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Abstract
A complex fuzzy set (CFS) is a remarkable generalization of the fuzzy set in which membership function is restricted to
take the values from the unit circle in the complex plane. A CFS is an efficient model to deal with uncertainties of human
judgement in more comprehensive and logical way due to the presence of phase term. In this research article, we introduce the
concept of competition graphs under complex fuzzy environment. Further, we present complex fuzzy k-competition graphs
and p-competition complex fuzzy graphs. Moreover, we consider m-step complex fuzzy competition graphs, complex fuzzy
neighborhood graphs (CFNGs), complex fuzzy economic competition graphs (CFECGs) andm-step complex fuzzy economic
competition graphs with interesting properties. In addition, we describe an application in ecosystem of our proposed model.
We also provide comparison of proposed competition graphs with existing graphs.

Keywords Complex fuzzy set · k-Competition · p-Competition · m-Step competition · Economic competition.

Introduction

In 1968, Cohen [6] introduced the conception of competition
graphs (CGs) to determine the problems of ecosystem. CGs
have many utilizations in distinct areas of life. The analogy
of Cohen was based on the fact that there is a competi-
tion between two species if both species have a common
prey. Many variations of CGs are present in the literature,
namely competition common enemy graph of digraph [22],
p-competition graphs of digraph [12,13], competition hyper-
graphs [23] and tolerance competition graphs [4]. Another
worthwhile generalization of competition graphs was given
by Cho et al. [5] in 2000. All the introduced competi-
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tion graphs are crisp graphs which cannot describe all the
real-world competitions. In ecosystem, the species may be
vegetarian, non-vegetarian, strong, weak, and similarly the
prey may be harmful, digestive, energetic, etc.

In 1965, Zadeh [25] developed the conception of fuzzy
set to represent the uncertainty of human judgment by ini-
tiating the membership function which is restricted to take
the values form the unit interval [0,1]. For example, today
is sunny, it might be 100% true if there are no clouds, 80%
true if there are few clouds, 50% true if it is hazy and 0%
true if it rains all day. A graph is an easy way to inter-
pret the information which involve the relationship between
objects. Fuzzy graphs are designed to represent the struc-
tures of relationships between objects such that the existence
of a concrete object (vertex) and the relationship between
two objects (edge) are matters of degree. In 1975, Rosen-
feld [17] initiated the notion of fuzzy graph (FG). Certain
notions of FGs have been discussed in [1,8,15,27]. After the
introduction of FG, many researchers turned their attention
to find the competition among entities under fuzzy environ-
ment. Fuzzy k-competition and p-competition graphs were
developed by Samanta and Pal [20]. Further, Samanta et al.
[19] initiated m-step fuzzy competition graphs. Moreover,
Habib et al. [9] initiated the concept of q-rung orthopair
FCGs with their utilization in soil ecosystem. Sarwar et al.
[21] introduced a new decision-making approach with fuzzy
competition hypergraphs. Akram and Luqman [2] presented
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a remarkable contribution on fuzzy hypergraphs. Most of
the real-world competitions can be represented through these
FCGs but there exist some competitions in which the entities
possess the periodic or two-dimensional information which
cannot be represented through these FCGs. For example, in
a food web, the species may be strong and vegetarian and the
prey may be harmful and energetic at the same time inter-
val. Similarly, the species may be strong or weak and the
prey may be harmful or energetic under some specific time
interval. This information about the species and preys is two
dimensional which cannot be modeled through FCGs.

Fuzzy set (FS) theory is useful model to deal with uncer-
tainties arising in various fields of life. But in some situations,
this theory cannot model the incomplete and imprecise infor-
mation of two-dimensional or periodic nature encountered in
the real world. To cope with this problem, Ramot et al. [16]
proposed complex fuzzy set (CFS), as a worthwhile gener-
alization of FS in which the membership grade is restricted
to take the values form the unit circle in the complex plane,
and is of the form reiθ , where r is the amplitude term and
θ is the phase term. The phase term θ of CFS has a great
importance because it can handle the recurring problems
or periodic problems phenomena with more perfection. The
presence of phase term in CFS ensures that there may exist
some situations where the second dimension is required.
This term differentiates CFS from all other available sets of
the literature. Possible application which demonstrates the
new concept involve a CF representation of solar activity,
signal processing application and in time series forecasting
applications. Later on, Thirunavukarasu [24] introduced the
idea of complex fuzzy graph (CFG). Recently, Luqman et
al. [14] investigated the novel concepts of CF hypergraphs.
Akram et al. [3] considered imperfect competition models in
economic market structure with q-rung picture fuzzy infor-
mation. Further, Garg and Rani [10,11] investigated many
decision-making techniques. The motivation to this article
can be described as follows.

1. The CFS, a worthwhile generalization of FS, is a profi-
cient model to handle all the periodic or two-dimensional
information due to the presence of an additional term
known as phase term. This set has an edge over the other
existing models of the literature due to its additional
features of handling the periodic and two-dimensional
information in a single set. On the other hand, if we
remove the phase term of CFS then the CFS is a con-
ventional FS with real-valued membership.

2. The competition graphs developed under CF environ-
ment are useful enough to tackle all the competitions
of real world which possess the information of two-
dimensional nature.

In this research article, we present the innovative concept
of CFCGs. We then investigate the two generalizations of
CFCGs, namely CF k-competition and p-competition CFGs.
Further, we investigate CFNGs, m-step CFCGs, CFECGs
andm-step CFECGs.Moreover, we discuss an application of
CFCGs in ecosystem to emphasize the superiority of these
graphs in real life. The main contribution to this article is
summarized as follows.

1. Competition graphs with its remarkable generalization
are developed in CF environment to overcome the defi-
ciencies of other existing competition graphs of the
literature.

