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Abstract
We face many situations in day to day life where multi-polar statistics is offered. The prevailing models like Pythagorean
fuzzy sets andm-polar fuzzy sets become inoperable in handling such situation efficiently e.g. if someone wishes to invest his
capital in some scheme, he would for sure like to know repeated information about pros and cons of that scheme. Pythagorean
m-polar fuzzy sets (PmFSs) serve as the most appropriate model to cope with such situations. The motivation behind this
article is to extend the notions of PmFSs coined by Naeem et al. (J Intell Fuzzy Syst 37(6): 8441–8458, 2019) and introduce
some new operations and results on PmFSs. Owing to the idea of Pythagoreanm-polar fuzzy relation, we render an application
in the selection of most appropriate life partner.

Keywords Pythagorean m-polar fuzzy set · (λ, η)-cut · Modal operators · Pythagorean m-polar fuzzy relation · Decision
making

Introduction

Webifurcate this section into introductory note and the inspi-
ration behind this article, and the literature review.

Introduction and inspiration

The notion of a set is an embryonic concept in mathemat-
ics. The science of logic, reasoning and rationality and set
theory are trusted to be the foundation of contemporarymath-
ematics. Writing proofs and dealing with tedious notions of
abstract algebra are sublime examples of nexus between the
two disciplines. Many results of classical set theory may
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be proved with comfort using propositional logic. Indeed
these two sciences are naturally mutually dependent regard-
ing the fact that each one of them is delineated in view of the
other. Many logical operations are transformed into set the-
ory and contrariwise. In the same way, paradoxes, functions,
relations, numbers, modern measure theory and probability
theory etc. all are founded on theory of sets. Besides its foun-
dational role, modern set theory owns a massive number of
vibrant researchers.
The role of dissociation degree is not taken into account inm-
polar fuzzy sets. Intuitionistic fuzzy sets (IFSs) have the hitch
that they become of no use while handling the circumstances
when addition of affiliation anddissociation degrees goes fur-
ther than unity. Pythagorean fuzzy sets (PFSs) overcome this
shortcoming but are incapable to incorporate multi-polarity
like in IFSs. There emerge numerous circumstances where
information comprises of multi-polar data. For example,
sometimes laboratory technicians need more readings about
a suspected patient before giving an accurate diagnosis about
a disease. A successful venture capitalist would unquestion-
ably like to secure his capital by gaining frequent statistics
about the business where he has been planning to finance.
Military operations need repeated information beforemaking
an appropriate action. Similarly, before taking a final deci-
sion about one’s better half, one requires repeated meetings
and gossip with the person under consideration. PmFSs offer

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00219-3&domain=pdf
http://orcid.org/0000-0003-4614-5689


460 Complex & Intelligent Systems (2021) 7:459–475

most apposite model for copingwith such states of affairs. To
cut a long story short, there are many real world situations
where other structures lack this issue or that. PmFSs have
the potential that they don’t take off us unaccompanied and
single-handedly in such circumstances.
The elementary ambition behind this study is to coin some
innovative and expand some existing operations on PmFSs
presented byNaeemet al. [17]. PmFSs provide a strongmath-
ematical structure for dealingwith decisionmaking problems
including medical analysis, business analysis, military oper-
ations, recruitment problems, image processing, artificial
intelligence, medicine, forecasting, robotics, economics and
trade analysis, robotics, machine learning and a plenty of
further day to day problems.

Literature review

In the times of classical set theory, a characteristic function
was associatedwith eachmember of the set, lacking any other
temperate choice for a point in view of belonging-ness to a
family. Zadeh [35] coined the idea of fuzzy sets to overcome
this drawback. On the words of Zadeh, it may happen that
a point be partially a property of a set. Atanassov [4,5], by
adding another parameter in fuzzy sets, introduced intuition-
istic fuzzy sets (IFSs) by promulgating the constraint that
the addition of affiliation and dissociation grades must lie in
[0, 1]. Later, Yager [32–34] expanded IFSs to Pythagorean
fuzzy sets (PFSs). Some remarkable results for PFSs and
their practical implementations were studied by Peng et al.
[19–23]. Guleria and Bajaj [11] invented matrix form to rep-
resent Pythagorean fuzzy soft sets (PFSs). Naeem et al. [16]
introduced some new results and techniques using PFSSs.
Rahman et al. [24] presented some basic operations on PFSs.
Garg [7–10] explored many techniques for decision mak-
ing in Pythagorean fuzzy environment. Riaz et al. [26–29]
focused on presenting different hybrid structures along with
their practical implementations in real world situations.
A generalization of fuzzy sets was proposed in 1994 by
Zhang [36] entitled bipolar fuzzy sets. Later, in 2000, Lee
[14] brought to canvass an extension of fuzzy sets titled
bipolar-valued fuzzy sets and presented two ways of their
representation. Consequent upon the discoveries of Zhang
and Lee, Chen et al. [6] generalized bipolar fuzzy sets to
m-polar fuzzy sets. A short time ago, Naeem et al. [17]
unveiled Pythagorean m-polar fuzzy sets with their practi-
cal implementations. Well along, Riaz et al. [25] stretched
out the notion to corresponding soft structure by introducing
Pythagorean m-polar fuzzy soft sets and rendered some fas-

cinating applications of the proposed model. Smarandache
[31] initiated the idea of neutrosophic sets (NSs) to get by
circumstances comprising inexactitude, changeability and
indeterminacy. Maji [15] expanded NSs to neutrosophic soft
sets (NSSs). Recently, Naeem et al. [18] proposed the notions
of fuzzy neutrosophic soft σ -algebra (fns σ -algebra) and
fns measure with application in analyzing dynamics factors
behind putrefying economy of a country.
The following segment of this article is managed for smooth
study as follows: a reflection of some fundamental notions,
necessary for further study are presented in Sect. 2. Some
novel results on PmFSs are presented in Sect. 3. Score
and accuracy functions for PmFSs along with some chief
characteristics and illustrations are presented in Sect. 4. Dif-
ferent forms of (λ, η)-cut and their properties are coined
in Sect. 5. Section 6 gives some characteristics relevant to
modal operators. Extension principle of PmFSs is presented
in Sect. 7. Section 8 deals with relations on PmFSs. A prac-
tical implementation of Pythagorean m-polar fuzzy relation,
accompanied by an algorithm, in the selection of life partner
is rendered in Sect. 9.We finish with concluding remarks and
some impending suggestions in Sect. 10.

Preliminaries

In this subdivision, we recollect some ground rules of PmFSs
with succinctness indispensable to apprehend the advanced
part of this article. The multipolarity index i will extend over
1 to m (a positive integer) and g will be treated as the part of
underlying classical set X , unless expressed something else.

Definition 2.1 [17]APythagoreanm-polar fuzzy set (PmFS)
ß is characterized by the mappings τ

(i)
ß (denoting affil-

iation degrees) and σ
(i)
ß (meant for dissociation grades)

dragging members of X to [0, 1] constrained to obey 0 ≤(
τ

(i)
ß (g)

)2+
(
σ

(i)
ß (g)

)2 ≤ 1, for all i . The quantity ε
(i)
ß (g) =√

1 −
(
τ

(i)
ß (g)

)2 −
(
σ

(i)
ß (g)

)2
is known as hesitation mar-

gin or indeterminacy degree of g ∈ X to ß. ε(i)
ß : X �→ [0, 1]

are mappings expressing lack of knowledge regarding g ∈ ß
or g /∈ ß. The pair (τ (i), σ (i)) is commonly acknowledged as
Pythagorean fuzzy number (PFN).
A PmFS is usually expressed as
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ß =
{〈
g,

((
τ

(1)
ß (g), σ

(1)
ß (g)

)
,
(
τ

(2)
ß (g), σ

(2)
ß (g)

)
, . . . ,

(
τ

(m)
ß (g), σ

(m)
ß (g)

))〉}

=
{

g((
τ

(1)
ß (g), σ

(1)
ß (g)

)
,
(
τ

(2)
ß (g), σ

(2)
ß (g)

)
, . . . ,

(
τ

(m)
ß (g), σ

(m)
ß (g)

))
}

=
{

g((
τ

(i)
ß (g), σ

(i)
ß (g)

))
}

If |X | = r , then tabulatory array of ß is as in Table 1.
The corresponding matrix format is

ß =

⎛
⎜⎜⎜⎜⎝

(
τ

(1)
ß (g1), σ

(1)
ß (g1)

) (
τ

(2)
ß (g1), σ

(2)
ß (g1)

) · · · (
τ

(m)
ß (g1), σ

(m)
ß (g1)

)
(
τ

(1)
ß (g2), σ

(1)
ß (g2)

) (
τ

(2)
ß (g2), σ

(2)
ß (g2)

) · · · (
τ

(m)
ß (g2), σ

(m)
ß (g2)

)
...

