
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2021) 7:781–805 
https://doi.org/10.1007/s40747-020-00235-3

ORIGINAL ARTICLE

An innovative picture fuzzy distance measure and novel 
multi‑attribute decision‑making method

Abdul Haseeb Ganie1 · Surender Singh1 

Received: 1 August 2020 / Accepted: 13 November 2020 / Published online: 3 January 2021 
© The Author(s) 2021

Abstract
Picture fuzzy set (PFS) is a direct generalization of the fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs). The concept of 
PFS is suitable to model the situations that involve more answers of the type yes, no, abstain, and refuse. In this study, we 
introduce a novel picture fuzzy (PF) distance measure on the basis of direct operation on the functions of membership, non-
membership, neutrality, refusal, and the upper bound of the function of membership of two PFSs. We contrast the proposed 
PF distance measure with the existing PF distance measures and discuss the advantages in the pattern classification problems. 
The application of fuzzy and non-standard fuzzy models in the real data is very challenging as real data is always found in 
crisp form. Here, we also derive some conversion formulae to apply proposed method in the real data set. Moreover, we 
introduce a new multi-attribute decision-making (MADM) method using the proposed PF distance measure. In addition, we 
justify necessity of the newly proposed MADM method using appropriate counterintuitive examples. Finally, we contrast 
the performance of the proposed MADM method with the classical MADM methods in the PF environment.

Keywords Picture fuzzy set · Picture fuzzy distance measure · Pattern recognition · TOPSIS · Inferior ratio

Introduction

The comparison of the two distinct objects from various 
viewpoints is necessary to deal with various real-life prob-
lems concerning machine learning, pattern recognition, 
image processing, decision-making, etc. Depending on the 
nature of the problem, different researches applied different 
compatibility/comparison measures. The prominent com-
patibility/comparison measures are ‘similarity measure’, 
‘distance measure’, ‘correlation measure’, etc. The PFS is 
a non-standard form of fuzziness. As the PFS is a direct 
extension of FS and IFS, so, it is pertinent to mention the 
prominent studies regarding the developments and applica-
tions of the fuzzy and IFSs.

Zadeh [1] introduced the concept of FSs to study the 
uncertainty due to lack of complete knowledge. A FS is a 

group of objects in the universe of discourse with vague, 
ambiguous, and unsharp boundary. A FS is mainly under-
stood and represented with the help of a membership func-
tion assigning a value in the unit interval [0, 1] to each ele-
ment of the universe of discourse. This assigned value is 
known as membership degree. The membership degree 
indicates the extent of belongingness of the element to the 
FS. If an element has ′0′ as its membership degree, then 
the element does not belong to the set, and if it has ′1′ as 
membership degree, then the element fully belongs to the 
set. If the membership degree of an element lies in (0, 1) , 
then the element partially belongs to the FS. Thus, any FS 
can be determined uniquely with the help of its membership 
function. To get more insight regarding the development and 
applications of fuzzy compatibility/comparison measures, 
we refer to [2–9] and references therein. Because of various 
perspectives of understanding the vagueness and linguistic 
imprecision in a system, researchers came up with different 
mathematical representations. Some important representa-
tions among them are intuitionistic FSs (IFSs) [10], type-2 
FSs [11–16], Pythagorean FSs [17], q-rung orthopair FSs 
[18], hesitant FSs [19], etc. These varied expressions are 
considered as extensions or generalizations of the conven-
tional FS. In the contemporary literature, some prominent 
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researches have termed these extensions/generalizations as 
non-standard FSs. One such extension is the IFS, introduced 
by Atanassov [10]. Atanassov [10] included the non-mem-
bership degree of an element to a FS with the condition that 
the sum of membership and non-membership degrees should 
be less or equal to one. Some prominent studies comprising 
the development and applications of intuitionistic fuzzy (IF)/
Pythagorean fuzzy (PF) compatibility/comparison meas-
ures are due to researches [20–29]. Recently, Niu et al. [30] 
introduced two mentality-parameters and proposed a new 
method for solving some MADM problems in the interval-
valued IF environment. Ejegwa [31] presented the idea of 
Pythagorean fuzzy relation and demonstrated its application 
in decision-making. Some exponential Pythagorean fuzzy 
similarity measures with their applications in decision-mak-
ing and pattern recognition were put forward by Nguyen 
and Garg [32]. With the help of probabilistic hesitant FSs 
and bipartite network projection, Cao et al. [33] introduced 
a recommendation decision-making algorithm for sharing 
accommodation.

Although IFSs are more powerful than FSs in express-
ing uncertain and vague information, they lack an important 
concept, i.e., degree of neutrality, which has a key role in 
many situations such as human voting, medical diagnosis, 
personal selection, etc. In human voting, a person has four 
options either to vote in favour or to vote against or to abstain 
or to refuse from voting. In medical diagnosis, the symp-
toms like temperature and headache may have a null effect 
on the diseases chest problem and stomach problem. So, to 
deal with such situations, a new generalization of FSs and 
IFSs known as PFS was introduced by Cuong and Kreinvoch 
[34]. In a PFS, each element is specified by the degree of 
membership, the degree of non-membership, and degree of 
neutrality together with the condition that the sum of these 
grades should be less or equal to one. Thereafter, several 
studies [35–47] investigated the concepts of entropy, similar-
ity, distance, dissimilarity, correlation in the framework of 
PFSs. The PF cross-entropy with its application in MADM 
was introduced by Wei [48]. Wei [49] also introduced the 
TODIM method for solving MADM problems with PF 
data. Some geometric aggregation operators and some PF 
operational laws were given by Wang et al. [50]. Wei [51] 
investigated the application of PF Hamacher aggregation 
operators in MADM problems. Zhang et al. [52] introduced 
the evaluation based on distance from the average solution 
(EDAS) method for solving MADM problems with PF data. 
Later on, Nhung et al. [53] proposed some new dissimilar-
ity measures involving PF-information and applied them 
in pattern recognition and multi-criteria decision-making 
(MCDM). Liu et al. [54] introduced some models of MADM 
in PF-environment. A PF-divergence measure with its appli-
cation in multi-criteria decision-making (MCDM) and pat-
tern recognition was proposed by Thao et al. [55]. Some 

Dombi aggregation operators in PF-environment with their 
application in MADM were introduced by Jana et al. [56]. 
Wei et al. [57] extended the bidirectional projection method 
to PF-theory for solving a multi-attribute group decision-
making (MAGDM) problem. With the help of t-norm and 
t-conorm, Ashraf et al. [58] introduced a series of weighted 
geometric operators of PFSs and also demonstrated their 
application in MAGDM. Wang et al. [59] introduced PF nor-
malized projection-based VIKOR (PFNP-VIKOR) method 
for risk evaluation. Lin et al. [60] proposed a PF-novel score 
function, a novel PF-entropy measure, a novel PF-knowledge 
measure, and PF MULTIMOORA method. Tian et al. [61] 
suggested a weighted PF power Choquet ordered geometric 
operator (WPFPCOG) and a weighted PF power Shapley 
Choquet ordered geometric (WPFPSCOG) operator with 
their applications in MCDM. For MAGDM problems in PF 
environment, Zhang et al. [62] introduced an ELECTRE 
TRI-based outranking approach. To handle emergency 
decision-making (EDM) problems, a new EDM approach 
with the help of PFSs was proposed by Ding et al. [63]. Jin 
et al. [64] introduced Pearson’s correlation-based MADM 
method in PF environment. Zeng et al. [65] introduced an 
exponential Jensen picture fuzzy divergence measure with 
its application in MCDM. Joshi [66, 67] investigated some 
compatibility/comparison measures in the framework of 
PFSs.

The present work concerns with the study of PF distance 
measure and its interdisciplinary applications.

The main contributions of this paper can be summarized 
as follows.

• We introduce a novel PF distance measure that over-
comes the drawbacks of the existing PF distance meas-
ures.

• We demonstrate the application of the novel PF distance 
measure in pattern recognition.

• We derive some conversion formulae to generate PF data 
from the crisp data that enables us to apply our method 
in real data set.

• We examine the performance of the proposed PF distance 
measure on the real data set pertaining to the Iris plant.

• With the help of the novel PF distance measure, we pro-
pose a new method known as the picture fuzzy inferior 
ratio (PFIR) method for solving MADM problems in 
the PF environment that is based on the same idea as 
TOPSIS considering the distance from the positive ideal 
solution (PIS) as well as from the negative ideal solution 
(NIS).

The remainder of this paper is organized as follows: we 
discuss the existing work related to the present study in 
“Related studies”. “Preliminaries” presents some basic con-
cepts related to standard/non-standard fuzzy theory. In “The 
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picture fuzzy distance measure based on direct operations”, 
a novel PF distance measure, and a weighted novel PF dis-
tance measure are proposed and validated. In “Experiments 
and analysis”, we run some experiments on synthetic dataset 
as well as on real dataset regarding problems of pattern rec-
ognition. These numerical experiments facilitate us to con-
trast the performance of our proposed PF distance measure 
with various existing PF compatibility measures. In “A new 
MADM method in a PF system”, we discuss the weakness 
of the traditional TOPSIS method of MADM and present a 
novel method of MADM. Finally, the section “Conclusion” 
includes the main findings of this paper and the scope for 
the future research.

Related work

To compare the features or attributes of two entities in pic-
ture fuzzy environment a comparison measure is essential. 
The functional forms that express the compatibility degree 
of sets or items are used in automatic classification, physical 
anthropology, citation analysis, psychology, ecology, pattern 
recognition, numerical taxonomy, and information retrieval 
etc. Distance measure, similarity measure and correlation 
measure are some predominately used indices to compare 
two feature spaces. These measures largely have similar 
pragmatic significance. Therefore, to contrast the perfor-
mance of our newly proposed picture fuzzy distance meas-
ure it is essential to mention the existing distance measures, 
similarity measures and correlation measure concerning the 
PFSs. We mention the applicability of these measures just 
after the concerned formulae.

Moreover, we discuss the main drawbacks and limita-
tions of these PF distance measures in Section “Experiments 
and analysis”. First, we mention the prominent existing PF 
distance measures.

