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Abstract
Cartesian Genetic Programming (CGP) is a variant of Genetic Programming (GP) with the individuals represented by a two-
dimensional acyclic directed graph, which can flexibly encode many computing structures. In general, CGP only uses a point
mutation operator and the genotype of an individual is of fixed size, which may lead to the lack of population diversity and
then cause the premature convergence. To address this problem in CGP, we propose a Frameshift Mutation Cartesian Genetic
Programming (FMCGP), which is inspired by the DNAmutationmechanism in biology and the frameshift mutation caused by
insertion or deletion of nodes is introduced to CGP. The individual in FMCGP has variable-length genotype and the proposed
frameshift mutation operator helps to generate more diverse offspring individuals by changing the compiling framework of
genotype. FMCGP is evaluated on the symbolic regression problems and Even-parity problems. Experimental results show
that FMCGP does not exhibit the bloat problem and the use of frameshift mutation improves the search performance of the
standard CGP.

Keywords Cartesian genetic programming · Evolutionary computation · Frameshift mutation

Introduction

Genetic programming (GP) refers to the automatic evolu-
tion of computer programs [18]. In the past 40 years, a lot
of variants of GP have been proposed [1,15] and a variety
of applications of GP have been studied in computer sci-
ence [4,30], biomedical [11], chemistry [2], etc. Miller and
Thomson proposed Cartesian Genetic Programming (CGP)
[25,29], which can flexibly encode many computing struc-
tures and avoid the bloat problem in GP [21,23].

The individuals in CGP have a fixed-length genotype rep-
resented by a two-dimensional acyclic directed graph. In
[21], the individuals in CGP are proposed to be of variable-
length genotype to avoid the bloat problem. However, the
variable-length genotype by changing the number of redun-
dant nodes may lead to poor evolutionary fitness and extra
processing [21]. In general, crossover operator in CGP is
found to be disruptive to individuals [19]. Therefore, in the
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standard CGP, variable-length genotype is not used and the
mutation operator is the unique evolutionary operator.

However, the fixed-length genotype may raise the prob-
lem that the size of CGP individual network structure, which
means the length of genotype, needs to be specifically
designed by the user according to the problems. Individ-
ual genotypes that are too long or too short may affect the
efficiency of evolution [5]. In addition, the offspring are gen-
erated by point mutation in the parents, which means that
only a few genes have changed in the offspring compared to
the parent. And if the mutation occurs at inactive nodes, the
fitness of the offspring individual cannot be different from
the parent, and then results in increasing the computation
cost. Due to the insufficient diversity, the convergence speed
is dependent on the initial population.

To make individual genotype length adaptive to different
problems and increase population diversity, we propose the
frameshift mutation in CGP, which is inspired by the DNA
mutation mechanism in biology. The proposed algorithm is
called Frameshift Mutation Cartesian Genetic Programming
(FMCGP). The frameshift mutation changes the compiling
framework of genotype to increase diversity by randomly
insertion or deletion of nodes. The individual in FMCGP,
therefore, has variable-length genotype.

The structure of this paper is organized as follows.
Section 2 describes the standard CGP and related work
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on genetic operators in CGP. Section 3 introduces the
frameshift mutation in DNA in biology and the introduc-
tion of frameshift mutation in FMCGP. Experimental results
of two kinds of regression problems are given in Sect. 4. Sec-
tion 5 discusses the population diversity and bloat problem of
FMCGP. Conclusions and further work are drawn in Sect. 6.

Related work

Standard CGP

Encoding of standard CGP

In CGP, individuals are represented in the form of a two-
dimensional directed acyclic graph [29]. The genotype of
an individual is represented by integers. One gene, which is
used to represent the function of the node, is called function
gene. The remaining genes, called connection gene, are used
to indicate where the node gets its data [22]. The selected
functions are set by the user and are listed in the function
lookup list. The nodes in the graph take input data from the
forward nodes or program input. Some nodes ignored in the
phenotype are called inactive nodes and the others are called
active nodes [24]. The length of genotype is fixed, since the
number of nodes in the CGP network is fixed. However, the
length of the phenotype can be any value from zero to the
total number of nodes, which depends on the connection of
the internal nodes of the network [22].