2. An algorithm is initiated to find the competition among
the real-world entities with an application in ecology.

3. A comparative analysis is provided to check the superior-
ity and authenticity of our proposed competition graphs.

We arrange this paper as follows: the next section includes
some elemental definitionswhich are necessary for the evolu-
tion of CFCGs, followed by which we introduce the concept
of CFCGs with its two remarkable extensions, namely CF
k-competition graphs and p-competition CFGs. In the subse-
quent section, we develop the concept of CFNGs with some
related theorems and then we discuss m-step CFCGs. After
this, we initiate a new concept called CFECGs. The penul-
timate section includes an application of CFCG to reveal
its importance in real life. Before the concluding section, we
provide comparison of the proposed competition graphs with
existing graphs. Finally, we give the conclusion.

Preliminaries

Definition 1 [20] The fuzzy competition graph (FCG) C(
−→
�)

of fuzzy digraph (FDG)
−→
� = (W ,̂P,

−→̂
Q ) is an undirected

graph � = (W ,̂P, ̂Q) with same node set as in
−→
� and have

an edge connecting two distinct vertices g and f in C(
−→
�)

if and only if ℵ+(g) ∩ ℵ+( f ) �= ∅ in
−→
�, and for the edge

(g, f ) the membership value (MV) in C(
−→
�) is given as

ξ
̂Q(g, f ) = (ξ

̂P(g) ∧ ξ
̂P( f )) × h̄(ℵ+(g) ∩ ℵ+( f )). (1)

Definition 2 [16] Let Z be a universal set. Then complex
fuzzy set (CFS) B on Z can be given as

B = {(q, ξB(q)eiϕB (q)) | q ∈ Z}, (2)

where ξB(q)eiϕB (q) is the MV of the element q such that
ξB(q) ∈ [0, 1] and ϕB(q) ∈ [0, 2π ], and i = √−1. For
every q ∈ Z , ξB(q) and ϕB(q) are the amplitude term and
phase term, respectively.
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Definition 3 [7] A complex fuzzy relation (CFR)R on a uni-
versal set W × Z , can be given as

R(g, f ) = {((g, f ), ξR(g, f )eiϕR(g, f )) | (g, f ) ∈ W × Z},
(3)

where ξR(g, f )eiϕR(g, f ) is the MV of the element (g, f ) in
W × Z such that ξR(g, f ) ∈ [0, 1] and ϕR(g, f ) ∈ [0, 2π ],
and i = √−1.

For each (g, f ) ∈ W × Z , ξR(g, f ) and ϕR(g, f ) are the
amplitude term and the phase term, respectively.

Definition 4 [26] Let B1 and B2 be two CFSs on a universal
set Z , where

B1 = {q, ξB1(q)eiϕB1 (q) | q ∈ Z}, (4)

B2 = {q, ξB2(q)eiϕB2 (q) | q ∈ Z}. (5)

Then the CF intersection of B1 and B2, symbolized by B1 ∩
B2, is given by the function

B1 ∩ B2 = {ξB1∩B2(q)eiϕB1∩B2 (q) | q ∈ Z}, (6)

where

ξB1∩B2(q)eiϕB1∩B2 (q) = (ξB1(q) ∧ ξB2(q))eiϕB1 (q)∧ϕB2 (q).

(7)

Definition 5 [26] Let B1 and B2 be two CFSs defined on a
universe Z , where

B1 = {q, ξB1(q)eiϕB1 (q) | q ∈ Z}, (8)

B2 = {q, ξB2(q)eiϕB2 (q) | q ∈ Z}. (9)

Then the CF product of B1 and B2, symbolized by B1 ◦ B2,

is given by the function

B1 ◦ B2 = {ξB1◦B2(q)eiϕB1◦B2 (q)|q ∈ Z}, (10)

where where

ξB1◦B2(q)eiϕB1◦B2 (q) = (ξB1(q).ξB2(q))e
i2π

(

ϕB1
(q)

2π .
ϕB2

(q)

2π

)

.(11)

Definition 6 [24] A fuzzy graph (FG) � = (W ,̂P, ̂Q), on a
non-empty setW is said to be a complex fuzzy graph (CFG),
where ̂P and ̂Q are CFS and CFR on W such that

ξ
̂Q(g, f ) ≤ (ξ

̂P(g) ∧ ξ
̂P( f )), (for amplitude term) (12)

ϕ
̂Q(g, f ) ≤ (ϕ

̂P(g) ∧ ξ
̂P( f )), (for phase term) (13)

for all g, f ∈ W .

Table 1 List of acronyms

Acronyms Description

FS Fuzzy set

CFS Complex fuzzy set

CFON Complex fuzzy out-neighborhood

CFIN Complex fuzzy in-neighborhood

CFCG Complex fuzzy competition graph

CFO pN Complex fuzzy open neighborhood

CFCl N Complex fuzzy closed neighborhood

CFO pNG Complex fuzzy open neighborhood graph

CFCl NG Complex fuzzy closed neighborhood graph

CFECG Complex fuzzy economic competition graph

Definition 7 [24] A directed CFG (complex fuzzy digraph)

(CFDG) on a non-empty setW is a triplet
−→
� = (W ,̂P,

−→̂
Q ),

where ̂P is CFS on W and
−→̂
Q is CFR on W such that

ξ
̂Q

−−−→
(g, f ) ≤ (ξ

̂P(g) ∧ ξ
̂P( f )), (for amplitude term) (14)

ϕ
̂Q

−−−→
(g, f ) ≤ (ϕ

̂P(g) ∧ ξ
̂P( f )), (for phase term) (15)

for all g, f ∈ W .

The list of acronyms in research paper is given in Table 1.

Complex fuzzy set applied to competition
graphs

This section presents some basic definitions which are nec-
essary to define for the evolution CFCGs.