Since, in a PFS G, each element is specified by the 
degree of membership, the degree of non-membership, 
and degree of neutrality. Let mG

(
tk
)
, nG

(
tk
)
 and hG

(
tk
)
 

represents the membership degree, the non-member-
ship degree, and the neutrality degree, respectively, of 
the element tk ∈ U (Universal set) in the set G such that 
0 ≤ mG

(
tk
)
+ nG

(
tk
)
+ hG

(
tk
)
≤ 1 . In the remaining paper, 

we shall follow this notation.
PF distance measures DDT1,DDT2 , DDT3 , DDT4 due to Dinh, 

and Thao [44] are as follows.
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1
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Dinh and Thao [44] have successfully applied the dis-
tance measures (1)–(4) in the pattern recognition problem.

PF distance measures DD1 , DD2 , DD3 , DD4 , DD5 due to 
Dutta [37] are as follows.
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The distance measures (5)–(9) have been applied in the 
medical diagnosis problem.

Singh et  al. [39] defined the following PF distance 
measures.
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Singh et al. [39] utilized the distance measures (10)–(13) 
for the determination the flood disaster risk in the South 
region of India.

Son [38] defined four PF distance measures DS1 , DS2 , 
DS3 , DS4 as follows.
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Son [38] has investigated the application of the PF-
distance measures (14)–(17) in the clustering analysis.

Bi-parametric PF distance measure DKKDK due to Khan 
et al. [46] is

where t = 3, 4,… and p = 1, 2, 3,… represent the level of 
uncertainty and lp norm, respectively.

Khan et al. [46] demonstrated the application of the 
PF distance measure (18) in the pattern recognition and 
medical diagnosis.

Second, we mention the existing PF correlation 
measures.
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2
×
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2
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 a n d 
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The PF correlation coefficients (21)–(22) are capable to 
compute the extent as well as nature of correlation (positive 
or negative). Ganie et al. [36] applied these PF correlation 
coefficients in pattern recognition, medical diagnosis, and clus-
tering analysis. The performance has also been investigated.

Finally, we mention the existing PF similarity measures.
Wei [49] introduced the following PF similarity measures.
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The PF similarity measures (25)–(30) are based on trigo-
nometric functions. Wei [49] discussed the application of 
these measures in decision-making. One obvious drawback 
of trigonometric similarity measures is that these are com-
putationally more expensive.

Wei [43] proposed the PF similarity measure SW9 and 
successfully applied in the mineral field recognition and 
building material recognition.
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Wei and Gao [43] suggested the PF dice similarity meas-
ures SWG1 , SWG2 and illustrated their application in the build-
ing material recognition.

Singh et al. [39] derived the PF similarity measures 
SSMKSS1 , SSMKSS2 , SSMKSS3.

The PF similarity measure SSMKSS3 is computationally 
more expensive due to min–max operations.

Khan et al. [46] proposed a bi-parametric PF similarity 
measure
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where t = 3, 4,… and p = 1, 2, 3,… represent the level of 
uncertainty and lp norm, respectively. The applications of 
this measure have been shown in pattern recognition and 
medical diagnosis problem.

In the present study, we propose a new PF distance 
measure and apply it in some real-life problems. Thus, it is 
essential to reflect upon the necessity and justification of the 
newly proposed PF distance measure.

The following are the main reasons that motivated us to 
consider the present study.

• Many of the existing PF distance measures fail to satisfy 
the axiomatic requirements of being PF distance meas-
ures, and others produce counterintuitive results in cal-
culating the distance between different PFSs.

• Most of the existing PF distance measures have been 
proposed at the “formula” level, and does not satisfy the 
concerned axiomatic requirements.

• Most of the existing PF distance measures give unreason-
able results in the field of pattern recognition.

• For applying a fuzzy or non-standard fuzzy model, the 
biggest challenge is the non-availability of real data in 
fuzzy or non-standard fuzzy form. Thus, the relevant for-
mulae for conversion of crisp data to fuzzy/non-standard 
fuzzy data are essential.

• The TOPSIS method for solving a MADM problem 
investigates for a compromise solution (alternative) that 
is closest to the positive ideal solution (PIS) and farthest 
from the negative ideal solution (NIS). But practically, in 
many situations, the compromise solution due to TOPSIS 
is not farthest from NIS, and so the coefficients of rank-
ing mainly consider the closeness to PIS to provide the 
ranking results (See Examples 4 and 5). Such a situation 
seems to be inappropriate and hence may deliver false 
ranking results.

To address the above-mentioned issues, this paper pro-
poses a novel PF distance measure and a new MADM 
method in the PF settings.
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Preliminaries

In this section, we include some basic definitions and opera-
tions regarding standard/non-standard fuzzy sets. Through-
out this paper, U =

{
t1, t2,… , tl

}
 denotes the universe of 

discourse and PFS(U) denotes the set of all PFSs on U.

Basic definitions

Definition 1 [1].  A FS G  in U  is def ined as 
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}
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Definition 4 [35]. For any two PFSs G and H in U , the oper-
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(4) 
Definition 5 [39]. A function D(G,H) with G,H ∈ PFS(U) 
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(1) 0 ≤ D(G,H) ≤ 1.
(2) D(G,H) = D(H,G).
(3) D(G,H) = 0 if and only if G = H.
(4) I f  G ⊆ H ⊆ I  ,  t h e n  D(G,H) ≤ D(G, I)  a n d 

D(H, I) ≤ D(G, I).

Now, it is essential to mention some important definitions 
regarding neutrosophic theory in the sense that a picture 
fuzzy set is a special case of neutrosophic set and a refined 
neutrosophic set.

Definition 6 [68] A neutrosophic set ANS in U is defined 
as ANS = {< tk, TA(tk), IA(tk), FA(tk) >|tk ∈ U, k = 1, 2,… , l }, 
where TA(tk), IA(tk), FA(tk): U → [0, 1] represent the degree 
of truth-membership, degree of indeterminacy-membership, 
and degree of false non-membership, respectively, with 0 ≤ 
TA(tk) + IA(tk) + FA(tk) ≤ 3.

Definition 7 [68] A refined neutrosophic set ARNS in U 
is defined as ARNS = {< tk, T1A(tk), T2A(tk), …, TpA(tk); 
I1A(tk), I2A(tk), …, IrA(tk); F1A(tk), F2A(tk), …, FsA(tk) >| 
t
k
∈ U, k = 1, 2,… , l }, where all TjA(tk), 1 ≤ j ≤ p, IkA(tk), 

1 ≤ m ≤ r, FlA(tk), 1 ≤ l ≤ s,: U → [0, 1], and TjA(tk) represents 
the jth sub membership degree, IkA(tk) represents the mth 
sub-indeterminacy degree, FlA(x) represents the lth sub-
non-membership degree, with p, r, s ≥ 1 integers, where 
p + r + s + n ≥ 4, and: 0 ≤ Σ TjA(x) + Σ IkA(x) + Σ TjA(x) ≤ n. 
All neutrosophic sub-components TjA(x), IkA(x), FlA(x) are 
independent with respect to each other.

In view of the definitions given in this section we can 
say that a PFS is a particular case of neutrosophic set (NS) 
[68–70] and refined neutrosophic set (RNS) [68, 70]. The 
basic difference between a PFS and NS (RNS) is that the 
components (i.e., membership degrees) in a PFS are depend-
ent whereas the components in a NS (RNS) are independent 
of each other. Refined neutrosophic set is a generalization 
of neutrosophic set.

The definitions of NS and RNS seem to inculcate the 
further generalizations and extensions of the present work.

In the next section, we introduce a new PF distance meas-
ure along with its properties.

The picture fuzzy distance measure based on direct 
operations

Apart from the representation of IFSs given in Defini-
tion2, many other possible representations of IFSs are 
available in the literature. One such interpretation of the 
IFS ⟨m

G

�
t
k

�
, n

G

�
t
k

�⟩ due to [71] is in terms of the interval [
m

G

(
t
k

)
, 1 − n

G

(
t
k

)]
 which is the same as the interval-val-

ued fuzzy sets representation of IFSs in which m
G

(
t
k

)
 and 

1 − n
G

(
t
k

)
 are, respectively, the lower and upper bounds 

of the degree of membership. Clearly, 
[
m

G

(
t
k

)
, 1 − n

G

(
t
k

)]
 

is a valid interval as m
G

(
t
k

)
≤ 1 − n

G

(
t
k

)
 holds always 

for m
G

(
t
k

)
+ n

G

(
t
k

)
≤ 1 . Continuing this process, we 

represent the PFS ⟨m
G

�
t
k

�
, n

G

�
t
k

�
, h

G

�
t
k

�⟩ in the form 
of an interval 

[
m

G

(
t
k

)
, 1 − n

G

(
t
k

)
− h

G

(
t
k

)]
 , which is 

a valid interval since m
G

(
t
k

)
+ n

G

(
t
k

)
+ h

G

(
t
k

)
≤ 1 . 

Here m
G

(
t
k

)
 and 1 − n

G

(
t
k

)
− h

G

(
t
k

)
 are the lower and 

upper bounds of the degree of membership, respec-
tively. Consider the interval representation of two PFSs 
G andH ∈ PFS(U) as 

[
m

G

(
t
k

)
, 1 − n

G

(
t
k

)
− h

G

(
t
k

)]
 , and [

m
H

(
t
k

)
, 1 − n

H

(
t
k

)
− h

H

(
t
k

)]
 , then together with lower and 

upper bounds, the information carried by the PFSs G and 
H is also determined by the length of intervals. Therefore, 
we introduce a simple and easy to understand PF distance 
measure between the PFSs G and H

Here we utilize the concept of consistency in defining 
this  novel  PF distance measure .  For  a  PFS 
G =

{
tk,mG

(
tk
)
, nG

(
tk
)
, hG

(
tk
)|tk ∈ U, k = 1, 2,… , l

}
 , the 

membership, non-membership, and neutrality degree can 
be, respectively, written as 

[
mG

(
tk
)
, 1 − nG

(
tk
)
− hG

(
tk
)]

 , [
nG

(
tk
)
, 1 − mG

(
tk
)
− hG

(
tk
)]

 a n d [
hG

(
tk
)
, 1 − mG

(
tk
)
− nG

(
tk
)]

 . The length of these intervals 
i s  1 − mG

(
tk
)
− nG

(
tk
)
− hG

(
tk
)
 .  So ,  in  Eq .   (38) √

mG

(
tk
)
mH

(
tk
)

 , 
√

nG
(
tk
)
nH

(
tk
)

 , and 
√

hG
(
tk
)
hH

(
tk
)

 , 
respectively, represent the degree of consistency between 
the lower bounds of the degree of membership, degree of 
non-membership, and degree of neutrality. Consequently, √(

1 − nG
(
tk
)
− hG

(
tk
))(

1 − nH
(
tk
)
− hH

(
tk
))

 , √(
1 − mG

(
tk
)
− hG

(
tk
))(

1 − mH

(
tk
)
− hH

(
tk
))

 ,  a n d √(
1 − mG

(
tk
)
− nG

(
tk
))(

1 − mH

(
tk
)
− nH

(
tk
))

 represent 
the degree of consistency between the upper bounds of the 
degree of membership, degree of non-membership, and 
degree of neutrality, respectively. The degree of consist-
ency between interval lengths is descr ibed by √
eG
(
tk
)
eH

(
tk
)
.