...
. . .

...(
τ

(1)
ß (gr ), σ

(1)
ß (gr )

) (
τ

(2)
ß (gr ), σ

(2)
ß (gr )

) · · · (
τ

(m)
ß (gr ), σ

(m)
ß (gr )

)

⎞
⎟⎟⎟⎟⎠

This matrix of size r × m is titled as PmF matrix.

Definition 2.2 [17] ß1 is acknowledged a PmF subset of ß2,
written ß1 � ß2 if τ

(i)
ß1

(g) ≤ τ
(i)
ß2

(g) and σ
(i)
ß1

(g) ≥ σ
(i)
ß2

(g),
for all i .

Definition 2.3 [17] A PmFS for which τ
(i)
ß (g) = 0 and

σ
(i)
ß (g) = 1, for all i , is termed as null PmFS and is des-

ignated as �.

Definition 2.4 [17] A PmFS for which τ
(i)
ß (g) = 1 and

σ
(i)
ß (g) = 0, for all i , is termed as absolute PmFS and is

designated as X̆ .

Definition 2.5 [17] The complement of a PmFS

ß =
⎧
⎨
⎩

g((
τ

(i)
ß (g), σ

(i)
ß (g)

))
⎫
⎬
⎭

is given as

ßc =
⎧
⎨
⎩

g((
σ

(i)
ß (g), τ

(i)
ß (g)

))
⎫
⎬
⎭

Definition 2.6 [17] The union of ß1 and ß2 is delineated as

ß1 � ß2 =
⎧
⎨
⎩

g(
max

(
τ
(i)
ß1

(g), τ
(i)
ß2

(g)
)
,min

(
σ

(i)
ß1

(g), σ
(i)
ß2

(g)
))

⎫
⎬
⎭

Definition 2.7 [17] The intersection of ß1 and ß2 is given as

ß1 	 ß2 =
⎧
⎨
⎩

g(
min

(
τ
(i)
ß1

(g), τ
(i)
ß2

(g)
)
,max

(
σ

(i)
ß1

(g), σ
(i)
ß2

(g)
))

⎫
⎬
⎭

Definition 2.8 [17] The necessity operator on ß is given as

�ß =

⎧⎪⎨
⎪⎩

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)

⎫⎪⎬
⎪⎭

Definition 2.9 [17] The possibility operator on ß is delin-
eated as

♦ß =

⎧⎪⎨
⎪⎩

g(√
1 − (

σ
(i)
ß (g)

)2
, σ

(i)
ß (g)

)

⎫⎪⎬
⎪⎭
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Table 1 Tabulatory array of ß ß

g1
(
τ

(1)
ß (g1), σ

(1)
ß (g1)

) (
τ

(2)
ß (g1), σ

(2)
ß (g1)

) · · · (
τ

(m)
ß (g1), σ

(m)
ß (g1)

)

g2
(
τ

(1)
ß (g2), σ

(1)
ß (g2)

) (
τ

(2)
ß (g2), σ

(2)
ß (g2)

) · · · (
τ

(m)
ß (g2), σ

(m)
ß (g2)

)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

gr
(
τ

(1)
ß (gr ), σ

(1)
ß (gr )

) (
τ

(2)
ß (gr ), σ

(2)
ß (gr )

) · · · (
τ

(m)
ß (gr ), σ

(m)
ß (gr )

)

Definition 2.10 [17] The sum of ß1 and ß2 is defined as

ß1 ⊕ ß2 =

⎧⎪⎨
⎪⎩

g(√(
τ

(i)
ß1

(g)
)2 + (

τ
(i)
ß2

(g)
)2 − (

τ
(i)
ß1

(g)τ
(i)
ß2

(g)
)2

, σ
(i)
ß1

(g)σ
(i)
ß2

(g)
)

⎫⎪⎬
⎪⎭

Definition 2.11 [17] The product of ß1 and ß2 is defined as

ß1 ⊗ ß2 =

⎧⎪⎨
⎪⎩

g(
τ

(i)
ß1

(g)τ
(i)
ß2

(g),

√(
σ

(i)
ß1

(g)
)2 + (

σ
(i)
ß2

(g)
)2 − (

σ
(i)
ß1

(g)σ
(i)
ß2

(g)
)2)

⎫⎪⎬
⎪⎭

Some novel results on PmFSs

We bring together some new upshots on PmFSs in this seg-
ment.

Proposition 3.1 Let ß be a PmFS. If ε
(i)
ß (g) → 0 for all i ,

then

(1) τ
(i)
ß (g) �

√{
1 + σ

(i)
ß (g)

}{
1 − σ

(i)
ß (g)

}
.

(2) σ
(i)
ß (g) �

√{
1 + τ

(i)
ß (g)

}{
1 − τ

(i)
ß (g)

}
.

Proof By definition,
(
τ

(i)
ß (g)

)2 + (
σ

(i)
ß (g)

)2 + (
ε
(i)
ß (g)

)2 = 1

⇒ (
τ

(i)
ß (g)

)2 + (
σ

(i)
ß (g)

)2
� 1 (∵ ε

(i)
ß (g) → 0)

⇒ (
τ

(i)
ß (g)

)2
� 1 − (

σ
(i)
ß (g)

)2

⇒ τ
(i)
ß (g) �

√
1 − (

σ
(i)
ß (g)

)2

i.e. τ (i)
ß (g) �

√{
1 + σ

(i)
ß (g)

}{
1 − σ

(i)
ß (g)

}

which proves (1). The proof of (2) may be furnished on the
parallel track. 	�

Some properties of ⊕, ⊗, � and 	 for PmFSs analogous
to crisp sets are presented in following propositions.

Proposition 3.2 If ß1, ß2 and ß3 are three PmFSs, then

(1) ß1 ⊕ ß2 = ß2 ⊕ ß1.
(2) ß1 ⊗ ß2 = ß2 ⊗ ß1.
(3) ß1 ⊕ (ß2 ⊕ ß3) = (ß1 ⊕ ß2) ⊕ ß3.
(4) ß1 ⊗ (ß2 ⊗ ß3) = (ß1 ⊗ ß2) ⊗ ß3.