Definition 8 For a node g of a CFDG
−→
� =

(

W ,̂P,
−→̂
Q

)

,

the CF out-neighborhood (CFON) is a CFS, given by

ℵp(g) =
(

S p
g ,mp

g e
iηp

g
)

,

where S p
g = { f |ξ

̂Q

−−−→
(g, f ) > 0} such that mp

g : S p
g → [0, 1]

given by mp
g ( f ) = ξ

̂Q

−−−→
(g, f ) and η

p
g : S p

g → [0, 2π ] given
by η

p
g ( f ) = ϕ

̂Q

−−−→
(g, f ).

Definition 9 For a node g of a CFDG
−→
� =

(

W ,̂P,
−→̂
Q

)

,

the CF in-neighborhood (CFIN) is a CFS, given by

ℵn(g) = (Sng ,m
n
ge

iηng ),
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Fig. 1 Complex fuzzy digraph

where Sng = { f |ξ
̂Q

−−−→
( f , g) > 0} such that mn

g : Sng → [0, 1]
given by mn

g( f ) = ξ
̂Q

−−−→
( f , g) and ηng : Sng → [0, 2π ] given

by ηng( f ) = ϕ
̂Q

−−−→
( f , g).

Example 1 Let
−→
� = (W ,̂P,

−→̂
Q ) be a CFDG, where

̂P =
〈

i

0.40ei0.20π
,

j

0.50ei0.70π
,

l

0.60ei1.70π
,

n

0.55ei1.70π

〉

,

−→̂
Q =

〈 −−→
( j, i)

0.30ei0.20π
,

−−→
(n, i)

0.350ei0.10π
,

−−→
( j, l)

0.50ei0.40π
,

−−→
(n, l)

0.40ei0.90π

〉

.

The CFDG is shown in Fig. 1.
CFON and CFIN of the nodes are given in Table 2.

Definition 10 Let B = {(q, ξB(q)eiϕB (q)) | q ∈ Z} be aCFS.
The height of CFS B symbolized by h̄(B) = (h̄ξ (B)eih̄ϕ ) is
given as

h̄(B) = {
(

max (ξB(q)) ei max(ϕB (q))
)

| q ∈ Z}
=

(

h̄ξ (B)eih̄ϕ(B)
)

.

Definition 11 The CFCG C
(−→

�
)

of a CFDG
−→
� =

(

W ,̂P,
−→̂
Q

)

is an undirected CFG � = (W ,̂P, ̂Q) with

sameCF node set as in
−→
� and possesses a CF edge inC

(−→
�

)

joining two distinct nodes g and f if and only if the CFS
ℵp(g) ∩ ℵp( f ) �= ∅ in

−→
� and the MV of the edge (g, f ) in

C(
−→
�) is

ξ
̂Q(g, f ) = (ξ

̂P(g) ∧ ξ
̂P( f )) × h̄ξ (ℵp(g) ∩ ℵp( f )),

ϕ
̂Q(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵp(g) ∩ ℵp( f ))

2π

]

.

Example 2 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG, as presented

in Fig. 2a, given by

̂P =
〈

l

0.3ei0.7π
,

i

0.6ei1.3π
,

m

0.4e0.4ei1.2π
,

k

0.5ei0.9π
,

n

0.4ei1.7π

〉

,

−→̂
Q =

〈 −−→
(i, l)

0.2ei0.3π
,

−−−→
(m, i)

0.35ei1.1π
,

−−−→
(k,m)

0.2ei0.7π
,

−−−→
(n, k)

0.2ei0.7π
,

−−→
(n, l)

0.25ei0.2π
,

−−→
(k, l)

0.3ei0.2π

〉

.

The CFON of the nodes are shown in Table 3.
The CFSs ℵp(g) ∩ ℵp( f ) and h̄ (ℵp(g) ∩ ℵp( f )) are

given in Table 4.
The corresponding CFCG is shown in Fig. 2b.

Definition 12 Let B = {(q, ξB(q))eiϕB (q) | q ∈ Z} be aCFS.
Then the cardinality of CFS B is a positive complex number
symbolized by |B|ξ ei |B|ϕ , is defined as

|B| =
∑

qi∈Z
ξB(qi )e

i
∑

qi∈Z ϕB (qi )

= |B|ξei |B|ϕ ,

for all q ∈ Z .

Definition 13 Suppose k = reiθ be a complex number and

|ℵp(g)∩ℵp( f )| = r
′
eiθ

′
(say).TheCF k-competition graph

Ck(
−→
�) of a CFDG

−→
� = (W ,̂P,

−→̂
Q ) is an undirected CFG

� = (W ,̂P, ̂Q) with same CF node set as in
−→
� and have a

CF edge in Ck(
−→
�) connecting two distinct vertices g and f

Table 2 CFON and CFIN of the
nodes

g ℵp(g) ℵn(g)

i ∅ {( j, 0.3ei0.20π ), (n, 0.35ei0.10π )}
j {(l, 0.50ei0.40π ), (i, 0.30ei0.20π )} ∅

l ∅ {(n, 0.40ei0.90π ), ( j, 0.5ei0.40π )}
n {(l, 0.40ei0.90π ), (i, 0.35ei0.10π )} ∅
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Fig. 2 Complex fuzzy digraph
and complex fuzzy competition
graph

Table 3 CFON of the nodes

g ℵp(g)

l
{(

k, 0.3ei0.2π
)}

i
{(

l, 0.2ei0.3π
)}

m
{(

i, 0.35ei1.1π
)}

k
{(

m, 0.2ei0.7π
)}

n
{(

l, 0.25ei0.2π
)

,
(

k, 0.2ei0.7π
)}

if and only if r
′
> r and θ

′
> θ . The MV of the edge (g, f )

in Ck(
−→
�) is calculated as

ξ
̂Q(g, f ) =

(

r
′ − r

r ′

)

(ξ
̂P(g) ∧ ξ

̂P( f )) × h̄ξ (ℵp(g) ∩ ℵp( f )),

ϕ
̂Q(g, f ) = 2π

[

θ
′ − θ

θ
′

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵp(g) ∩ ℵp( f ))

2π

]

.

