1)𝜓n
l
= 𝜙

(
Wi

l
⊗ h(x,y) + 𝛽 i

l

)
,

addition of another convolutional layer. Mathematically, the 
update in weights and bias are defined by Eqs. (2) and (3):

where, Wi+1
l

 represent updated weight matrix, � i+1
l

 represent 
updated bias matrix, r represent learning rate, and F repre-
sents fitness function. In this layer, initially defined a filter 
size of dimension n × k and normally its value is 3. The 
kernel size is 3 × 3 and number of channels are 32. The other 
parameters which are involves in this layer are learning fac-
tor and learning rate.

Next, ReLu layer is added to improve the problem of 
sigmoid partial gradient fit and gradient loss. This layer is 
mostly followed by the convolutional layer. In CNN archi-
tecture, the problem of overfitting is resolved through max-
pooling layer. Using this layer, reduce the length of the 
weight matrix. Mathematically, it is formulated by Eqs. (4) 
and (5):

(2)Wi+1
l

=
−r

q
Wi

l
−

r

n

(
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�Wi
l

)
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l
,
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l
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)
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l
,

(4)Mi
l
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(
Wi

l

)
,

(5)Mi+1
l

= Max
(
Wi+1

l

)
,

Fig. 3  The proposed architecture of deep aggregated features in KELM for Human Gait Recognition
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where the output matrix size after max-pooling operation is 
k ×

M−k1

c
×

(N−a)

d
 . Another important layer name fully con-

nected layer is including in a CNN used to extract the high-
level features of an image. The formulation of FC layer is 
defined by Eq. (6):

where, Yi
l
 denotes the output of FC layer and  denotes the 

layer before FC layer. In this layer, features are extracted. A 
Softmax layer is added after FC layer. This layer is known 
as the classification layer. The cross-entropy function is used 
in this layer to calculate the loss of classification output. A 
mostly sigmoidal function is used to train a CNN model.

Deep learning features extraction

Transfer learning (TL) In machine learning, TL is a concept 
of knowledge sharing from one domain to another domain 
within minimum time and less energy [56]. The main pur-
pose of TL is train an existing CNN model on selected data-
sets with same parameters. Consider a domain D and a task 
w can be well-defined by a space of label X and a prediction 
function f (.) that is learned from the vector of attribute and 
pairs of lable 

{
si, xi

}
 where si ∈ S and xi ∈ X . By consider-

ing the defect classification application of software module, 
X is a label set that contains true and false in this case. The 
value of xi is either true or false and the learner is considered 
as f (x) that is used for prediction of module of software s . 
From the above definition, a domain D =

{
S�,P(S)

}
 and a 

task w = {X, f (.)} . The Da can be defined as data of source 
domain where Da =

{(
sa1, xa1

)(
san, xan

)}
 where sai ∈ S�a is 

(6)

the i-th instance of data of Da and label of the corresponding 
class sai is xai ∈ Xa . By considering this Db can be as data 
of target domain where Db =

{(
sb1, xb1

)(
sbn, xbn

)}
 where 

sbi ∈ S�w is i th instance of data Db and class label for cor-
responding sbi is xbi ∈ Xw . Furthermore, the task of source 
can be demonstrated as wa and task of target as wb . The 
prediction function of source can be defined as fa(.) and for 
the target as fb(.) . Visually, it is also presenting from Fig. 4.

Training data explanation For CASIA B dataset, we utilize 
the first 74 subjects for training the model and the remaining 
50 subjects for testing the proposed scheme. This division 
means that we employ a 60:40 approach along with cross-
validation value of 10. For CAISA A dataset, we utilize the 
first 12 subjects for training the model and the remaining 8 
subjects for evaluation of the proposed system, where the 
cross-validation is 10.