Proof Let g ∈ X and i = 1, 2, . . . ,m.
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(1) By definition,

ß1 ⊕ ß2 =
{

g(√(
τ

(i)
ß1

(g)
)2 + (

τ
(i)
ß2

(g)
)2 − (

τ
(i)
ß1

(g)τ
(i)
ß2

(g)
)2

, σ
(i)
ß1

(g)σ
(i)
ß2

(g)
)
}

=
{

g(√(
τ

(i)
ß2

(g)
)2 + (

τ
(i)
ß1

(g)
)2 − (

τ
(i)
ß2

(g)τ
(i)
ß1

(g)
)2

, σ
(i)
ß2

(g)σ
(i)
ß1

(g)
)
}

= ß2 ⊕ ß1

which proves (1). The proof of (2) is parallel.
(4) For the purpose of brevity, we would write τ

(i)
ß j

(g) =
τ

(i)
j and σ

(i)
ß j

(g) = σ
(i)
j onward. Then, by definition, the

membership function of ß1 ⊗ (ß2 ⊗ ß3) is

τß1⊗(ß2⊗ß3) = τ
(i)
1

(
τ

(i)
2 τ

(i)
3

)

= τ
(i)
1 τ

(i)
2 τ

(i)
3

=
(
τ

(i)
1 τ

(i)
2

)
τ

(i)
3

= τ(ß1⊗ß2)⊗ß3

and the corresponding non-membership function is

σß1⊗(ß2⊗ß3) =
√(

σ
(i)
1

)2

+
(√(

σ
(i)
2

)2 + (
σ

(i)
3

)2 − (
σ

(i)
2 σ

(i)
3

)2)2

−
(

σ
(i)
1

)2(√(
σ

(i)
2

)2 + (
σ

(i)
3

)2 − (
σ

(i)
2 σ

(i)
3

)2)2

=
√

(
σ

(i)
1

)2 + (
σ

(i)
2

)2 + (
σ

(i)
3

)2 − (
σ

(i)
2 σ

(i)
3

)2 −
(

σ
(i)
1

)2((
σ

(i)
2

)2 + (
σ

(i)
3

)2 − (
σ

(i)
2 σ

(i)
3

)2)

=
√(

σ
(i)
1

)2 + (
σ

(i)
2

)2 + (
σ

(i)
3

)2 − (
σ

(i)
2 σ

(i)
3

)2 − (
σ

(i)
1 σ

(i)
2

)2 − (
σ

(i)
1 σ

(i)
3

)2 + (
σ

(i)
1 σ

(i)
2 σ

(i)
3

)2

=
√(√(

σ
(i)
1

)2 + (
σ

(i)
2

)2 − (
σ

(i)
1 σ

(i)
2

)2)2

+ (
σ

(i)
3

)2 −
(√(

σ
(i)
1

)2 + (
σ

(i)
2

)2 − (
σ

(i)
1 σ

(i)
2

)2)2

.

(
σ

(i)
3

)2

= σ(ß1⊗ß2)⊗ß3

Thus, ß1 ⊗ (ß2 ⊗ ß3) = (ß1 ⊗ ß2) ⊗ ß3.

The proof of (3) is similar. 	�

Proposition 3.3 Assume that ß1, ß2 and ß3 are PmFSs
defined over X with g ∈ X. Then

(1) ß1 ⊕ (ß2 � ß3) = (ß1 ⊕ ß2) � (ß1 ⊕ ß3).
(2) ß1 ⊕ (ß2 	 ß3) = (ß1 ⊕ ß2) 	 (ß1 ⊕ ß3).
(3) ß1 ⊗ (ß2 � ß3) = (ß1 ⊗ ß2) � (ß1 ⊗ ß3).
(4) ß1 ⊗ (ß2 	 ß3) = (ß1 ⊗ ß2) 	 (ß1 ⊗ ß3).

Proof Weprove (1) here. Theproofs of other parts are similar,
so we omit them. By definition,

ß2 � ß3 =
{

g

(max(τ (i)
2 , τ

(i)
3 ),min(σ (i)

2 , σ
(i)
3 ))

}

There arise four possibilities:

(i) max(τ (i)
2 , τ

(i)
3 ) = τ

(i)
2 and min(σ (i)

2 , σ
(i)
3 ) = σ

(i)
2 ;

(ii) max(τ (i)
2 , τ

(i)
3 ) = τ

(i)
2 and min(σ (i)

2 , σ
(i)
3 ) = σ

(i)
3 ;

(iii) max(τ (i)
2 , τ

(i)
3 ) = τ

(i)
3 and min(σ (i)

2 , σ
(i)
3 ) = σ

(i)
2 ; and

(iv) max(τ (i)
2 , τ

(i)
3 ) = τ

(i)
3 and min(σ (i)

2 , σ
(i)
3 ) = σ

(i)
3 .
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We consider only second possibility. The other three cases
may be discussed accordingly. Now,

ß1 ⊕ (ß2 � ß3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(√
(τ

(i)
1 )2 + (max(τ (i)

2 τ
(i)
3 ))2 − (τ

(i)
1 max(τ (i)

2 τ
(i)
3 ))2, σ

(i)
1 min(σ (i)

2 σ
(i)
3 )

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(√
(τ

(i)
1 )2 + (τ

(i)
2 )2 − (τ

(i)
1 τ

(i)
2 )2, σ

(i)
1 σ

(i)
3

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and

ß1 ⊕ ß2 =
{

g(√
(τ

(i)
1 )2 + (τ

(i)
2 )2 − (τ

(i)
1 τ

(i)
2 )2, σ

(i)
1 σ

(i)
2

)
}
,

ß1 ⊕ ß3 =
{

g(√
(τ

(i)
1 )2 + (τ

(i)
3 )2 − (τ

(i)
1 τ

(i)
3 )2, σ

(i)
1 σ

(i)
3

)
}
.

So that

(ß1 ⊕ ß2) � (ß1 ⊕ ß3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(
max

(√
(τ

(i)
1 )2 + (τ

(i)
2 )2 − (τ

(i)
1 τ

(i)
2 )2,

√
(τ

(i)
1 )2 + (τ

(i)
3 )2 − (τ

(i)
1 τ

(i)
3 )2

)
,min(σ (i)

1 σ
(i)
2 , σ

(i)
1 σ

(i)
3 )

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g(√
(τ

(i)
1 )2 + (τ

(i)
2 )2 − (τ

(i)
1 τ

(i)
2 )2, σ

(i)
1 σ

(i)
3

)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= ß1 ⊕ (ß2 � ß3).

This concludes the proof. 	�
Example 3.4 Let

ß1 =
(

(0.39, 0.56) (0.43, 0.79) (0.81, 0.21)
(0.45, 0.06) (0.37, 0.38) (0.52, 0.69)

)
,

ß2 =
(

(0.03, 0.19) (0.52, 0.67) (0.12, 0.22)
(0.38, 0.10) (0.09, 0.02) (0.97, 0.21)

)
,

and

ß3 =
(

(0.82, 0.31) (0.55, 0.66) (0.18, 0.41)
(0.53, 0.11) (0.49, 0.01) (0.44, 0.77)

)

be three P3FSs defined over X = {k, y}. Then,

ß2 	 ß3 =
(

(0.03, 0.31) (0.52, 0.67) (0.12, 0.41)
(0.38, 0.11) (0.09, 0.02) (0.44, 0.77)

)

∴ ß1 ⊗ (ß2 	 ß3) =
(

(0.01, 0.62) (0.22, 0.89) (0.10, 0.45)
(0.17, 0.12) (0.03, 0.38) (0.23, 0.89)

)

(1)

Also,

ß1 ⊗ ß2 =
(

(0.01, 0.58) (0.22, 0.89) (0.10, 0.30)
(0.17, 0.12) (0.03, 0.38) (0.50, 0.71)

)

and

ß1 ⊗ ß3 =
(

(0.32, 0.62) (0.24, 0.89) (0.15, 0.45)
(0.24, 0.12) (0.18, 0.38) (0.23, 0.89)

)
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so that

(ß1 ⊗ ß2) 	 (ß1 ⊗ ß3) =
(

(0.01, 0.62) (0.22, 0.89) (0.10, 0.45)
(0.17, 0.12) (0.03, 0.38) (0.23, 0.89)

)

(2)

Therefore, from (1) & (2): ß1⊗(ß2	ß3) = (ß1⊗ß2)	(ß1⊗
ß3). Likewise, the other results may be verified.

Proposition 3.5 Let ß1 and ß2 be two PmFSs. Then,

(1) (ß1 ⊕ ß2)c = ßc1 ⊗ ßc2.
(2) (ß1 ⊗ ß2)c = ßc1 ⊕ ßc2.