Now, we show that DGS(G,H) is a valid PF distance 
measure.

(38)

DGS(G,H) = 1 −
1

4l

l�
k=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

�
mG

�
tk
�
mH

�
tk
�
+ 3

�
nG

�
tk
�
nH

�
tk
�

+3

�
hG

�
tk
�
hH

�
tk
�
+

�
eG
�
tk
�
eH

�
tk
�

+

� �
1 − mG

�
tk
�
− nG

�
tk
��

×
�
1 − mH

�
tk
�
− nH

�
tk
��

+

� �
1 − mG

�
tk
�
− hG

�
tk
��

×
�
1 − mH

�
tk
�
− hH

�
tk
��

+

� �
1 − nG

�
tk
�
− hG

�
tk
��

×
�
1 − nH

�
tk
�
− hH

�
tk
��

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Theorem 1 DGS(G,H) is a distance measure between the 
two PFSs G and H.

Proof To show that DGS(G,H) is a PF distance measure, we 
show that it satisfies the four properties given in Definition 
5.

(1) For each, q, r ∈ [0,+∞] , we have 
√
qr ≤

q+r

2
 . So, 

for 0 ≤ mG

(
tk
)
≤ 1 , 0 ≤ nG

(
tk
)
≤ 1 , 0 ≤ hG

(
tk
)
≤ 1 , 

0 ≤ eG
(
tk
)
≤ 1  ,  0 ≤ 1 − mG

(
tk
)
− nG

(
tk
)
≤ 1  , 

0 ≤ 1 − mG

(
tk
)
− hG

(
tk
)
≤ 1  a n d 

0 ≤ 1 − nG
(
tk
)
− hG

(
tk
)
≤ 1 we get

0 ≤ 3

√
mG

(
tk
)
mH

(
tk
)
+ 3

√
nG

(
tk
)
nH

(
tk
)
+ 3

√
hG

(
tk
)
hH

(
tk
)
+

√
eG
(
tk
)
eH

(
tk
)

+

√(
1 − mG

(
tk
)
− nG

(
tk
))(

1 − mH

(
tk
)
− nH

(
tk
))

+

√(
1 − mG

(
tk
)
− hG

(
tk
))(

1 − mH

(
tk
)
− hH

(
tk
))

+

√(
1 − nG

(
tk
)
− hG

(
tk
))(

1 − nH
(
tk
)
− hH

(
tk
))

≤
3

2

(
mG

(
tk
)
+ mH

(
tk
))

+
3

2

(
nG

(
tk
)
+ nH

(
tk
))

+
3

2

(
hG

(
tk
)
+ hH

(
tk
))

+
eG
(
tk
)
+ eH

(
tk
)

2

+

(
1 − mG

(
tk
)
− nG

(
tk
))

+
(
1 − mH

(
tk
)
− nH

(
tk
))

2

+

(
1 − mG

(
tk
)
− hG

(
tk
))

+
(
1 − mH

(
tk
)
− hH

(
tk
))

2

+

(
1 − nG

(
tk
)
− hG

(
tk
))

+
(
1 − nH

(
tk
)
− hH

(
tk
))

2

= 3 +
mG

(
tk
)
+ nG

(
tk
)
+ hG

(
tk
)
+ eG

(
tk
)

2
+

mH

(
tk
)
+ nH

(
tk
)
+ hH

(
tk
)
+ eH

(
tk
)

2

= 3 +
1

2
+

1

2
= 4.

So, 0 ≤
1

4l

l�
k=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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m
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�
t
k

�
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�
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k

�
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H

�
t
k

�
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t
k

�
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H

�
t
k

�
+

�
e
G

�
t
k

�
e
H

�
t
k

�

+

����
�
1 − m

G

�
t
k

�
− n

G

�
t
k

��
×
�
1 − m

H

�
t
k

�
− n

H

�
t
k

��

+

����
�
1 − m

G

�
t
k

�
− h

G

�
t
k

��
×
�
1 − m

H

�
t
k

�
− h

H

�
t
k

��

+

����
�
1 − n

G

�
t
k

�
− h

G

�
t
k

��
×
�
1 − n

H

�
t
k

�
− h

H

�
t
k

��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1

  Therefore, we have 0 ≤ DGS(G,H) ≤ 1.

(2) DGS(G,H) = DGS(H,G) is obvious due to the cumuta-
tiveness of the expression of DGS(G,H).

(3) Since 
√
qr achieves its maximum value q+r

2
 when q = r . 

So, we have

or 0 ≤ 1 −
1

4l

l�
k=1

⎡
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+
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×
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�
t
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�
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H

�
t
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1.

DGS(G,H) = 0
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So, DGS(G,H) = 0 if and only if G = H.
(4) Let I ∈ PFS(U) be another PFS such that 

G ⊆ H ⊆ I  . Then we have, mG

(
tk
)
≤ mH

(
tk
)
≤ mI

(
tk
)
 , 

nI
(
tk
)
≤ nH

(
tk
)
≤ nG

(
tk
)
 and hG

(
tk
)
≤ hH

(
tk
)
≤ hI

(
tk
)
.

For a, b, c ∈ [0, 1], a + b + c ≤ 1 , we define a fuction f  as:

where q, r, s ∈ [0, 1], q + r + s ∈ [0, 1].
Now, �f

�q
=

3
√
a

2
√
q
−

√
1−a−b−c

2
√
1−q−r−s

−
√
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2
√
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−
√
1−a−c

2
√
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⇔
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 4

⇔ mG

(
tk
)
= mH

(
tk
)
, nG

(
tk
)
= nH

(
tk
)
, hG

(
tk
)

= hH
(
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(
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(
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(
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(
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=
(
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(
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(
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(
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⇔ G = H.
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√
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√
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+
√
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Similarly, we have

For a ≤ q ≤ 1, b ≤ 1, c ≤ 1 , we have �f
�q

≤ 0 , so f  is a 
d e c r e a s i n g  f u n c t i o n  o f  q  fo r  q ≥ a  .  F o r 
0 ≤ q ≤ a, b ≤ 1, c ≤ 1 , we have �f

�q
≥ 0 , so f  is an increasing 

function of q for q ≤ a . Similarly, for b ≤ r ≤ 1, a ≤ 1, c ≤ 1 , 
we have �f

�r
≤ 0 and for 0 ≤ r ≤ b, a ≤ 1, c ≤ 1 , we have 

�f

�r
≥ 0 . This means that f  is a decreasing function of r when 

r ≥ b and an increasing function of r when r ≤ b . Also, for 
c ≤ s ≤ 1, a ≤ 1, b ≤ 1 ,  we  have  �f

�s
≤ 0  and  fo r 

0 ≤ s ≤ c, a ≤ 1, b ≤ 1 , we have �f
�s

≥ 0 . This means that f  is 
a decreasing function of s when s ≥ c and an increasing 
function of s when s ≤ c.
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Table 1  Comparison of PF distance measures

(Counterintuitive cases are in bold type. t = 3 and p = 1 in DKKDK)

Cases →  
Distance measures
↓

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
{(0.3, 0.3,0.2)}

{(0.4, 0.4, 0.2)}

{(0.3, 0.4, 0.1)}

{(0.4, 0.3, 0.1)}

{(1.0, 0.0, 0.0)}

{(0.0, 0.0, 0.0)}

{(0.5, 0.5, 0.0)}

{(0.0, 0.0, 0.0)}

{(0.3, 0.2, 0.1)}

{(0.5, 0.1, 0.1)}

{(0.3, 0.2, 0.1)}

{(0.5, 0.2, 0.1)}

DDT1 0.0667 0.0667 0.3333 0.3333 0.1000 0.0667
DDT2 0.1414 0.1414 1.0000 0.7071 0.2236 0.2000
DDT3 0.1000 0.1000 1.0000 0.5000 0.2000 0.2000
DDT4 0.1000 0.1000 1.0000 0.5000 0.2000 0.2000
DD1 0.2000 0.1000 1.0000 1.0000 0.2000 0.2000
DD2 0.2000 0.1000 1.0000 1.0000 0.2000 0.2000
DD3 0.1732 0.1000 1.0000 0.8660 0.1732 0.2000
DD4 0.1732 0.1000 1.0000 0.8660 0.1732 0.2000
DD5 0.2000 0.1000 1.0000 1.0000 0.2000 0.2000
DSMKSS1 0.1000 0.0500 0.5000 0.5000 0.1000 0.1000
DSMKSS2 0.1225 0.0707 0.7071 0.6124 0.1225 0.1414
DSMKSS3 0.0500 0.0250 0.2500 0.2500 0.0500 0.0500
DSMKSS4 0.1000 0.0500 0.5000 0.5000 0.1000 0.1000
DS1 0.0704 0.0847 0.3077 0.2174 0.1429 0.1176
DS2 0.0562 0.0638 0.3235 0.2110 0.1108 0.1017
DS3 0.0704 0.0847 0.3077 0.2174 0.1429 0.1176
DS4 0.0473 0.0669 0.2779 0.1771 0.1036 0.0902
DKKDK 0.0333 0.0833 0.4167 0.1667 0.1250 0.0833
DGS(Proposed) 0.0361 0.0065 0.7500 0.6464 0.0205 0.0195
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Table 2  Comparison of PF 
distance measures