Feature vector 1 In this work, we use two pre-trained CNN 
structures named AlexNet [57] and VGG 16 Net [58] for 
feature extraction. The visual structure of AlexNet is shown 
in Fig. 6. In this CNN structure, two convolutional layers 
(CONV), three grand convolutional layers (G-CONV), seven 
ReLu layers, two normalization layers, 3 max-pooling, 3 FC 
layers, one Softmax, two dropout layers, and one classifica-
tion layer are used. A sigmoid function is used to train this 
model. For training the model, the original RGB frames are 
passed to the network that is later resized according to the 
size of the first layer named the input layer. In AlexNet, 
the input layer size is 227 × 227 × 3 . After retraining this 
model using TL, we extract features from FC Layer 7 which 
is l − 1 layer of FC8 (from Fig. 5). The nature of FC layer is 
in the form of numeric features and features vector must be 

Fig. 4  Visual concept of Transfer Learning for knowledge sharing to new model
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1D. The length of resultant 1D vector is N × 4096, where 
N represent number of frames used for training and testing. 
Mathematically, this vector is denoted by �V1.

Feature Vector 2 For extraction of the second feature vec-
tor, we use a pre-trained VGG16 Net CNN structure. Like 
AlexNet, this structure is also originally trained on Ima-
geNet, where the training function is sigmoid. This CNN 
structure consists of thirteen convolutional layers, thirteen 
ReLu activation, five max pooling, two dropouts, three FC 
layers, and one Softmax layer. For training the model on 
the selected datasets, the original RGB frames are passed to 
the network that is later resized according to the size of the 
first layer named the input layer. In VGG16, the input layer 
size is 224 × 224 × 3 , so all frames are resized according to 
the input layer size. Visually, the VGG16 Net architecture 
is shown in Fig. 6. The FC layer seven is considered in this 
work for extraction of the deep learning features. The sizes 

of convolutional filters are fixed in this structure. The result-
ant feature vector dimension is N × 4096 , denoted by �V2.

Discriminant feature selection

The performance of a classification system depends on the 
number of input features. From previous studies, it is shown 
that the removal of redundant information increases the rec-
ognition accuracy and minimizes the execution time. The 
feature selection methods select the best subset of features 
from the original vector instead of generating new features.

We have two feature vectors denoted by �V1 and �V2 of 
N × 4096 . Suppose that � is a vector of a subset of features 
of �V1 and �1 is a vector of a subset of features �V2 . First, we 
consider vector � =

{
�1,… , �M

}
,M ≤ 4096, is a vector of 

input features and Yi =
{
yi1 ,… , yiq

}
 represents correspond-

ing labels for each feature �i, i = 1,… ,M, extracted from an 

Fig. 5  A general architecture of AlexNet pre-trained CNN

Fig. 6  A general architecture of VGG16 pre-trained CNN
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image, respectively. For the selection of the most discrimi-
nant features, we propose a new technique named Euclidean 
Norm and Geometric Mean Maximization along with Con-
ditional Entropy (ENGMwCE). Using this technique, we 
initially select the most discriminant features based on the 
maximization property of Euclidean norm (EN) and Geo-
metric mean norm (GMN). Then, we combine the informa-
tion of both techniques using a serial approach. Later, con-
ditional entropy is applied to refine the negative features and 
passed them to a threshold function. The features that meet 
the condition of the threshold function are examined through 
fitness function (FKNN). Based on FKNN error, the condi-
tion is terminated where the target error is 0.08. If FKNN 
error is below the target error, then the selection process is 
terminated and obtained a selected feature vector. Similarly, 
this process is performed for feature vector �V2 . Mathemati-
cally, the selection process is defined as follows:

First, the EN is calculated from vector � and selects only 
those features whose are greater L2 norm. The formulation 
is defined by Eq. (7):

where �k denotes feature subset, �  denotes mutual informa-
tion function that is utilized to compute the mutual informa-
tion among features, and it is defined as:

p(a, b) is probability in that a and b occur together, and Y  
denotes label set, respectively. The formulation of � 3

(
�i, Y

)
 

is given by Eqs. (9) and (10):

Next, we implement a GM maximization approach on � . 
The GM maximization selects the largest GM values. The 
main difference among features through GM is a scaling 
factor that is mathematically defined by Eq. (11):

(7)ENM = � = �k ∪ argmax
�i∈�−�

[|||�
3
(
�i, Y

)|||
]
,

(8)�
(
�i, Y

)
=
∑
a∈�i

∑
b∈Y

p(a, b) log2
p(a, b)

p(a)p(b)
,

(9)� 3
(
�i, Y

)
=
{
�
(
�i, y

)|y ∈ Y
}
,

(10)|||�
3
(
�i, Y

)||| =
√√√√ q∑

j=1

�
(
�i, yj

)
.