Proof By definition,

(ß1 ⊕ ß2)
c =

{
g(√(

τ
(i)
1

)2 + (
τ

(i)
2

)2 − (
τ

(i)
1 τ

(i)
2

)2
, σ

(i)
1 σ

(i)
2

)
}c

=
{

g(
σ

(i)
1 σ

(i)
2 ,

√(
τ

(i)
1

)2 + (
τ

(i)
2

)2 − (
τ

(i)
1 τ

(i)
2

)2)
}

=
{

g(
σ

(i)
1 , τ

(i)
1

)
}

⊗
{

g(
σ

(i)
2 , τ

(i)
2

)
}

=
{

g(
τ

(i)
1 , σ

(i)
1

)
}c

⊗
{

g(
τ

(i)
2 , σ

(i)
2

)
}c

= ßc1 ⊗ ßc2.

This establishes (1). The proof of (2) is similar. 	�

Example 3.6 Consider ß1 and ß2 given in Example 3.4. We
have

(ß1 ⊗ ß2)
c =

(
(0.58, 0.01) (0.89, 0.22) (0.30, 0.10)
(0.12, 0.17) (0.38, 0.03) (0.71, 0.50)

)
(3)

Also,

ßc1 =
(

(0.56, 0.39) (0.79, 0.43) (0.21, 0.81)
(0.06, 0.45) (0.38, 0.37) (0.69, 0.52)

)

and

ßc2 =
(

(0.19, 0.03) (0.67, 0.52) (0.22, 0.12)
(0.10, 0.38) (0.02, 0.09) (0.21, 0.97)

)

ßc1 ⊕ ßc2 =
(

(0.58, 0.01) (0.89, 0.22) (0.30, 0.10)
(0.12, 0.17) (0.38, 0.03) (0.71, 0.50)

)
(4)

Hence, from (3) & (4): (ß1⊗ß2)c = ßc1⊕ßc2. The other result
may be verified analogously.

Score and accuracy functions of a PmFN

In this subdivision, we define score and accuracy func-
tions for a Pythagorean m-polar fuzzy number (PmFN)
p = ({(τ (i)

p , σ
(i)
p )}mi=1) of a PmFS ß.

Definition 4.1 The score function of a PmFN p = ({(τ (i)
p ,

σ
(i)
p )}mi=1) of a PmFS ß is defined as

s(p) = 1

m
�m
i=1

{(
τ (i)
p (g)

)2 − (
σ (i)
p (g)

)2}

for all g ∈ X . The value of this score function always falls
in [−1, 1].
Proposition 4.2 Let p = ({(τ (i)

p , σ
(i)
p )}mi=1) be a PmFN of a

PmFS ß defined over X and g ∈ X. Then,

(1) s(p) = 1 ⇔ �m
i=1

(
τ

(i)
p (g)

)2 = m + �m
i=1

(
σ

(i)
p (g)

)2
.

(2) s(p) = 0 ⇔ �m
i=1

(
τ

(i)
p (g)

)2 = �m
i=1

(
σ

(i)
p (g)

)2
.

(3) s(p) = −1 ⇔ �m
i=1

(
τ

(i)
p (g)

)2 = �m
i=1

(
σ

(i)
p (g)

)2 − m.

Proof (1) Let

s(p) = 1

⇔ 1

m
�m
i=1

{(
τ
(i)
p (g)

)2 − (
σ

(i)
p (g)

)2} = 1

⇔ �m
i=1

(
τ
(i)
p (g)

)2 − �m
i=1

(
σ

(i)
p (g)

)2 = m

⇔ �m
i=1

(
τ
(i)
p (g)

)2 = m + �m
i=1

(
σ

(i)
p (g)

)2

(2) Let

s(p) = 0

⇔ 1

m
�m
i=1

{(
τ (i)
p (g)

)2 − (
σ (i)
p (g)

)2} = 0

⇔ �m
i=1

(
τ (i)
p (g)

)2 − �m
i=1

(
σ (i)
p (g)

)2 = 0

⇔ �m
i=1

(
τ (i)
p (g)

)2 = �m
i=1

(
σ (i)
p (g)

)2

(3) Let

s(p) = −1

⇔ 1

m
�m
i=1

{(
τ (i)
p (g)

)2 − (
σ (i)
p (g)

)2} = −1

⇔ �m
i=1

(
τ (i)
p (g)

)2 − �m
i=1

(
σ (i)
p (g)

)2 = −m

⇔ �m
i=1

(
τ (i)
p (g)

)2 = �m
i=1

(
σ (i)
p (g)

)2 − m

	�
Definition 4.3 The accuracy function of a PmFN p =
({(τ (i)

p , σ
(i)
p )}mi=1) of a PmFS ß is characterized as

a(p) = 1

m
�m
i=1

{(
τ (i)
p (g)

)2 + (
σ (i)
p (g)

)2}
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Table 2 Tabular formation of P3FS ß

ß

g1 (0.37, 0.59) (0.22, 0.54) (0, 1)

g2 (0.57, 0.68) (1, 0) (1, 0)

Table 3 Values of score and
accuracy functions

ß s(p) a(p)

g1 −0.4848 0.6083

g2 0.6208 0.9291

for all g ∈ X . The value of this accuracy function always
falls in [0, 1].

Proposition 4.4 Let p = ({(τ (i)
p , σ

(i)
p )}mi=1) be a PmFN of a

PmFS ß defined over X and g ∈ X. Then,

(1) a(p) = 0 ⇔ �m
i=1

(
ε
(i)
p (g)

)2 = m.

(2) a(p) = 1 ⇔ �m
i=1

(
ε
(i)
p (g)

)2 = 0.

Proof (1) Let

a(p) = 0

⇔ 1

m
�m
i=1

{(
τ (i)
p (g)

)2 + (
σ (i)
p (g)

)2} = 0

⇔ �m
i=1

{
1 − (

ε(i)
p (g)

)2} = 0

⇔ m − �m
i=1

(
ε(i)
p (g)

)2 = 0

⇔ �m
i=1

(
ε(i)
p (g)

)2 = m

(2) Let

a(p) = 1

⇔ 1

m
�m
i=1

{(
τ (i)
p (g)

)2 + (
σ (i)
p (g)

)2} = 1

⇔ �m
i=1

{
1 − (

ε(i)
p (g)

)2} = 1

⇔ m − �m
i=1

(
ε(i)
p (g)

)2 = m

⇔ �m
i=1

(
ε(i)
p (g)

)2 = 0

	�

Example 4.5 Consider a P3FS ß defined over the crisp set
X = {g1, g2} given in Table 2.
The values of score and accuracy functions are computed as
in Table 3.

Table 4 Tabular formation of P4FS ß

ß

g1 (0.52, 0.47) (0.23, 0.84) (0.12, 0.93) (0.54, 0.31)

g2 (0.42, 0.11) (0.36, 0.19) (0.19, 0.47) (0.14, 0.08)

g3 (0.37, 0.32) (0.41, 0.02) (0.92, 0.18) (0.13, 0.26)

g4 (0.25, 0.11) (0.54, 0.54) (0.38, 0.27) (0.99, 0.12)

g5 (0.13, 0.60) (0.12, 0.69) (0.19, 0.67) (0.24, 0.70)

(�,�)-cut of a PmFS

We present different sorts of (λ, η)-cuts of a PmFS in con-
junctionwith a few conspicuous characteristics of these ideas
in this fragment.

Definition 5.1 Let ß be a PmFS defined over X and g ∈ X .
Assume further that λ, η ∈ [0, 1].

