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Abstract
The single-valued neutrosophic set (SVNS) is a well-known model for handling uncertain and indeterminate information.
Information measures such as distance measures, similarity measures and entropy measures are very useful tools to be used
in many applications such as multi-criteria decision making (MCDM), medical diagnosis, pattern recognition and clustering
problems. A lot of such information measures have been proposed for the SVNS model. However, many of these measures
have inherent problems that prevent them from producing reasonable or consistent results to the decisionmakers. In this paper,
we propose several new distance and similarity measures for the SVNS model. The proposed measures have been verified
and proven to comply with the axiomatic definition of the distance and similarity measure for the SVNS model. A detailed
and comprehensive comparative analysis between the proposed similarity measures and other well-known existing similarity
measures has been done. Based on the comparison results, it is clearly proven that the proposed similarity measures are able to
overcome the shortcomings that are inherent in existing similarity measures. Finally, an extensive set of numerical examples,
related to pattern recognition and medical diagnosis, is given to demonstrate the practical applicability of the proposed
similarity measures. In all numerical examples, it is proven that the proposed similarity measures are able to produce accurate
and reasonable results. To further verify the superiority of the suggested similarity measures, the Spearman’s rank correlation
coefficient test is performed on the ranking results that were obtained from the numerical examples, and it was again proven
that the proposed similarity measures produced the most consistent ranking results compared to other existing similarity
measures.

Keywords Single-valued neutrosophic set · Fuzzy sets · Multi-criteria decision making · Similarity measures · Distance
measures

Introduction1

The connection between precision and uncertainty has per-2

plexed humanity for centuries. Lukasiewicz [1], a Polish3

logician and philosopher, gave the first formulation of multi-4

valued logic which led to the study of possibility theory.5

The first simple fuzzy set and fundamental thoughts of fuzzy6

set operations were proposed by Black [2]. To overcome7

the problem of handling uncertain and imprecise informa-8

tion in decision making, Zadeh [3] presented the concept of9

fuzzy set, where the membership degree of each element in10
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a fuzzy set is a single value in the interval of [0,1]. Fuzzy set 11

theory has been widely applied in a plethora of application 12

fields, including medical diagnosis, engineering, economics, 13

image processing and object recognition (Phuong et al. [4]; 14

Shahzadi et al. [5]; Tobias and Seara [6]). 15

The general fuzzy set was extended to the intuitionis- 16

tic fuzzy set (IFS) by Atanassov [7]. The IFS model has a 17

degree of membership μA(xi ) ∈ [0, 1] and a degree of non- 18

membership νA(xi ) ∈ [0, 1], such that μA(xi ) + νA(xi ) ≤ 1 19

for each x ∈ X . The IFS model definitely extends the classi- 20

cal fuzzy set model; however, it is often difficult to be applied 21

in real-life decision making situations, as only incomplete 22

andvague information canbedealtwith but not indeterminate 23

or inconsistent information.Hence, Smarandache [8] initially 24

proposed the idea of the neutrosophic set (NS) which, from 25
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a philosophical point of view, more effectively deals with26

imprecise, indeterminate and inconsistent information, that27

often exists in real-life decision making problems, compared28

to the classical fuzzy set model [3] and the IFS model [7].29

The neutrosophic set [9] is characterized by a truth function30

TA(x), an indeterminacy IA(x) function and a falsify FA(x)31

function, where all these three functions are completely inde-32

pendent. The functions TA(x), IA(x) and FA(x) in X assume33

real values in the standard or non-standard subsets of−0, 1+[,34

such that TA(x) : X → ]−0, 1+[, IA(x) : X →]−0, 1+
[

35

and FA(x) : X → ]−0, 1+
[
. Since its introduction, a lot36

of extensions of the neutrosophic set have been proposed37

by scholars, including the single-valued neutrosophic set38

(SVNS) by Wang et al. [10], the interval neutrosophic set by39

Wang et al. [11], the simplified neutrosophic set by Peng et al.40

[12], the neutrosophic soft set byMaji [13], the single-valued41

neutrosophic linguistic set by Ye [14], the simplified neu-42

trosophic linguistic set by Tian et al. [15], the multi-valued43

neutrosophic set byWang andLi [16], the roughneutrosophic44

set (RNS) byBroumi et al. [17], the ņeutrosophic cubic set by45

Jun et al. [18], the complex neutrosophic set by Ali and46

Smarandache [19], and the complex ņeutrosophic cubic set47

by Gulistan and Khan [20]. Additionally, a large number of48

aggregation operators have been presented, based on various49

techniques, including algebraic methods, Bonferroni mean50

(Bonferroni [21]), power average (Yager [22]), exponential51

operational law, prioritized average (Yager [23]) and oper-52

ations of Dombi T-conorm and T-norm (Dombi [24]). All53

these aggregation operators have been proposed to be used54

for analyzing many multi-criteria decision making (MCDM)55

problems.56

In this paper, we focus on the single-valued neutrosophic57

set (SVNS) which was presented by Wang et al. [10]. Since58

its inception, a lot of scholars have actively contributed to59

the development of this variation of the NS. In addition, a60

lot of scholars have applied SNVS in various application61

fields of decision making. For example, Zavadskas et al.62

[25] presented a new extension of the weighted aggregated63

sumproduct assessment (WASPAS) decisionmakingmethod64

(namelyWASPAS-SVNS) to solve the problem of site selec-65

tion for waste incineration plants. Vafadarnikjoo et al. [26]66

applied the fuzzy Delphi method in combination with SVNS67

for assessing consumers’ motivations to purchase a reman-68

ufactured product. Selvachandran et al. [27] presented a69

modified Technique for Order Preference by Similarity to70

Ideal Solution (TOPSIS) with maximizing deviation method71

based on the SVNS model and applied this technique to72

determine objective attribute weights in a supplier selection73

problem.Broumi et al. [28] did an analysis of the strength of a74

wi-fi connection using SVNSs. Biswas et al. [29] proposed a75

non-linear programming approach based on TOPSISmethod76

for solving multi-criteria group decision making (MCGDM)77

problems under the SVNS environment. Abdel-Basset et al.78

[30] used a neutrosophic approach to minimize the cost of 79

project scheduling under uncertain environmental conditions 80

by assuming linear time–cost trade-offs. Abdel-Basset and 81

Mohamed [31] proposed a combination of the plithogenic 82

multi-criteria decision making approach based on TOPSIS 83

and the criteria importance through inter-criteria correlation 84

(CRITIC) method to evaluate the sustainability of a sup- 85

ply chain risk management system. Abdel-Basset et al. [32] 86

considered the resource leveling problem in construction 87

projects using neutrosophic sets with the aim to overcome 88

the ambiguity surrounding the project scheduling decision 89

making process. Besides these, many other scientific studies 90

related to various extensions of the neutrosophic set model 91

have also been published over the years. Akram et al. [33] 92

developed an approach based on the maximizing deviation 93

method and TOPSIS for solving MCDM problems under the 94

assumptions of a simplified neutrosophic hesitant fuzzy envi- 95

ronment. Zhan et al. [34] proposed an efficient algorithm to 96

solveMCDM problems based on bipolar neutrosophic infor- 97

mation. Aslam [35] introduced a novel neutrosophic analysis 98

of variance, whereas Sumathi and Sweety [36] suggested a 99

new form of fuzzy differential equation using trapezoid neu- 100

trosophic numbers. 101

Moreover, a lot of information measures for the SVNS 102

model have been proposed over the years, such as similarity 103

measures, distance measures, entropy measures, inclusion 104

measures and also correlation coefficients. Some of the 105

most important research works pertaining to similarity and 106

distancemeasures for SVNSs are due toBroumi and Smaran- 107

dache [37], Ye [38–44], Ye and Zhang [45], Majumdar and 108

Samanta [46], Mondal and Pramanik [47], Ye and Fu [48], 109

Liu and Luo [49], Huang [50], Mandal and Basu [51], Sahin 110

et al. [52], Pramanik et al. [53], Garg and Nancy [54], Fu 111

and Ye [55], Wu et al. [56], Cui and Ye [57], Mondal et al. 112

[58, 59], Liu [60], Liu et al. [61], Ren et al. [62], Sun et al. 113

[63] and Peng and Smarandache [64]. Research related to 114

entropy and inclusion measures for the SVNS model can be 115

found in Majumdar and Samanta [46], Aydoğdu [65], Garg 116

and Nancy [66], Wu et al. [56], Cui and Ye [67], Aydoğdu 117

and Şahin [68] and Sinha and Majumdar [69]. Lastly, corre- 118

lation coefficients for SVNSs were proposed by Ye [38, 70, 119

71] and Hanafy et al. [72]. 120

Since the first formulas expressing the similarity measure 121

between two fuzzy sets were initially introduced by Bonis- 122

sone [73], Eshragh and Mamdani [74] and Lee-Kwang et al. 123

[75] years ago, a lot of scholars and researchers have been 124

continuously proposing new similarity measures for fuzzy 125

based models, including the SVNS model, and applying 126

these measures in solving various practical problems related 127

to MCDM (Ye [41]; Ye and Zhang [45]; Pramanik et al. 128

[53]; Mondal and Pramanik [47]; Aydoğdu [65]; Mandal and 129

Basu [76]), pattern recognition (Sahin et al. [52]), medical 130

diagnosis (Shahzadi, Akram and Saeid [5]; Ye and Fu [48]; 131
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Abdel-Basset et al. [77]), clustering analysis (Ye [41, 43]),132

image processing (Guo et al. [78, 79]; Guo and Şengür [80];133

Qi et al. [81]) and minimum spanning tree (Mandal and Basu134

[51]). The existing similarity measures for SVNSs have been135

found to have many problems and shortcomings, such as: (1)136

failing to differentiate between positive and negative differ-137

ences over the sets that are being considered, (2) facing the138

division by zero problem, and (3) providing unreasonable139

results that are counter-intuitive with the concept of sim-140

ilarity measures and/or not compatible with the axiomatic141

definition of similarity measures for SVNSs. These asser-142

tions were correctly pointed out by Peng and Smarandache143

[64] who analyzed problems inherent in many of the existing144

similarity measures.145

In view of the above, the objective of this paper is to pro-146

pose new distance and similarity measures for the SVNS147

model which are able to overcome the shortcomings of exist-148

ing measures. The paper presents a detailed comparative149

analysis between the proposed similarity measures and other150

existing similarity measures for SVNSs. The comparative151

analysis applies all these measures in different cases with152

the aim to demonstrate the effectiveness, the feasibility and153

the superiority of the proposed formulas compared to exist-154

ing formulas. The newly proposed measures are applied to155

MCDM problems related to pattern recognition and medical156

diagnosis.157

The rest of this article is organized as follows. Sec-158

tion “Preliminaries” provides a brief overview of some of the159

most important concepts related toSVNSs. InSect. “Newdis-160

tance and similarity measures for SVNSs”, several new dis-161

tance measures and similarity measures for the SVNSmodel162

are introduced and some important algebraic properties of163

these measures are presented and verified. In Sect. “Compar-164

ative studies”, a comparative analysis is given between the165

proposed similarity measures and other existing similarity166

measures presented in the literature. In Sect. “Applications167

of the proposed similarity measures”, the proposed similar-168

ity measures are applied to two MCDM problems, related169

respectively to pattern recognition and medical diagnosis,170

using numerical examples aiming to prove the feasibility171

and effectiveness of the proposed similarity measures. The172

results obtained are then compared to the results obtained173

using the existing similarity measures, as well as analyzed174

and discussed. Concluding remarks and directions of future175

research are presented in Sect. “Conclusions” followed by176

the acknowledgements and the list of references.177

Preliminaries178

Definition 2.1 [8]. A neutrosophic set A in a universal179

set X is characterized by a truth-membership function180

TA(x), an indeterminacy-membership function IA(x) and181

a falsity-membership function FA(x). These three func- 182

tions TA(x), IA(x), FA(x) in X are real standard or non- 183

standard subsets of
]−0, 1+

[
, such that TA(x) : X → 184]−0, 1+[, IA(x) : X →]−0, 1+
[
, and FA(x) : X → 185]−0, 1+