Example 3 Let
−→
� = (W ,̂P,

−→̂
Q ) be a CFG as presented in

Fig. 3, given by

̂P =
〈

l

0.6eii1.2π
,

j

0.4ei1.2π
,

x

0.6ei0.3π
,

z

0.7ei1.3π
,

m

0.8ei0.9π
,

n

0.65ei1π

〉

,

−→̂
Q =

〈 −−→
(l, x)

0.6ei0.3π
,

−−→
(l, z)

0.5ei0.2π
,

−−−→
(l,m)

0.45ei0.3π
,

−−→
(l, n)

0.35ei0.2π
,

−−−→
( j, x)

0.3ei0.2π
,

−−−→
( j, z)

0.35ei0.9π
,

−−−→
( j,m)

0.36ei0.2π
,

−−−→
( j, n)

0.4ei1π

〉

.

The CFON of the nodes are given in Table 5.
Next, we have

ℵp( j) ∩ ℵp(l)

= {(n, 0.35ei0.2π ), (m, 0.36ei0.2π ), (z, 0.35ei0.2π ), (x, 0.3ei0.2π )}.

Table 4 The CFS ℵp(g) ∩ ℵp( f ) and h̄(ℵp(g) ∩ ℵp( f ))

g f ℵp(g) ∩ ℵp( f ) h̄ (ℵp(g) ∩ ℵp( f ))

l i ∅ ∅

l m ∅ ∅

l k ∅ ∅

l n
{(

k, 0.2ei0.2π
)} {(

0.2ei0.2π
)}

i m ∅ ∅

i k ∅ ∅

i n
{(

l, 0.2ei0.2π
)} {(

0.2ei0.2π
)}

m k ∅ ∅

m n ∅ ∅

k n ∅ ∅

Fig. 3 Complex fuzzy digraph

The CFSs h̄(ℵp( j) ∩ ℵp(l)) and |(ℵp( j) ∩ ℵp(l))| are

h̄(ℵp( j) ∩ ℵp(l))

= {(0.36ei0.2π )}, |(ℵp( j) ∩ ℵp(l))| = (1.36ei0.8π ).
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Table 5 The CFON of the nodes g ℵp(g)

j
{(

n, 0.4ei1.0π
)

,
(

m, 0.36ei0.2π
)

,
(

x, 0.3ei0.2π
)

,
(

z, 0.35ei0.9π
)}

l
{(

n, 0.35ei0.2π
)

,
(

m, 0.45ei0.3π
)

,
(

x, 0.6ei0.3π
)

,
(

z, 0.5ei0.2π
)}

x ∅

z ∅

m ∅

n ∅

Fig. 4 CF-0.2ei0.2π -competition graph

Let k = 0.2ei0.2π , then there is only one edge in CF
0.2ei0.2π -competition graph as

|(ℵp( j) ∩ ℵp(l))|ξ = 1.36 > 0.2,

|(ℵp( j) ∩ ℵp(l))|ϕ = 0.8π > 0.2π.

The corresponding C0.2ei0.2π (
−→
�) is shown in Fig. 4.

Definition 14 Consider a CFG � = (

W ,̂P, ̂Q
)

. If ∀ g, f ∈
W

ξ
̂Q(g, f ) >

1

2
(ξ

̂P(g) ∧ ξ
̂P( f )),

ϕ
̂Q(g, f ) >

1

2

[

2π

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)]

,

then the edge (g, f ) is said to be a strong edge.

Theorem 1 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. If there

exists only one element in CFS (ℵp(g) ∩ ℵp( f )), and
|ℵp(g) ∩ ℵp( f )|ξ > 1

2 and |ℵp(g) ∩ ℵp( f )|θ > 1π, then

the edge (g, f ) of C(
−→
�) is strong.

Proof Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. Let (ℵp(g) ∩
ℵp( f )) = {(x, ceiθ )}, where ceiθ is the MV of the edge
(g, c) or ( f , c). Then clearly

h̄(ℵp(g) ∩ ℵp( f )) = ceiθ = |(ℵp(g) ∩ ℵp( f ))|,

where

h̄ξ (ℵp(g) ∩ ℵp( f )) = c = |(ℵp(g) ∩ ℵp( f ))|ξ ,
h̄ϕ(ℵp(g) ∩ ℵp( f )) = θ = |(ℵp(g) ∩ ℵp( f ))|ϕ.

So, the MV of the edge (g, f ) in CFCG is

ξ
̂Q(g, f ) = (ξ

̂P(g) ∧ ξ
̂P( f )) × h̄ξ (ℵp(g) ∩ ℵp( f )),

ξ
̂Q(g, f ) = (ξ

̂P(g) ∧ ξ
̂P( f )) × c,

ϕ
̂Q(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵp(g) ∩ ℵp( f ))

2π

]

,

ϕ
̂Q(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× θ

2π

]

.

Thus, in C(
−→
�), the edge (g, f ) is strong as c > 1

2 and
θ > 1π. 
�
Definition 15 Let B = {(q, ξB(q)eiϕB (q)|q ∈ Z)}, be aCFS.
The the support of CFS is a subset B0 of Z , defined as

B0 = {q ∈ Z : ξB(q) �= 0}.

Now, we discuss p-competition complex fuzzy graph.