(11)G = �1 = �1k ∪ argmax
�i∈�−�1

[
G
(
�
(
�i, Y

))]
,

(12)

G
(
𝛹
(
𝜉i, Y

))
=

(
q∏
j=1

𝛹
(
𝜉i, yj

))1∕q

,𝛹
(
𝜉i, yj

)
> 0, 1 ≤ j ≤ q.

Based on this formulation, the selected features of both 
� and �1 are simply concatenated using a serial approach. 
After applying the serial approach, the conditional entropy 
is implemented to remove the uncertainty among features. 
The formulation of CE is formulated by Eqs. (13) and (14):

The entropy vector is sorted into descending order and 
defines a threshold function to select the best features. A 
threshold function is formulated by Eq. (15):

where �xi represents the selected features in each iteration, 
and the total number of iterations depends on the target 
error rate or 100 iterations, and � denotes the mean value 
of entropy vector H̃ . This function ensures that only those 
entropy features are selected that are greater than the mean 
value of H̃ and the rest of them are removed. These selected 
features are embedded into a fitness function which is Fine 
KNN, and the error rate is computed, where the target error 
rate is 0.08. After meeting this error rate, the selected vector 
is obtained, denoted by �s of dimension N × K1 . Similarly, 
this formulation is performed for feature vector 2 and a vec-
tor is obtained of dimension N × K2 and denoted by �s1.

Feature aggregation

Feature aggregation combines features in one matrix to 
increase the salient information for improved recognition 
accuracy. Moreover, the aggregation of features represents 
to reduce the overall vector length [59, 60]. In this work, 
for aggregation of deep learning features, we implemented 
a canonical correlation analysis (CCA) approach [61]. In 
this approach, the correlation is computed among two sets 
of features and find the higher correlated transformed fea-
tures. Finally, the transformed features are combined as a 
resultant vector.

Consider, �s ∈ ℝ
N×K1 and �s1 ∈ ℝ

N×K2 are two selected 
feature vectors, where N denotes training samples and K1 , 
K2 represent the dimension of feature vectors �s and �s1 , 
respectively. Let Δss ∈ ℝ

K1×K1 and Δs1s1 ∈ ℝ
K2×K2 denotes 

the covariance matrix of �s and �s1 , respectively, and 
Δss1 ∈ ℝ

K1×K2 is the between-sets covariance matrix, where 
Δs1s = ΔT

ss1
 . The overall covariance matrix is defined as 

Δ ∈ ℝ(K1+K2)×(K1+K2) and computed by Eq. (16):

(13)

H
(
�i+1, �i

)
= −

∑
�k∈�

p
(
�k
) ∑
�k+1∈�

p
(
�k+1|�k

)
log p

(
�k+1|�k

)
,

(14)H
(
�i+1, �i

)
= −

∑
�k∈�

∑
�k+1∈�

p
(
�k, �k+1

)
log2 p

(
�k+1|�k

)
.

(15)𝜉sl(i, y) =

{
𝜉xi, if H̃ ≥ 𝜇

Remove otherwise
,
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where ℂ represents covariance function and Δ denotes covar-
iance matr ix. The covar iance is computed by 
ℂ =

∑ (si−s̄)(s1i−s̄1)
N

 . The key objective of CCA is to define a 
linear combination between �∗

s
= �T

s
�s and �∗

s1
= �T

s1
�s1 

which maximize the pair-wise correlation through both fea-
ture sets as following Eqs. (17)–(19):

Next, the problem of maximization is resolved through 
Lagrange Multipliers to satisfy the equality constraint. 
Finally, both transformed features are combined through the 
simple concatenation method is defined by Eq. (20):

where Fin(V) is the final aggregated feature vector embed 
into a Kernel ELM for final classification. The features in 
final aggregated feature vector Fin(V) are also plotted in 
Fig. 7.