There are three parameters in CGP that should be deter-
mined by the users, which are the number of columns Nc,
the number of rows Nr , and the levels-back l [24]. The
parameters Nc and Nr determine the arrangement of the
CGP network, and the maximum allowable number of nodes
Ln = Nc ∗ Nr . The parameter l defines the range of columns
of nodes that each node can get input data from. If l = 1,
each node can only connect to the node in the previous col-
umn. When l = Nc, the nodes of the full graph can be freely
connected forward.

The evolution strategy used in CGP is the (μ + λ), where
μ refers to the number of individuals selected from the pop-
ulation to generate offspring in each generation and usually
takes the value 1, and λ refers to the number of offspring
individuals to produce in each generation with the value 4 in
general [19].

Allelic constraints

The values that genes can take are highly constrained in CGP.
When genotypes are initialized or mutated, these constraints
should be obeyed [22]. The function genes of the individuals
in CGP are presented by F , the connection genes are pre-
sented by C and the output genes are presented by O . The

function genes F should follow:

0 ≤ F ≤ n f , (1)

where n f refers to the number of allowed primitive node
functions. The connection genes C should meet the require-
ment:

{
ni + ( j − l)nr ≤ Ci j ≤ ni + jnr j ≥ l

0 ≤ Ci j ≤ ni + jnr j < l,
(2)

where i = 1, 2, . . . , Nr , is the row position of the node;
j = 1,2,…,Nc, is the column position of the node. And ni is
the number of program inputs. The output genes O should
follow:

0 ≤ Ok < ni + Ln, (3)

where k = 1, 2, . . . , no is the output gene’s index, no is the
number of output genes, and Ln is the user-determined upper
bound of the number of nodes.

Review of work on operators in CGP

Many studies on crossover operator or mutation operator in
CGP [19] have been conducted for improving the optimiza-
tion performance.

Clegg et al. [6] proposed a real-valued representation for
CGP and a new crossover operator, which recombines two
genotype by arithmetic crossover with a random weighting
factor. This new crossover was evaluated on the symbolic
regression problems and has shown to be useful to improve
convergence speed. Slanỳ et al. [27] studied the functional-
level CGP including single and multipoint crossover oper-
ators. The experimental results showed that the mutation
operator and single-point crossover operator can generate
the smoothest landscapes for the image operator design prob-
lems. Kalkreuth [12] introduced a new crossover technique
which recombines subgraphs of two selected graphs. Exper-
imental results on symbolic regression, boolean functions,
and image operator design problems showed that the new
crossover operator can improve the performance of CGP.

Goldman et al. [10] introduced a variant of the standard
point mutation technique called single active-gene mutation
strategy (SAGMS). The mutation operator in this strategy
mutates exactly one active gene for all the offspring, which
has shown to be useful for improving performance. On the
basis of this word, Kalkreuth [13] proposed the advanced
phenotypicmutation to activate anddeactivate randomly cho-
sen function nodes. The experimental results indicated that
this method could be beneficial for CGP. This advanced phe-
notypic mutations is evaluated in Sect. 4 of this paper to
compare with the baseline CGP and the proposed CGP.
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Fig. 1 An example of
frameshift mutation in DNA

The proposed FMCGP

Frameshift mutation in biology in DNA

Gene mutations in biology can be generally divided into two
categories, which are base substitution [9] and frameshift
mutations [7]. Base substitution mutation is a kind of muta-
tion that one base pair is replaced by another base pair in a
DNA molecule. After base substitution mutation, only one
amino acid corresponding to the base pair may be affected.
The basic point mutation in CGP is single-point mutation,
which belongs to base substitution mutation if mapping it to
biology.