Definition 16 Let p̆ be positive integer. The p̆-competition

CFG C p̆(
−→
�) of a CFDG

−→
� = (W ,̂P,

−→̂
Q ) is an undirected

CFG � = (W ,̂P, ̂Q) with same CF node set as
−→
� and

possesses a CF edge joining two distinct nodes g and f ∈ W

in C p̆(
−→
�) if and only if |supp(ℵp(g) ∩ ℵp( f ))| ≥ p̆. The

MV of edge (g, f ) ∈ C p̆(
−→
�) is calculated as

ξ
̂Q(g, f ) =

(

(t − p̆) + 1

t

)

(ξ
̂P(g) ∧ ξ

̂P( f ))

×h̄ξ (ℵp(g) ∩ ℵp( f )),

ϕ
̂Q(g, f ) = 2π

[(

(t − p̆) + 1

t

) (

ϕ
P̆
(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵp(g) ∩ ℵp( f ))

2π

]

,
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Fig. 5 Two-competition
complex fuzzy graph

Table 6 CFON of the nodes

g ℵp(g)

m {(r , 0.7ei0.8π )

, (s, 0.7ei1.3π )}
h {(r , 0.6ei0.3π ), (s, 0.8ei0.7π ), (z, 0.8ei0.3π )}
j {(z, 0.8ei0.3π )}
r ∅

s ∅

z ∅

where t = |supp(ℵp(g) ∩ ℵp( f ))|.

Example 4 Let
−→
� = (W ,̂P,

−→̂
Q ) be a CFDG as presented in

Fig. 5a, given by

̂P =
〈

m

0.7ei1.3π
,

h

0.8ei0.7π
,

j

0.9ei1.4π
,

r

0.75ei0.9π
,

s

0.85ei1.7π
,

z

0.95ei0.3π

〉

,

−→̂
Q =

〈 −−−→
(m, r)

0.7ei0.8π
,

−−−→
(m, s)

0.7ei1.3π
,

−−−→
(h, r)

0.6ei0.3π
,

−−−→
(h, s)

0.8ei0.7π
,

−−−→
(h, z)

0.8ei0.3π
,

−−−→
( j, z)

0.9ei0.3π

〉

.

The CFON of the nodes are give in Table 6.
The corresponding two-competition CFG has only one

edge as

ℵp(m) ∩ ℵp(h) = {(r , 0.6ei0.3π ), (s, 0.7ei0.7π )} �= ∅.

The corresponding C2(
−→
�) is shown in Fig. 5b.

Theorem 2 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. Then

the edge (g, f ) is strong, if h̄ξ (ℵp(g) ∩ ℵp( f )) = 1

and h̄ϕ(ℵp(g) ∩ ℵp( f )) = 2π in C[ t2 ](−→�), where t =
|supp(ℵp(g) ∩ ℵp( f ))|.

Proof Consider
−→
� =

(

W ,̂P,
−→̂
Q

)

is a CFDG. Let � =
(W ,̂P, ̂Q) be the corresponding [ t2 ]−CFCG, where t =

|supp(ℵp(g)∩ℵp( f ))|.According to the statement, we have
h̄ξ (ℵp(g)∩ℵp( f )) = 1 and h̄ϕ(ℵp(g)∩ℵp( f )) = 2π.Then
by Definition 16, we have

ξ
̂Q(g, f ) = t − [ t2 ] + 1

t
(ξ

̂P(g) ∧ ξ
̂P( f ))

×h̄ξ (ℵp(g) ∩ ℵp( f ))

= t − [ t2 ] + 1

t
(ξ

̂P(g) ∧ ξ
̂P( f )),

ϕ
̂Q(g, f ) = 2π

[

t − [ t2 ] + 1

t

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵp(g) ∩ ℵp( f ))

2π

]

= 2π

[

t − [ t2 ] + 1

t

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× 2π

2π

]

.

Thus, ξ
̂Q(g, f ) > 1

2 (ξ̂P(g) ∧ ξ
̂P( f )) and ϕ

̂Q(g, f ) >

1
2

[

2π
(

ϕ
̂P(g)
2π ∧ ϕ

̂P( f )
2π

)]

, as
t−[ t2 ]+1

t > 1
2 . Hence, the edge

(g, f ) is strong. 
�

Complex fuzzy set applied to neighborhood
graphs

Now, we discuss complex fuzzy neighborhood graphs by the
combination of CFS and neighborhood graphs. Before the
introduction of CF neighborhood graphs (CFNGs), we first
define complex fuzzy open and closed neighborhood of a
node in CFGs below.

Definition 17 For a node g of a CFG� = (

W ,̂P, ̂Q
)

the CF
open neighborhood (CFO pN ) is a CFS

ℵ(g) =
(

Sg,mge
iηg

)

,

where

Sg = { f |ξ
̂Q(g, f ) > 0}
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such that mg : Sg → [0, 1] given by mg( f ) = ξ
̂Q(g, f ) and

ηg : Sg → [0, 2π ] given by ηg( f ) = ϕ
̂Q(g, f ).

For each node g ∈ W , CF singleton set is given as

̂Pg = ({g}, ξ ′
̂P
eiϕ

′
̂P),

where ξ
′
̂P

: {g} → [0, 1] and ϕ
′
̂P

: {g} → [0, 2π ] given by

ξ
′
̂P
(g) = ξ

̂P(g) and ϕ
′
̂P
(g) = ϕ

̂P(g), respectively. Now, we

define CF closed neighborhood (CFCl N ) of a node g as

ℵ[g] = ℵ(g) ∪ ̂Pg.

Next, we define CF open neighborhood graphs and CF
closed neighborhood graphs. Then on the bases of these
CFGs, we define complex fuzzy k-neighborhood graphs of
both close and open types.