Kernel ELM

In this section, we explain the classification method which 
we are using for final recognition. The Extreme Learning 
Machine (ELM) is a Feed Forward Neural Network (FWNN) 
that consists of a single hidden layer [62]. As compared to 
NN, in ELM, a few parameters are required to train a model. 
In ELM, the weights and bias are not adjusted, whereas 
only hidden layers are needed to be attuned. Based on these 
characteristics of ELM, it has a faster convergence rate and 
learns better.

G i ve n  t r a i n i n g  fe a t u r e s  �̃
∗
∈ FV(V)  a n d 

�̃
∗
∈
{(

fi, yj
)
, i, j = 1, 2, 3,…N

}
 where fi ∈

[
fi1, fi2,… , fN

]
 

represent input feature vector and yj ∈
[
yj1, yj2,… , yjN

]
 rep-

resent the corresponding labels. Then, the output function 
of KELM is defined by Eq. (21):

(16)Δ =

(
ℂ
(
�s
)

ℂ
(
s, s1

)
ℂ
(
s1, �s

)
ℂ
(
s1
)
)

=

(
Δss Δss1

Δs1s
Δs1s1

)
,

(17)ℂor
(
�∗
s
, �∗

s1

)
=

ℂ

(
�∗
s
, �∗

s1

)

�2
(
�∗
s

)
, �2

(
�∗
s1

) ,

(18)�2
(
�∗
s

)
= �T

s
Δss�s,

(19)�2
(
�∗
s1

)
= �T

s1
Δs1s1

�ss1
.

(20)Fin(V) = �∗
s
+ �∗

s1
=

(
��s

��s1

)T(
�s
�s1

)
,

(21)�(f ) = h(f )b = h(f )HT
(
II

C
+HHT

)−1

Ô,

where Ô is target output, II
C
 is kernel parameter, II is an iden-

tity matrix, C is the penalty parameter, and H represents 
an output matrix, respectively. Then, the kernel function of 
ELM is defined by Eqs. (22)–(24):

where g(f ) is a model function of ELM and �
(
f , fi

)
 is the 

kernel function of KELM. The kernel function is defined 
by �

(
f , fi

)
= f ⋅ fi + b̃ . As in this work, we are using the 

polynomial kernel function. Finally, the error between the 
output Ô and target labels Y ∈ y is calculated by Eq. (25) for 
final recognition.

The prediction results of the proposed scheme are shown 
in Fig. 8. In this figure, the testing videos are passed to the 
proposed scheme and in an output labeled results are gener-
ated (a normal walk, wearing a coat, and carrying a bag). 
We get these images in the testing phase, where each label 
is assigned based on the train model.

(22)K̃ELM = HHT,

(23)K̃ELM = h
(
fi
)
h
(
fj
)
= �

(
fi, fj

)
,

(24)g(f ) =

⎡⎢⎢⎢⎣

K
�
f , fi

�
.

.

K
�
f , fN

�

⎤⎥⎥⎥⎦

��
II

C
+ �KELM

�−1

Ô

�
,

(25)
N∑
j=1

‖‖‖‖
(
Ôj − yj

)‖‖‖‖ = 0.

Fig. 7  Visualization of aggregated features in terms of scatter plots
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Results and analysis

We present the evaluation results of the proposed method 
using accuracy, figures, and visual plots for ROC curves, 
confusion matrix, and box plots. The results are computed 
from three different features sets as follows: (1) The features 
of AlexNet are computed from FC7, and the best amongst 
them are selected using the proposed ENGMwCE method. 
(2) The features of VGG16 Net are computed from FC7, and 
the robust features are selected using the proposed ENGM-
wCE selection method. (3) Here, aggregation of the robust 
features is performed. The selected features, using each 
feature set, are subjected to the KELM classifier for final 
recognition. The performance metrics used for the quan-
titative comparison include accuracy, error rate, and com-
putational time. Moreover, the defined feature sets are also 
tested on a few other classifiers, such as ELM, Multi-class 
Support Vector Machine (MSVM), Fine Tree, Naïve Bayes, 
and Ensemble tree.