Compared to base substitution mutation, frameshift muta-
tion causes a much larger change in DNA and amino acid.
For frameshift mutation [7], DNA coding sequences can be
misaligned when one or several base pairs are inserted or lost
at a certain position in a DNA fragment. Figure 1 shows an
example of the frameshift mutation in DNA. As shown in
Fig. 1a, when insertion mutation happens and a base ‘A’ is
inserted, the protein encoded from DNA is totally changed
after the mutation point. As shown in Fig. 1b, when deletion
mutation happens and a base ‘A’ is lost, the protein encoded
from DNA is also totally changed after the mutation point.
The frameshift mutation changes the reading frame of DNA,
which makes the polypeptide chain totally different from the
correct one. From the perspective of phenotype, frameshift
mutation increases the diversity of gene expression, although
it may harmful in biology.

Frameshift mutation in CGP

Inspired by the frameshift mutation in DNA, we introduce
the frameshift mutation operator in CGP with the purpose

to make the population more diverse and improve the abil-
ity of avoiding the premature convergence. The designed
frameshift mutation can be caused by two operations, which
are the insertion and deletion of nodes in the CGP network.
These two operations make individuals in FMCGP have a
variable-length genotype, which changes the size of CGP
network adaptively according to the problem.

Frameshift mutation caused by insertion

As shown in the left part of Fig. 2, it is a CGP individual
containing 7 network nodes and 1 input node. The number
of rows is Nr = 1, the number of columns is Nc = 7,
and the levels-back is l = Nc = 7, which means that any
nodes can connect to its predecessor node without position
restrictions. These 7 nodes are termed as Node 1–Node 7.
Each node contains 1 function gene and 2 connection genes,
and all genes follow the allelic constraints. The Node 6 is set
as the output node. The genotype is as follows:

0-100 210 312 423 543 642 764-6.
As shown in the right part of Fig. 2, if the insertion muta-

tion pointer points to Node 4, a new node named Node 8 is
inserted before Node 4. The gene of the new node should
also obey the allelic constraints. The genotype is changed as
follows:

0-100 210 312 823 423 543 642 764-6.
After the insertion of the new node, the output gene is still

‘6’. However, the output node is changed implicitly from
Node 6 to Node 5 since the frameshift mutation. Besides,
Node 4 and Node 6 change to be inactive nodes and the
Node 5 is activated. As all nodes after the new node move
backward, the index of these nodes is changed. That is the
reason why most genes in individuals are not altered, but the
phenotype compiled has changed significantly.
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Fig. 2 Frameshift mutation
caused by insertion in FMCGP.
Grey nodes indicate inactive
nodes, solid lines indicate active
connections, and dashed lines
indicate inactive connections.
The red line indicates the
connection that changed after
the frameshift mutation. The
numbers in parentheses refer to
the index numbers after
frameshift mutation

Fig. 3 Frameshift mutation caused by deletion in FMCGP. The meanings of grey nodes, solid lines, dashed lines, red lines, and the numbers in
parentheses are the same as those in Fig. 2

Frameshift mutation caused by deletion

As shown in Fig. 3, the CGP network is with the same geno-
type as that in the previous subsection, that is:

0-100 210 312 423 543 642 764-6.
If the deletionmutation pointer points to Node 4, the Node

4 is deleted from the network. The genotype is changed as
follows:

0-100 210 312 543 642 764-6.
Similarly, as all nodes after the deleted node moves for-

ward, the index of these nodes is modified. As a result, the
node that output gene refers to is changed and the active
nodes of the individual are also changed. The phenotype of
offspring is completely different from the parent individual
after frameshift mutation, even there is no new nodes added
into the network.

123



Complex & Intelligent Systems (2021) 7:1195–1206 1199

As can be seen from the first genotype after frameshift
mutation in Fig. 3, some nodes are connected to themselves,
e.g., the gene of Node 5 is ‘543’ while the index number of
Node 5 changes to ‘4’ coincidentally. This kind of connection
is not feasible, since an endless loop is compiled. Therefore,
a re-assignment operation is performed when this happens.
The infeasible connection is reassigned as the secondmutated
genotype, as shown in Fig. 3. And if the output gene is out of
the range of genotype length, this re-assignment operation is
also performed.