[
.Thus, there is no restriction on the sumof TA(x), IA 186

(x) and FA(x), so that −0 ≤ sup TA(x)+ sup IA(x)+ sup FA 187

(x) ≤ 3+. 188

Smarandache [8] introduced the neutrosophic set from 189

a philosophical point of view as an extension of the fuzzy 190

set, the IFS, and the interval-valued IFS. Although the con- 191

cept was a novel one, it was found to be difficult to apply 192

neutrosophic sets in practical problems, mainly due to the 193

range of values of the membership functions which lie in the 194

non-standard interval of
]−0, 1+

[
. Datasets in many real-life 195

situations are often imprecise, uncertain and/or incomplete. 196

Any discrepancies or deficiencies in the used datasets will 197

have an adverse effect on the decisionmaking process and, by 198

extension, on the results that are generated. Hence, it is often 199

pertinent to have a robust framework to effectively represent 200

all types of imprecise, uncertain and incomplete informa- 201

tion. Fuzzy set theory was introduced as a good alternative 202

to deal with imprecise, inconsistent and incomplete informa- 203

tion as classical methods, such as set theory and probability 204

theory, were unable to deal with such deficiencies in infor- 205

mation. However, fuzzy set theory was found to be less than 206

ideal in dealing with imprecise, inconsistent and incomplete 207

information, as it only takes into consideration the truth com- 208

ponent of any information and it is not able to handle the 209

falsity and indeterminacy components of the information. 210

As fuzzy set theory evolved into other fuzzy based models, 211

neutrosophic sets were introduced by Smarandache [8] as an 212

efficient mathematical model to deal with imprecise, incon- 213

sistent and incomplete information. The SVNSmodel, which 214

was conceptualized by Wang et al. [10] as an extension of 215

the neutrosophic set model, has proven to be an effective 216

model for handling imprecise, inconsistent and incomplete 217

information in a systematic manner due its ability to con- 218

sider the degree of truth, falsity and indeterminacy for each 219

piece of information. In addition, the structure of the SVNS 220

model in which its membership functions assume values in 221

the standard interval of [0, 1] makes it compatible with the 222

other fuzzy basedmodels, therebymaking itmore convenient 223

to be applied to solving real-life decision making problems 224

with actual datasets. All these served as reasons to choose the 225

SVNS model as the object of study in this paper. The formal 226

definition of the SVNS is presented below. 227

Definition 2.2 [10]. Let X be a universal set. An SVNS A 228

in X is concluded by a truth-membership function TA(x), 229

an indeterminacy-membership function IA(x) and a falsity- 230

membership function FA(x). An SVNS A can be signified 231

by A � {x , TA(x), IA(x), FA(x)|x ∈ X } where TA(x), IA 232

(x), FA(x) ∈ [0, 1] for each x in X . Then, the sum of TA 233
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(x), IA(x) and FA(x) satisfies the condition 0 ≤ TA(x) + IA234

(x) + FA(x) ≤ 3. For an SVNS A in X , the triplet TA(x),235

IA(x), FA(x) is called single-valued neutrosophic number236

(SVNN), which is a fundamental element in an SVNS.237

Definition 2.3 [10]. For any two given SVNSs A and B, the238

union, intersection, equality, complement and inclusion of A239

and B are defined as shown below:240

1. Complement: Ac � {〈x , FA(x), 1 − IA(x), TA(x)〉|x ∈ X }.241

2. Inclusion: A ⊆ B if and only if TA(x) ≤ TB(x), IA242

(x) ≥ IB(x), FA(x) ≥ FB(x) for any x in X .243

3. Equality: A � B if and only if A ⊆ B and B ⊆ A.244

4. Union: A∪ B � {〈x , TA(x)∨TB(x), IA(x)∧ IB(x), FA245

(x) ∧ FB(x)〉|x ∈ X }.246

5. Intersection: A ∩ B � {〈x , TA(x) ∧ TB(x), IA(x) ∨ IB247

(x), FA(x) ∨ FB(x)〉|x ∈ X }.248

Definition 2.4 [82]. For any two given SVNSs A and B, the249

subtraction and division operation of A and B are defined as250

shown below:251

1. A � B �
{〈

x , TA(x)−TB (x)
1−TB (x) , IA(x)

IB (x) ,
FA(x)
FB (x)

〉∣∣∣x ∈ X
}
,252

which is valid under the conditions A ≥ B, TB(x) �� 1,253

IB(x) �� 0, FB(x) �� 0.254

2. A � B�
{〈

x , TA(x)
TB (x) ,

IA(x)−IB (x)
1−IB (x) , FA(x)−FB (x)

1−FB (x)

〉∣∣∣x ∈ X
}
,255

which is valid under the conditions B ≥ A, TB(x) �� 0,256

IB(x) �� 1, FB(x) �� 1.257

Definition 2.5 [83]. For any two given SVNSs A and B, the258

addition and multiplication operation of A and B are defined259

as shown below:260

1.261 A ⊕ B � {〈x , TA(x) + TB(x) − TA(x)TB(x),262

IA(x)IB(x), FA(x)FB(x)〉|x ∈ X }.263264

2.265 A ⊗ B � {〈x , TA(x)TB(x), IA(x) + IB(x)266

− IA(x)IB(x), FA(x) + FB(x)267

− FA(x)FB(x)〉|x ∈ X }.268269

Definition 2.6 Let A be an SVNS over a universe270

U .271

1. A is said to be an absolute SVNS, denoted by Ã, if272

TÃ(x) � 1, I Ã(x) � 0 and FÃ(x) � 0, for all273

x ∈ U .274

2. A is said to be an empty or null SVNS, denoted by φA,275

if TφA (x) � 0, IφA (x) � 0 and FφA(x) � 1, for all276

x ∈ U .277

New distance and similarity measures 278

for SVNSs 279

In this section, we introduce several new formulas for the 280

distance and similarity measures of SVNSs based on the 281

axiomatic definition of the distance and similarity between 282

SVNSs. 283

Distancemeasures for single-valued neutrosophic 284

sets 285

Definition 1 [37] A real function D : �(X) × �(X) → 286

[0, 1] is called a distance measure, where d satisfies the fol- 287

lowing axioms for A, B, C ⊆ �(X): 288

(D1) 2890 ≤ D(A, B) ≤ 1. 290291

(D2) 292D(A, B) � 0 iff A � B. 293294

(D3) 295D(A, B) � D(B, A). 296297

(D4) If
A ⊆ B ⊆ C , then D(A, C)

≥ D(A, B) and D(A, C) ≥ D(B, C).
298

Let A � 〈xi , TA(xi ), IA(xi ), FA(xi )|xi ∈ X〉 and B � 299

〈xi , TB(xi ), IB(xi ), FB(xi )|xi ∈ X〉, i � 1, 2, . . . , n, be 300

two SVNSs over the universe X . 301

Theorem 1 Let A and B be two SVNSs, then Di (A, B), for 302

i � 1, 2, . . . , 11, is a distance measure between SVNSs. 303

1. 304D1(A, B) � 1
3|X |

∑

x∈X

(∣∣T 2
A(x) − T 2

B(x)
∣∣

+
∣∣I 2A(x) − I 2B(x)

∣∣ +
∣∣F2

A(x) − F2
B(x)

∣∣
) 305306

2. 307D2(A, B) � 1

3|X |
∑

x∈X

∣∣∣
(
T 2
A(x) − T 2

B(x)
)

308

−
(
I 2A(x) − I 2B(x)

)
−
(
F2
A(x) − F2

B(x)
)∣∣
∣ 309310

3. 311D3(A, B) � 1

|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

B(x)
∣
∣∣ 312

∨
∣∣∣I 2A(x) − I 2B(x)

∣∣∣ ∨
∣∣∣F2

A(x) − F2
B(x)

∣∣∣
)

313314

4. 315
D4(A, B) � 2

|X | 316

∑

x∈X

{ (∣∣T 2
A(x) − T 2

B (x)
∣∣ ∨ ∣∣I 2A(x) − I 2B (x)

∣∣ ∨ ∣∣F2
A(x) − F2

B (x)
∣∣)

1 +
(∣∣T 2

A(x) − T 2
B (x)

∣
∣ ∨ ∣∣I 2A(x) − I 2B (x)

∣
∣ ∨ ∣∣F2

A(x) − F2
B (x)

∣
∣)

}

317

318

5. 319
D5(A, B) 320

� 2
∑

x∈X
(∣∣T 2

A(x) − T 2
B (x)

∣
∣ ∨ ∣∣I 2A(x) − I 2B (x)

∣
∣ ∨ ∣∣F2

A(x) − F2
B (x)

∣
∣)

∑
x∈X

(
1 +

∣∣T 2
A(x) − T 2

B (x)
∣∣ ∨ ∣∣I 2A(x) − I 2B (x)

∣∣ ∨ ∣∣F2
A(x) − F2

B (x)
∣∣)321322
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6.323
D6(A, B) � 1 − α

∑
x∈X

(
T 2
A(x) ∧ T 2

B(x)
)

∑
x∈X

(
T 2
A(x) ∨ T 2

B(x)
)324

− β

∑
x∈X

(
I 2A(x) ∧ I 2B(x)

)

∑
x∈X

(
I 2A(x) ∨ I 2B(x)

)325

− γ

∑
x∈X

(
F2
A(x) ∧ F2

B(x)
)

∑
x∈X

(
F2
A(x) ∨ F2

B(x)
) ,326

α + β + γ � 1, α, β, γ ∈ [0, 1]327328

7.329
D7(A, B) � 1 − α

|X |
∑

x∈X

(
T 2
A(x) ∧ T 2

B(x)
)

(
T 2
A(x) ∨ T 2

B(x)
)330

− β

|X |
∑

x∈X

(
I 2A(x) ∧ I 2B(x)

)

(
I 2A(x) ∨ I 2B(x)

)331

− γ

|X |
∑

x∈X

(
F2
A(x) ∧ F2

B(x)
)

(
F2
A(x) ∨ F2

B(x)
) ,332

α + β + γ � 1, α, β, γ ∈ [0, 1]333334

8.335 D8(A, B) � 1 − 1

|X |
∑

x∈X
336

{(
T 2
A(x) ∧ T 2

B(x)
)
+
(
I 2A(x) ∧ I 2B(x)

)
+
(
F2
A(x) ∧ F2

B(x)
)

(
T 2
A(x) ∨ T 2

B(x)
)
+
(
I 2A(x) ∨ I 2B(x)

)
+
(
F2
A(x) ∨ F2

B(x)
)

}

337338

9.339 D9(A, B) � 1340

−
∑

x∈X
(
T 2
A(x) ∧ T 2

B (x)
)
+
(
I 2A(x) ∧ I 2B(x)

)
+
(
F2
A(x) ∧ F2

B(x)
)

∑
x∈X

(
T 2
A(x) ∨ T 2

B (x)
)
+
(
I 2A(x) ∨ I 2B(x)

)
+
(
F2
A(x) ∨ F2

B(x)
)341342

10.
D10(A, B) � 1 − 1

|X |
∑

x∈X

{ (
T 2
A (x) ∧ T 2

B (x)
)
+
(
1 − I 2A(x)

) ∧ (1 − I 2B (x)
)
+
(
1 − F2

A(x)
) ∧ (1 − F2

B (x)
)

(
T 2
A (x) ∨ T 2

B (x)
)
+
(
1 − I 2A(x)

) ∨ (1 − I 2B (x)
)
+
(
1 − F2

A(x)
) ∨ (1 − F2

B (x)
)

}343

11.
D11(A, B) � 1

−
∑

x∈X
(
T 2
A (x) ∧ T 2

B (x)
)
+
(
1 − I 2A(x)

) ∧ (1 − I 2B (x)
)
+
(
1 − F2

A(x)
) ∧ (1 − F2

B (x)
)

∑
x∈X

(
T 2
A (x) ∨ T 2

B (x)
)
+
(
1 − I 2A(x)

) ∨ (1 − I 2B (x)
)
+
(
1 − F2

A(x)
) ∨ (1 − F2

B (x)
)

344

Proof In order for Di (A, B)(i � 1, 2, . . . , 11) to be quali-345

fied as a valid distance measure for SVNSs, it must satisfy346

conditions (D1) to (D4) in Definition 1. It is straightforward347

to prove condition (D1), so we prove only conditions (D2) to348

(D4) for the distance measure D1(A, B). These conditions349

can be proven for the rest of the formulas D2(A, B) to D11350

(A, B) in a similar manner.351

(D2)(⇒) If D1(A, B) � 0,352

then 1
3|X |

∑

x∈X
(
∣∣T 2

A(x) − T 2
B(x)

∣∣ +
∣∣I 2A(x) − I 2B(x)

∣∣ +353

∣∣F2
A(x) − F2

B(x)
∣∣) � 0354

∴
∑

x∈X
(
∣
∣T 2

A(x) − T 2
B(x)

∣
∣ +

∣
∣I 2A(x) − I 2B(x)

∣
∣ +355

∣∣F2
A(x) − F2

B(x)
∣∣) � 0356

which would occur if T 2
A(x) � T 2

B(x), I 2A(x) � I 2B , F
2
A357

(x) � F2
B(x).358

i.e., TA(x) � TB(x), IA(x) � IB(x), FA(x) � FB(x).359

i.e., A � B.360

(⇐) If A � B, then TA(x) � TB(x), IA(x) � IB(x), FA 361

(x) � FB(x), ∀x ∈ X . 362

∴ D1(A, B) � 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

B(x)
∣
∣∣ +
∣
∣∣I 2A(x) − I 2B(x)

∣
∣∣

+
∣∣∣F2

A(x) − F2
B(x)

∣∣∣
)

� 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

A(x)
∣∣∣ +
∣∣∣I 2A(x) − I 2A(x)

∣∣∣

+
∣∣∣F2

A(x) − F2
A(x)

∣∣∣
)

� 1

3|X |
∑

x∈X

(∣∣∣T 2
B(x) − T 2

B(x)
∣∣∣ +
∣∣∣I 2B(x) − I 2B(x)

∣∣∣

+
∣
∣∣F2

B(x) − F2
B(x)

∣
∣∣
)

� 0.