Definition 18 Let � = (

W ,̂P, ̂Q
)

be a CFG. Complex
fuzzy open neighborhood graph (CFO pNG) of � is a CFG

denoted by N(�) =
(

W ,̂P, ̂Q
′)

with same CF node set as

� and possesses a CF edge joining two distinct nodes g and
f inN(�) if and only if the CFS ℵ(g)∩ℵ( f ) �= ∅ in � and
the MV of the edge (g, f ) in N(�) is calculated as

ξ
̂Q

′ (g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )) × h̄ξ (ℵ(g) ∩ ℵ( f )
)

,

ϕ
̂Q

′ (g, f )=2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵ(g) ∩ ℵ( f ))

2π

]

.

Definition 19 Let � = (

W ,̂P, ̂Q
)

be a CFG. Complex
fuzzy closed neighborhood graph (CFCl NG) of� is a CFG

denoted by N[�] =
(

W ,̂P, ̂Q
′)

with same CF node set as

� and possesses a CF edge joining two distinct nodes g and
f ∈ W in N[�] if and only if the CFS ℵ[g] ∩ ℵ[ f ] �= ∅ in
� and the MV of the edge (g, f ) in N[�] is calculated as

ξ
̂Q

′ (g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
) × h̄ξ (ℵ[g] ∩ ℵ[ f ]) ,

ϕ
̂Q

′ (g, f )=2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ (ℵ[g] ∩ ℵ[ f ])
2π

]

.

Definition 20 Complex fuzzy (k)-neighborhood graph of a
CFG � = (W ,̂P, ̂Q) is a CFG Nk(�) = (W ,̂P, ̂Q

′
) with

same node set as � and possesses a CF edge joining two
distinct nodes g and f in Nk(�) if and only if x

′
> r and

ω
′
> θ and theMV of the edge (g, f ) inNk(�) is calculated

as

ξ
̂Q

′ (g, f ) =
(

x
′ − r

x ′

)

(ξ
̂P(g) ∧ ξ

̂P( f ))

×h̄ξ (ℵ(g) ∩ ℵ( f )),

ϕ
̂Q

′ (g, f ) = 2π

[

ω
′ − θ

ω
′

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵ(g) ∩ ℵ( f ))

2π

]

.

Here, k is a complex number given by k = reiθ and |ℵ(g) ∩
ℵ( f )| = x

′
eiω

′
.

Definition 21 Let � = (

W ,̂P, ̂Q
)

be a CFG. Complex
fuzzy [k]-neighborhood graph of � = (

W ,̂P, ̂Q
)

is a CFG

Nk[�] =
(

W ,̂P, ̂Q
′
)

with same node set as� and possesses

a CF edge joining two distinct nodes g and f in Nk[�] if
and only if x

′′
> r and ω

′′
> θ in � and the MV of the edge

(g, f ) in Nk[�] is calculated as

ξ
̂Q

′ (g, f ) =
(

x
′′ − r

x ′′

)

(ξ
̂P(g) ∧ ξ

̂P( f ))

×h̄ξ (ℵ[g] ∩ ℵ[ f ]) ,

ϕ
̂Q

′ (g, f ) = 2π

[

ω
′′ − θ

ω
′′

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ (ℵ[g] ∩ ℵ[ f ])
2π

]

.

Here, k is a complex number given by k = reiθ and |ℵ[g] ∩
ℵ[ f ]| = x

′′
eiω

′′
.

Example 5 Let � = (W ,̂P, ̂Q) be a CFG, where
̂P =

〈 p

0.3ei1.9π
,

q

0.6ei1.8π
,

r

0.4ei1.5π
,

s

0.5ei1.7π
,

t

0.4ei1.9π

〉

,

̂Q =
〈

(p, q)

0.3ei1.7π
,

(q, r)

0.4ei1.5π
,

(r , s)

0.4ei1.4π
,

(s, t)

0.4ei1.7π
,

(t, p)

0.3ei1.8π
,

(p, s)

0.3ei1.7π

〉

.

The CFDG is displayed in Fig. 6a. The CF neighborhoods
of the nodes are presented in Table 7.

The height and cardinality of CFSs (ℵ(g) ∩ ℵ( f )) and
(ℵ[g] ∩ ℵ[ f ]) are displayed in Table 8.

The corresponding (CFO pNG) N(�), the (CFCl NG)

N[�], the complex fuzzy (0.2ei0.2π )-neighborhood graph
N0.2ei0.2π (�) and the complex fuzzy [0.2ei0.2π ]−neighbour-
hood graph N0.2ei0.2π [�] of the CFG � are shown in Fig. 6.

Theorem 3 For each edge of CFG G, there exists one edge
in N[�].
Proof Let � = (

W ,̂P, ̂Q
)

be a CFG and (g, f ) be an edge
of CFG. Let the corresponding (CFCl NG) be N[�] =

123



Complex & Intelligent Systems (2021) 7:539–558 547

Fig. 6 Complex fuzzy neighborhood graphs

Table 7 CFO pN and CFCl N of the nodes

g ℵ(g) ℵ[g]
p {(q, 0.3ei1.7π )(t, 0.3ei1.8π ), (s, 0.3ei1.7π )} {(q, 0.3ei1.7π )((t, 0.3ei1.8π ), (s, 0.3ei1.7π ))}

∪{(p, 0.3ei1.9π )}
q {(p, 0.3ei1.7π ), (r , 0.4ei1.5π )} {(p, 0.3ei1.7π ), (r , 0.4ei1.5π )} ∪ {(q, 0.6ei1.8π )}
r {(q, 0.4ei1.5π ), (s, 0.4ei1.4π )} {(q, 0.4ei1.5π ), (s, 0.4ei1.4π )} ∪ {(r , 0.4ei1.5π )}
s {(r , 0.4ei1.4π ), (t, 0.4ei1.7π ), (p, 0.3ei1.7π )} {(r , 0.4ei1.4π ), (t, 0.4ei1.7π ), (p, 0.3ei1.7π )}