(1) The strong upper (λ, η)-cut of ß is characterized as

ß[λ,η] =
{
g : τ

(i)
ß (g) ≥ λ & σ

(i)
ß (g) ≤ η

}

(2) The weak upper (λ, η)-cut of ß is characterized as

ß(λ,η) =
{
g : τ

(i)
ß (g) > λ & σ

(i)
ß (g) < η

}

(3) The strong lower (λ, η)-cut of ß is characterized as

ß[λ,η] =
{
g : τ

(i)
ß (g) ≤ λ & σ

(i)
ß (g) ≥ η

}

(4) The weak lower (λ, η)-cut of ß is characterized as

ß(λ,η) =
{
g : τ

(i)
ß (g) < λ & σ

(i)
ß (g) > η

}

for all permissible values of i .

Remark It follows from Definition 5.1 that ß(λ,η) � ß[λ,η]
and ß(λ,η) � ß[λ,η].

Example 5.2 For the P4FS ß defined over the crisp set X =
{g1, . . . , g5} given in Table 4,
we have

ß[0.25,0.60] = {g4}
ß(0.25,0.60) = φ

ß[0.25,0.60] = {g5}
ß(0.25,0.60) = φ
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Proposition 5.3 Let ß and Z be two PmFSs over X. If
λ, λ1, λ2, η, η1, η2 ∈ [0, 1], then

(1) ß � Z ⇔ ß[λ,η] � Z [λ,η].
(2) ß[λ1,η1] � ß[λ2,η2] ⇔ λ1 ≥ λ2 & η1 ≤ η2.

Proof (1) Let ß � Z . Then, for all admissible values of i ,
τ

(i)
ß ≤ τ

(i)
Z and σ

(i)
ß ≥ σ

(i)
Z . If g ∈ ß � Z , so τ

(i)
Z ≥

τ
(i)
ß ≥ λ and σ

(i)
Z ≤ σ

(i)
ß ≤ η which in turn yields

ß[λ,η] � Z [λ,η].
The converse follows by reverting the argument.

(2) Let λ1 ≥ λ2 and η1 ≤ η2. Suppose that g ∈ ß[λ1,η1], then
τ

(i)
ß (g) ≥ λ1 and σ

(i)
ß (g) ≤ η1. Since λ1 ≥ λ2 & η1 ≤

η2, so τ
(i)
ß (g) ≥ λ1 ≥ λ2 and σ

(i)
ß (g) ≤ η1 ≤ η2. Thus,

ß[λ1,η1] � ß[λ2,η2].
The converse follows directly from definition and prop-
erties of inequalities.

	�
Corollary 5.4 Let ß and Z be two PmFSs over X. If
λ, λ1, λ2, η, η1, η2 ∈ [0, 1], then

(1) ß � Z ⇔ ß[λ,η] � Z[λ,η].
(2) ß � Z ⇔ ß(λ,η) � Z(λ,η).
(3) ß � Z ⇔ ß(λ,η) � Z(λ,η).
(4) ß[λ1,η1] � ß[λ2,η2] ⇔ λ1 ≥ λ2 & η1 ≤ η2.
(5) ß(λ1,η1) � ß(λ2,η2) ⇔ λ1 ≥ λ2 & η1 ≤ η2.
(6) ß(λ1,η1) � ß(λ2,η2) ⇔ λ1 ≥ λ2 & η1 ≤ η2.

Proposition 5.5 Let ß and Z be two PmFSs. If λ, η are real
numbers picked from [0, 1], then

(1) (ß � Z)[λ,η] = ß[λ,η] � Z [λ,η].
(2) (ß 	 Z)[λ,η] = ß[λ,η] 	 Z [λ,η].

Proof Since ß � ß�Z andZ � ß�Z , so by Proposition 5.3,
ß[λ,η] � (ß�Z)[λ,η] andZ [λ,η] � (ß�Z)[λ,η]. Thus, ß[λ,η] �
Z [λ,η] � (ß � Z)[λ,η].
To prove the reverse inclusion, assume that g ∈ (ß�Z)[λ,η].
Then, τ (i)

ß�Z ≥ λ and σ
(i)
ß�Z ≤ η, for all i . Now,

(ß � Z)[λ,η] = {g : τ
(i)
ß�Z (g) ≥ λ & σ

(i)
ß�Z (g) ≤ η}

= {g : max{τ (i)
ß (g), τ

(i)
Z (g)}

≥ λ & min{σ (i)
ß (g), σ

(i)
Z (g)} ≤ η}

= {g : τ
(i)
ß (g) ≥ λ & σ

(i)
ß (g) ≤ η} � {g : τ

(i)
Z (g)

≥ λ & σ
(i)
Z (g) ≤ η}

� ß[λ,η] � Z [λ,η].

This proves (1). The proof of (2) may be furnished in the
same fashion. 	�

Corollary 5.6 Let ß and Z be two PmFSs. If λ, η are real
numbers picked from [0, 1], then

(1) (ß � Z)(λ,η) = ß(λ,η) � Z(λ,η).
(2) (ß � Z)[λ,η] = ß[λ,η] � Z[λ,η].
(3) (ß � Z)(λ,η) = ß(λ,η) � Z(λ,η).
(4) (ß 	 Z)(λ,η) = ß(λ,η) 	 Z(λ,η).
(5) (ß 	 Z)[λ,η] = ß[λ,η] 	 Z[λ,η].
(6) (ß 	 Z)(λ,η) = ß(λ,η) 	 Z(λ,η).

Remark The results presented in Proposition 5.5 and Corol-
lary 5.6 may be extended to any finite number of PmFSs.

Operations based on necessity and
possibility operators

We present some characteristics relevant to modal operators
i.e. necessity and possibility operators defined for PmFSs in
[17], in this section.

Proposition 6.1 Let ß be a PmFS defined over X, then

(1) ��ß = �ß.
(2) ♦♦ß = ♦ß.
(3) ♦�ß = �ß.
(4) �♦ß = ♦ß.
(5) (�ßc)c = ♦ß.
(6) (♦ßc)c = �ß.

Proof Let

ß =
{

g(
τ

(i)
ß (g), σ

(i)
ß (g)

)
}

be a PmFS defined over X .

(1) By definition,

�ß =
{

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)
}

∴ ��ß =
{

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)
}

= �ß.

(2) Similar to the proof of (1).
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(3) By definition,

�ß =

⎧⎪⎨
⎪⎩

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)

⎫⎪⎬
⎪⎭

∴ ♦�ß =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g

(√
1 −

(√
1 − (

τ
(i)
ß (g)

)2)2

,

√
1 − (

τ
(i)
ß (g)

)2)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎨
⎪⎩

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)

⎫⎪⎬
⎪⎭

= �ß.

(4) Similar to the proof of (3).
(5) By definition

�ßc = �
{

g(
σ

(i)
ß (g), τ

(i)
ß (g)

)
}

=
{

g(
σ

(i)
ß (g),

√
1 − (

σ
(i)
ß (g)

)2)
}

∴ (�ßc)c =
{

g(√
1 − (

σ
(i)
ß (g)

)2
, σ

(i)
ß (g)

)
}

= ♦ß.

(6) Parallel to the proof of (5).

	�
Proposition 6.2 Take ß and Z as PmFSs. Then,

(1) �(ß � Z) = �ß � �Z .
(2) �(ß 	 Z) = �ß 	 �Z .
(3) ♦(ß � Z) = ♦ß � ♦Z .
(4) ♦(ß 	 Z) = ♦ß 	 ♦Z .