363

(D3) 364

D1(A, B) � 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

B(x)
∣∣∣ 365

+
∣
∣∣I 2A(x) − I 2B(x)

∣
∣∣ +
∣
∣∣F2

A(x) − F2
B(x)

∣
∣∣
)
; 366

� 1

3|X |
∑

x∈X

(∣∣∣T 2
B(x) − T 2

A(x)
∣
∣∣ 367

+
∣∣∣I 2B(x) − I 2A(x)

∣∣∣ +
∣∣∣F2

B(x) − F2
A(x)

∣∣∣
)

368

� D1(B, A). 369370

(D4) If A ⊆ B ⊆ C , then we have: 371

TA(x) ≤ TB(x) ≤ TC (x), IA(x) ≥ IB(x) ≥ IC (x), 372

FA(x) ≥ FB(x) ≥ FC (x). 373

Therefore, we have: 374

TA(x) − TB(x) ≤ TA(x) − TC (x), IA(x) − IB(x) ≤ IA 375

(x) − IC (x), 376

FA(x) − FB(x) ≤ FA(x) − FC (x) 377

∴ T 2
A(x)−T 2

B(x) ≤ T 2
A(x)−T 2

C (x), I 2A(x)− I 2B(x) ≤ I 2A 378

(x) − I 2C (x), 379

F2
A(x) − F2

B(x) ≤ F2
A(x) − F2

C (x). 380

Theorem 2 For i � 1, 2, . . . , 11, if α � β � γ � 1
3 , the 381

following hold: 382

(i) Di (A, Bc) � Di (Ac, B), i �� 11, 12 383

(ii) 384Di (A, B) � Di (A ∩ B, A ∪ B) 385386

(iii) 387Di (A, A ∩ B) � Di (B, A ∪ B) 388389

(iv) 390Di (A, A ∪ B) � Di (B, A ∩ B) 391392

Proof (i) Let A � (TA(x), IA(x), FA(x)), Ac � 393

(FA(x), 1 − IA(x), TA(x)). 394

For
D1(A, B) � 1

3|X |
∑

x∈X

(∣∣
∣T 2

A(x) − T 2
B(x)

∣∣
∣ +
∣∣
∣I 2A(x) − I 2B(x)

∣∣
∣

+
∣
∣∣F2

A(x) − F2
B(x)

∣
∣∣
)
,

395

the following hold: 396
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D1
(
A, Bc) � 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − F2

B(x)
∣∣∣397

+
∣∣
∣I 2A(x) −

(
1 − I 2B(x)

)∣∣
∣ +
∣∣
∣F2

A(x) − T 2
B(x)

∣∣
∣
)

398

� 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − F2

B(x)
∣
∣∣399

+
∣∣∣I 2A(x) + I 2B(x) − 1

∣∣∣ +
∣∣∣F2

A(x) − T 2
B(x)

∣∣∣
)

400

� 1

3|X |
∑

x∈X

(∣∣∣F2
A(x) − T 2

B(x)
∣∣∣401

+
∣∣∣1 − I 2A(x) − I 2B(x)

∣∣∣ +
∣∣∣T 2

A(x) − F2
B(x)

∣∣∣
)

402

� D1
(
Ac, B

)
.403404

(ii)405

D1(A ∩ B, A ∪ B)406

� 1

3|X |
∑

x∈X
(∣∣(min(TA(x), TB(x)))2 − (max(TA(x), TB(x)))2

∣∣407

+
∣
∣(max(IA(x), IB(x)))2 − (min(IA(x), IB(x)))2

∣
∣408

+
∣
∣(max(FA(x), FB(x)))2 − (min(FA(x), FB(x)))2

∣
∣)409

� 1

3|X |
∑

x∈X

(∣∣T 2
A(x) − T 2

B (x)
∣
∣ +
∣
∣I 2A(x) − I 2B(x)

∣
∣ +
∣
∣F2

A(x) − F2
B(x)

∣
∣)410

� D1(A, B).411412

(iii)413

D1(A, A ∩ B)414

� 1

3|X |
∑

x∈X

(∣∣
∣T 2

A(x) − (min(TA(x), TB(x)))2
∣∣
∣ +
∣∣
∣I 2A(x)415

−
∣∣
∣(max(IA(x), IB(x)))2

∣∣
∣ +
∣∣
∣F2

A(x) − (max(FA(x), FB(x)))2
∣∣
∣
)

416417

� 1

3|X |
∑

x∈X

(∣∣
∣T 2

B(x) − (max(TA(x), TB(x)) 2
∣
∣
∣ +
∣
∣
∣I 2B(x)−

∣
∣
∣418

− (min(IA(x), IB(x)))2
∣
∣
∣+
∣
∣
∣F2

B(x) − (min(FA(x), FB(x)))2
∣
∣
∣
)

419420

∵
(∣∣∣T 2

A(x) − T 2
B(x)

∣∣∣ �
∣∣∣T 2

B(x) − T 2
A(x)

∣∣∣
)

� D1(B, A ∪ B).
421422

(iv) The proof is similar to that of (iii) and is therefore423

omitted.424

New similarity measures for SVNSs 425

Definition 2 [37]. Let A and B be two SVNSs, and S is a 426

mapping S : SV N Ss(X) × SV N Ss(X) → [0, 1]. We call 427

S(A, B) a similarity measure between A and B if it satisfies 428

the following properties: 429

(S1) 4300 ≤ S(A, B) ≤ 1. 431432

(S2) 433S(A, B) � 1iff A � B. 434435

(S3) 436S(A, B) � S(B, A). 437438

(S4) 439S(A, C) ≤ S(A, B)and 440441

S(A, C) ≤ S(B, C)if 442443

A ⊆ B ⊆ C , whenC ∈ SV N S(X). 444445

Theorem 3 Let A and B be two SVNSs, then Si (A, B), for 446

i � 1, 2, . . . , 11, is a similarity measure between SVNSs. 447

(i) 448

S1(A, B) � 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

B(x)
∣∣∣ 449

+
∣∣∣I 2A(x) − I 2B(x)

∣∣∣ +
∣∣∣F2

A(x) − F2
B(x)

∣∣∣
)

450451

(ii) 452S2(A, B) � 1 − 1

3|X |
∑

x∈X

∣
∣∣
(
T 2
A(x) − T 2

B(x)
)

453

−
(
I 2A(x) − I 2B(x)

)
−
(
F2
A(x) − F2

B(x)
)∣∣∣ 454455

(iii) 456S3(A, B) � 1 − 1

|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

B(x)
∣∣∣ 457

∨
∣∣
∣I 2A(x) − I 2B(x)

∣∣
∣ ∨

∣∣
∣F2

A(x) − F2
B(x)

∣∣
∣
)

458459
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(iv)460
S4(A, B) � 1

|X |
∑

x∈X

{
1 − (∣∣T 2

A(x) − T 2
B(x)

∣∣ ∨ ∣∣I 2A(x) − I 2B(x)
∣∣ ∨ ∣∣F2

A(x) − F2
B(x)

∣∣)

1 +
(∣∣T 2

A(x) − T 2
B(x)

∣∣ ∨ ∣∣I 2A(x) − I 2B(x)
∣∣ ∨ ∣∣F2

A(x) − F2
B(x)

∣∣)

}

461

462

(v)463 S5(A, B) �
∑

x∈X
(
1 − ∣∣T 2

A(x) − T 2
B(x)

∣∣ ∨ ∣∣I 2A(x) − I 2B(x)
∣∣ ∨ ∣∣F2

A(x) − F2
B(x)

∣∣)

∑
x∈X

(
1 +

∣
∣T 2

A(x) − T 2
B(x)

∣
∣ ∨ ∣∣I 2A(x) − I 2B(x)

∣
∣ ∨ ∣∣F2

A(x) − F2
B(x)

∣
∣)464

465

(vi)466 S6(A, B) � α

∑
x∈X

(
T 2
A(x) ∧ T 2

B(x)
)

∑
x∈X

(
T 2
A(x) ∨ T 2

B(x)
) + β

∑
x∈X

(
I 2A(x) ∧ I 2B(x)

)

∑
x∈X

(
I 2A(x) ∨ I 2B(x)

) + γ

∑
x∈X

(
F2
A(x) ∧ F2

B(x)
)

∑
x∈X

(
F2
A(x) ∨ F2

B(x)
) ,467

α + β + γ � 1, α, β, γ ∈ [0, 1]468469

(vii)470 S7(A, B) � α

|X |
∑

x∈X

(
T 2
A(x) ∧ T 2

B(x)
)

(
T 2
A(x) ∨ T 2

B(x)
) +

β

|X |
∑

x∈X

(
I 2A(x) ∧ I 2B(x)

)

(
I 2A(x) ∨ I 2B(x)

) +
γ

|X |
∑

x∈X

(
F2
A(x) ∧ F2

B(x)
)

(
F2
A(x) ∨ F2

B(x)
) ,471

α + β + γ � 1, α, β, γ ∈ [0, 1]472473

(viii)474
S8(A, B) � 1

|X |
∑

x∈X

{(
T 2
A(x) ∧ T 2

B(x)
)
+
(
I 2A(x) ∧ I 2B(x)

)
+
(
F2
A(x) ∧ F2

B(x)
)

(
T 2
A(x) ∨ T 2

B(x)
)
+
(
I 2A(x) ∨ I 2B(x)

)
+
(
F2
A(x) ∨ F2

B(x)
)

}

475

476

(ix)477 S9(A, B) �
∑

x∈X
(
T 2
A(x) ∧ T 2

B(x)
)
+
(
I 2A(x) ∧ I 2B(x)

)
+
(
F2
A(x) ∧ F2

B(x)
)

∑
x∈X

(
T 2
A(x) ∨ T 2

B(x)
)
+
(
I 2A(x) ∨ I 2B(x)

)
+
(
F2
A(x) ∨ F2

B(x)
)478

479

(x)480
S10(A, B) � 1

|X |
∑

x∈X

{(
T 2
A(x) ∧ T 2

B(x)
)
+
(
1 − I 2A(x)

) ∧ (1 − I 2B(x)
)
+
(
1 − F2

A(x)
) ∧ (1 − F2

B(x)
)

(
T 2
A(x) ∨ T 2

B(x)
)
+
(
1 − I 2A(x)

) ∨ (1 − I 2B(x)
)
+
(
1 − F2

A(x)
) ∨ (1 − F2

B(x)
)