(Counterintuitive cases are in bold type. t = 3 and p = 1 in DKKDK)

Cases →  
Distance measures
↓

Case 1 Case 2 Case 3 Case 4
{(0.5, 0.5,0.0)}

{(0.0, 0.0, 0.0)}

{(0.6, 0.4, 0.0)}

{(0.0, 0.0, 0.0)}

{(0.0, 0.87, 0.1)}

{(0.28, 0.55, 0.1)}

{(0.6, 0.27, 0.1)}

{(0.28, 0.55, 0.1)}

DDT1 0.3333 0.3333 0.2000 0.2000
DDT2 0.7071 0.7211 0.4252 0.4252
DDT3 0.5000 0.6000 0.3200 0.3200
DDT4 0.5000 0.6000 0.3200 0.3200
DD1 1.0000 1.0000 0.3200 0.3200
DD2 1.0000 1.0000 0.3200 0.3200
DD3 0.8660 0.8718 0.3020 0.3020
DD4 0.8660 0.8718 0.3020 0.3020
DD5 1.0000 1.0000 0.3200 0.3200
DSMKSS1 0.5000 0.5000 0.1600 0.1600
DSMKSS2 0.6124 0.6164 0.2135 0.2135
DSMKSS3 0.2500 0.2500 0.0800 0.0800
DSMKSS4 0.5000 0.5000 0.1600 0.1600
DS1 0.2174 0.2373 0.2055 0.2055
DS2 0.2110 0.2322 0.1662 0.1662
DS3 0.2174 0.2373 0.2055 0.2055
DS4 0.1771 0.1958 0.1523 0.1523
DKKDK 0.1667 0.1833 0.2500 0.2500
DGS(proposed) 0.6464 0.6482 0.1452 0.0547

Table 3  Comparison of PF distance measures

(Counterintuitive cases are in bold type. t = 3 and p = 1 in DKKDK).

Cases →  
Distance measures
↓

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
{(0.3, 0.0, 0.7)}

{(0.4, 0.0, 0.6)}

{(0.3, 0.0, 0.7)}

{(0.2, 0.0, 0.8)}

{(0.5, 0.0, 0.5)}

{(0.0, 0.0, 0.0)}

{(0.4, 0.0, 0.6)}

{(0.0, 0.0, 0.0)}

{(0.1, 0.4, 0.5)}

{(0.2, 0.5, 0.3)}

{(0.4, 0.4, 0.2)}

{(0.2, 0.5, 0.3)}

DDT1 0.0667 0.0667 0.3333 0.3333 0.1333 0.1333
DDT2 0.1414 0.1414 0.7071 0.7211 0.2449 0.2449
DDT3 0.1000 0.1000 0.5000 0.6000 0.2000 0.2000
DDT4 0.1000 0.1000 0.5000 0.6000 0.2000 0.2000
DD1 0.1000 0.1000 1.0000 1.0000 0.2000 0.2000
DD2 0.1000 0.1000 1.0000 1.0000 0.2000 0.2000
DD3 0.1000 0.1000 0.8660 0.8718 0.1732 0.1732
DD4 0.1000 0.1000 0.8660 0.8718 0.1732 0.1732
DD5 0.1000 0.1000 1.0000 1.0000 0.2000 0.2000
DSMKSS1 0.0500 0.0500 0.5000 0.5000 0.1000 0.1000
DSMKSS2 0.0707 0.0707 0.6124 0.6164 0.1225 0.1225
DSMKSS3 0.0250 0.0250 0.2500 0.2500 0.0500 0.0500
DSMKSS4 0.0500 0.0500 0.5000 0.5000 0.1000 0.1000
DS1 0.0769 0.0769 0.2174 0.2373 0.1429 0.1429
DS2 0.0606 0.0606 0.2110 0.2322 0.1091 0.1091
DS3 0.0769 0.0769 0.2174 0.2373 0.1429 0.1429
DS4 0.0606 0.0606 0.1771 0.1958 0.1091 0.1091
DKKDK 0.0833 0.0833 0.1667 0.1833 0.0833 0.1667
DGS (proposed) 0.0055 0.0067 0.6464 0.6482 0.0241 0.0250
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Thus, if G ⊆ H ⊆ I  , then DGS(G,H) ≤ DGS(G, I) and 
DGS(H, I) ≤ DGS(G, I).

Hence, DGS(G,H) is a valid PF distance measure.
If we consider the weights wk of tk, k = 1, 2,… , l , then the 

weighted distance measure between the PFSs G and H can be 
defined as

Theorem 2  DWGS(G,H) is a distance measure between the 
two PFSs G and H.

In the next section, we discuss the reasonability of the 
proposed PF distance measure and also discuss the draw-
backs of the existing PF distance/correlation/similarity 
measures with the help of some experiments.

Experiments and analysis

Normally, the reasonability and performance of the distance 
(similarity) measures between PFSs are mostly confirmed by 
means of some practical experiments. In this section, two 
types of experiments are executed to investigate the perfor-
mance of the newly proposed PF distance measure. First, the 
numerical experiments with some typically chosen PFSs. 
Second, we execute numerical experiment concerning the 
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pattern recognition problems using synthetic data and real 
data. These experiments enabled us to test the performance 
and the rationality of the proposed PF distance measure. 
For numerical experiments, eighteen traditional PF distance 
measures are chosen to contrast with the proposed PF dis-
tance measure. Further, for pattern recognition problems, 
thirty-seven PF compatibility (similarity/distance/correla-
tion) measures are selected to contrast with the proposed 
PF distance measure.

Numerical experiments

Usually, the numerical experiments are first used to check 
the appropriateness of the PF distance (similarity) meas-
ures by many researchers, and an effectual distance measure 
differentiates the distance between PFSs. Three numerical 
experiments are performed to test the effectiveness of our 
proposed PF distance measure along with various traditional 
PF distance measures. In the first numerical experiment, six 
different cases of PFSs are used, in the second numerical 

experiment, four different cases of PFSs are used, and in 
the third numerical experiment, six different cases of PFSs 
are utilized. The experimental results are listed in Tables 1, 
2, 3 and the counter-intuitive results are shown by bold let-
ters. The detailed analysis pertaining to the three numerical 
experiments is summarized below.

(1) All the existing PF distance measures given in Eqs. 
(1)–(18) produce unreasonable results in various situ-
ations as indicated by bold values in Tables 1, 2, 3.

(2) The PFSs G = {(0.3, 0.2, 0.1)} , H = {(0.5, 0.2, 0.1)} 
and I = {(0.5, 0.1, 0.1)} (Case 5, and Case 6 in Table 1) 
satisfy G ⊆ H ⊆ I  and thus by the fourth axiom of 
PF distance measure given in Definition 5, we have 
D(G,H) ≤ D(G, I) for any PF distance measure D . But 
we see from Table 1 that the PF distance measures 
DD3,DD4, and DSMKSS2 given in Eqs. (7), (8) and (11) 
fail to satisfy this axiom.
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(3) The proposed PF distance measure DGS given in 
Eq. (38) produces reasonable results without any coun-
terintuitive case.

In the next section, we demonstrate the application of the 
proposed PF distance measure DGS in pattern recognition 

and compare the results with the existing PF compatibility 
measures.

Table 4  Calculated values of various PF-compatibility measures 
regarding Example 1

(t = 3 and p = 1 in DKKDK , SKKDK).

(
G1,H

) (
G2,H

) (
G3,H

)
Result

DDT1 0.1000 0.1867 0.1933 G1

DDT2 0.1000 0.1833 0.1929 G1

DDT3 0.2000 0.2600 0.2600 G1

DDT4 0.0894 0.1428 0.1456 G1

DD1 1.0000 1.5000 1.7000 G1

DD2 0.2000 0.3000 0.3400 G1

DD3 0.4000 0.6557 0.7071 G1

DD4 0.1789 0.2933 0.3162 G1

DD5 0.2000 0.2800 0.3000 G1

DSMKSS1 0.4000 0.6000 0.6800 G1

DSMKSS2 0.1265 0.2074 0.2236 G1

DSMKSS3 0.0500 0.0650 0.0650 G1

DSMKSS4 0.1000 0.1597 0.1628 G1

DS1 0.3750 0.5154 0.4755 G1

DS2 0.3491 0.3951 0.3880 G1

DS3 0.1250 0.1872 0.1775 G1

DS4 0.1955 0.2268 0.2232 G1

DKKDK 0.1117 0.1867 0.2283 G1

SW1 0.9382 0.7691 0.7609 G1

SW2 0.9204 0.7813 0.7543 G1

SW3 0.9511 0.8810 0.8755 G1

SW4 0.9511 0.8810 0.8755 G1

SW5 0.9712 0.8703 0.8561 G1

SW6 0.9511 0.8573 0.8102 G1

SW7 0.7265 0.6745 0.6781 G1

SW8 0.7265 0.6745 0.6781 G1

SW9 0.8191 0.7216 0.6865 G1

SWG1 0.9263 0.7656 0.7539 G1

SWG2 0.9124 0.7779 0.7501 G1

SSMKSS1 0.9000 0.8500 0.8300 G1

SSMKSS2 0.9840 0.9570 0.9500 G1

SSMKSS3 0.0000 0.0833 0.0875 G3

SKKDK 0.8883 0.8133 0.7717 G1

CS1 0.9168 0.7625 0.7138 G1

CS2 0.8838 0.7500 0.6739 G1

CGSB1 0.4929 0.1621 -0.7676 G1

CGSB2 0.2270 0.1608 -0.6793 G1

DGS(Proposed) 0.0563 0.0780 0.0958 G1

Table 5  Calculated values of various PF-compatibility measures 
regarding Example 2

(Bold values indicate unreasonable results. “N/A” denotes it cannot 
calculate the degree of similarity/correlation due to “the division by 
zero problem”. t = 3 and p = 1 in DKKDK,SKKDK).