Proof Assume that max
(
τ

(i)
ß (g), τ

(i)
Z (g)

) = τ
(i)
ß (g). The

other case i.e. max
(
τ

(i)
ß (g), τ

(i)
Z (g)

) = τ
(i)
Z (g) may be dis-

cussed in the similar way.
By definition,

�(ß � Z) = �

⎧⎨
⎩

g(
max

(
τ

(i)
ß (g), τ

(i)
Z (g)

)
,min

(
σ

(i)
ß (g), σ

(i)
Z (g)

))
⎫⎬
⎭

= �

⎧⎨
⎩

g(
τ

(i)
ß (g),min

(
σ

(i)
ß (g), σ

(i)
Z (g)

))
⎫⎬
⎭

=

⎧⎪⎨
⎪⎩

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)

⎫⎪⎬
⎪⎭

and

�ß � �Z =
{

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)
}

�
{

g(
τ

(i)
Z (g),

√
1 − (

τ
(i)
Z (g)

)2)
}

=
{

g(
τ

(i)
ß (g),

√
1 − (

τ
(i)
ß (g)

)2)
}

because min

(√
1 − (

τ
(i)
ß (g)

)2
,

√
1 − (

τ
(i)
Z (g)

)2)

=
√
1 − (

τ
(i)
ß (g)

)2.
This proves (1). The proofs of other three assertions may be
furnished on the parallel track. 	�

Proposition 6.3 Presume that ß and Z are PmFSs. Then,

(1) ��(ß � Z) = �(ß � Z).
(2) ��(ß 	 Z) = �(ß 	 Z).
(3) ♦♦(ß � Z) = ♦(ß � Z).
(4) ♦♦(ß 	 Z) = ♦(ß 	 Z).
(5) ♦�(ß � Z) = �(ß � Z).
(6) ♦�(ß 	 Z) = �(ß 	 Z).
(7) �♦(ß � Z) = ♦(ß � Z).
(8) �♦(ß 	 Z) = ♦(ß 	 Z).

Proof Follows from Propositions 6.1 and 6.2 . 	�

Proposition 6.4 Let ß and Z be a PmFSs defined over X,
then

(1)
(
�(ß � Z)c

)c = ♦(ß � Z).
(2)

(
�(ß 	 Z)c

)c = ♦(ß 	 Z).
(3)

(♦(ß � Z)c
)c = �(ß � Z).

(4)
(♦(ß 	 Z)c

)c = �(ß 	 Z).

Proof Takes after from Proposition 6.1. 	�

Proposition 6.5 Assume that ß and Z are PmFSs defined
over X, then

(1)
(
�(ß � Z)c

)c = ♦♦(ß � Z) = �♦(ß � Z).
(2)

(
�(ß 	 Z)c

)c = ♦♦(ß 	 Z) = �♦(ß 	 Z).
(3) ♦(�(ß � Z)c

)c = ��(ß � Z) = ♦�(ß � Z).
(4) ♦(�(ß 	 Z)c

)c = ��(ß 	 Z) = ♦�(ß 	 Z).

Proof Follows from Propositions 6.1, 6.3 and 6.4. 	�
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Extension principle of PmFSs

In this part, we present the extension principle of PmFSs.

Definition 7.1 Let � : X �→ Y be a map connecting non-
void crisp sets X and Y . Assume further that ß1 and ß2 are
PmFSs defined over X and Y , respectively.

(1) The inverse image of ß2 under � is a PmFS over X and
is characterized as

�
−1(ß2) =

{
g((

τ
(i)
�−1(ß2)

(g), σ
(i)
�−1(ß2)

(g)
))

}

=
{

g((
τ

(i)
ß2

(�(g)), σ
(i)
ß2

(�(g))
))

}

(2) The image of ß1 under � is a PmFS over Y and is char-
acterized as

�(ß1) =
{

g((
τ

(i)
�(ß1)

(g′), σ (i)
�(ß1)

(g′)
))

}

where

τ
(i)
�(ß1)

(g′) =
{

∨g∈�−1(g′) τ
(i)
ß1

(g), if �
−1(g′) �= φ

0, otherwise

and

σ
(i)
�(ß1)

(g′) =
{

∧g∈�−1(g′) σ
(i)
ß1

(g), if �
−1(g′) �= φ

0, otherwise

Proposition 7.2 Let � be a map driving members of X to Y .
If ß and Z are PmFSs defined, respectively, over X and Y ,
then there exist at least one λ, η in [0, 1] in such a way that

(1) �(ß(λ,η)) � �(ß[λ,η]) � (�(ß))[λ,η].
(2) �

−1(Z(λ,η)) � �
−1(Z [λ,η]) = (�−1(Z))[λ,η].

Proof (1) Since ß(λ,η) � ß[λ,η], so �(ß(λ,η)) � �(ß[λ,η]) is
trivial. For the next inclusion, assume that g′ ∈ �(ß[λ,η]).
Then, there subsists g ∈ ß[λ,η] so that g′ = �(g) and
τ

(i)
ß (g) ≥ λ, σ (i)

ß (g) ≤ η for all i . Thus, for λ, η ∈ [0, 1]
and all i , we have

τ
(i)
ß (�−1(g′)) ≥ λ ⇒ τ

(i)
�(ß)(g

′) ≥ λ

and

σ
(i)
ß (�−1(g′)) ≤ η ⇒ σ

(i)
�(ß)(g

′) ≤ η

So, g′ ∈ (�(ß))[λ,η] and hence �(ß[λ,η]) � (�(ß))[λ,η].

(2) Since Z(λ,η) � Z [λ,η], so �
−1(Z(λ,η)) � �

−1(Z [λ,η])
is trivial.
Now, for each g

g ∈ �
−1(Z [λ,η]) ⇔ f (g) ∈ Z [λ,η]

⇔ τ
(i)
Z (�(g)) ≥ λ & σ

(i)
Z (�(g)) ≤ η

Thus,

τ
(i)
�−1(Z)

(g) = τ
(i)
Z (�(g)) ≥ λ

and

σ
(i)
�−1(Z)

(g) = σ
(i)
Z (�(g)) ≤ η

showing that g ∈ (�−1(Z))[λ,η]. Thus, �
−1(Z [λ,η]) =

(�−1(Z))[λ,η].
	�

Corollary 7.3 Let � be a map that drags members of X to Y .
If ß and Z are PmFSs defined over X and Y in order, then
there exist at least one λ, η ∈ [0, 1] so that

(1) �(ß(λ,η)) � �(ß[λ,η]) � (�(ß))[λ,η].
(2) �

−1(Z(λ,η)) � �
−1(Z[λ,η]) = (�−1(Z))[λ,η].

Relations on PmFSs

We devote this segment to present some concepts of Pythago
rean m-polar fuzzy relation and some its premier character-
istics.

Definition 8.1 Take X and Y as non-void classical sets. A
Pythagorean m-polar fuzzy relation (PmFR) R from X to Y
is a PmFS of the Cartesian product X × Y categorized by
the affiliation functions τ

(i)
R : X × Y �→ [0, 1]m and non-

membership functions σ
(i)
R : X × Y �→ [0, 1]m . We express

it as R(X ↪→ Y ).

Definition 8.2 Presume that X and Y are non-void classical
sets. Assume that ß is a PmFS over X . The max-min-max
composition of R(X ↪→ Y ) with ß is a PmFS Z of Y , and
is denoted as Z = R ◦ ß. The affiliation and dissociation
functions of this composition, in order, are characterized as

τ
(i)
Z (g′) = max

g

(
min

{
τ

(i)
ß (g), τ

(i)
R (g, g′)

})

and

σ
(i)
Z (g′) = min

g

(
max

{
σ

(i)
ß (g), σ

(i)
R (g, g′)

})

123



470 Complex & Intelligent Systems (2021) 7:459–475

for all g ∈ X and g′ ∈ Y .
This composition may alternatively be computed using

R = τ
(i)
R (g′) − σ

(i)
R (g′)ε(i)

R (g′)

Definition 8.3 Assume that Q(X ↪→ Y ) and R(Y ↪→ Z)

be PmFRs. The max-min-max composition R ◦ Q is again a
PmFR from X to Z . The affiliation and dissociation functions
of this composition, in order, are

τ
(i)
R◦Q(g, g′′) = max

g′

(
min

{
τ

(i)
Q (g, g′), τ (i)

R (g′, g′′)
})

and

σ
(i)
R◦Q(g, g′′) = min

g′

(
max

{
σ

(i)
Q (g, g′), σ (i)

R (g′, g′′)
})

for all g ∈ X , g′ ∈ Y and g′′ ∈ Z .
This composition may alternatively be computed using

R ◦ Q = τ
(i)
R◦Q(g, g′′) − σ

(i)
R◦Q(g, g′′)ε(i)

R◦Q(g, g′′)

Proposition 8.4 Let R1(X ↪→ Y ) and R2(Y ↪→ Z) be two
PmFRs, then

(1) (R−1
1 )−1 = R1.