}

481

482

(xi)483 S11(A, B) �
∑

x∈X
(
T 2
A(x) ∧ T 2

B(x)
)
+
(
1 − I 2A(x)

) ∧ (1 − I 2B(x)
)
+
(
1 − F2

A(x)
) ∧ (1 − F2

B(x)
)

∑
x∈X

(
T 2
A(x) ∨ T 2

B(x)
)
+
(
1 − I 2A(x)

) ∨ (1 − I 2B(x)
)
+
(
1 − F2

A(x)
) ∨ (1 − F2

B(x)
)

484

Proof In order for Si (A, B)(i � 1, 2, . . . , 11) to be qual-485

ified as a practical similarity measure for SVNSs, it must486

satisfy the conditions (S1) to (S4), listed in Definition 2. It487

is straightforward to prove condition (S1) and therefore we488

only prove conditions (S2) to (S4). For the sake of brevity,489

we only present the proof for S1(A, B). The proof for the490

other formulas can be generated in a similar manner.491

(D2) For S1(A, B) � 1 − 1
3|X |

∑

x∈X
(
∣∣T 2

A(x) − T 2
B(x)

∣∣ +492

∣∣I 2A(x) − I 2B(x)
∣∣+
∣∣F2

A(x) − F2
B(x)

∣∣, we have the following:493

(⇒) If S1(A, B) � 1,494

then 1 − 1
3|X |

∑

x∈X
(
∣∣T 2

A(x) − T 2
B(x)

∣∣ +
∣∣I 2A(x) − I 2B(x)

∣∣ +495

∣∣F2
A(x) − F2

B(x)
∣∣) � 1496

∴
∑

x∈X
(
∣
∣T 2

A(x) − T 2
B(x)

∣
∣ +

∣
∣I 2A(x) − I 2B(x)

∣
∣ +497

∣∣F2
A(x) − F2

B(x)
∣∣) � 0498

which would occur if T 2
A(x) � T 2

B(x), I 2A(x) � I 2B , F
2
A499

(x) � F2
B(x).500

i.e., TA(x) � TB(x), IA(x) � IB(x), FA(x) � FB(x).501

i.e., A � B.502

(⇐) If A � B, then TA(x) � TB(x), IA(x) � IB(x), FA503

(x) � FB(x), ∀x ∈ X .504

∴ S1(A, B) � 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

B(x)
∣∣∣

+
∣∣
∣I 2A(x) − I 2B(x)

∣∣
∣ +
∣∣
∣F2

A(x) − F2
B(x)

∣∣
∣
)

� 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

A(x)
∣
∣∣

+
∣∣∣I 2A(x) − I 2A(x)

∣∣∣ +
∣∣∣F2

A(x) − F2
A(x)

∣∣∣
)

� 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
B(x) − T 2

B(x)
∣∣∣

+
∣∣∣I 2B(x) − I 2B(x)

∣∣∣ +
∣∣∣F2

B(x) − F2
B(x)

∣∣∣
)

� 1.

505

(D3)

S1(A, B) � 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − T 2

B(x)
∣∣∣

+
∣∣∣I 2A(x) − I 2B(x)

∣∣∣ +
∣∣∣F2

A(x) − F2
B(x)

∣∣∣
)

� 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
B(x) − T 2

A(x)
∣∣∣

+
∣∣
∣I 2B(x) − I 2A(x)

∣∣
∣ +
∣∣
∣F2

B(x) − F2
A(x)

∣∣
∣
)

� S1(B, A).

506

(D4) If A ⊆ B ⊆ C , then we have: 507
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TA(x) ≤ TB(x) ≤ TC (x), IA(x) ≥ IB(x) ≥ IC (x), FA508

(x) ≥ FB(x) ≥ FC (x).509

Therefore, we have:510

TA(x) − TB(x) ≤ TA(x) − TC (x), IA(x) − IB(x) ≤ IA511

(x) − IC (x), FA(x) − FB(x) ≤ FA(x) − FC (x).512

∴ T 2
A(x)−T 2

B(x) ≤ T 2
A(x)−T 2

C (x), I 2A(x)− I 2B(x) ≤ I 2A513

(x) − I 2C (x), F2
A(x) − F2

B(x) ≤ F2
A(x) − F2

C (x).514

Hence, S1(A, B) is a similarity measure between SVNSs.515

Theorem 4 For i � 1, 2, . . . , 11, if α � β � γ � 1
3 , we516

have:517

(i)518 Si
(
A, Bc) � Si

(
Ac, B

)
, i �� 11, 12519520

(ii)521 Si (A, B) � Si (A ∩ B, A ∪ B)522523

(iii)524 Si (A, A ∩ B) � Si (B, A ∪ B)525526

(iv)527 Si (A, A ∪ B) � Si (B, A ∩ B)528529

Proof For the sake of brevity, we only prove property (i) to530

(iii) for S1(A, B); it can be easily shown in a similar manner531

that Si (A, B), i � 2, 3, . . . , 11, also satisfies properties (i)532

to (iv) above. The proof for property (iv) is similar to that of533

property (iii) and is therefore omitted.534

(i) For S1(A, B) � 1 − 1
3|X |

∑

x∈X
(
∣∣T 2

A(x) − T 2
B(x)

∣∣ +535

∣∣I 2A(x) − I 2B(x)
∣∣+
∣∣F2

A(x) − F2
B(x)

∣∣), we have the fol-536

lowing:537

S1
(
A, Bc) � 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − F2

B(x)
∣∣∣538

+
∣∣∣I 2A(x) −

(
1 − I 2B(x)

)∣∣∣ +
∣∣∣F2

A(x) − T 2
B(x)

∣∣∣
)

539

� 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
A(x) − F2

B(x)
∣∣∣540

+
∣∣∣I 2A(x) + I 2B(x) − 1

∣∣∣ +
∣∣∣F2

A(x) − T 2
B(x)

∣∣∣
)

541

� 1 − 1

3|X |
∑

x∈X

(∣∣∣F2
A(x) − T 2

B(x)
∣∣∣542

+
∣∣∣1 − I 2A(x) − I 2B(x)

∣∣∣ +
∣∣∣T 2

A(x) − F2
B(x)

∣∣∣
)

543

� S1
(
Ac, B

)
.544545

(ii)546 S1(A ∩ B, A ∪ B)547

� 1 − 1

3|X |
∑

x∈X548

(∣∣(min(TA(x), TB(x)))2 − (max(TA(x), TB(x)))2
∣∣

+
∣∣(max(IA(x), IB(x)))2 − (min(IA(x), IB(x)))2

∣∣

+
∣∣(max(FA(x), FB(x)))2 − (min(FA(x), FB(x)))2

∣∣)
549

� 1 − 1

3|X |
∑

x∈X

(∣∣T 2
A(x) − T 2

B(x)
∣∣550

+
∣
∣I 2A(x) − I 2B(x)

∣
∣ +
∣
∣F2

A(x) − F2
B(x)

∣
∣) 551

� S1(A, B). 552553

(iii) 554S1(A, A ∩ B) 555

� 1 − 1

3|X |
∑

x∈X

(∣∣T 2
A(x) − (min(TA(x), TB(x)))2

∣
∣ +
∣
∣I 2A(x) 556

− (max(IA(x), IB(x)))2
∣
∣ +
∣
∣F2

A(x) − (max(FA(x), FB(x)))2
∣
∣) 557558

� 1 − 1

3|X |
∑

x∈X

(∣∣∣T 2
B(x) − (max(TA(x), TB(x)))2

∣∣∣ 559

+
∣
∣∣I 2B(x) − (min(IA(x), IB(x)))2

∣
∣∣ 560

+
∣∣∣F2

B(x) − (min(FA(x), FB(x)))2
∣∣∣
)

561562

∵
(∣∣∣T 2

A(x) − T 2
B(x)

∣∣∣ �
∣∣∣T 2

B(x) − T 2
A(x)

∣∣∣
)

� S1(B, A ∪ B)
563564

(iv) The proof is similar to that of (iii) and is therefore 565

omitted. 566

Comparative studies 567

In this section, we conduct a comparative analysis between 568

the proposed similarity measures and other existing similar- 569

itymeasures presented in the literature to show the drawbacks 570

of the existing similarity measures and the advantages of the 571

suggested similarity measures. 572

Existing similarity measures for SVNSs 573

In this subsection, we present a detailed and comprehensive 574

comparative study of the previously defined similarity mea- 575

sures and some existing similarity measures in the literature. 576

The existing similarity measures that will be considered in 577

this comparative study are listed in Table 1. 578

Comparison between the proposed and existing 579

similarity measures for SVNSs using artificial sets 580

In this subsection, we use 10 artificial sets of SVNSs that 581

consist of a combination of special SVNNs to do a thorough 582

comparison between the proposed similarity measures and 583

existing similarity measures which are listed in Table 1. The 584

results from this comparative study are presented in Table 2, 585

where all values in bold indicate unreasonable results. From 586

Table 2, it can be clearly seen that the proposed similarity 587

measures S10 and S11 are able to overcome the shortcomings 588

that are inherent in the existing similarity measures by pro- 589

ducing reasonable results in all 10 cases that are studied. The 590

drawbacks and problems that are inherent in existing sim- 591
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Table 1 Existing similarity measure

Author(s) (year) Similarity measure of SVNS

Ye [40] SY1(A, B) � 1
n

n∑

i�1

SJ1
SJ2

where SJ1 � TA(xi )TB(xi ) + IA(xi )IB(xi ) + FA(xi )FB(xi ),
SJ2 � (

T 2
A(xi ) + I 2A(xi ) + F2

A(xi )
)
+
(
T 2
B(xi ) + I 2B(xi ) + F2

B(xi )
)− SJ1

Ye [40] SY2(A, B) � 1
n

n∑

i�1

2(TA(xi )TB (xi )+IA(xi )IB (xi )+FA(xi )FB (xi ))(
T 2
A(xi )+I 2A(xi )+F2

A(xi )
)
+
(
T 2
B (xi )+I 2B (xi )+F2

B (xi )
)

Ye [40] SY3(A, B) � 1
n

n∑

i�1

TA(xi )TB (xi )+IA(xi )IB (xi )+FA(xi )FB (xi )√
T 2
A(xi )+I 2A(xi )+F2

A(xi )
√
T 2
B (xi )+I 2B (xi )+F2

B (xi )

Ye [42] SY4(A, B) � 1
n

n∑

i�1
cos
[

π(|TA(xi )−TB (xi )|∨|IA(xi )−IB (xi )|∨|FA(xi )−FB (xi )|)
2

]

SY5(A, B) � 1
n

n∑

i�1
cos
[

π(|TA(xi )−TB (xi )|+|IA(xi )−IB (xi )|+|FA(xi )−FB (xi )|)
6

]

Ye [41]
SY6(A, B) � 1 −

[
1
3n

n∑

i�1

[ |TA(xi ) − TB(xi )|p + |IA(xi ) − IB(xi )|p
+|FA(xi ) − FB(xi )|p

]] 1
p

SY7(A, B) � SY6(A, B)

1+
[

1
3n

∑n
i�1[|TA(xi )−TB (xi )|p+|IA(xi )−IB (xi )|p+|FA(xi )−FB (xi )|p]

] 1
p

Ye [43] SY8(A, B) � 1
n

n∑

i�1

min(TA(xi ), TB (xi ))+min(IA(xi ), IB (xi ))+min(FA(xi ), FB (xi ))
max(TA(xi ), TB (xi ))+max(IA(xi ), IB (xi ))+max(FA(xi ), FB (xi ))

Ye [44] SY9(A, B) � 1
n

n∑

i�1
cot

[
π
4 + π

4 max

( |TA(xi ) − TB(xi )|, |IA(xi ) − IB(xi )|,
|FA(xi ) − FB(xi )|

)]

SY10(A, B) � 1
n

n∑

i�1
cot

[
π
4 + π

12

( |TA(xi ) − TB(xi )| + |IA(xi ) − IB(xi )|
+|FA(xi ) − FB(xi )|

)]

Ye [38] SY11(A, B) �
∑n

i�1(TA(xi )TB (xi )+IA(xi )IB (xi )+FA(xi )FB (xi ))√∑n
i�1
(
T 2
A(xi )+I 2A(xi )+F2

A(xi )
)√∑n

i�1
(
T 2
B (xi )+I 2B (xi )+F2

B (xi )
)