(
G1,H

) (
G2,H

) (
G3,H

)
Result

DDT1 0.0333 0.0417 0.0333 Not classified
DDT2 0.0500 0.0559 0.0500 Not classified
DDT3 0.0750 0.0750 0.0750 Not classified
DDT4 0.0433 0.0433 0.0433 Not classified
DD1 0.3000 0.3000 0.4000 Not classified
D

D2 0.0750 0.0750 0.1000 Not classified
DD3 0.1732 0.1732 0.2236 Not classified
DD4 0.0866 0.0866 0.1118 Not classified
DD5 0.0750 0.0750 0.1000 Not classified
DSMKSS1 0.1500 0.1500 0.2000 Not classified
DSMKSS2 0.0612 0.0612 0.0791 Not classified
DSMKSS3 0.0188 0.0187 0.0250 G2

DSMKSS4 0.0433 0.0433 0.0612 Not classified
DS1 0.1646 0.1818 0.1529 G3

DS2 0.2299 0.2336 0.2282 G3

DS3 0.0502 0.0545 0.0491 G3

DS4 0.1303 0.1325 0.1300 G3

DKKDK 0.0417 0.0521 0.0292 G3

SW1 0.9906 0.9871 0.9959 G3

SW2 0.9837 0.9850 0.9726 G2

SW3 0.9908 0.9908 0.9908 Not classified
SW4 0.9908 0.9908 0.9816 Not classified
SW5 0.9954 0.9931 0.9954 Not classified
SW6 0.9908 0.9908 0.9816 Not classified
SW7 0.8906 0.8906 0.8906 Not classified
SW8 0.8906 0.8906 0.8587 Not classified
SW9 0.9416 0.9156 0.9130 G1

SWG1 0.9874 0.9828 0.9876 G3

SWG2 0.9829 0.9831 0.9707 G2

SSMKSS1 0.9625 0.9625 0.9500 Not classified
SSMKSS2 0.9962 0.9962 0.9938 Not classified
SSMKSS3 N/A N/A N/A Not classified
SKKDK 0.9583 0.9479 0.9708 G3

CS1 0.9846 0.9846 0.9749 Not classified
CS2 0.9745 0.9745 0.9505 Not classified
CGSB1 0.8896 0.9511 0.9782 G3

CGSB2 N/A N/A N/A Not classified
DGS(proposed) 0.0128 0.0046 0.0192 G2
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Application in pattern recognition

We discuss the application of the proposed PF distance 
measure DGS given in the Eq. (38) in pattern recognition 
problems. In pattern recognition, we are given some known 
patterns and an unknown pattern. The task is to identify the 
known pattern with which the resemblance of the unknown 
pattern is maximum. For this many compatibility measures 
like distance measure, divergence measure, accuracy meas-
ure, similarity measure, correlation measure, dissimilarity 
measure can be utilized. We, here utilize our proposed PF 
distance measure DGS given in Eq. (38) for this purpose. In 
general, a pattern recognition problem in PF environment 
can be formulated as:

Scenario Let Gi, i = 1, 2,… , n be some known patterns 
and H be an unknown pattern given in the form of PFSs as

Aim To find the known pattern Gi, i = 1, 2,… , n with 
which the resemblance of the unknown pattern H  is 
maximum.

Recognition principle The unknown pattern H can be 
assigned to one of the known patterns Gi, i = 1, 2,… , n 
according to the following methods.

Accuracy/corre la t ion/s imi lar i ty  method  Let 
A
(
Gi,H

)
/ C

(
Gi,H

)
/ S

(
Gi,H

)
, i = 1, 2,… , n  b e 

the accuracy/correlation/similarity between the 
known pattern Gi, i = 1, 2,… , n and the unknown 
pattern H  ,  then H  is assigned to Gi∗ ,  where 
i∗ = argmax

i
A
(
G

i
,H

)
∕C

(
G

i
,H

)
∕S

(
G

i
,H

)
, i = 1, 2,… , n.

Distance/divergence/dissimilarity method  Let 
D
(
Gi,H

)
/ DI

(
Gi,H

)
/ DS

(
Gi,H

)
, i = 1, 2,… , n  b e 

the distance/divergence/dissimilarity between the 
known pattern Gi, i = 1, 2,… , n and the unknown 
pattern H  ,  then H  is assigned to Gi∗ ,  where 
i∗ = argmin

i
D
(
G

i
,H

)
∕DI

(
G

i
,H

)
∕DS

(
G

i
,H

)
, i = 1, 2,… , n.

Now, we solve some pattern recognition problems 
involving PF information with the help of our proposed PF 
distance measure given in Eq. (38) and compare the results 
with some existing PF compatibility measures given in the 
Eqs. (1)–(37).

Gi =

{(
tk,mGi

(
tk
)
, nGi

(
tk
)
, hGi

(
tk
))

|tk ∈ U, k = 1, 2,… , l

}
,

i = 1, 2,… , n.

H =

{(
tk,mH

(
tk
)
, nH

(
tk
)
, hH

(
tk
))

|tk ∈ U, k = 1, 2,… , l

}
.

Example 1 [36] Consider three known patterns G1,G2,G3 , 
and an unknown pattern H in the form of PFSs as

G3 =

⎧
⎪⎨⎪⎩

�
t1, 0.1, 0.3, 0.4

�
,
�
t2, 0.4, 0.3, 0.1

�
,�

t3, 0.3, 0.4, 0.2
�
,
�
t4, 0.2, 0.5, 0.3

�
,�

t5, 0.5, 0.3, 0.1
�

⎫
⎪⎬⎪⎭

 and

The calculated values of PF-correlation/PF distance/
PF-similarity measures between the known patterns 
Gi, i = 1, 2, 3 , and the unknown pattern H are summarized 
in Table 4.

From Table 4, it is clear that all the existing PF com-
patibility measures except SSMKSS3 given in the Eqs. 
(1)–(37) and our proposed PF distance measure given in 
the Eq. (38) assign the unknown pattern H to the known 

G1 =

⎧
⎪⎨⎪⎩

�
t1, 0.4, 0.3, 0.1

�
,
�
t2, 0.5, 0.3, 0.2

�
,�

t3, 0.4, 0.3, 0.0
�
,
�
t4, 0.7, 0.0, 0.2

�
,�

t5, 0.6, 0.1, 0.1
�

⎫
⎪⎬⎪⎭
,

G2 =

⎧
⎪⎨⎪⎩

�
t1, 0.7, 0.1, 0.1

�
,
�
t2, 0.2, 0.3, 0.4

�
,�

t3, 0.2, 0.1, 0.5
�
,
�
t4, 0.1, 0.5, 0.2

�
,�

t5, 0.3, 0.3, 0.3
�

⎫
⎪⎬⎪⎭
,

H =

⎧⎪⎨⎪⎩

�
t1, 0.6, 0.2, 0.1

�
,
�
t2, 0.3, 0.4, 0.2

�
,�

t3, 0.4, 0.3, 0.2
�
,
�
t4, 0.7, 0.1, 0.0

�
,�

t5, 0.4, 0.2, 0.2
�

⎫⎪⎬⎪⎭
.

Table 6  Calculated values of various PF-compatibility measures 
regarding Example 3

(Bold values indicate minimum distance/maximum similarity. t = 3 
and p = 1 in DKKDK,SKKDK).

(Setosa, Virginica) (Versicolor, Virginica) DoC

DDT1 0.1235 0.1497 0.0262
DD1 0.2662 0.2908 0.0245
DD2 0.5160 0.5392 0.0232
DSMKSS1 0.1210 0.1454 0.0244
DSMKSS2 0.2219 0.2494 0.0276
DSMKSS3 0.0534 0.0633 0099
DSMKSS4 0.1852 0.2090 0.0238
DS3 0.1373 0.1586 0.0213
DS4 0.1779 0.1966 0.0188
DKKDK 0.0887 0.1059 0.0172
SW1 0.0171 0.0162 0.0008
SW2 0.0169 0.0160 0.0008
SW3 0.0171 0.0162 0.0008
SW4 0.0171 0.0162 0.0008
SKKDK 0.9113 0.8941 0.0172
DGS(proposed) 0.1019 0.1317 0.0299
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pattern G1 . This shows that our proposed PFdistance meas-
ure is consistent with the existing compatibility measures 
in PF environment.

Example 2 Consider three known patterns G1,G2,G3 , and an 
unknown pattern H in the form of PFSs as

G3 =

{(
t1, 0.5, 0.0, 0.4

)
,
(
t2, 0.7, 0.0, 0.1

)
,(

t3, 0.4, 0.0, 0.6
)
,
(
t4, 0.7, 0.0, 0.2

)
}

 and.

The calculated values of PF correlation/PF distance/
PF similarity measures between the known patterns 
Gi, i = 1, 2, 3 , and the unknown pattern H are summarized 
in Table 5.

From Table 5, it is clear that out of thirty-eight PF com-
patibility measures given in Eqs. (1)–(38), twenty-four fail 
to classify the unknown pattern H into one of the known 
patterns Gi, i = 1, 2, 3 and the rest fourteen PF compatibil-
ity measures including our proposed distance measure DGS 
classify the unknown pattern H into one of the known pat-
terns Gi, i = 1, 2, 3 . Thus, we conclude that our proposed 
PF distance measure DGS is more effective and reasonable 
than most of the existing PF compatibility measures.

Further, we apply our proposed PF similarity meas-
ures on the real data related to the Iris plant that has been 
obtained from the UCI Machine Learning Repository 
(https ://archi ve.ics.uci.edu/ml/datas ets/Iris).

Example 3 Consider the database of the Iris plant. In this 
database, there are 150 samples (Table 12 in the Appendix) 
that are divided into three categories Setosa, Versicolor, and 
Virginica. There are four attributes corresponding to each 
sample namely, Sepal Length (SL), Sepal Width (SW), Petal 
Length (PL),and Petal Width (PW). We calculate the dis-
tance between Virginica and Setosa and between Virginica 
and Versicolor with the help of our proposed PF distance 
measure and compare the results with some existing PF 
compatibility measures.