Algorithm 1 (μ + λ) FMCGP
1: for all i such that 0 ≤ i < μ do
2: generate individual i randomly
3: end for
4: fittest individual is selected as parent
5: while there is no solution or number of generations not exhausted

do
6: for all i such that 0 ≤ i < λ do
7: do basic mutation on parent
8: offspring i generated
9: /* Frameshift mutation begins */
10: if random r f m < probability of frameshift mutation occurs

on individual(Pf m ) then
11: if random ro < probability of Insertion(Pi ) then
12: randomly insert node in offspring i to cause frameshift

mutation
13: else if random ro > (1- Pi ) then
14: randomly delete node in offspring i to cause frameshift

mutation
15: else
16: keep the individual i unchanged
17: end if
18: end if
19: /* End of frameshift mutation */
20: end for
21: generation of the fittest individual using the following
22: if an offspring’s fitness is equal or better than parents then
23: choose the offspring
24: else
25: choose the parent
26: end if
27: end while

From the above description, the phenotype makes a great
difference, although only a fewmodifications aremade to the
genotype. The parent individuals may generate completely
different offspring since the change of the compiling frame-
work of genotype, which caused by different positions of
frameshift mutation point, even the mutation point points to
inactive nodes. From this point of view, frameshift mutation
obviously further increases the population diversity based on
the traditional point mutation.

FMCGP adopts (μ + λ) evolutionary strategy as stan-
dard CGP. Frameshift mutation is introduced in the process
of generating offspring individuals. Algorithm 1 gives the
pseudocode of FMCGP.

Experimental results

Parameter settings

Symbolic regression problems [16,28] and Even-N-parity
problems [17] are selected to evaluated the performance of
the proposed FMCGP.Each experiment is executed 100 inde-
pendent runs for statistically meaningful results. Average
values, standard deviations, and the average cost times are
recorded. The population size of all experiments is 10, which
means that the evolutionary strategy is (1 + 10).

Individuals are presented by a directed graphwith one row
and a number of columns, where Nr = 1 and Nc = Ln . And
the levels-back l = Nc, the nodes of the full graph can be
freely connected forward. According to the empirical value
[22], the point mutation rate is set to 1%, and function gene
mutation, connection gene mutation, and output node muta-
tion are fairly selected with a probability of 1 : 1 : 1 for point
mutation. The standard CGP with point mutation is referred
to as the baseline CGP in the remainder of this paper.

For a thorough comparison, theMann–WhitneyU test has
been carried out between the proposed FMCGP and base-
line CGP. To classify the significance, the average values of
FMCGP are denoted a† if the p value is less than significance
level 0.05 and a‡ if the p value is less than significance level
0.01 compared to the baseline CGP.

Control group algorithms

We use the advanced phenotypic mutations proposed by
Kalkreuth [13] (referred to as TAPMCGP) as the additional
control group algorithms for the experiments.

TAPMCGP is inspired by biological evolution which
mutatesDNAsequences by inserting anddeletingnucleotides.
Kalkreuth et al. [13] applied an insertion rate and a deletion
rate for each offspring which is selected for mutation. If a
genome is selected for the insertion mutation, one inactive
function node becomes active. On the contrary, when dele-
tion is performed, one active node becomes inactive. The
minimum number of active function nodes for deletion oper-
ation has to be defined, this parameter in the experiments is
set to 4 according to [13].

Symbolic regression problems

In the first group of symbolic regression experiments, Koza-
3 is selected to evaluate the improvement of FMCGP with
different frameshift mutation rates. In the second group, a
series of objective functions are used for the comparison
among baseline CGP, TAPMCGP, and proposed FMCGP.
We measure the number of generations until the algorithms
reach termination criteria (generations-to-success) on Koza-
2, Koza-3, and Nguyen-4, and measure the best fitness value
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Table 1 Symbolic Regression Benchmark Candidates (U[a, b, c] means c uniform random samples drawn from a to b for the variable [20], E[a, b,
c] means samples are a grid of points evenly spaced (for this variable) with an interval of c, from a to b inclusive.)