∪{(s, 0.5ei1.7π )}
t {(p, 0.3ei1.8π ), (s, 0.4ei1.7π )} {(p, 0.3ei1.8π ), (s, 0.4ei1.7π )} ∪ {(t, 0.4ei1.9π )}
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Table 8 Height and cardinality of CFSs (ℵ(g) ∩ ℵ( f )) and (ℵ[g] ∩ ℵ[ f ])
g f ℵ(g) ∩ ℵ( f ) ℵ[g] ∩ ℵ[ f ]
p q ∅ {(p, 0.3ei1.7π ), (q, 0.3ei1.7π )}
p r {(q, 0.3ei1.5π ), (s, 0.3ei1.4π )} {(q, 0.3ei1.5π ), (s, 0.3ei1.4π )}
p s {(t, 0.3ei1.7π )} {(p, 0.3ei1.7π ), (s, 0.3ei1.7π ), (t, 0.3ei1.7π )}
p t {(s, 0.3ei1.7π )} {(p, 0.3ei1.8π ), (s, 0.3ei1.7π ), (t, 0.3ei1.8π )}
q r ∅ {(q, 0.4ei1.5π ), (r , 0.4ei1.5π )}
q s {(r , 0.4ei1.4π ), (p, 0.3ei1.7π )} {(p, 0.3ei1.7π ), (r , 0.4ei1.4π )}
q t {(p, 0.3ei1.7π )} {(p, 0.3ei1.7π )}
r s ∅ {(s, 0.4ei1.4π ), (r , 0.4ei1.4π )}
r t {(s, 0.4ei1.4π )} {(s, 0.4ei1.4π )}
s t {(p, 0.3ei1.7π )} {(p, 0.3ei1.7π ), (s, 0.4ei1.7π ), (t, 0.4ei1.7π )}
g f h̄ (ℵ(g) ∩ ℵ( f )) h̄ (ℵ[g] ∩ ℵ[ f ]) |ℵ(g) ∩ ℵ( f )| |ℵ[g] ∩ ℵ[ f ]|
p q ∅ {(0.3ei1.7π )} ∅ (0.6ei3.4π )

p r {(0.3e1.5π )} {(0.3ei1.5π )} (0.6ei2.9π ) (0.6ei2.9π )

p s {(0.3ei1.7π )} {(0.3ei1.7π )} (0.3ei1.7π ) (0.9ei5.1π )

p t {(0.3ei1.7π )} {(0.3ei1.8π )} (0.3ei1.7π ) (0.9ei5.3π )

q r ∅ {(0.4ei1.5π )} ∅ (0.8ei3.0π )

q s {(0.4ei1.7π )} {(0.4ei1.7π )} (0.7ei3.1π ) (0.7ei3.1π )

q t {(0.3ei1.7π )} {(0.3ei1.7π )} (0.3ei1.7π ) (0.3ei1.7π )

r s ∅ {(0.4ei1.4π )} ∅ (0.8ei2.8π )

r t {(0.4ei1.4π )} {(0.4ei1.4π )} (0.4ei1.4π ) (0.4ei1.4π )

s t {(0.3ei1.7π )} {(0.4ei1.7π )} (0.3ei1.7π ) (1.1ei5.1π )

(

W ,̂P, ̂Q
′)

. Then g, f ∈ ℵ[g] and g, f ∈ ℵ[ f ]. Thus,
g, f ∈ ℵ[g] ∩ ℵ[ f ]. So, h̄ξ (ℵ[g] ∩ ℵ[ f ]) �= 0, and
h̄ϕ(ℵ[g] ∩ ℵ[ f ]) �= 0. Thus, the amplitude and phase terms
of the MV are

ξ
̂Q

′ (g, f ) = (ξ
̂P(g) ∧ ξ

̂P( f )) × h̄ξ (ℵ[g] ∩ ℵ[ f ]) �= 0,

ϕ
̂Q

′ (g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵ[g]∩ℵ[ f ])
2π

]

�=0.

Thus, for each edge (g, f ) in � there exists an edge (g, f )
in N[�]. 
�

Definition 22 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. The

underlying CFG of
−→
� is the CFG symbolized by U(�) and

is defined as U(�) = (W ,̂P, ̂Q), where ̂P and ̂Q are CFS
and CFR on W such that

ξ
̂Q(g, f ) =

(

ξ
̂P

−−−→
(g, f ) ∧ ξ

̂P

−−−→
( f , g)

)

,

ϕ
̂Q(g, f ) =

(

ϕ
̂P

−−−→
(g, f ) ∧ ϕ

̂P

−−−→
( f , g)

)

,

for all g, f ∈ W .

Now, we establish a relation between Nk(�) and Ck(�).

Theorem 4 If a symmetric CFDG
−→
� is loopless, then

Ck(
−→
�) = Nk(U(�)), where U(�) is the underlying CFG

of
−→
� . (Here, k = reiθ )

Proof Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG and the corre-

sponding underlying CFG of
−→
� be U(�) = (

W ,̂P, ̂Q
)

.

Also, let Ck(
−→
�) =

(

W ,̂P, C̆

)

and Nk(U(�)) =
(

W ,̂P, C̆
′)

. The complex fuzzy node of Ck(�) is same as
−→
� . Also the node set of an underlying CFG is same as the
complex fuzzy node of CFDG. Hence, Nk(U(�)) has the
same complex fuzzy node set as Ck(�). Now, we need to

show that complex fuzzy edge set of Ck

(−→
�

)

is equal to

the edge set of Nk (U(�)) . For this, we need to show that
ξ
C̆
(g, f ) = ξ

C̆
′ (g, f ) and ϕ

C̆
(g, f ) = ϕ

C̆
′ (g, f ), for all

g, f ∈ W .