To assess the performance of the proposed PFdistance 
measure, we utilize a performance index “Degree of Con-
fidence (DoC)”. The more the value of DoC, the more 
effective is a compatibility measure. The notion of DoC 
was suggested by Hatzimichailidis et al. [72] in the intui-
tionistic fuzzy framework. We extend this index in the PF 

G1 =

{(
t1, 0.5, 0.0, 0.3

)
,
(
t2, 0.7, 0.0, 0.0

)
,(

t3, 0.4, 0.0, 0.5
)
,
(
t4, 0.7, 0.0, 0.3

)
}
,

G2 =

{(
t1, 0.5, 0.0, 0.2

)
,
(
t2, 0.6, 0.0, 0.1

)
,(

t3, 0.2, 0.0, 0.7
)
,
(
t4, 0.7, 0.0, 0.3

)
}
,

H =

{(
t1, 0.4, 0.0, 0.3

)
,
(
t2, 0.7, 0.0, 0.1

)
,(

t3, 0.3, 0.0, 0.6
)
,
(
t4, 0.7, 0.0, 0.3

)
}
.

framework. For the data set under consideration, the DoC 
is given as follows.

where K  is any PF compatibility measure and 
M = min {K(Setosa, Virginica),K(Versicolor, Virginica)}  , 
if K  is a PF distance/dissimilarity measure or 
M = max {K(Setosa, Virginica),K(Versicolor, Virginica)}  , 
if K is a PF correlation/similarity measure. As the data in 
the Iris database is in crisp form, so we need to convert it 
into PF form.

We propose the following formulae to convert the crisp 
data to picture fuzzy data.

The membership m̃
(
tij
)
 , the non-membership ñ

(
tij
)
 , and 

the neutrality h̃
(
tij
)
 of the element tij is calculated as

h̃
(
tij
)
= 1 −

(
1 − m

(
tij
))a , 0 < a ≤ 1 and

Here max
(
tij
)
 is the maximum value of an attribute 

under a particular category and min
(
tij
)
 is the minimum 

value of an attribute under a particular category.
We convert the crisp data given in Table 12 in Appendix 

into the PF form with the help of the conversion formula.
The PF representation of Iris setosa is given in Table 13 

(See Appendix) and the PF representation of Iris versi-
color and Iris virginica can be obtained similarly.

Then, we calculate the distance between Virginica and 
Setosa and between Virginica and Versicolor by various 
PF compatibility measures including our proposed one 
and also calculate the DoC of each measure as shown in 
Table 6. From Table 6, we see that Virginica has maximum 
resemblance with Setosa as indicated by all the PF com-
patibility measures. Also, we observe that the DoC of our 
proposed PF distance measure is higher than most of the 
existing PF distance/similarity measures.

In the next section, we introduce a novel method for 
solving MADM problems in the PF environment with the 
help of the proposed PF distance measure DGS.

(39)
DoC(K) = |K(Setosa, Virginica) −M|

+ |K(Versicolor, Virginica) −M|,

m̃
(
tij
)
= am

(
tij
)
, ñ

(
tij
)
=
(
1 −

(
m
(
tij
))a) 1

a ,

m
(
tij
)
= 1 − exp

(
−

tij −min
(
tij
)

max
(
tij
)
−min

(
tij
)
)
.

Table 7  Calculated values regarding Example 4

DGS

(
E
i
,E+

)
DGS

(
E
i
,E−

)
�
i

Ranking

E1 0.0270 0.0635 0.2984 2
E2 0.0687 0.0336 0.6717 3
E3 0.0180 0.0566 0.2414 1

https://archive.ics.uci.edu/ml/datasets/Iris
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A new MADM method in a picture fuzzy system

In this section, first we point out the weakness of the classi-
cal picture fuzzy TOPSIS method. Then, we propose a new 
TOPSIS like MADM method in the PF settings.

The weakness of classical picture fuzzy TOPSIS

One of the popular and effective methods for solving 
MADM problems is the technique for order preference by 
similarity to ideal solution (TOPSIS) introduced originally 
by Hwang and Yoon [73] and later on extended to the fuzzy 
environment by Chen [74]. The TOPSIS method is based on 
the fact that the chosen alternative should be closest to the 
positive ideal solution (PIS) and farthest from the negative 
ideal solution (NIS). However, the chosen alternative due to 
TOPSIS is not actually farthest from NIS as can be seen in 
the examples given below.

Example 4 Consider the PF-decision matrix with three alter-
natives Ei(i = 1, 2, 3) , and two attributes Aj(j = 1, 2).

Then the picture fuzzy positive ideal solution (PFPIS)  
E+ and picture fuzzy negative ideal solution (PFNIS)E− are 
given as

D1 =

⎛⎜⎜⎝

(0.2, 0.1, 0.3) (0.5, 0.1, 0.2)

(0.4, 0.2, 0.3) (0.1, 0.3, 0.2)

(0.5, 0.2, 0.1) (0.3, 0.1, 0.4)

⎞⎟⎟⎠
.

E+ =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎝

max (0.2, 0.4, 0.5),

min (0.1, 0.2, 0.2),

min (0.3, 0.3, 0.1)

⎞⎟⎟⎠
,

⎛
⎜⎜⎝

max (0.5, 0.1, 0.3),

min (0.1, 0.3, 0.1),

min (0.2, 0.2, 0.4)

⎞
⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= {(0.5, 0.1, 0.1), (0.5, 0.1, 0.2)},

We now calculate the distance of each alternative 
Ei(i = 1, 2, 3) from the PFPIS E+ , and from PFNIS E− 
by using the proposed PF distance measure DGS given in 
Eq.  (38), and then determine the closeness coefficient 
�i = DGS

(
Ei,E

+
)
∕
(
DGS

(
Ei,E

+
)
+ DGS

(
Ei,E

−
))

 of each 
alternative, and finally rank the alternatives in ascending 
order of closeness coefficient as shown in Table 7.

From Table 7, we see that the chosen alternative  E3 
is closest to PFPIS E+ but is not farthest from PFNIS E− 
because DGS

(
E1,E

−
)
= 0.0635 > DGS

(
E3,E

−
)
= 0.0566.

Example 5 Consider the PF-decision matrix with three alter-
natives Ei(i = 1, 2, 3) , and two attributes Aj(j = 1, 2).

Then the picture fuzzy positive ideal solution (PFPIS)  
E+ and picture fuzzy negative ideal solution (PFNIS)E− are 
given as

E− =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎝

min (0.2, 0.4, 0.5),

max (0.1, 0.2, 0.2),

min (0.3, 0.3, 0.1)

⎞
⎟⎟⎠
,

⎛
⎜⎜⎝

min (0.5, 0.1, 0.3),

max (0.1, 0.3, 0.1),

min (0.2, 0.2, 0.4)

⎞
⎟⎟⎠

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

= {(0.2, 0.2, 0.1), (0.1, 0.3, 0.2)}.

D1 =

⎛⎜⎜⎝

(0.1, 0.3, 0.6) (0.4, 0.2, 0.3)

(0.7, 0.2, 0.0) (0.2, 0.0, 0.5)

(0.2, 0.1, 0.6) (0.4, 0.4, 0.2)

⎞⎟⎟⎠

E+ =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎝

max (0.1, 0.7, 0.2),

min (0.3, 0.2, 0.1),

min (0.6, 0.0, 0.6)

⎞⎟⎟⎠
,

⎛
⎜⎜⎝

max (0.4, 0.2, 0.4),

min (0.2, 0.0, 0.4),

min (0.3, 0.5, 0.2)

⎞
⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= {(0.7, 0.1, 0.0), (0.4, 0.0, 0.2)},

E− =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎝

min (0.1, 0.7, 0.2),

max (0.3, 0.2, 0.1),

min (0.6, 0.0, 0.6)

⎞⎟⎟⎠
,

⎛
⎜⎜⎝

min (0.4, 0.2, 0.4),

max (0.2, 0.0, 0.4),

min (0.3, 0.5, 0.2)

⎞
⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= {(0.1, 0.3, 0.0), (0.2, 0.4, 0.2)}.

Table 8  Calculated values regarding Example 5

DGS

(
E
i
,E+

)
DGS

(
E
i
,E−

)
�
i

Ranking

E1 0.2671 0.1964 0.5763 2
E2 0.0286 0.1853 0.1338 1
E3 0.2732 0.1824 0.5996 3
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We now calculate the distance of each alternative 
Ei(i = 1, 2, 3) from the PFPIS E+ , and from PFNIS E− 
by using the proposed PF distance measure DGS given in 
Eq.  (38), and then determine the closeness coefficient 
�i = DGS

(
Ei,E

+
)
∕
(
DGS

(
Ei,E

+
)
+ DGS

(
Ei,E

−
))

 of each 
alternative, and finally rank the alternatives in ascending 
order of closeness coefficient as shown in Table 8.

From Table 8, we see that the chosen alternative E2 
is closest to PFPIS E+ but is not farthest from PFNIS E− 
because DGS

(
E1,E

−
)
= 0.1964 > DGS

(
E2,E

−
)
= 0.1853.

Thus, from Examples 4 and 5, we see that the best alter-
native in TOPSIS is not farthest from the NIS. To overcome 
this major drawback, we introduce a new MADM method in 
the PF environment known as the picture fuzzy inferior ratio 
(PFIR) method based on the same concept as in TOPSIS 
that the chosen alternative should be closest to PFPIS and 
farthest from PFNIS.

Picture fuzzy inferior ratio method for MADM

Our proposed method establishes a compromise solution 
(alternative) that is closest to PFPIS and farthest from 
PFNIS. First of all, we formulate a MADM problem in PF 
environment as follows:

Scenario  We are  given a  set  of  n a l ter-
n a t i v e s  Ei(i = 1, 2,… , n)  a n d  m  a t t r i b u t e s 
Aj(j = 1, 2,… ,m) along with the attribute weight vec-
tor w =

(
w1,w2,… ,wm

)
, 0 ≤ wj ≤ 1, j = 1, 2,… ,m and ∑m

j=1
wj = 1.

Aim To select the most feasible alternative.
For determining the best alternative, the algorithm is 

given below.

Algorithm

Step 1 Construct the PF-decision matrix C =
[
cij
]
n×m

 in 
which cij =

(
mij, nij, hij

)
 . is a PFV where mij is the member-

ship value of alternative Ei under attribute Aj , nij is the non-
membership value of alternative Ei under attribute Aj and 
hij is the neutrality value of alternative Ei under attribute Aj.

Step 2 Calculate the normalized PF decision matrix 
F =

[
fij
]
n×m

 , where

Step 3 Determine the PFPIS E+ and PFNIS E− , where 
E+ =

{
f +
1
, f +
2
,… , f +

m

}
 and E− =

{
f −
1
, f −
2
,… , f −

m

}
 with 

f +
j
=
(
maxi

(
mij

)
, mini

(
nij
)
, mini

(
hij
))

 a n d 
f −
j
=
(
mini

(
mij

)
, maxi

(
nij
)
, mini

(
hij
))

 , i = 1, 2,… , n and 
j = 1, 2,… ,m.