Ye [84] SY12(A, B) � ∑n
i�1

|TA(xi )−FB (xi )|+|IA(xi )+IB (xi )−1|+|FA(xi )−TB (xi )|
|TA(xi ) − TB(xi )| + |IA(xi ) − IB(xi )| + |FA(xi ) − FB(xi )| + |TA(xi ) − FB(xi )|+

|IA(xi ) + IB(xi ) − 1| + |FA(xi ) − TB (xi )|
Ye and Fu [48] SY F1(A, B) � 1 − 1

n

n∑

i�1
tan
[

π
4 max(|TA(xi ) − TB(xi )|, |IA(xi ) − IB(xi )|, |FA(xi ) − FB(xi )|)

]

SY F2(A, B) � 1 − 1
n

n∑

i�1
tan

[
π
12 (|(TA(xi ) − TB(xi )|+|IA(xi ) − IB(xi )|

+|FA(Xi ) − FB(xi )|)
]

Ye and Zhang [45] SY Z (A, B) � 1
3n

n∑

i�1

[
min(TA(xi ), TB (xi ))
max(TA(xi ), TB (xi ))

+ min(IA(xi ), IB (xi ))
max(IA(xi ), IB (xi ))

+ min(FA(xi ), FB (xi ))
max(FA(xi ), FB (xi ))

]

Majumdar and Samanta [46] SM (A, B) �
∑n

i�1{min(TA(xi ), TB (xi ))+min(IA(xi ), IB (xi ))+min(FA(xi ), FB (xi ))}∑n
i�1{max(TA(xi ), TB (xi ))+max(IA(xi ), IB (xi ))+max(FA(xi ), FB (xi ))}

Ren et al. [62]
SRXZ (A, B) � 1 − 1

2n

n∑

i�1

[
(TA(xi )−TB (xi ))2

2+TA(xi )+TB (xi )
+ (IA(xi )−IB (xi ))2

2+IA(xi )+IB (xi )

+ (FA(xi )−FB (xi ))2

2+FA(xi )+FB (xi )
+ |mA(xi ) − mB(xi )|

]

where m j (xi ) � 1+Tj (xi )−Fj (xi )
2 , j � 1, n

Liu et al. [61] SDGZ1(A, B) � 1
2 (SM (A, B) + 1 − DE (A, B))

where DE (A, B) �
√∑n

i�1
[
(TA(xi )−TB (xi ))2+(IA(xi )−IB (xi ))2+(FA(xi )−FB (xi ))2

]

3n

SDGZ2(A, B) � 1
2 (SSY3(A, B) + 1 − DE (A, B))

Sahin et al. [52]
SSOUK S(A, B) � 1 − 1

n

n∑

i�1

⎡

⎢
⎣

|2(FA(xi )−FB (xi ))−(TA(xi )−TB (xi )|
9

+ |2(FA(xi )−FB (xi ))−(IA(xi )−IB (xi )|
9

+ 3|(FA(xi )−FB (xi )|
9

⎤

⎥
⎦
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Table 1 continued

Author(s) (year) Similarity measure of SVNS

Huang [50]
SH (A, B) � 1 −

⎡

⎣ 1
n

n∑

i�1

(
4∑

j�1
β jϕ j (xi )

)λ
⎤

⎦

1
λ

where λ > 0, β j ∈ [0, 1]and
4∑

j�1
β j � 1, wi ∈ [0, 1],

n∑

i�1
wi � 1,

ϕ1(xi ) � |TA(xi )−TB (xi )|+|IA(xi )−IB (xi )||FA(xi )−FB (xi )|
3

ϕ2(xi ) � max
[
2+TA(xi )−IA(xi )−FA(xi )

3 , 2+TB (xi )−IB (xi )−FB (xi )
3

]

−min
[
2+TA(xi )−IA(xi )−FA(xi )

3 , 2+TB (xi )−IB (xi )−FB (xi )
3

]

ϕ3(xi ) � |TA(xi )−TB (xi )+IB (xi )−IA(xi )|
2

ϕ4(xi ) � |TA(xi )−TB (xi )+FB (xi )−FA(xi )|
2

Mondal and Pramanik [47] SMP1(A, B) � 1
n

n∑

i�1
(1 − tan

[
π (|TA(xi )−TB (xi )|+|IA(xi )−IB (xi )|+|FA(xi )−FB (xi )|

12

]

Liu [60] SL (A, B) � 1
n

n∑

i�1
cot π

4 [1 + (|TA(xi ) − TB(xi )| ∨ |IA(xi ) − IB(xi )| ∨ |FA(xi ) − FB(xi )|)]

Mandal and Basu [51] SMB1(A, B) � 1
n

n∑

i�1

(
1 − log2

(
1 + 1

4 (|TA(xi ) − TB(xi )| + 2|IA(xi ) − IB(xi )|
+|FA(xi ) − FB(xi )|)

))

SMB2(A, B) � 1
n

n∑

i�1
cos

(
π
8 (|TA(xi ) − TB(xi )| + 2|IA(xi ) − IB(xi )|

+|FA(xi ) − FB(xi )|)
)

Pramanik et al. [53]
SP (A, B) � 1

n

⎡

⎣
λ
∑n

i�1
2(TA(xi )TB (xi )+IA(xi )IB (xi )+FA(xi )FB (xi ))
T 2
A(xi )+I 2A(xi )+F2

A(xi )+T 2
B (xi )+I 2B (xi )+F2

B (xi )

+(1 − λ)
∑n

i�1
(TA(xi )TB (xi )+IA(xi )IB (xi )+FA(xi )FB (xi ))√(

T 2
A(xi )+I 2A(xi )+F2

A(xi )
)√(

T 2
B (xi )+I 2B (xi )+F2

B (xi )
)

⎤

⎦

Garg and Nancy [54]

SGN (A, B) � 1 − 1
3n(2+t)p

∑n
i�1

⎛

⎜⎜
⎜⎜
⎜
⎜
⎝

∣∣
∣∣
−t(TA(xi ) − TB(xi )) + (IA(xi ) − IB(xi ))

+(FA(xi ) − FB(xi ))

∣∣
∣∣

p

+

∣
∣∣
∣
−t(IA(xi ) − IB(xi )) − (FA(xi ) − FB(xi ))

+(TA(xi ) − TB(xi ))

∣
∣∣
∣

p

+

∣∣
∣∣
−t(FA(xi ) − FB(xi )) − (IA(xi ) − IB(xi ))

+(TA(xi ) − TB(xi ))

∣∣
∣∣

p

⎞

⎟⎟
⎟⎟
⎟
⎟
⎠

Mondal et al. [58] SMP2(A, B) � 1
n

n∑

i�1
log2

(
2 −

(
1
3

( |TA(xi ) − TB(xi )| + |IA(xi ) − IB(xi )|
+|FA(xi ) − FB(xi )|

)))

Mondal et al. [59] SMP3(A, B) � 1 − 1
n

n∑

i�1

(
sinh(|TA(xi )−TB (xi )|+|IA(xi )−IB (xi )|+|FA(xi )−FB (xi )|)

11

)

Fu and Ye [55] SFY (A, B) � 1
n

n∑

i�1

e− 1
3 (|TA(xi )−TB (xi )|+|IA(xi )−IB (xi )|+|FA(xi )−FB (xi )|)−e−1

1−e−1

Cui and Ye [57] SCY (A, B) � 1 −
∣∣∑n

i�1
(
T 2
A(xi )+I 2A(xi )+F2

A(xi )
)−∑n

i�1
(
T 2
B (xi )+I 2B (xi )+F2

B (xi )
)∣∣

∑n
i�1
(
T 2
A(xi )+I 2A(xi )+F2

A(xi )
)
+
∑n

i�1
(
T 2
B (xi )+I 2B (xi )+F2

B (xi )
)

Wu et al. [56] SW (A, B) � 1

3n
(√

2−1
)

n∑

i�1

(√
2 cos TA(xi )−TB (xi )

4 π +
√
2 cos IA(xi )−IB (xi )

4 π

+
√
2 cos FA(xi )−FB (xi )

4 π − 3

)

Broumi and Smarandache [37] SBS(A, B) � 1 − 1
n

n∑

i�1
max{|TA(xi ) − TB(xi )|, |IA(xi ) − IB(xi )|, |FA(xi ) − FB(xi )|}

Sun et al. [63]

SS(A, B) � 1 − 1
3n

∑n
i�1

⎛

⎜
⎜
⎝

1
2

⎛

⎝
|3(TA(xi ) − TB(xi )) − (IA(xi ) − IB(xi ))|

(
(1 − TA(xi )+TB (xi )

2

)

+|3(TA(xi ) − TB(xi )) − (FA(xi ) − FB(xi ))|
(
1 − FA(xi )+FB (xi )

2

)

⎞

⎠

+|TA(xi ) − TB (xi )|

⎞

⎟
⎟
⎠

Peng and Smarandache [64]
SPS(A, B) � 1 − p

√√√
√√

1
3n(t1+2)p

∑n
i�1 |−t1(TA(xi ) − TB(xi )) + (IA(xi ) − IB(xi )) + (FA(xi ) − FB(xi ))|p+

1
3n(t2+2)p

∑n
i�1

{ |−t2(IA(xi ) − IB(xi )) − (FA(xi ) − FB(xi )) + (TA(xi ) − TB(xi ))|p
+|−t2(FA(xi ) − FB(xi )) − (IA(xi ) − IB(xi )) + (TA(xi ) − TB(xi ))|p

}
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Table 2 Comparison of the results obtained for the different similarity measures

Case 1 Case 2 Case 3 Case 4 Case 5

A {〈x , 0.3, 0.3, 0.4〉} {〈x , 0.3, 0.3, 0.4〉} {〈x , 0.4, 0.2, 0.6〉} {〈x , 0.3, 0.3, 0.4〉} {〈x , 0.4, 0.4, 0.2〉}
B {〈x , 0.4, 0.3, 0.4〉} {〈x , 0.3, 0.4, 0.4〉} {〈x , 0.2, 0.1, 0.3〉} {〈x , 0.4, 0.3, 0.3〉} {〈x , 0.5, 0.2, 0.3〉}
SY1 0.9737 0.9737 0.6667 0.9429 0.85

SY2 0.9867 0.9867 0.8000 0.9706 0.9189

SY3 0.9910 0.9910 1.0000 0.9706 0.9193

SY4 0.9877 0.9877 0.8910 0.9877 0.9511

SY5 0.9986 0.9986 0.9511 0.9945 0.9781

SY6 0.9667 0.9667 0.8000 0.9333 0.8667

SY7 0.9355 0.8788 0.5455 0.8235 0.6500

SY8 0.9091 0.9091 0.5000 0.8182 0.6667

SY9 0.8541 0.8541 0.6128 0.8541 0.7265

SY10 0.9490 0.9490 0.7265 0.9004 0.8098

SY11 0.9910 0.9910 1.0000 0.9706 0.9193

SY12 0.8333 0.8333 0.6667 0.6667 0.6667

SY F1 0.9213 0.9213 0.7599 0.9213 0.8416

SY F2 0.9738 0.9738 0.8416 0.9476 0.8949

SY Z 0.9167 0.9167 0.5000 0.8333 0.6556

SM 0.9091 0.9091 0.5000 0.8182 0.6667

SRXZ 0.9731 0.9981 0.9496 0.9463 0.9886

SDGZ1 0.9257 0.9257 0.6420 0.8683 0.7626

SDGZ2 0.9666 0.9666 0.8920 0.9445 0.8889

SSOUK S 0.9889 0.9889 0.8000 0.9111 0.9111

SH 0.9667 0.9667 0.8000 0.9333 0.8667

SMP1 0.9738 0.9917 0.9141 0.9655 0.9488

SL 0.8541 0.8541 0.6128 0.8541 0.7265

SMB1 0.9644 0.9296 0.7673 0.9296 0.7984

SMB2 0.9992 0.9969 0.9625 0.9969 0.9724

SP 0.9888 0.9888 0.9000 0.9706 0.9191

SGN 0.9667 0.9667 0.9333 0.9333 0.9333

SMP2 0.9758 0.9758 0.8480 0.9511 0.9005

SMP3 0.9909 0.9909 0.9421 0.9817 0.9627

SFY 0.9481 0.9481 0.7132 0.8980 0.8025

SCY 0.9067 0.9067 0.4000 1.0000 0.9730

SW 0.9965 0.9965 0.9510 0.9930 0.9790

SBS 0.9000 0.9000 0.7000 0.9000 0.8000

SS 0.9042 0.9883 0.8475 0.8908 0.8958

SPS 0.9700 0.9650 0.9200 0.9350 0.9350

S1(proposed) 0.9767 0.9767 0.8600 0.9533 0.9133

S2(proposed) 0.9767 0.9767 0.9400 0.9533 0.9467

S3(proposed) 0.9300 0.9300 0.7300 0.9300 0.8800

S4(proposed) 0.8692 0.8692 0.5748 0.8692 0.7857

S5(proposed) 0.8692 0.8692 0.5748 0.8692 0.7857

S6(proposed) 0.8542 0.8542 0.2500 0.7083 0.4448

S7(proposed) 0.8542 0.8542 0.2500 0.7083 0.4448

S8(proposed) 0.8293 0.8293 0.2500 0.6585 0.4800

S9(proposed) 0.8293 0.8293 0.2500 0.6585 0.4800
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Table 2 continued