Name Vars Objective function Training set Testing set Function set

Koza-2 [16] 1 x5 − 2x3 + x U[-1,1,20] None {+,−, ∗, /}
Koza-3 [16] 1 x6 − 2x4 + x2 U[-1,1,20] None {+,−, ∗, /}
Nguyen-4 [28] 1 x6 + x5 + x4 + x3 + x2 + x U[-1,1,20] None {+,−, ∗, /}
Keijzer-12 [14] 2 x4 + x3 + y2

2 − y U[-3,3,20] E[-3, 3, 0.01] {+,−, 1
n ,−n,

√
n}

Keijzer-15 [14] 2 x3
5 + y3

2 − y − x U[-3,3,20] E[-3, 3, 0.01] {+,−, 1
n ,−n,

√
n}

Table 2 Results for Koza-3
regression problem (the
evolutions which has converged
but the fitness of best individual
is over 0.01 are record as
outliers. The outliers have been
removed from the average
calculation)

Evolutionary Frameshift Generations Cost time(s) Number

method rate Mean Std Mean Std of outliers

Baseline CGP N/A 1440.34 2328.14 118.51 135.72 2

FMCGP 0.1 1212.06 1960.87 188.81 374.78 0

0.3 702.52† 811.74 133.62 295.22 0

0.5 593.47‡ 629.68 87.75† 128.14 0

0.7 516.05‡ 533.20 73.53‡ 140.99 0

0.9 832.63† 1139.68 92.00‡ 281.61 0

after a predefined number of generations (best-fitness-of-run)
on Keijzer-12, and Keijzer-15 [14,26]. The function name,
objective function, training set, testing set, and function set
used in this paper of benchmark symbolic regression prob-
lems are listed in Table 1 [14,16,20,28].

The fitness of each individual is represented by the cost
functionvalue,which is defined as the sumof the absolute dif-
ference between the predicted value and the training value.
The termination criteria is defined as the fitness value less
than or equal to 0.01. The probability of insertion or dele-
tion at the frameshift mutation point is 0.5. The length of
genotypes of initial individuals is set to 30 in the symbolic
regression experiments. The results of mean generations and
mean cost time (in seconds) with standard deviations after
100 runs onKoza-3 are given inTable 2 alongwith theMann–
Whitney U test results.

Results in Table 2 indicate that with the increasing of
frameshift rate, the algorithms’ performance increases except
when the rate is 0.9. The FMCGP with the frameshift muta-
tion rate 0.7 shows the best performance, while FMCGP
with the mutation rate 0.1 performs the worst. It implies that
if the frameshift rate is too high, the FMCGP may cause
poor results. The number of outliers of baseline CGP is 2,
while this number decreases to 0 after the frameshiftmutation
is introduced. From the perspective of generations and cost
time, FMCGPwith the frameshift mutation rate 0.7 performs
significantly better than the baseline CGP and the FMCGP
with the other frameshift mutation rates on Koza-3.

Table 3 gives the results ofmean generations and cost time
(in seconds), and standard deviations after 100 independent

runs on Koza-2, Koza-3, and Nguyen-4. TheMann–Whitney
U test results are also given. The results of best fitness val-
ues after 10000 generations on Keijzer-12 and Keijzer-15 are
shown in Table 4. The frameshift mutation rate in this group
of experiments is set to 0.7 according to the above experi-
mental results.

The baselineCGPwith single-pointmutations andTAPM-
CGPmay cause several outliers, while the number of outliers
generated by FMCGP is 0. The experimental results in
Table 3 show that FMCGP has a faster convergence speed
than baseline CGP on different symbolic regression prob-
lems. TAPMCGP requires fewer average evaluation times
than FMCGP on Koza2 and Nguyue-4 issues, but it runs
much longer than FMCGP. As the results in Table 4, the
mean best fitness of proposed FMCGP is better than baseline
CGP after 10000 generations of evolution.OnKeijzer-15, the
TAPMCGP results in a better fitness value, but the cost time
of TAPMCGP is twice as long as FMCGP.

Even-parity problems

The digital circuit establishment Even-parity problem [17] is
another well-known problem to test evolutionary algorithms.
Several discrete boolean problems with different number of
inputs are used to investigate the performance of baseline
CGP, TAPMCGP, and the proposed FMCGP.