Step 4 Calculate the distance of each alternative 
Ei, i = 1, 2,… , n from PFPIS E+ , and from PFNIS E− using 
our proposed PF distance measure DGS given in Eq. (38) 
i.e., calculate DGS

(
Ei,E

+
)
 , and DGS

(
Ei,E

−
)
 , i = 1, 2,… , n . 

The smaller DGS

(
Ei,E

+
)
 is the better Ei is and the greater 

DGS

(
Ei,E

−
)
 is the better Ei is.

S t e p  5  C a l c u l a t e  DGS

(
E+

)
 ,  w h e r e 

DGS

(
E+

)
= min1≤i≤n

(
DGS

(
Ei,E

+
))

 , and therefore, the 
alternative Ei that satisfies DGS

(
E+

)
= DGS

(
Ei,E

+
)
 is clos-

est to PFPIS.

fij =

{
cij =

(
mij, nij, hij

)
, for benefit attribute(

cij
)c

=
(
nij,mij, hij

)
, for cost attribute.

Table 9  Picture fuzzy decision 
matrix

A1 A2 A3 A4

E1 (0.89, 0.03, 0.08) (0.42, 0.18, 0.35) (0.08, 0.02, 0.89) (0.80, 0.05, 0.11)

E2 (0.23, 0.11, 0.64) (0.03, 0.13, 0.82) (0.73, 0.08, 0.15) (0.73, 0.14, 0.10)

E3 (0.52, 0.05, 0.26) (0.04, 0.10, 0.85) (0.68, 0.06, 0.26) (0.43, 0.25, 0.13)

E4 (0.74, 0.10, 0.16) (0.02, 0.05, 0.89) (0.08, 0.84, 0.06) (0.85, 0.05, 0.09)

E5 (0.68, 0.21, 0.08) (0.05, 0.06, 0.87) (0.13, 0.09, 0.75) (0.65, 0.02, 0.05)

Table 10  Numerical results related to Example 6

DGS

(
E
i
,E+

)
DGS

(
E
i
,E−

)
�
(
E
i

)
�
i

Ranking

E1 0.0877 0.1960 0.0000 0.0000 1
E2 0.1194 0.1499 − 0.5976 0.8500 3
E3 0.1005 0.1277 − 0.4946 0.7034 2
E4 0.1321 0.1709 − 0.6349 0.9030 4
E5 0.1209 0.1325 − 0.7031 1.0000 5

Table 11  Ranking of options with the help of various existing meth-
ods

Method Ranking results

PF xross entropy [48] E1 > E4 > E2 > E5 > E3

TODIM method [49] E1 > E4 > E5 > E3 > E2

EDAS method [52] E1 > E5 > E4 > E3 > E2

PF similarity measures [51] E1 > E4 > E2 > E5 > E3

PFDWA operator [56] E1 > E4 > E5 > E2 > E3

PFDWG operator [56] E1 > E3 > E2 > E4 > E5

Generalized PF distance measure [45] E1 > E4 > E2 > E3 > E5

VIKOR method [66] E1 > E4 > E2 > E5 > E3

PF projection models [74] E1 > E2 > E3 > E4 > E5
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S t e p  6  C a l c u l a t e  DGS(E
−)  ,  w h e r e 

DGS(E
−) = max1≤i≤n

(
DGS

(
Ei,E

−
))

 , and therefore, the 
alternative Ei that satisfies DGS(E

−) = DGS

(
Ei,E

−
)
 is far-

thest from PFNIS.
Step 7. Calculate �

(
Ei

)
, i = 1, 2,… , n , for each alterna-

tive, where

Clearly �
(
Ei

)
 measures the degree to which an alterna-

tive Gi, i = 1, 2,… , n is closest to PFPIS and farthest from 
PFNIS simultaneously. An alternative Ei with �

(
Ei

)
= 0 is 

the best alternative.
Step 8 Calculate the PFIR �i for each alternative, where, 

�i =
�(Ei)

min1≤i≤n �(Ei)
.

Step 9 Rank the alternatives in ascending order of values 
of PFIR �i.

Proposition 1 �
(
Ei

)
≤ 0, i = 1, 2,… , n

Proof S ince  DGS

(
E+

)
= min1≤i≤n

(
DGS

(
Ei,E

+
))

 and 
DGS(E

−) = max1≤i≤n
(
DGS

(
Ei,E

−
))

 , so we have.

DGS

(
E+

)
≤ D

(
Ei,E

+
)

 ,  a n d 
DGS(E

−) ≥ DGS

(
Ei,E

−
)
, i = 1, 2,… , n .  Therefore, we 

obtain.
DGS(Ei,E

+)
DGS(E

+)
≥ 1  a n d  DGS(Ei,E

−)
DGS(E

−)
≤ 1  a n d  t h u s 

�
(
Ei

)
=

DGS(Ei,E
−)

DGS(E
−)

−
DGS(Ei,E

+)
DGS(E

+)
≤ 1 − 1 = 0.

Proposition 2 The 0 ≤ �i =
�(Ei)

min
1≤i≤n

�(Ei)
≤ 1, i = 1, 2,… , n

P r o o f  W e  h a v e  �
(
Ei

)
≥ min1≤i≤n �

(
Ei

)
 o r 

min1≤i≤n �
(
Ei

)
≤ �

(
Ei

)
≤ 0 or 1 ≥

�(Ei)
min1≤i≤n �(Ei)

≥ 0 i.e., 
0 ≤ �i ≤ 1, i = 1, 2, .., n.

Now, we apply the proposed PFIR method for solv-
ing a MADM problem involving PF data in the following 
example.

Example 6 [66] A finance company wants to invest its 
sum of money. The four attributes fixed by the company 
for choosing the best possible option out of the five pos-
sible options 

(
E1

)
 Mutual Funds 

(
E2

)
 Health Insurance 

(
E3

)
 

Share Market 
(
E4

)
 Housing Development Corporations and (

E5

)
 General Insurance are 

(
A1

)
 Maximum Returns 

(
A2

)
 

Minimum Risk 
(
A3

)
 Easy withdrawal in case of emergency 

and 
(
A4

)
 Transparency. The evaluation of the five possible 

options Ei, i = 1, 2, 3, 4, 5 corresponding to the four attrib-
utes Aj, j = 1, 2, 3, 4 is provided by the decision experts in 
the form of PF decision matrix as shown in Table 9.

�
(
Ei

)
=

DGS

(
Ei,E

−
)

DGS(E
−)

−
DGS

(
Ei,E

+
)

DGS(E
+)

.

Since all the attributes are of benefit type, so the nor-
malized PF decision matrix is the same as given in Table 9. 
With the help of Step 3, we determine the PFPIS E+ and 
PFNIS E− as given below:

Next, using the proposed PF distance measure DGS 
given in Eq. (38), we calculate the distance of each alter-
native Ei, i = 1, 2, 3, 4, 5 from PFPIS E+ , and from PFNIS 
E−  .  T h e n  w e  d e t e r m i n e 
DGS

(
E+

)
= min

1≤i≤n

(
DGS

(
Ei,E

+
))

= 0.0877 = DGS

(
E1,E

+
)
 

and DGS(E
−) = max

1≤i≤n

(
DGS

(
Ei,E

−
))

= 0.1960 = DGS

(
E1,E

−
)
 . 

After that, we calculate �
(
E
i

)
, i = 1, 2, 3, 4, 5 , and 

�i, i = 1, 2, 3, 4, 5 for each alternative using Step 7 and Step 
8, respectively. Finally, in the ascending order of �i , we 
rank the alternatives. These calculations are listed in 
Table 10.

From Table 10, we see that the best option is E1 and we 
also observe that E1 is closest to PFPIS E+ and simultane-
ously farthest from PFNIS E−.

In order to determine the validity and reasonability of 
the proposed PFIR method, we apply the existing meth-
ods [45, 48, 49, 51, 52, 56, 66, 74] for solving the same 
investment problem given in Example 6, and the results 
are listed in Table 11.

From Table 11, we observe that all the existing methods 
[45, 48, 49, 51, 52, 56, 66, 74] indicate that the best option is 
E1 , the same option indicated by our proposed method. This 
implies that our proposed method is in agreement with the 
existing methods in the PF environment.

Conclusion

The proposed PF distance measure is found to be stronger 
than the existing PF compatibility measures both theoreti-
cally and practically. Theoretically, it is valid in view of the 
metric axioms however some of the existing PF distance 
measures does not satisfy the metric properties. Practically, 
the proposed PF distance measure perform better than the 
existing measures in some counterintuitive situations. We 
have utilized the proposed PF distance measure for solving 
the problems related to pattern recognition and compared 
the results with the existing PF compatibility measures. We 
observed that in the problems of pattern recognition, the pro-
posed PF distance measure is consistent and in some situa-
tions superior to the existing PF compatibility measures. The 

E+ =

{
(0.89, 0.03, 0.08), (0.42, 0.05, 0.35),

(0.73, 0.02, 0.06), (0.85, 0.02, 0.05)

}

E− =

{
(0.23, 0.21, 0.08), (0.02, 0.18, 0.35),

(0.08, 0.84, 0.06), (0.43, 0.25, 0.05)

}
.
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application of the proposed PF distance measure has also 
been investigated in a pattern recognition problem with real 
data from the UCI machine learning repository. For work-
ing with real data (in the crisp form), we have introduced 
the conversion formula from crisp data to PF data. Also, 
to assess the performance of the proposed measures a per-
formance index namely “Degree of confidence (DoC)” has 
been introduced. In view of DoC, our proposed measure is 
found to outperform the existing PF compatibility measures. 
We have also presented a new method known as the picture 
fuzzy inferior ratio (PFIR) method for solving MADM prob-
lems in the PF environment. It has been observed that the 
compromise solution due to the PFIR method is closest to 
PFPIS and simultaneously farthest from PFNIS. But, in the 
conventional TOPSIS method this situation fails to occur in 
many practical problems. We have also seen that the PFIR 
method is consistent with the existing MADM methods in 
the PF environment.