Case 1 Case 2 Case 3 Case 4 Case 5

S10(proposed) 0.9634 0.9620 0.7961 0.9293 0.8802

S11(proposed) 0.9634 0.9620 0.7961 0.9293 0.8802

Case 6 Case 7 Case 8 Case 9 Case 10

A {〈x , 0.4, 0.2, 0.3〉} {〈x , 1, 0, 0〉} {〈x , 1, 0, 0〉} {〈x , 1, 0, 0〉} {〈x , 0.2, 0.3, 0.4〉}
B {〈x , 0.8, 0.4, 0.6〉} {〈x , 0, 1, 1〉} {〈x , 0, 0, 1〉} {〈x , 0, 0, 0〉} {〈x , 0.2, 0.3, 0.4〉}
SY1 0.6667 0.0000 0.0000 0.0000 1.0000

SY2 0.8000 0.0000 0.0000 0.0000 1.0000

SY3 1.0000 0.0000 0.0000 N/A 1.0000

SY4 0.8090 0.0000 0.0000 0.0000 1.0000

SY5 0.8910 0.0000 0.5000 0.8660 1.0000

SY6 0.7000 0.0000 0.3333 0.6667 1.0000

SY7 0.4286 0.0000 0.1429 0.5000 1.0000

SY8 0.5000 0.0000 0.0000 0.0000 1.0000

SY9 0.5095 0.0000 0.0000 0.0000 1.0000

SY10 0.6128 0.0000 0.2679 0.5774 1.0000

SY11 1.0000 0.0000 0.0000 N/A 1.0000

SY12 0.5500 0.0000 0.3333 0.6667 1.0000

SY F1 0.6751 0.0000 0.0000 0.0000 1.0000

SY F2 0.7599 0.0000 0.4226 0.7321 1.0000

SY Z 0.5000 0.0000 N/A N/A 1.0000

SM 0.5000 0.0000 0.0000 0.0000 1.0000

SRXZ 0.9268 0.0000 0.1667 0.5833 1.0000

SDGZ1 0.5945 0.0000 0.0918 0.2113 1.0000

SDGZ2 0.8445 0.0000 0.0918 N/A 1.0000

SSOUK S 0.8333 0.2222 0.1111 0.8889 1.0000

SH 0.7000 0.0000 0.3333 0.6667 1.0000

SMP1 0.8526 0.5432 0.6405 0.7321 1.0000

SL 0.5095 0.0000 0.0000 0.0000 1.0000

SMB1 0.6495 0.0000 0.4150 0.6871 1.0000

SMB2 0.9081 0.0000 0.7071 0.9239 1.0000

SP 0.9000 0.0000 0.0000 N/A 1.0000

SGN 0.9667 0.0000 0.3333 0.6667 1.0000

SMP2 0.7655 0.0000 0.4150 0.7370 1.0000

SMP3 0.9067 0.0893 0.6703 0.8932 1.0000

SFY 0.5900 0.0000 0.2302 0.5516 1.0000

SCY 0.4000 0.6667 1.0000 0.0000 1.0000

SW 0.8988 0.0000 0.3333 0.6667 1.0000

SBS 0.6000 0.0000 0.0000 0.0000 1.0000

SS 0.7175 0.0000 0.0833 -0.0833 1.0000

SPS 0.8950 0.0000 0.3500 0.7000 1.0000

S1(proposed) 0.7100 0.0000 0.3333 0.6667 1.0000

S2(proposed) 0.9700 0.0000 0.3333 0.6667 1.0000

S3(proposed) 0.5200 0.0000 0.0000 0.0000 1.0000

S4(proposed) 0.3514 0.0000 0.0000 0.0000 1.0000

S5(proposed) 0.3514 0.0000 0.0000 0.0000 1.0000
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Table 2 continued

Case 6 Case 7 Case 8 Case 9 Case 10

S6(proposed) 0.2500 0.0000 N/A N/A 1.0000

S7(proposed) 0.2500 0.0000 N/A N/A 1.0000

S8(proposed) 0.2500 0.0000 0.0000 0.0000 1.0000

S9(proposed) 0.2500 0.0000 0.0000 0.0000 1.0000

S10(proposed) 0.6534 0.0000 0.3333 0.6667 1.0000

S11(proposed) 0.6534 0.0000 0.3333 0.6667 1.0000

(p � 1 in SY6, SY7, SGN , SPS , λ � 1, β1 � 1, β2 � β3 � β4 � 0, λ � 0.5 in Sp , t � 1 in SGN , t1 � 2, t2 � 3 in SPSandα � β � γ � 1
3 in

S6, S7)
Values in bold indicate unreasonable results
“N/A” indicates that the corresponding formula failed to calculate the similarity value because of the “division by zero” problem

ilarity measures are discussed in detail in “Discussion and592

analysis of results”.593

Discussion and analysis of results594

The results obtainedwhen the 10 sets of SVNSswere applied595

to the formulas in Table 1 are discussed and analyzed in the596

current subsection. The results which are shown in bold in597

Table 2 indicate unreasonable results, and the reasons for598

classifying these specific results as unreasonable are dis-599

cussed below.600

(i) It can be clearly seen that condition (S2) is not satisfied601

in similarity measures SY3, SY11 and SCY , when A and602

B are clearly not equal:603

• SY3(A, B) � 1, when A � (0.4, 0.2, 0.6) and B �604

(0.2, 0.1, 0.3)605

• SY3(A, B) � 1, when A � (0.4, 0.2, 0.3) and B �606

(0.8, 0.4, 0.6)607

• SY11(A, B) � 1, when A � (0.4, 0.2, 0.3) and608

B � (0.8, 0.4, 0.6)609

• SCY (A, B) � 1,when A � (0.3, 0.3, 0.4) and B �610

(0.4, 0.3, 0.3)611

• SY11(A, B) � 1, when A � (0.4, 0.2, 0.6) and612

B � (0.2, 0.1, 0.3)613

• SCY (A, B) � 1, when A � (1, 0, 0) and B �614

(0, 0, 1).615

(ii) Some similaritymeasures fail to handle the division by616

zero problem. These include case 8, for SY Z , S6 and617

S7, when A � (1, 0, 0), B � (0, 0, 1), and case 9,618

for SY3, S11, SDGZ2, SY Z , SP , S6 and S7, when A �619

(1, 0, 0), B � (0, 0, 0).620

(iii) It can be clearly seen that condition (S1) is not met621

in similarity measure SS , since S(A, B) � −0.0833,622

when A � (1, 0, 0) and B � (1, 0, 0).623

(iv) We also can see that SY1(A, B) � SY2(A, B) � SY3624

(A, B) � SY4(A, B) � SY8(A, B) � SY9(A, B) �625

SY11(A, B) � SY F1(A, B) � SM (A, B) � SL 626

(A, B) � SP (A, B) � SBS(A, B) � S3(A, B) � S4 627

(A, B) � S5(A, B) � S8(A, B) � S9(A, B) � 0, 628

when A � (1, 0, 0), B � (0, 0, 1), when A and B are 629

clearly not completely different (i.e., not 100% dif- 630

ferent). A similar case exists for SY1(A, B) � SY2 631

(A, B) � SY4(A, B) � SY8(A, B) � SY9(A, B) � 632

SY F1(A, B) � SM (A, B) � SL(A, B) � SCY 633

(A, B) � SBS(A, B) � S3(A, B) � S4(A, B) � S5 634

(A, B) � S8(A, B) � S9(A, B) � 0, when A � 635

(1, 0, 0), B � (0, 0, 0), that is when these two val- 636

ues are also clearly not completely different (i.e., not 637

100% different). 638

(v) Moreover, SMNV AF , SMP1, SMP3 and SCY produce 639

unreasonable results in case 7, when A � (1, 0, 0), 640

B � (0, 1, 1), that is when A and B are clearly oppo- 641

sites: 642

SSOUK S(A, B) � 0.2222 643

SMP1(A, B) � 0.5432 644

SMP3(A, B) � 0.0893 645

SCY � 0.6667 646

(vi) Some of the existing similarity measures (namely 647

the measures SY1, SY2, SY3, SY4, SY5, SY6, SY8, 648

SY9, SY10, SY11, SY12, SY F1, SY F2, SY Z , SM , SDGZ1, 649

SDGZ2, SSOUK S , SH , SL , SP , 650

SGN , SMP2, SMP3, SFY , SCY , SW and SBS) and the 651

proposed similarity measures (namely the measures 652

S1, S2, S3, S4, S5, S6, S7, S8 and S9) fail to distin- 653

guish the positive difference and negative difference. 654

For instance, SY1(A, B) � SY1(C , D) � 0.9737, 655

when A � (0.3, 0.3, 0.4), B � (0.4, 0.3, 0.4) and 656

C � (0.3, 0.3, 0.4), D � (0.3, 0.4, 0.4). 657

(vii) Many of the similarity measures have been found to 658

produce unconscionable results in some of the cases 659

which are shown in Table 2. These findings are the 660

following: 661

• Case 3 and case 6 for SY1 662

• Case 3 and case 6 for SY2 663
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• Case 4 for SY4664