The parameter configurations are set according to the cor-
responding references [17]. The function set of this group of
experiments is {AND, OR, XOR, NOT }. The fitness is
defined as the percentage of the candidate solutions which
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Table 3 Results for Koza2,
Koza-3, and Nguyen-4
regression problems (the
evolutions which has converged
but the fitness of best individual
is over 0.01 are record as
outliers. The outliers have been
removed from average
calculation)

Experiments Evolutionary Generations Cost time(s) Number

method Mean Std Mean Std of outliers

Koza-2 Baseline CGP 2603.06 4695.94 204.14 199.21 5

TAPMCGP 650.05 1383.76 281.73 449.29 2

FMCGP 957.95‡ 1503.50 99.01‡ 134.98 0

Koza-3 Baseline CGP 1440.34 2328.14 118.55 135.72 2

TAPMCGP 621.14 1120.59 739.50 1174.40 0

FMCGP 516.05‡ 533.20 73.53‡ 140.99 0

Nguyen-4 Baseline CGP 4048.45 7756.95 266.47 310.68 9

TAPMCGP 1720.10 3271.239 1327.59 1393.56 1

FMCGP 1828.98† 2021.76 166.15‡ 176.91 0

Table 4 Results for Keijzer-12
and Keijzer-15 regression
problems

Experiments Evolutionary Best fitness Cost time

method Mean Std Mean Std

Keijzer-12 Baseline CGP 5.01E06 1.22E05 142.51 20.79

TAPMCGP 5.21E06 7.13E05 301.35 70.16

FMCGP 4.82E06 8.07E05 134.23 14.56

Keijzer-15 Baseline CGP 7.78E05 2.40E05 73.34 7.08

TAPMCGP 7.14E05 5.37E05 186.89 17.50

FMCGP 7.18E05 1.94E05 95.78 14.47

Table 5 Results for Even-parity
problems with different number
of inputs

Experiments Number Evolutionary Generations Cost Time (s)

of nodes method Mean Std Mean Std

Even-4-Parity 10 Baseline CGP 189.34 258.87 9.05 15.98

TAPMCGP 81.70 55.71 2.11 2.92

FMCGP 137.76 129.98 1.82‡ 1.09

Even-5-Parity 10 Baseline CGP 884.06 953.34 157.66 728.94

TAPMCGP 264.61 181.29 5.72 4.55

FMCGP 455.98‡ 326.67 7.03‡ 11.93

Even-6-Parity 10 Baseline CGP 4808.52 3492.21 2553.45 5295.11

TAPMCGP 1025.53 903.61 13.24 10.80

FMCGP 1165.46‡ 571.85 22.32‡ 25.44

Even-7-Parity 20 Baseline CGP 3594.20 3001.45 126.69 138.67

TAPMCGP 1273.89 938.37 51.15 57.89

FMCGP 2355.02† 1309.64 45.62‡ 26.12

Even-8-Parity 20 Baseline CGP 20317.93 15314.49 436.70 335.16

TAPMCGP 3806.38 2747.64 136.91 59.88

FMCGP 4898.40‡ 2523.88 112.14‡ 63.10

generate the wrong Even-parity function value. The termi-
nation criteria are defined as the fitness equal to 0. The
probability of insertion or deletion at the mutation point is
0.5. The length of genotypes of the initial individuals is set to
10 in the Even-4/5/6-parity experiments and 20 in the Even-
7/8-parity experiments. The results of mean generations and
mean cost time (in seconds) with standard deviations after

100 runs are displayed in Table 5 together with Mann–
Whitney U test results. The efficiency gain (i.e., the ratio of
FMCGP value to the baseline CGP, and TAPMCGP) for both
generation and cost time values of FMCGP are displayed in
Table 6.

As shown in Table 5, the baseline CGP needs much more
generations and cost time to finish evolution than the pro-
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Table 6 Efficiency gains for
Even-parity problems when
using FMCGP compared with
the baseline CGP and
TAPMCGP

Experiments Evaluation times efficiency gains Cost time efficiency gains

Baseline CGP TAPMCGP baseline CGP TAPMCGP

Even-4-Parity 1.37 0.59 4.97 1.16

Even-5-Parity 1.94 0.58 22.43 0.74

Even-6-Parity 4.13 0.88 114.40 0.59

Even-7-Parity 1.52 0.54 2.78 1.12

Even-8-Parity 4.15 0.78 3.89 1.22

posed FMCGP. The results in Table 6 obviously show that the
efficiency gains increasewith the number of inputs increases.
This trend indicates that FMCGP has a better performance
on the evolution speed in dealing with more complex
problems.