In the future, we plan to study:

(1) Generalization of the proposed PF distance measure to 
spherical fuzzy sets and T-spherical fuzzy sets.

(2) The application of the proposed PF distance measure in 
clustering analysis, medical diagnosis, image segmen-
tation, etc.

(3) In this paper, we have considered thirty-seven existing 
compatibility measures concerning picture fuzzy sets 
and contrasted the performance of proposed measure 
with them. So, in view of the refernces [68–71] and 
thirty-eight compatibilty measures considered in this 
paper, many compatibilty measures can be developed 
in the framework of neutrosophic sets and refined neu-
trosophic sets.
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Appendix

The Iris database obtained from the UCI Machine Learn-
ing Repository is given in Tables 12 and the corresponding 
picture fuzzy representation of the Iris setosa is presented 
in theTable 13.
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Table 12  Iris database Iris setosa Iris versicolor Iris virginica

SL SW PL PW SL SW PL PW SL SW PL PW

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
4.6 3.4 1.4 0.3 6.3 2.8 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 3.3 3.3 1.0 7.3 2.9 6.3 1.8
4.4 2.9 1.4 0.2 6.6 2.4 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.9 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5.0 2.7 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 2.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 3.0 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 1.1 0.1 6.1 2.2 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 2.9 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.1 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.5 1.4 0.3 5.8 3.0 4.1 1.0 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.7 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.2 3.9 1.1 6.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 2.5 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 3.2 4.0 1.3 5.6 2.8 4.9 2.0
4.6 3.6 1.0 0.2 6.3 2.8 4.9 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 0.5 6.1 2.5 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.8 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 2.9 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 3.0 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 2.8 5.0 1.7 6.1 3.0 4.9 1.8
5.2 3.4 1.4 0.2 6.0 3.0 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.9 3.5 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.6 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.2 4.1 1.5 0.1 5.8 2.4 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.1 5.4 2.7 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 6.0 3.0 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.4 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.1 1.5 0.1 6.3 3.1 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 5.6 2.3 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 3.0 4.0 1.3 6.9 3.1 5.4 2.1
5.0 3.5 1.3 0.3 5.5 2.5 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 2.6 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 3.0 4.0 1.2 5.8 2.7 5.1 1.9
5.0 3.5 1.6 0.6 5.0 2.6 3.3 1.0 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4 5.6 2.3 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 2.7 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 0.2 5.7 3.0 4.2 1.3 6.3 2.5 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3
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Table 12  (continued) Iris setosa Iris versicolor Iris virginica

SL SW PL PW SL SW PL PW SL SW PL PW

5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8

Table 13  Picture Fuzzy 
representation of Iris setosa 

Iris setosa

Sepal length (SL) Sepal width (SW) Petal length (PL) Petal width (PW)

(0.2067, 0.1275, 0.2341) (0.2176, 0.1158, 0.2485) (0.1794, 0.1608, 0.1993) (0.0906, 0.3298, 0.0952)
(0.1648, 0.1813, 0.1813) (0.1417, 0.2186, 0.1535) (0.1794, 0.1608, 0.1993) (0.0906, 0.3298, 0.0952)
(0.1170, 0.2665, 0.1248) (0.1743, 0.1678, 0.1929) (0.1417, 0.2186, 0.1535) (0.0906, 0.3298, 0.0952)
(0.0906, 0.3298, 0.0952) (0.1584, 0.1911, 0.1734) (0.2131, 0.1205, 0.2425) (0.0906, 0.3298, 0.0952)
(0.1865, 0.1516, 0.2081) (0.2308, 0.1028, 0.2662) (0.1794, 0.1608, 0.1993) (0.0906, 0.3298, 0.0952)
(0.2598, 0.0779, 0.3070) (0.2666, 0.0728, 0.3168) (0.2703, 0.0701, 0.3222) (0.2256, 0.1078, 0.2592)
(0.0906, 0.3298, 0.0952) (0.2039, 0.1306, 0.2304) (0.1794, 0.1608, 0.1993) (0.1648, 0.1813, 0.1813)
(0.1865, 0.1516, 0.2081) (0.2039, 0.1306, 0.2304) (0.2131, 0.1205, 0.2425) (0.0906, 0.3298, 0.0952)
(0.0322, 0.5566, 0.0328) (0.1243, 0.2515, 0.1331) (0.1794, 0.1608, 0.1993) (0.0906, 0.3298, 0.0952)
(0.1648, 0.1813, 0.1813) (0.1584, 0.1911, 0.1734) (0.2131, 0.1205, 0.2425) (0.0000, 1.0000, 0.0000)
(0.2598, 0.0779, 0.3070) (0.2433, 0.0915, 0.2835) (0.2131, 0.1205, 0.2425) (0.0906, 0.3298, 0.0952)
(0.1417, 0.2186, 0.1535) (0.2039, 0.1306, 0.2304) (0.2433, 0.0915, 0.2835) (0.0906, 0.3298, 0.0952)
(0.1417, 0.2186, 0.1535) (0.1417, 0.2186, 0.1535) (0.1794, 0.1608, 0.1993) (0.0000, 1.0000, 0.0000)
(0.0000, 1.0000, 0.0000) (0.1417, 0.2186, 0.1535) (0.0526, 0.4566, 0.0540) (0.0000, 1.0000, 0.0000)
(0.3161, 0.0420, 0.3935) (0.2775, 0.0651, 0.3329) (0.0996, 0.3065, 0.1052) (0.0906, 0.328, 0.0952)
(0.3034, 0.0489, 0.3729) (0.3161, 0.0420, 0.3935) (0.2131, 0.1205, 0.2425) (0.2256, 0.1078, 0.2592)
(0.2598, 0.0779, 0.3070) (0.2666, 0.0728, 0.3168) (0.1417, 0.2186, 0.1535) (0.2256, 0.1078, 0.2592)
(0.2067, 0.1275, 0.2341) (0.2176, 0.1158, 0.2485) (0.1794, 0.1608, 0.1993) (0.1648, 0.1813, 0.1813)
(0.3034, 0.0489, 0.3729) (0.2552, 0.0815, 0.3003) (0.2703, 0.0701, 0.3222) (0.1648, 0.1813, 0.1813)
(0.2067, 0.1275, 0.2341) (0.2552, 0.0815, 0.3003) (0.2131, 0.1205, 0.2425) (0.1648, 0.1813, 0.1813)
(0.2598, 0.0779, 0.3070) (0.2039, 0.1306, 0.2304) (0.2703, 0.0701, 0.3222) (0.0906, 0.3298, 0.0952)
(0.2067, 0.1275, 0.2341) (0.2433, 0.0915, 0.2835) (0.2131, 0.1205, 0.2425) (0.2256, 0.1078, 0.2592)
(0.0906, 0.3298, 0.0952) (0.2308, 0.1028, 0.2662) (0.0000, 1.0000, 0.0000) (0.0906, 0.3298, 0.0952)
(0.2067, 0.1275, 0.2341) (0.1894, 0.1478, 0.2119) (0.2703, 0.0701, 0.3222) (0.2753, 0.0665, 0.3297)
(0.1417, 0.2186, 0.1535) (0.2039, 0.1306, 0.2304) (0.3161, 0.0420, 0.3935) (0.0906, 0.3298, 0.0952)
(0.1865, 0.1516, 0.2081) (0.1417, 0.2186, 0.1535) (0.2433, 0.0915, 0.2835) (0.0906, 0.3298, 0.0952)
(0.1865, 0.1516, 0.2081) (0.2039, 0.1306, 0.2304) (0.2433, 0.0915, 0.2835) (0.2256, 0.1078, 0.2592)
(0.2256, 0.1078, 0.2592) (0.2176, 0.1158, 0.2485) (0.2131, 0.1205, 0.2425) (0.0906, 0.3298, 0.0952)
(0.2256, 0.1078, 0.2592) (0.2039, 0.1306, 0.2304) (0.1794, 0.1608, 0.1993) (0.0906, 0.3298, 0.0952)
(0.1170, 0.2665, 0.1248) (0.1743, 0.1678, 0.1929) (0.2433, 0.0915, 0.2835) (0.0906, 0.3298, 0.0952)
(0.1417, 0.2186, 0.1535) (0.1584, 0.1911, 0.1734) (0.2433, 0.0915, 0.2835) (0.0906, 0.3298, 0.0952)
(0.2598, 0.0779, 0.3070) (0.2039, 0.1306, 0.2304) (0.2131, 0.1205, 0.2425) (0.2256, 0.1078, 0.2592)
(0.2256, 0.1078, 0.2592) (0.2878, 0.0582, 0.3486) (0.2131, 0.1205, 0.2425) (0.0000, 1.0000, 0.0000)
(0.2753, 0.0665, 0.3297) (0.2977, 0.0522, 0.3639) (0.1794, 0.1608, 0.1993) (0.0906, 0.3298, 0.0952)
(0.1648, 0.1813, 0.1813) (0.1584, 0.1911, 0.1734) (0.2131, 0.1205, 0.2425) (0.0000, 1.0000, 0.0000)
(0.0322, 0.5566, 0.0328) (0.1743, 0.1678, 0.1929) (0.0996, 0.3065, 0.1052) (0.0906, 0.3298, 0.0952)
(0.2067, 0.1275, 0.2341) (0.2176, 0.1158, 0.2485) (0.1417, 0.2186, 0.1535) (0.0906, 0.3298, 0.0952)
(0.1865, 0.1516, 0.2081) (0.1584, 0.1911, 0.1734) (0.2131, 0.1205, 0.2425) (0.0000, 1.0000, 0.0000)
(0.0624, 0.4182, 0.0645) (0.1417, 0.2186, 0.1535) (0.1417, 0.2186, 0.1535) (0.0906, 0.3298, 0.0952)
(0.0322, 0.5566, 0.0328) (0.2039, 0.1306, 0.2304) (0.2131, 0.1205, 0.2425) (0.0906, 0.3298, 0.0952)
(0.1865, 0.1516, 0.2081) (0.2176, 0.1158, 0.2485) (0.1417, 0.2186, 0.1535) (0.1648, 0.1813, 0.1813)
(0.0624, 0.4182, 0.0645) (0.0000, 1.0000, 0.0000) (0.1417, 0.2186, 0.1535) (0.1648, 0.1813, 0.1813)
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