Implementation detail

The proposed method is implemented in a series of steps. 
Initially, we configure Matconvenet deep learning library 
and split the training data and testing (60, 40). After that, we 
re-train the existing deep learning networks using TL. For 
re-training, we set mini-batch size of 64 and learning rate of 
0.006 for both. Later, we select the most discriminant infor-
mation from both networks using Euclidean Norm and Geo-
metric Mean Maximization along with Conditional Entropy 
(ENGMwCE). The Fine KNN is utilized for fitness evalua-
tion, where the method is Euclidean distance and the number 
of neighbors selected is 10. The best-selected information 
is fused in the next step and passed the resultant informa-
tion in the KELM. The target labels are provided to KELM 
for final output. Thereafter, we test our method on videos, 
and in the output; we get labeled results as few of them are 
shown in Fig. 8. A Personal Desktop Computer is used in 
the implementation where the specification of the system 

Fig. 8  Proposed recognition results using CASIA B (90°) for KELM Classifier
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is- Corei7, 256 SSD, 16 GB of RAM, and 8 GB Nvidia 
Graphics Card. Moreover, MATLAB2019b is employed as 
an implementation tool.

Results of CASIA B dataset (54°)

In Table 1, the results of 54° angle are presented for each of 
the three features sets using several widely adopted classi-
fiers. The results must be interpreted as follows: the first row, 
for example, shows that the features set 1, when augmented 
with KELM classifier, manages to achieve an accuracy of 
88.10%, against an error rate of 11.90%, for 14.296 s of 
computational time. While most of the table is self-explan-
atory in the same way, two important observations about the 
results are discussed next. Before proceeding, however, note 
that the entries in bold font highlight the best accuracies, 
minimum error, and computational time of the proposed fea-
tures aggregation methodology, to assist in understanding 
the forthcoming description.

It is noted that the proposed aggregation methodology 
outperforms the other two feature sets for accuracy and 
error, irrespective of the classifier used. This is evident in 
the last row of each group of three rows—where the latter 
corresponds to a different classifier. This gives the proposed 
methodology an immense advantage over the existing ones. 
On the other hand, it is noted that the aggregation of fea-
tures increases the execution time. For instance, observe the 
jump in the last column between rows 2 and 3 for KELM 
classifier. This trend continues for each classifier as well. 
The reason behind this is that after aggregation, the feature 

dimension is increased, and the newly obtained vector adds 
more relevant information for correct recognition. Simi-
larly, for other classifiers like ELM, Fine Tree, Naïve Bayes, 
MSVM, and Ensemble Tree, the accuracy achieved by the 
proposed method is significantly higher and the error rate is 
significantly lower than the other two approaches. However, 
the computational time increases in each case.

The KELM classifier outperforms all others for accu-
racy, error, and computational time. It is recommended that 
this classifier be augmented with the proposed aggregation 
technique for the best result. The performance of KELM 
for the feature set 1 is verified through Fig. 9, which pre-
sents the confusion matrix for the three walking statuses. 
Likewise, Fig. 10 presents the confusion matrix for the 
accuracy of KELM on the feature set 2. Finally, for the 
proposed approach with the KELM classifier, the accuracy 
may be confirmed by Fig. 11. Figure 12 also confirms the 
same result in the form of Receiver-Operating Characteristic 
(ROC) curves. From the latter, the true positive rate and area 
under curve (AUC) of each gait class is calculated, this later 
provides an accuracy value.

Results of CASIA B dataset (90°)

Table 2 presents the results of 90° angle for the used fea-
ture sets. All the observations made for the 90° angle hold 
equally true in this case as well. While the feature set 2 
performs better than the features set 1 in terms of both accu-
racy and error rate. The proposed aggregation method, on 
the other hand, outperforms each competitor in the achieved 

Table 1  Proposed recognition 
results using 54° angle of 
CASIA B dataset

Method Feature set Performance evaluations

Set 1 Set 2 Proposed Accuracy (%) Error (%) Time (s)