• Case 3 and case 6 for SY8665

• Case 4 for SY9666

• Case 3, case 4, case 5, case 9 for SY12667

• Case 3 and case 6 for SY Z668

• Case 3 and case 6 for SM669

• Case 4 and case 5 for SSOUK S670

• Case 2 and case 4 for SMB1671

• Case 2 and case 4 for SMB2672

• Case 3 and case 6 for SP673

• Case 3, case 4 and case 5 for SGN674

• Case 3 and case 6 for SCY675

• Case 4 for SBS676

• Case 4 and 5 for SPS677

• Case 3 and case 6 for S6678

• Case 3 and case 6 for S7679

• Case 3 and case 6 for S8680

• Case 3 and case 6 for S9681

This observation indicates that the aforementioned682

similarity measures may be impractical and difficult683

to be used in practical applications.684

(viii) From Table 2, it can be seen that existing similar-685

ity measures SY7, SRXZ and the proposed similarity686

measures S10, S11 are the only similarity measures687

that are able to produce reasonable results for every688

one of the 10 cases that were examined in this subsec-689

tion. Hence, it can be co concluded that the proposed690

similarity measures S10 and S11 are superior to all of691

the existing similarity measures and as effective as the692

existing similarity measures SY Z and SRXZ .693

Applications of the proposed similarity694

measures695

In this section, we study the performance of the existing696

similarity measures and the proposed similarity measures by697

applying all these measures to two MCDM problems related698

to pattern recognition and medical diagnosis. The rankings699

obtained are further tested using the Spearman’s rank corre-700

lation coefficient test, and the results obtained clearly prove701

that the proposed similaritymeasures S10 and S11 are superior702

compared to the existing similarity measures SRXZand SY7.703

Application of the similarity measures in a pattern704

recognition problem705

Suppose that there are r patterns and they are expressed706

by SVNSs. Suppose Ai � {
x j ; TA

(
x j
)
, IA

(
x j
)
, FA

(
x j
)}
,707

(i � 1, 2, . . . , r) are r patterns in a given universe708

of discourse X � {x1, x2, . . . , xn}. Let B �709

Table 3 Patterns A1, A2, A3 and B represented in the form of SVNSs

x1 x2 x3 x4

A1 0.7, 0.0, 0.1 0.6, 0.1, 0.2 0.8, 0.7, 0.6 0.5, 0.2, 0.3

A2 0.4, 0.2, 0.3 0.7, 0.1, 0.0 0.1, 0.1, 0.6 0.5, 0.3, 0.6

A3 0.5, 0.2, 0.2 0.4, 0.1, 0.2 0.1, 0.1, 0.4 0.4, 0.1, 0.2

B 0.4, 0.1, 0.4 0.6, 0.1, 0.1 0.1, 0.0, 0.4 0.4, 0.4, 0.7

Table 4 The values of the similarity measures for our proposed formu-
lae

A1 A2 A3 Ranking order

S1(Ai , B) 0.7958 0.9383 0.9100 A2 � A3 � A1

S2(Ai , B) 0.9008 0.9433 0.9150 A2 � A3 � A1

S3(Ai , B) 0.6525 0.8675 0.8050 A2 � A3 � A1

S4(Ai , B) 0.5253 0.7689 0.7030 A2 � A3 � A1

S5(Ai , B) 0.4842 0.7660 0.6736 A2 � A3 � A1

S6(Ai , B) 0.2428 0.6188 0.2094 A2 � A1 � A3

S7(Ai , B) 0.3477 0.5774 0.4982 A2 � A3 � A1

S8(Ai , B) 0.4052 0.6432 0.5273 A2 � A3 � A1

S9(Ai , B) 0.2919 0.6558 0.4162 A2 � A3 � A1

S10(Ai , B) 0.7424 0.9051 0.8757 A2 � A3 � A1

S11(Ai , B) 0.7399 0.9096 0.8729 A2 � A3 � A1

(α � β � γ � 1
3 in S6 and S7)

The values in bold indicate the largest value of the corresponding sim-
ilarity measure

{
x j ; TB

(
x j
)
, IB

(
x j
)
, FB

(
x j
)}

be a sample that needs to be 710

recognized. The objective is to categorize pattern B to one 711

of the patterns A1, A2, . . . , Ar based on the principle of 712

maximum similarity, i.e. the larger the value of the similarity 713

measure between Ai and B, the more similar are Ai and B. 714

Example 1 A numerical example adapted from Garg and 715

Nancy [54] is used here to illustrate the effectiveness of 716

the proposed similarity measures. Suppose that there are 717

3 known patterns A1, A2, and A3 which are represented 718

by specific SVNSs, in a given universe of discourse X � 719

{x1, x2, x3, x4}, and an unknown pattern B ∈ SV N S(X), 720

all of which are presented in Table 3. 721

The values of the similarity measures between B and Ak , 722

k � 1, 2, 3 have been computed for all of the proposed 723

similarity measures, Si , i � 1, 2 . . . , 11, and the results are 724

presented in Table 4. Note that values in bold indicate the 725

largest value of the corresponding similarity measure. 726

From Table 4, it can be seen that all of the proposed simi- 727

larity measures produced the same ranking (i.e., A2 > A3 > 728

A1), except for measure S6 which produced a slightly dif- 729

ferent ranking (i.e., A2 > A1 > A3). However, based on 730

the ranking orders produced by all of the proposed similarity 731

measures it can be clearly concluded that sample B belongs 732

to pattern A2. 733
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Performance of existing similarity measures in the pattern734

recognition problem735

In the following, we present a comparative analysis of the736

performance of the existing similarity measures and the737

proposed similarity measures to further illustrate the effec-738

tiveness of the proposed similarity measures. The existing739

similarity measures of SVNSs, which were given in Table 1,740

are applied to the pattern recognition problem presented in741

Example 1. The results obtained are summarized in Table 5.742

Note that the row in bold indicates a different ranking order.743

From Table 5, it can be seen that all of the existing sim-744

ilarity measures produced the same ranking order as the745

proposed similarity measures except for measure SCY which746

produced the same ranking as the ranking produced by mea-747

sure S6. This demonstrates the consistency and effectiveness748

of the proposed similarity measures.749

Application of the similarity measures in amedical750

diagnosis problem751

Ye [42] proposed a medical diagnosis method which consid-752

ers a set of diagnoses Q � {Q1, Q2, . . . , Qn} and a set of753

symptoms S � {s1, s2, s3, . . . , sm}. Assume that a patient754

P with varying degrees of all the symptoms is taken as a755

sample. The characteristic information of Q, S and P are756

represented in the form of SVNSs. The diagnosis Qi for757

patient P is defined as i � argmax {S(P , Qi )}. In the fol-758

lowing, we will consider a numerical example adapted from759

[42] to illustrate the feasibility and effectiveness of the pro-760

posed new similarity measures.761

Example 2 A medical diagnosis problem adapted from [42]762

is described below. Assume a set of diagnoses Q and a set of763

symptoms R which are defined as follows:764

Q � {Q1 (viral fever), Q2 (malaria), Q3 (typhoid), Q4765

(gastritis), Q5 (stenocardia)}766

and R � {r1 (fever), r2 (headache), r3(stomach pain), r4767

(cough), r5 (chest pain)}.768

The characteristic values of the considered diseases are769

represented in the form of SVNSs and they are shown in770

Table 6.771

In the medical diagnosis, assume that we take a sample772

from a patient P1 with all the symptoms,which is represented773

by the following SVNS information:774

P1 �
{

< r1, 0.8, 0.2, 0.1 >, < r2, 0.6, 0.3, 0.1 >, < r3, 0.2, 0.1, 0.8 >,

< r4, 0.6, 0.5, 0.1 >, < r5, 0.1, 0.4, 0.6 >

}

.775

By applying the proposed formulas (S1, S2, S3, S4, S5,776

S6, S7, S8, S9, S10 and S11), we obtain the correspond-777

ing similarity measure values Si (P1, Qi )(i � 1, 2, . . . , 11)778

which are shown in Table 7. Note that values in bold indicate779

the largest value of the corresponding similarity measure.780

Table 5 Ranking order of the existing similarity measures

A1 A2 A3 Ranking order

SY1 0.6353 0.9219 0.7804 A2 � A3 � A1

SY2 0.7419 0.9586 0.8656 A2 � A3 � A1

SY3 0.8237 0.9807 0.9153 A2 � A3 � A1

SY4 0.7854 0.9785 0.8992 A2 � A3 � A1

SY5 0.8837 0.9911 0.9659 A2 � A3 � A1

SY6 0.7417 0.9167 0.8667 A2 � A3 � A1

SY7 0.5894 0.8462 0.7647 A2 � A3 � A1

SY8 0.5265 0.7538 0.6508 A2 � A3 � A1

SY9 0.5541 0.8222 0.6803 A2 � A3 � A1

SY10 0.6769 0.8772 0.8156 A2 � A3 � A1

SY11 0.7013 0.9675 0.8615 A2 � A3 � A1

SY12 0.6387 0.8148 0.7602 A2 � A3 � A1

SY F1 0.6859 0.9014 0.7976 A2 � A3 � A1

SY F2 0.7895 0.9345 0.8944 A2 � A3 � A1

SY Z 0.4868 0.6818 0.6252 A2 � A3 � A1

SM 0.4655 0.7674 0.6098 A2 � A3 � A1

SRXZ 0.8300 0.9507 0.9103 A2 � A3 � A1

SDGZ1 0.5784 0.8390 0.7173 A2 � A3 � A1

SDGZ2 0.7575 0.9456 0.8701 A2 � A3 � A1

SSOUK S 0.8083 0.9000 0.8389 A2 � A3 � A1

SH 0.7417 0.9167 0.8667 A2 � A3 � A1

SMD 0.8847 0.9702 0.9532 A2 � A3 � A1

SL 0.5541 0.8222 0.6803 A2 � A3 � A1

SMB1 0.6883 0.8876 0.8262 A2 � A3 � A1

SMB2 0.8769 0.9913 0.9697 A2 � A3 � A1

SP 0.7828 0.9696 0.8904 A2 � A3 � A1

SGN 0.8583 0.9333 0.8833 A2 � A3 � A1

SMP2 0.7926 0.9385 0.8989 A2 � A3 � A1

SMP3 0.9093 0.9770 0.9613 A2 � A3 � A1

SFY 0.6589 0.8737 0.8075 A2 � A3 � A1

SCY 0.7562 0.9494 0.7099 A2 � A1 � A3

SW 0.8769 0.9895 0.9600 A2 � A3 � A1

SBS 0.6250 0.8750 0.7500 A2 � A3 � A1

SS 0.7508 0.9350 0.8958 A2 � A3 � A1

SPS 0.8267 0.9258 0.8813 A2 � A3 � A1

(p � 1 in SY6, SY7, SGN , SPS , λ � 1, β1 � 1, β2 � β3 � β4 � 0,
λ � 0.5 in Sp , t � 1 in SGN and t1 � 2, t2 � 3 in SPS)
The row in boldindicates a different ranking order.

From Table 7, it can be seen that only formulas S2 and S7 781

produced results that are not consistent with the results pro- 782

duced by the other proposed formulas. Since the largest value 783

of similarity indicates the proper diagnosis, we can conclude 784

that the diagnosis of patient P1 is Q2(malaria) in all cases 785

except for the cases of S2 and S7 in which the patient was 786

diagnosed as having viral fever (S2) and typhoid (S7), respec- 787

tively. These results are consistent with the results presented 788
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Table 6 Characteristic values of
the considered diseases
represented in the form of
SVNSs

r1(Fever) r2(Headache) r3(Stomach Pain) r4(Cough) r5(Chest Pain)

Q1 (Viral Fever) 0.4, 0.6, 0.0 0.3, 0.2, 0.5 0.1, 0.3, 0.7 0.4, 0.3, 0.3 0.1, 0.2, 0.7

Q2 (Malaria) 0.7, 0.3, 0.0 0.2, 02, 0.6 0.0, 0.1, 0.9 0.7, 0.3, 0.0 0.1, 0.1, 0.8

Q3 (Typhoid) 0.3, 0.4, 0.3 0.6, 0.3, 0.1 0.2, 0.1, 0.7 0.2, 0.2, 0.6 0.1, 0.0, 0.9

Q4 (Gastritis) 0.1, 0.2, 0.7 0.2, 0.4, 0.4 0.8, 0.2, 0.0 0.2, 0.1, 0.7 0.2, 0.1, 0.7

Q5 (Stenocardia) 0.1, 0.1, 0.8 0.0, 0.2, 0.8 0.2, 0.0, 0.8 0.2, 0.0, 0.8 0.8, 0.1, 0.1

Table 7 The similarity measures between P1 and Qi for the proposed
formulas

Q1 Q2 Q3 Q4 Q5

S1(P1, Qi ) 0.8453 0.8753 0.8407 0.7153 0.6887

S2(P1, Qi ) 0.9053 0.9033 0.8900 0.7687 0.7327

S3(P1, Qi ) 0.7540 0.7780 0.7000 0.5560 0.4940

S4(P1, Qi ) 0.6204 0.6433 0.5780 0.4104 0.3776

S5(P1, Qi ) 0.6051 0.6367 0.5385 0.3850 0.3280

S6(P1, Qi ) 0.3748 0.4843 0.3708 0.1622 0.1303

S7(P1, Qi ) 0.3415 0.4202 0.5340 0.2202 0.1983

S8(P1, Qi ) 0.4106 0.5305 0.4820 0.1801 0.2240

S9(P1, Qi ) 0.3958 0.5290 0.4010 0.1391 0.1525

S10(P1, Qi ) 0.7854 0.8139 0.7725 0.6439 0.6217

S11(P1, Qi ) 0.7752 0.8191 0.7691 0.6284 0.5867

(α � β � γ � 1
3 in S6 and S7)