Similar to the results of the SR experiments, TAPMCGP
requires less generations to reach the goal fitness, but it
requires more cost time than FMCGP. The number of nodes
in Even-6-Parity, Even-8-Parity, and SR experiments are 10,
20, 30, and the ratio of cost timeofTAPMCGPandFMCGP is
increasing. The experimental results show that TAPMCGP
needs more time to evolve when the number of nodes in
individuals is large. The reason lies that TAPMCGP has to
check the activity of nodes before mutation operation, while
FMCGP does not need. As described in Sect. 3.2, the par-
ent individuals in FMCGP may generate different offspring
since the change of the compiling framework of genotype,
regardless of whether the mutation operation is applied on
the active node.

The ratio of generation of FMCGP and TAPMCGP in
Table 6 raises when the input number increases. These
ratio values imply that the advantage of TAPMCGP in the
number of generation becomes smaller when the input num-
ber increases, which may be caused by the fixed-length
genotype like the baseline CGP. The evolution speed of
the baseline CGP in the Even-7-parity using 20 nodes is
faster than the Even-6-parity using 10 nodes. The genotype
length, represented by the number of nodes in individuals,
is significantly influence the speed of convergence, while
the value in the baseline CGP is a fixed value. During the
evolution of FMCGP, the length of genotypes is adjusted
to a more suitable value, which helps to accelerate the
evolution.

Discussion

Diversity

Several diversity measurements have been applied in genetic
programming [3]. Ekárt andNémeth [8] proposed an adapted
version of the approach, which calculates diversity based on

edit distance between individuals. Following this metric, two
trees are brought to the same tree structure by adding “NULL”
nodes to each tree. And then the difference between two trees
is defined as follows:

dist(T 1, T 2)

=
⎧⎨
⎩
d(p, q) i f nei ther T 1 nor T 2

have any children
d(p, q) + 1

K ∗ ∑m
l=1 dist(sl , tl ) otherwise,

(4)

where T 1 is the tree with root p and subtrees s1, s2, . . . , sm ,
and T 2 is the tree with root q and subtrees t1, t2, . . . , tm ,
and K is a constant, signifying that a difference at any depth
r in the compared trees is K times more important than a
difference at depth r+1. The value of K is set to 2 according
to the reference [8].

To apply thismetric to the analysis of diversity in CGP and
FMCGP, which individuals represented in two-dimensional
graphs, we must first convert the CGP and FMCGP individu-
als into a tree structure. Taking the individuals in Figs. 2 and
3 as examples, the tree structures of individuals before and
after frameshift mutation operation are displayed in Figs. 4,
5, and 6.

As shown in Figs. 5 and 6, the frameshift mutation only
applies on the Node 4, but the entire tree structure has been
changed significantly. While in the point mutation operation,
the function genemutation can only changeNode 4 in the tree
and the connection function gene mutation can only change
the subtree with Node 4 as the root node.

The distance values between different nodes in the tree are
also set as [8]. The distance between “NULL” nodes and all
other nodes is 5, the distance between leaf node and none-
leaf node is 3, and the distance between different none-leaf
nodes is 2. The average edit distance between the individual
and the individualwith the best fitness in the run so far of each
generation is used as the diversity value of this generation.
Figs. 7 and 8 show the diversity values of baseline CGP and
the proposed FMCGP during the 10000 generation in the two
sets of experiments.

Figures 7 and 8 indicate that the average population diver-
sity of FMCGP remains stable at a higher level compared
with baseline CGP, which is consistent with the significant
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Fig. 4 The tree structure of the individuals before frameshift mutation

Fig. 5 The tree structure of the individuals after the frameshift mutation caused by an insertion. The red node indicates the change after frameshift
mutation

Fig. 6 The tree structure of the individuals after the frameshift mutation caused by an insertion. The red node indicates the change after frameshift
mutation
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Fig. 7 The diversity of baseline CGP and the proposed FMCGP in symbolic regression experiments

Fig. 8 The diversity of baseline CGP and the proposed FMCGP in Even-N-Parity experiments

structural changes caused by frameshift mutations on indi-
viduals.