KELM ✓ 88.10 11.90 14.296
✓ 90.04 9.96 17.467

✓ 96.90 3.10 23.171
ELM ✓ 85.42 14.58 21.979

✓ 85.96 14.04 19.117
✓ 93.70 6.30 27.528

Fine tree ✓ 83.40 16.60 20.579
✓ 84.26 15.74 19.917

✓ 89.20 10.80 31.284
Naïve Bayes ✓ 86.10 13.90 20.336

✓ 84.94 15.06 25.629
✓ 90.20 9.80 35.661

MSVM ✓ 83.90 16.10 26.521
✓ 86.82 13.18 17.830

✓ 90.30 9.70 34.458
Ensemble baggage tree ✓ 85.96 14.04 21.446

✓ 87.34 12.66 27.925
✓ 92.50 7.50 38.961
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accuracy and error rate irrespective of the used classifier. 
Once again, the proposed method costs more computational 
time, due to the increase of the feature dimension.

The KELM classifier outperforms the other options in 
this case as well, where the achieved accuracy is confirmed 
by the confusion matrices illustrated in Figs. 13, 14, 15. In 
the first, the accuracy of the KELM classifier on the fea-
ture set 1 is verified by analyzing the diagonal values. The 
latter represents the correct prediction rate. In Fig. 14, the 
efficiency of the KELM classifier is verified for the feature 
set 2. Similarly, the accuracy of the KELM on the proposed 
features set is verified through Fig. 15. Moreover, the ROC 
curves are also plotted for the accuracy of the proposed 
scheme on the KELM classifier in Fig. 16.

Different view angles results (CASIA‑B dataset)

Table 3 shows the recognition results of different view 
angles using CASIA-B dataset. The results are presented 
for three variations such as carrying a bag, normal walk, 
and walk with wearing a coat. The best accuracy for 36° is 
91.46% on KELM classifier. Accuracy of other classifiers is 
89.77%, 89.93%, 88.15%, 90.41%, and 89.80%, respectively. 
For 54°, the KELM classifier gives better performance. 
The achieved accuracy of KELM is 96.90%, whereas the 
second-best performance is 93.70%. Similarly, the KELM 
classifier gives better accuracy for the rest of the selected 
view angles such as 72°, 90°, 108°, and 144°, respectively. 
Their achieved accuracy are 94.20%, 96.50%, 91.33%, and 

Fig. 9  Confusion matrix of 
KELM for feature set 1 (CASIA 
B of 54°)

Fig. 10  Confusion matrix of 
KELM for feature set 2 (CASIA 
B of 54°)



2677Complex & Intelligent Systems (2023) 9:2665–2683 

1 3

92.49%, respectively. It is also shown that the MSVM clas-
sifier also gives consistent accuracy.

Results on CASIA A dataset

The results are given in Table 4 for CASIA-A dataset using a 
testing ratio of 40% and CV = 10. In this table, it is presented 
that KELM gives better accuracy of 98.76% along with FNR 
is 1.24% and testing time 71.772 (s). The performance of 
KELM is also verified in Table 5. In this table, it is illus-
trated that the correct recognition rate of Oblique 45 class is 
98.96%, whereas the Frontal 90 and Leteral 0 have 99.06% 
and 98.24% correct recognition rate. For other classifiers 
such as ELM, Fine Tree, Naïve Bayes, MSVM, and Bag-
gage tree accuracies are 96.21%, 91.77%, 93.06%, 97.96%, 
95.53%, respectively. In the last, we compare the proposed 
accuracy with a recent method, as given in Table 6. From 
this table, it is illustrated that the proposed method achieves 

improved accuracy for Oblique 45 and Frontal 90, whereas 
on Leteral 0, the method presented in [40] gives better per-
formance. Overall, the proposed method shows improved 
recognition accuracy on this dataset.