Values in bold indicate the largest value of the corresponding similarity
measure

by Ye in [42] from where this dataset and the correspond-789

ing example were adapted. The medical diagnosis process790

presented in [42] also concludes that the diagnosis of patient791

P1 is malaria, and this shows that the proposed similarity792

measures are feasible, practical and effective ones.793

Performance of the existing similarity measures794

in the medical diagnosis problem795

To demonstrate the feasibility and effectiveness of the pro-796

posed similarity measures in the medical diagnosis that is797

studied, the performance of existing similarity measures of798

SVNSs listed in Table 1 are studied by applying these mea-799

sures to Example 2. The results obtained are given in Table800

8. Note that values in bold indicate the largest value of the801

corresponding similarity measure.802

As we can see from Table 8, SGN produces inconclusive803

results as it gives the same values for both Q2 and Q3. There-804

fore, additional steps or further analysis would be needed in805

this case to distinguish these values and determine the correct806

diagnosis for the patient, a fact which indicates that the cor-807

responding similarity formula is not able to handle all types808

of data.809

Furthermore, patient P1 is still assigned to malaria (Q2)810

for all of the existing similarity measures except in the cases811

Table 8 Results of the similarity values between P1 and Qi for all the
existing similarity measures

Q1 Q2 Q3 Q4 Q5

SY1 0.7395 0.7922 0.7090 0.3854 0.3279

SY2 0.8398 0.8635 0.8029 0.5131 0.4230

SY3 0.8505 0.8661 0.8185 0.5148 0.4244

SY4 0.8942 0.8976 0.8422 0.6102 0.5607

SY5 0.9443 0.9571 0.9264 0.8214 0.7650

SY6 0.8000 0.8333 0.8067 0.6333 0.5933

SY7 0.6667 0.7143 0.6760 0.4634 0.4218

SY8 0.5685 0.6282 0.6206 0.3336 0.3154

SY9 0.6397 0.6668 0.6384 0.3691 0.3629

SY10 0.7305 0.7725 0.7517 0.5506 0.5213

SY11 0.8527 0.8864 0.8070 0.4858 0.4354

SY12 0.6628 0.7348 0.6962 0.4407 0.4576

SY F1 0.7750 0.7900 0.7536 0.5172 0.4940

SY F2 0.8410 0.8676 0.8447 0.7007 0.6633

SY Z 0.5244 0.5370 0.6433 0.3756 0.3028

SM 0.5588 0.6154 0.5672 0.3125 0.2651

SRXZ 0.8955 0.8944 0.8609 0.6762 0.6218

SDGZ1 0.6625 0.7005 0.6488 0.4360 0.3879

SDGZ2 0.8033 0.8258 0.7744 0.5372 0.4676

SSOUK S 0.8267 0.8244 0.7978 0.5667 0.5311

SH 0.6400 0.6667 0.6453 0.5067 0.4747

SMD 0.9139 0.9295 0.9189 0.8275 0.8092

SL 0.6397 0.6668 0.6384 0.3691 0.3629

SMB1 0.7333 0.7886 0.7608 0.6033 0.5680

SMB2 0.9430 0.9625 0.9294 0.8662 0.8153

SP 0.8541 0.8648 0.8107 0.5140 0.4237

SGN 0.8800 0.8867 0.8867 0.7133 0.6867

SMP2 0.8467 0.8728 0.8481 0.7035 0.6630

SMP3 0.9406 0.9506 0.9383 0.8702 0.8429

SFY 0.7170 0.7620 0.7375 0.5236 0.4919

SCY 0.8843 0.9852 0.9302 0.9416 0.9417

SW 0.9428 0.9519 0.9242 0.7998 0.7533

SBS 0.7200 0.7400 0.7000 0.4400 0.4200

SS 0.7812 0.8272 0.79900 0.5457 0.5147

SPS 0.8760 0.8783 0.8767 0.7157 0.6843

(p � 1 in SY6, SY7, SGN , SPS , λ � 1, β1 � 1, β2 � β3 � β4 � 0,
λ � 0.5 in Sp , t � 1 in SGN and t1 � 2, t2 � 3 in SPS)
Values in bold indicate the largest value of the corresponding similarity
measure
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Table 9 Correlation between the
actual ranking calculated by Ye
in [42] and the rankings
produced by the similarity
measures

Ranking Spearman’s rank
correlation
coefficient,ρ

1 S10 and S11 1.0

2 SRXZ 0.9

3 SY7 0.6

of SY Z , SRXZ and SSOUK S , which is a clear indication that812

the results produced by the proposed similarity measures are813

consistent with those of the existing similarity measures,814

thereby proving that the proposed formulas are feasible,815

effective and practical measures of computing the similar-816

ity between SVNSs.817

Ranking analysis with Spearman’s rank correlation818

coefficient819

From “Discussion and analysis of results”, it could be clearly820

seen that only the existing similarity measures of SY Z and821

SRXZ as well as our proposed similarity measures of S10 and822

S11 are able to solve the problemof obtaining unconscionable823

or unreasonable results in all of the 10 cases thatwere studied.824

In the pattern recognition problem, all of these 4 similarity825

measures of SY Z , SRXZ , 10 and S11 also produced the exact826

same rankings. However, in themedical diagnosis problem in827

Example 2, the ranking of the diagnosis obtained by SY Z and828

SRXZ and our proposed similarity measures of S10 and S11829

are different. The proposed similarity measures of S10 and830

S11 obtained Q2 as the optimal decision value and, therefore,831

diagnosed the patient as having malaria, whereas SY Z and832

SRXZ obtained Q3 and Q1 as the optimal decision values,833

respectively and, therefore, diagnosed the patient as having834

typhoid and viral fever, respectively.835

To analyze in more detail the differences in the rankings,836

a further verification of the results is done using the Spear-837

man’s rank correlation coefficient test. The Spearman’s rank838

correlation coefficient, denoted by ρ, is shown below and the839

results of the test are presented in Table 9.840

ρ � 1 − 6
∑n

i�1 d
2
i

n
(
n2 − 1

)841842

From the results in Table 9, it can be clearly seen that843

our proposed similarity measures of S10 and S11 produced844

rankings that are perfectly correlated with the actual ranking845

calculated byYe in [42] fromwhere the dataset and the corre-846

sponding example were adapted, while the rankings obtained847

by the existing measures of SRXZ and SY Z are clearly less848

correlated to the actual ranking presented in [42].This clearly849

proves that our proposed similarity measures are not only850

as feasible and effective as the existing similarity measures851

but also superior to the best similarity measures among the852

existing similarity measures in the relevant literature listed 853

in Table 1. 854

Summary of the discussion and overall 855

evaluation of the results 856

Through the comparative analyses that have been done, a 857

few major weaknesses and inherent problems were identi- 858

fied in many of the existing similarity measures. Some of the 859

existing measures did not fulfill the axiomatic requirement, 860

failed to distinguish the positive difference and negative dif- 861

ference, failed to produce any results due to the division by 862

zero problem, produced counter-intuitive results or produced 863

unreasonable results in some cases. From the results of the 864

comparative study presented in “Comparison between the 865

proposed and existing similarity measures for SVNSs using 866

artificial sets” and shown in in Table 2, it was found that only 867

2 of the existing similaritymeasures (SRXZ and SY Z ) and 2 of 868

the proposed similarity measures (S10 and S11) did not pro- 869

duce any unreasonable or counter-intuitive results. However, 870

through the Spearman’s rank correlation coefficient test done 871

in “Ranking analysis with Spearman’s rank correlation coef- 872

ficient” it was evident that the proposed similarity measures 873

S10 and S11 had also the highest correlation with the actual 874

ranking, thereby proving that these similarity measures are 875

superior to the existing measures SRXZ and SY Z . 876

We also compared the performance of these two proposed 877

similarity measures (S10 and S11) in terms of the discrimi- 878

native power of the results obtained via the corresponding 879

these two formulas. From the illustrative examples given in 880

“Application of the similarity measures in a pattern recogni- 881

tion problem” and “Application of the similarity measures in 882

a medical diagnosis problem”, it can be observed that both of 883

these proposed similarity measures (S10 and S11) produced 884

the exact same rankings as the actual rankings which indi- 885

cates that both of these measures are effective and feasible. 886

However, S11 has a higher level of discriminative power com- 887

pared to S10, and this can be observed by the results obtained 888

from the application of these measures to the pattern recog- 889

nition and medical diagnosis problems in Tables 4 and 7, 890

respectively, in which the values of the decision values are 891

extremely close to another. It can be seen that S11 could better 892

discriminate the values of the decision values and produce 893

results that show a clear distinction between the decision 894

values. By using this specific measure, we managed to dis- 895

tinguish between the decision values, a result that enabled 896

us to rank the alternatives clearly and, consequently, enabled 897

clear and firm decisions to be made. Furthermore, S11 has 898

a lower level of computational complexity. Hence, it can be 899

concluded that S11 is superior to S10. 900
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Conclusions901

The concluding remarks and the significant contributions of902

the presented approach are summarized below:903

1. New formulas for the distance and similarity measures904

for SVNSs have been developed in an effort to improve905

and/or overcome the drawbacks that are inherent in exist-906

ing distance and similarity measures for SVNSs.907

2. The fundamental algebraic properties for the proposed908

distance and similarity measures were presented and ver-909

ified.910

3. To demonstrate the effectiveness and superiority of our911

proposed formulas, a comprehensive comparative analy-912

sis was conducted by considering all the existing similar-913

ity measures in the relevant literature. The analysis was914

done using 10 cases corresponding to different combina-915

tions of SVNNs, some of which were counter-intuitive.916

Manyof the existing similaritymeasures producedunrea-917

sonable results and counter-intuitive results, while others918

could not even produce any results due to the division by919

zero problem. Our proposed similarity measures, on the920

other hand, were able to produce reasonable results for921

most cases, and two of the proposed similarity measures922

(S10 and S11) were found to be the best among all of923

the proposed formulas and superior to almost all of the924

existing formulas, as they were able to produce reason-925

able and accurate results in every single one of the cases926

that were studied.927

4. The proposed similarity measures and existing simi-928

larity measures were applied to two MCDM problems929

related to pattern recognition and medical diagnosis930

which were adapted from Garg and Nancy [54] and Ye931

[42], respectively. It was proven that the proposed simi-932

larity measures produced results that are consistent with933

the results obtained via the existing similarity measures,934

thereby confirming that the suggested similarity mea-935

sures are feasible and effective measures that are also936

practical to be used in solving MCDM problems.937

5. We went a step further in this study by conducting a938

two-prong comparative study to determine the perfor-939

mance of the existing and proposed similarity measures.940

From the first comparative study stated in (3) above, it941

was concluded that only 2 of the existing similarity mea-942

sures and 2 of our proposed similarity measures were943

able to produce reasonable results in every single case for944

all the 10 cases that were studied. After eliminating all945

but 4 of the existing and proposed similarity measures,946

we proceeded to study the performance of the existing947

and proposed similarity measures in two MCDM prob-948

lems related to pattern recognition andmedical diagnosis949

as expounded in (4) above. The rankings obtained were950

further scrutinized by applying the Spearman’s rank cor-951

relation coefficient test to the rankings obtained by the 952

4 similarity measures: 2 existing measures of SY Z and 953

SRXZ and 2 proposed similarity measures of S10 and S11. 954

The results of theSpearman’s rank test verified the superi- 955

ority of our proposed similarity measures of S10 and S11 956

as both produced rankings that are perfectly correlated 957

with the actual rankings, thereby proving the superior- 958

ity of our proposed similarity measures compared to the 959

existing similarity measures. 960

6. To further determine the more superior measure between 961

these two proposed similarity measures (S10 and S11), 962

we analyzed the discriminative power of these measures. 963

It was concluded that S11 is superior to S10 as it had a 964

higher discriminative power and a lower computational 965

complexity compared to S10. 966

Suggestions for future research 967

The future direction of this work involves the development of 968

other improved information measures such as entropy mea- 969

sures, cross-entropy measures and inclusion measures for 970

SVNSs that are free from problems inherent in correspond- 971

ing existing measures. We are also looking at applying the 972

proposed measures to actual datasets of real-world problems 973

instead of hypothetical datasets [85–91]. However, to accom- 974

plish these goals, an effectivemethod of converting crisp data 975

in real-life datasets has to be developed so that available crisp 976

data can be converted effectively without any significant loss 977

of data thatwould possibly affect the accuracy of the obtained 978

results. 979
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78. GuoY, ŞengürA,Ye J (2014)Anovel image thresholding algorithm 1215

based on neutrosophic similarity score. Measurement 58:175–186 1216
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