(2) (R2 ◦ R1)
−1 = R−1

1 ◦ R−1
2 .

Application of PmFR in choosing life partner

Most of us agree to take a long list of traits that designate our
impeccable match, from general traits – cool, sympathetic,
curious, exploratory, appreciative – to specific expertise and
pastimes – good cook, delight in cricket, civically full of zip,
be fond of traveling. But we recognize that we can’t detect
everything in one person. We hold to reach some compro-
mises by believing that real-world is entirely different from
the dreams we see either in closed or open eyes. And then
what are the most important things to prioritize if one wants
to have a happy and successful relationship? Times of study
into relationship consummation and durability points to a
number of key wherewithal one may be capable to be famil-
iar with early on:

1. Trustworthiness: Trust is the grounds of a successful
relationship. Without faith, there is nothing. Indeed, the
quality of trustworthiness strengthens a relation.

2. Clear communication: It is what leads to developing trust
and credibility. Expect for this in a collaborator. Com-
munication is vital—many people have accepted this,
because it’s honest.

3. Optimism: A person who is endowed with ability to see
good in things is usually a happy demeanour. The couples
who share optimism practice inordinate triumph in prob-
lem solving than the pessimists one. Optimism agrees
to each individual to donate proficient coping strategies,
and higher degrees of cooperation.

4. Respect: Respect for others is the key ingredient for a
successful and happy life. If a person does not abide by
it, he/she is not serious enough for you.

5. Loves your flaws: The person you espouse should, unde-
niably, embellish your fortes, but also escalate your
imperfections. It might sound trite, but it’s your twist
of fate that makes you ... You.

6. Honesty and integrity: The epitome partner comprehends
the significance of honesty in a faithful relationship.
Honesty physiques trust between people. Dishonesty
clouds the other person, betraying their susceptibility
and devastating their sense of veracity. Nix conveys a
more disparaging impact on a comfortable relationship
between two people than untruthfulness and deceit. Even
in agonizing circumstances such as unfaithfulness, the
flagrant deception involved is every so often equally, if
notmore, upsetting than the unfaithful act itself. The idyl-
lic partner does its best to sustain a lifetime of totality so
that there are no incongruities betweenwords and actions.
This works for all layers of communication, both verbal
and gestural. Being unblemished and loyal in our most
cherished affairs means really knowing ourselves and our
commitments. While this can prove hard, it is a struggle
worth striving for.
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Fig. 1 Flowchart of the
algorithm

Before proceeding further to numerical example, we pro-
pose an algorithm based upon PmFR as follows:

Algorithm

Input:
1. Collection of elementary data: Construct the set of traits

T with the assistance of team of experts. Suppose that the
families betweenwhom association level is to be checked
are M and W .
Computations:

2. Construct the PmFRs R1 : M ↪→ T and R2 : W ↪→ T
based on repeated observations, interviews or question-
naires.

3. Convert thePmFRsconstructed at step2 to corresponding
PFRs R1 : M ↪→ T and R2 : W ↪→ T by taking average
values of the observations for each trait.

4. Usingmax-min-max composition given inDefinition 8.3,
compute the composite relation R2 ◦ R1 : M ↪→ W .

5. Compute the values of association grades between the
members of M and W using Äi j = τi j − σi jεi j , where

εi j =
√
1 − τ 2i j − σ 2

i j .

Output:
6. Locate the pair for which the value of Äi j goes beyond a

specific number and declare it as best associated.

Figure 1 portrays this algorithm.
We employ this algorithm on the following example.

Example 9.1 Consider an NGO with the aim to give best
match for the people planning to marry. The NGO has a list
of 4 men and 4 women registered for possible matrimony.
The officials of the NGO had discussion with each of these
8 members thrice at different spans of time and try to get
their insight views about different traits thought to be vital

for a happy and successful matrimony. The officials consti-
tute a team of experts to decide the fate of registered persons
for possible likelihood. The team prepares PmFSs showing
degrees of association τ (i) and non-association σ (i) for a spe-
cific trait. Assume that the traits under consideration are

t = Trustworthiness

c = Clear communication

r = Respect & Loves your flaws

o = Optimism

h = Honesty & Integrity

whose collection is designated by T . If M = {m1 =
Paul,m2 = Steve,m3 = Kevin,m4 = Carl} is the aggre-
gate of men whereas W = {w1 = Emma, w2 = Jane, w3 =
Angelica, w4 = Sussana} is the assembly of women under
study, then PmFR R1 : M ↪→ T is as in Table 5.

and PmFR R2 : T ↪→ W is as in Table 6:
For computational ease, we construct the tables of average

values given in Tables 5 and 6 , which convert PmFR to
Pythagorean fuzzy relation (PFR), and represent in Tables 7
and 8 respectively.

Invoking max–min–max composition presented in Defi-
nition 8.3, the PFNs for the composite relation R2 ◦ R1 :
M ↪→ W is represented in Table 9.

Now, using Äi j = τi j−σi jεi j ,where εi j =
√
1 − τ 2i j − σ 2

i j

denotes hesitationmargin, the association grades betweenmi

and w j are computed in Table 10.
The statistics computed in Table 10 are displayed in Fig. 2.
Assume that the condition for best suitable couple is that

the association grademust be greater than 50% i.e. Äi j > 0.5.
Thus, in view of Table 10, it may be concluded that (m4, w3)

i.e. (Carl, Angelica) is the ideal couple. As long as the other
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Table 5 PmFR R1 : M ↪→ T R1 t c r o h

(0.56, 0.45) (0.37, 0.29) (0.67, 0.55) (0.51, 0.24) (0.35, 0.25)

m1 (0.32, 0.26) (0.31, 0.51) (0.51, 0.28) (0.26, 0.29) (0.46, 0.46)

(0.76, 0.58) (0.47, 0.81) (0.54, 0.79) (0.82, 0.39) (0.82, 0.49)

(0.79, 0.54) (0.52, 0.47) (0.98, 0.12) (0.43, 0.20) (0.68, 0.51)

m2 (0.23, 0.48) (0.74, 0.42) (0.19, 0.52) (0.39, 0.01) (0.59, 0.50)

(0.57, 0.59) (0.43, 0.78) (0.06, 0.53) (0.81, 0.18) (0.44, 0.70)

(0.83, 0.45) (0.53, 0.31) (0.51, 0.50) (0.86, 0.41) (0.43, 0.34)

m3 (0.29, 0.32) (0.43, 0.53) (0.51, 0.68) (0.37, 0.11) (0.56, 0.61)

(0.48, 0.69) (0.79, 0.54) (0.69, 0.52) (0.72, 0.35) (0.71, 0.68)

(0.59, 0.45) (0.58, 0.39) (0.56, 0.52) (0.96, 0.21) (0.40, 0.31)

m4 (0.54, 0.51) (0.34, 0.57) (0.50, 0.50) (0.87, 0.10) (0.51, 0.60)

(0.64, 0.67) (0.49, 0.44) (0.67, 0.43) (0.65, 0.38) (0.58, 0.54)

Table 6 PmFR R2 : T ↪→ W R2 t c r o h

(0.79, 0.58) (0.46, 0.31) (0.53, 0.49) (0.48, 0.53) (0.52, 0.51)

w1 (0.68, 0.54) (0.56, 0.30) (0.40, 0.63) (0.12, 0.25) (0.38, 0.32)

(0.48, 0.50) (0.69, 0.70) (0.75, 0.60) (0.16, 0.50) (0.85, 0.49)