Discussion

For a fair evaluation of the feature aggregation approach, 
we have also performed the same simulations on two widely 
adopted feature sets, in conjunction with several renowned 
classifiers. We have demonstrated that the proposed features 
aggregation methodology, once augmented with the Kernel 
Extreme Learning Machine (KELM) classifier, achieves 
the best Human Gait Recognition (HGR) accuracy, with 
minimum error rate; thereby outperforming the existing 
equivalents. Figures 17 and 18 shows scatter plots of the 
KELM best accuracy on the proposed method for 54° and 

Fig. 11  Confusion matric of 
KELM using the proposed 
method (CASIA B of 54°)

Fig. 12  ROC plots of CASIA B dataset using 54° angle
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90°. Based on these figures, the false predicted points are 
represented by the cross sign.

A detailed comparison is also conducted with recent tech-
niques in Table 7. In this table, the techniques are mentioned 
that also use 54° and 90° of CASIA B dataset for human 
gait analysis. Recently, Asif et al. [42], presented a deep 
learning framework for gait recognition. For experimen-
tal analysis, they used 54° angle of CASIA B dataset and 
achieved an accuracy of 94.70%. Arshad et al. [40] presented 
a binomial distribution based approach for gait recognition 
and achieved 87.70% accuracy on 90° angle of CASIA B 

dataset. Castro et al. [63] improved the previous accuracy 
up to 90.6%. Later, in [43], the authors improved the current 
accuracy of gait recognition using deep learning. They used 
CASIA B dataset and selected 90°, where the achieved accu-
racy was 93.30%. In the proposed work, we have achieved 
an improved accuracy of 96.50% and 96.90% on 54° and 
90° using the proposed selected features aggregation in the 
KELM classifier, giving this work a substantial edge over 
the existing equivalents. Anusha and Jaidhar [49] suggested 
a novel binary descriptor and used feature dimensionality 
reduction to achieve 91.90% accuracy on 54° CASIA B 

Table 2  Proposed recognition 
results using 90° angle of 
CASIA B dataset

Method Feature set Performance evaluations

Set 1 Set 2 Proposed Accuracy (%) Error (%) Time (s)

KELM ✓ 90.53 9.47 19.830
✓ 91.60 8.40 13.372

✓ 96.50 3.50 27.491
ELM ✓ 87.23 12.77 17.883

✓ 86.18 13.82 19.047
✓ 91.36 8.64 28.004

Fine tree ✓ 87.36 12.64 17.016
✓ 86.02 13.98 15.184

✓ 91.16 8.84 24.716
Naïve Bayes ✓ 84.67 15.33 21.073

✓ 88.92 11.08 19.736
✓ 92.50 7.50 33.163

MSVM ✓ 86.94 13.06 21.847
✓ 87.48 12.52 23.994

✓ 92.76 7.24 36.940
Ensemble Baggage Tree ✓ 86.68 12.47 23.552

✓ 90.24 8.76 21.040
✓ 93.30 3.40 31.553

Fig. 13  Confusion matrix of 
KELM for feature set 1 (CASIA 
B of 90°)
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Fig. 14  Confusion matrix of 
KELM for feature set 2 (CASIA 
B of 90°)

Fig. 15  Confusion matrix of 
KELM for the proposed method 
(CASIA B of 90°)

Fig. 16  ROC plots of CASIA B dataset using 90° angle
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images. Leyva and Sanchez [50] suggested a spatio-temporal 
binary descriptor and combined it with Fisher Vectors to 
obtain 84.90% accuracy on 54° CASIA B images.

To analyze the proposed method, we have performed 
the statistical analysis. In the analysis, we perform simula-
tion up to 500 iterations, and in the output, three values are 
achieved: minimum, average, and maximum. Based on these 

values, we also determine the confidence interval. Table 8 
shows the values for the selected view angles such as 36°, 
54°, 72°, 90°, 108°, and 144°, respectively. We only find 
these values for KELM to check the consistency of the pro-
posed scheme. From this table, it is illustrated that the val-
ues of the proposed method are consistent after the selected 
iterations. A very minor change occurs due to an update in 
the feature values. In this table, we also calculate the CI at 
confidence level 95%, 1.960σx ̄. Also, a standard error mean 
has been calculated for each view angle and it is shown that 
the performance of the proposed method on 108° is much 
consistent as compared to other view angles.