The population diversity plays an important role in explor-
ing the search space in the evolutionary algorithms. In the
high-strength evolutionary strategy, e.g., 1 + λ used in the
CGP, the evolution results are sensitive to initialization,while
increasing the population diversity can help to reduce the
local optimal problems.

From the experimental results in Sect. 4, it can be seen that
the outliers of baseline CGP may be caused by unreasonable
initial individuals, and then, the traditional point mutations
cannot make the population reach the target fitness within a
reasonable number of generations. As the decreasing of the

numbers of outliers in the FMCGP, the increased diversity
caused by frameshift mutations may help individuals to jump
out of the local optimum and find the better results faster. The
experimental results of FMCGP with frameshift rate 0.9 also
imply that higher frameshift mutation may destroy outstand-
ing individuals and then lead to the poor performance of the
algorithm. An appropriate frameshift mutation probability is
therefore important for FMCCP.

Bloat problem

The bloat problem means that the chromosomes become
larger and larger, while the fitness does not increase anymore
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Fig. 9 The variation of program size of symbolic regression problem Koza-3 and boolean problem even-8-parity by different evolutionary method:
tree-based GP, baseline CGP, and proposed FMCGP

[22], which wastes many computing resource on the redun-
dant sub-expressions. In [21,23], Miller et al. studied the
bloat problem in CGP and the results shows that CGP does
not suffer from genotypic growth and phenotypic growth.
This non-bloat advantage of CGP may be due to the fixed
length of genotype. As FMCGP adopts variable-length geno-
type, it is worth further analysis whether FMCGP loses the
benefit of non-bloat.

We investigate the changes of gene length of tree-based
GP, standard CGP and proposed FMCGP in the Koza-3 and
Even-8-parity problems. The population size of the tree-
basedGP in the experiment is also set to 10 and themaximum
tree size is set to 100. The variations of program size with
generation for 2 problems are plotted in Fig. 9. In the tree-
based GP, there is a fast bloat in a few generations where
the length of individuals grows rapidly. In the baseline CGP
and FMCGP, the total number of nodes represents the length
of genotype and the number of active nodes represents the
length of phenotype. Since the fixed-length genotype in
baseline CGP, the genotype length keeps unchanged in all
generations and the phenotype length has a slow bloat which
is much less than the tree-based GP [21].

The genotype length of the individuals in FMCGP has dif-
ferent trends in different problems. In the Koza-3 problem,
there is a slight change in genotype size in the first 2000 gen-
erations, and then, the change becomes flat. The genotype
length is consistent with the fixed value in the baseline CGP.
The growth of phenotype size is slower than standardCGP. In
the Even-8-Parity problem, the insertion frameshift mutation
is obviously used much more than the deletion frameshift
mutation. The genotype size is increased rapidly without
decreasing trend. The phenotype size also increases faster

than the baseline CGP, but the slow bloat in FMCGP is still
much less than the near quadratic bloat in tree-based GP.

Therefore, we consider that the proposed FMCGP has not
cost much more computing resources on redundant expres-
sion than baseline CGP. In other words, FMCGP does not
lose the non-bloat characteristic of CGP and the growth of
genotype and phenotype is within a reasonable range com-
pared with standard tree-based GP.

Conclusion

This paper proposes FMCGP that introduces the frameshift
mutation in CGP, which is inspired by DNA mutation in
biology. The frameshift mutation makes the individuals have
variable-length genotypes and increases the diversity of the
population. Through two groups of experiments, FMCGP is
shown to be able to outperform the standard CGP and the
state-of-the-art TAPMCGP without bloat problem.

In the future, we will evaluate FMCGP on more func-
tions of symbolic regression and make the improvement of
FMCGP on different functions. And the frameshift mutation
probability is now determined by the experiments, but it may
prefer to be determined adaptively.
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