(0.56, 0.54) (0.79, 0.43) (0.88, 0.42) (0.91, 0.37) (0.38, 0.90)

w2 (0.48, 0.46) (0.43, 0.11) (0.20, 0.18) (0.21, 0.11) (0.32, 0.78)

(0.68, 0.58) (0.44, 0.54) (0.43, 0.44) (0.36, 0.42) (0.07, 0.12)

(0.59, 0.54) (0.86, 0.41) (0.66, 0.70) (0.96, 0.21) (0.95, 0.28)

w3 (0.79, 0.68) (0.43, 0.29) (0.56, 0.59) (0.82, 0.11) (0.86, 0.24)

(0.55, 0.61) (0.79, 0.51) (0.48, 0.49) (0.45, 0.44) (0.47, 0.39)

(0.58, 0.54) (0.47, 0.83) (0.99, 0.12) (0.42, 0.31) (0.55, 0.42)

w4 (0.48, 0.31) (0.32, 0.51) (0.84, 0.16) (0.41, 0.37) (0.53, 0.57)

(0.57, 0.64) (0.54, 0.55) (0.58, 0.62) (0.71, 0.68) (0.50, 0.49)

Table 7 PFR R1 : M ↪→ T R1 t c r o h

m1 (0.55, 0.43) (0.38, 0.54) (0.57, 0.54) (0.53, 0.31) (0.54, 0.40)

m2 (0.53, 0.54) (0.56, 0.56) (0.41, 0.39) (0.54, 0.13) (0.57, 0.57)

m3 (0.53, 0.49) (0.58, 0.46) (0.57, 0.57) (0.65, 0.29) (0.57, 0.54)

m4 (0.59, 0.54) (0.47, 0.47) (0.58, 0.48) (0.83, 0.23) (0.50, 0.48)

Table 8 PFR R2 : T ↪→ W R2 t c r o h

w1 (0.65, 0.54) (0.57, 0.44) (0.56, 0.57) (0.25, 0.43) (0.58, 0.44)

w2 (0.57, 0.53) (0.55, 0.36) (0.50, 0.35) (0.49, 0.30) (0.26, 0.60)

w3 (0.64, 0.61) (0.69, 0.59) (0.57, 0.59) (0.74, 0.25) (0.76, 0.30)

w4 (0.54, 0.50) (0.44, 0.63) (0.80, 0.30) (0.51, 0.45) (0.53, 0.49)
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Table 9 PFR
R2 ◦ R1 : M ↪→ W

R2 ◦ R1 w1 w2 w3 w4

m1 (0.56, 0.43) (0.55, 0.31) (0.57, 0.31) (0.57, 0.45)

m2 (0.57, 0.30) (0.55, 0.30) (0.57, 0.25) (0.53, 0.39)

m3 (0.57, 0.43) (0.55, 0.30) (0.58, 0.29) (0.57, 0.45)

m4 (0.59, 0.43) (0.57, 0.30) (0.74, 0.25) (0.58, 0.45)

Fig. 2 Association grades
between the two genders

Table 10 Association grades Äi j between mi and w j

Äi j w1 w2 w3 w4

m1 0.25549 0.30960 0.33411 0.26064

m2 0.34052 0.31617 0.37433 0.23633

m3 0.26894 0.31617 0.35924 0.26064

m4 0.29615 0.34052 0.58390 0.27443

Table 11 Values of score function si j between mi and w j

si j w1 w2 w3 w4

m1 0.12870 0.20640 0.22880 0.12240

m2 0.23490 0.21250 0.26240 0.12880

m3 0.14000 0.21250 0.25230 0.12240

m4 0.16320 0.23490 0.48510 0.13390

members are concerned, they are not suitable for each other
for living an ideal matrimony.
For the conformation of the results obtained in Table 10, we
compute the score values si j , using si j = τ 2i j − σ 2

i j , between
mi and w j represented in that table in the form of PFNs. The
results so computed are displayed in Table 11.

It may be observed from Table 11 that the highest value
of si j occurs for (m4, w3), which supports the conclusion
drawn through our proposed algorithm. Hence, the proposed
algorithm is reliable and yields stable results.

Superiority of proposed algorithm

In this subsection, we discuss how our proposed Algorithm
is superior to some existing models.

1. In [30], the authors used soft rough Pythagoreanm-polar
fuzzy sets and Pythagoreanm-polar fuzzy soft rough sets
for modeling uncertainties. The restrictions on the model
presentedmodel are different from the one used in present
article.

2. In [17], the authors floated the conception of Pythagorean
m-polar fuzzy sets. We have extended the operations
presented in that paper. Further, the authors have used
TOPSIS which suits in the application presented in that
paper.

3. In [1], the authors have used Pythagorean fuzzy sets as
model to deal with uncertainty which does not deal with
multi-polarity. The model used in our article deals with
multi-polarity as well.

4. In [12], the authors have used Pythagorean fuzzy sets as
model to deal with uncertainty which does not deal with
multi-polarity. The model used in our article deals with
multi-polarity as well.

5. The model presented in [3], differs from the model pro-
posed in our article in the sense that our model has the
edge that it also deals with multi-polar information.

6. In [13], the authors have used Pythagorean fuzzy sets to
deal with uncertain information. The element of multi-
polarity is missing in that model too.

7. In [2], the authors used m-polar fuzzy graphs/set which
deals with multi-polar information about membership
function only. The role ofmembership function is entirely
ignored in that model.

The techniques used in the above mentioned papers either
can’t handle or become very complex in tackling the problem
proposed in application section. For example, in TOPSIS, a
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single alternative is to be selected by one or a teamof decision
experts. In our proposed application, members of both the
sets M and W act as decision takers as well as alternatives.
Indeed, we tried to find “correlation” amongst members of
M and W using uncertain multi-polar information. Hence,
if there is no other compatible method, then the question of
comparing our proposed technique with any other method
diminishes.

Conclusion

The modal operators of necessity and possibility are very
nifty in analytic reasoning and logic. The notions of score
and accuracy functions are employed in decision taking
problems, especially when using aggregation operators. The
notions of λ- and (λ, η)-cuts are used in artificial intelli-
gence. PmFSs have the beauty that they amenably handle
multi-polar imprecise information with enhanced space for
selection of association and dissociation degrees. We estab-
lished some new results and coined some novel notions
relevant to Pythagorean m-polar fuzzy sets including sum
⊕, product ⊗, union �, intersection 	 and complement.
We defined score and accuracy functions for PmFSs along
with their prime characteristics. Different types of (λ, η)-
cuts with their properties have also been brought into light.
Operations based on necessity and possibility operators have
been discussed with their properties. Extension principle of
PmFSs has also beenmade part of the discussion.We defined
Pythagoreanm-polar fuzzy relation (PmFR).Weproposed an
algorithm based on PmFRs and rendered a robust decision
making application of PmFR in the selection of life part-
ner. The results so obtained are compared with the results
obtained using score values and demonstrated that the opti-
mal choice does not differ. The association grades between
the twomasculinities have been portrayedwith the assistance
of statistical chart. A number of illustrations, where required,
have been included to perceive the notions presented with
ease.
The results presented in this paper are also valid for m-polar
fuzzy sets, intuitionisticm-polar fuzzy sets and bipolar fuzzy
sets. The notions coined have the potential to be extended
to q-rung orthopair m-polar fuzzy sets, hesitant fuzzy sets,
neutrosophic sets and the soft extensions of all of these
structures. Keeping aside the notional and theoretic features,
the ideas unveiled have enough potential to be expanded in
coping intelligently with day to day life situations includ-
ing business and trade analysis, robotics, social sciences,
life sciences, agricultural sciences, human resource man-
agement, pattern recognition, water management, medicine,
economics, energy crisis problems, recruit problems and
many other fields of practical usage. We expect that this arti-

cle will serve as a helping hand for the active researchers
working in this area.
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