Conclusions

In an attempt to improve the efficiency of human gait analy-
sis (HGA) using deep learning, we have proposed an entire 
framework, mainly based on an aggregation of deep features, 
augmented with the Kernel Extreme Learning Machine 
(KELM) classifier. In this regard, a novel mechanism called 
Euclidean Norm and Geometric Mean Maximization along 
with Conditional Entropy has been proposed for selecting 
the most relevant and robust deep features. Canonical Corre-
lation Analysis (CCA) has been employed for feature aggre-
gation. The evaluation of the proposed scheme is performed 
on a publicly available gait database named CASIA B.

From the above discussion, we conclude that the selection 
of discriminant features from the original extracted feature 
sets improves the classification performance of the selected 
patient’s gait. The original features include several redundant 
and extraneous features that affect the recognition perfor-
mance. However, during the selection process, a few impor-
tant features are also lost. Therefore, the aggregation of deep 
learning features that are extracted from two different CNN 
models (VGG16 and AlexNet), improve the features infor-
mation, and fill the gap of the features removed during the 
selection process. It has been observed that following the 
aggregation process, the recognition accuracy improves, but 
the execution time increases, which is a limitation in this 

Table 3  Proposed recognition 
results using different view 
angles of CASIA B dataset

Classifier View angles

36° 54° 72° 90° 108° 144°

KELM 91.46 96.90 94.20 96.50 91.33 92.49
ELM 89.77 93.70 92.55 91.36 87.54 90.55
Fine Tree 89.93 89.20 90.63 91.16 81.42 86.43
Naïve Bayes 88.15 90.20 88.04 92.50 88.90 87.17
MSVM 90.41 90.30 90.72 92.76 90.72 90.67
Ensemble Baggage Tree 89.80 92.50 91.14 93.30 88.53 89.91

Table 4  Proposed recognition results of the proposed method on 
CASIA-A dataset

Classifier Validation measures

Accuracy (%) FNR (%) Time (s)

KELM 98.76 1.24 71.772
ELM 96.21 3.79 98.516
Fine Tree 91.77 8.23 117.442
Naïve Bayes 93.06 6.94 97.512
MSVM 97.96 2.04 90.153
Ensemble baggage tree 95.53 4.47 105.421

Table 5  Confusion matrix of KELM using CASIA-A dataset

Gait Class Gait class

Oblique 45 
(%) (%)

Frontal 90 (%) Lateral 0 (%)

Oblique 45 98.96 1 < 1
Frontal 90 < 1 99.06 < 1
Leteral 0 1 < 1 98.24

Table 6  Comparison with existing techniques for CASIA-A dataset

Method Year Gait angles of CASIA-A dataset

Oblique 45 
(%)

Frontal 90 (%) Lateral 0 (%)

Habiba et al. 
[40]

2019 97 99 99

Proposed 2020 98.96 99.06 98.24
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work. Moreover, we also conclude that the kernel selection 
of ELM is a major issue, which is yet to be addressed. Based 
on the kernel selection, we can easily analyze the perfor-
mance of KELM. In the future, we aim to explore more 
optimistic approaches and evaluate more angles of CASIA 
B dataset. The developed method can contribute to ensur-
ing security in smart cities by supporting intelligent video 
analytics of video surveillance material.

Fig. 17  Visualization of scatter plots for CASIA B dataset (54°)

Fig. 18  Visualization of scatter plots for CASIA B dataset (90°)

Table 7  Comparison of proposed feature aggregation scheme with 
existing methods

Method Year Dataset Angle Accuracy (%)

Mehmood et al. [42] 2020 CASIA B 54° 94.70
Zeng et al. [44] 2014 CASIA B 90° 90.43
Yao et al. [64] 2019 CASIA B 54° 71.57
Arshad et al. [40] 2019 CASIA B 90° 87.70
Arshad et al. [43] 2020 CASIA B 90° 93.30
Zhang et al. [45] 2019 CASIA B 54° 91.00
Anusha and Jaidhar [49] 2020 CASIA B 54° 91.90
Leyva and Sanchez [50] 2019 CASIA B 54° 84.90
Proposed 2020 CASIA B 54° 96.50
Proposed 2020 CASIA B 90° 96.90
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