Case 1 If | (ℵp(g) ∩ ℵp( f )) |ξ = r
′ ≤ r and | (ℵp(g) ∩ ℵp

( f )) |ϕ = θ
′ ≤ θ in

−→
�, then ξ

C̆
(g, f ) =

0 and ϕ
C̆
(g, f ) = 0 in Ck

(−→
�

)

. As
−→
� is

symmetric CFG, | (ℵ(g) ∩ ℵ( f )) |ξ = x
′ ≤ r
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and | (ℵ(g) ∩ ℵ( f )) |ϕ = ω
′ ≤ θ in U(�). So,

ξ
C̆

′ (g, f ) = 0 and ϕ
C̆

′ (g, f ) = 0 in Nk (U(�)) .

Case 2 If r
′

> r and θ
′

> θ in
−→
�, then ξ

C̆
(g, f ) > 0

and ϕ
C̆
(g, f ) > 0 in Ck

(−→
�

)

. Then amplitude and

phase term in Ck

(−→
�

)

are given by

ξ
C̆
(g, f ) =

(

(r
′ − r)

r ′

)

(ξ
̂P(g) ∧ ξ

̂P( f ))

×h̄ξ (ℵp(g) ∩ ℵp( f )),

ϕ
C̆
(g, f ) = 2π

[

θ
′ − θ

θ
′

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ (ℵp(g) ∩ ℵp( f ))

2π

]

.

As
−→
� is symmetric CFDG, x

′
> r and ω

′
> θ in U(�). The

amplitude and phase term of MV in Nk(U(�)) are

ξ
C̆

′ (g, f ) =
(

(x
′ − r)

x ′

)

(ξ
̂P(g) ∧ ξ

̂P( f ))

×h̄ξ (ℵ(g) ∩ ℵ( f )),

ϕ
C̆

′ (g, f ) = 2π

[

(ω
′ − θ)

ω
′

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ (ℵ(g) ∩ ℵ( f ))

2π

]

.

As
−→
� is symmetric then it is clear that h̄ (ℵp(g) ∩ ℵp( f ))

in
−→
� is equal to h̄ (ℵ(g) ∩ ℵ( f )) in U(

−→
�), i.e.,

h̄ξ

(ℵp(g) ∩ ℵp( f )
) = h̄ξ (ℵ(g) ∩ ℵ( f )) ,

h̄ϕ(ℵp(g) ∩ ℵp( f )) = h̄ϕ(ℵ(g) ∩ ℵ( f )).

Similarly, |ℵp(g)∩ℵp( f )| in−→
� is equal to | (ℵ(g) ∩ ℵ( f )) |

in U
(−→

�
)

, i.e.,

|(ℵp(g) ∩ ℵp( f ))|ξ = r
′ = x

′ = | (ℵ(g) ∩ ℵ( f )) |ξ ,
| (ℵp(g) ∩ ℵp( f )

) |ϕ = θ
′ = ω

′ = |(ℵ(g) ∩ ℵ( f ))|ϕ.

Hence, ξ
C̆
(g, f ) = ξ

C̆
′ (g, f ) and ϕ

C̆
(g, f ) = ϕ

C̆
′ (g, f ) for

all g, f ∈ W . 
�

Theorem 5 If a symmetric CFG
−→
� has a loop at every node,

then Ck

(−→
�

)

= Nk[U(�)], where U(�) is the loopless

underlying CFG of
−→
� .

Proof Similar to Theorem 4. 
�

Complex fuzzy set applied tom-step
competition graphs

Now,wedefinem-stepCFCGbycombiningCFSwithm-step
CGs. Before defining m-step CFCG , we first discuss m-step
complex fuzzy digraph (m-step CFDG), complex fuzzy m-
step out-neighborhood of a node and then complex fuzzy
m-step in-neighborhood of a node below.

Definition 23 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be CFDG. Then m-

step CFDG of
−→
� is symbolized by

−→
�m =

(−→
�, A,

−→
B

)

with

same CF node set as
−→
� and has a CF edge connecting two

vertices g and f in
−→
�m if it has a CF directed path (CFDP)

of length m from g to f , i.e.,
−→
P m

(g, f ) in
−→
� .

Definition 24 For a node g of a CFG
−→
� =

(

W ,̂P,
−→̂
Q

)

, the

CF m-step out-neighborhood is CFS

ℵp
m(g) =

(

S p
g , ρ

p
g e

iηp
g
)

,

where

Sp
g = { f | if CFDP of length m from node g to node f exists,

−→
P m

(g, f )}

such thatρ p
g : S p

g → [0, 1] given byρ
p
g ( f ) = {min ξ

̂Q(d, s),

(d, s) is an edge of
−→
P m

(g, f )} and η
p
g : S p

g → [0, 2π ] given
by ρ

p
g ( f ) = {min ϕ

̂Q(d, s), (d, s) is an edge of
−→
P m

(g, f )}

Definition 25 For a node g of a CFG
−→
� =

(

W ,̂P,
−→̂
Q

)

, the

CF m-step in-neighborhood is CFS

ℵn
m(g) =

(

Sng , ρ
n
g e

iηng
)

,

where

Sp
g = { f | if CFDP of length m from node f to node g exists ,

−→
P m

( f ,g)}

such that ρn
g : S p

g → [0, 1] given by ρn
g ( f ) = {min ξ

̂Q(d, s),

(d, s) is an edge of
−→
P m

( f ,g)} and ηng : S p
g → [0, 2π ] given

by ρ
p
g ( f ) = {min ϕ

̂Q(d, s), (d, s) is an edge of
−→
P m

( f ,g)}.

Example 6 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG as presented

in Fig. 7, given by

̂P =
〈

a

0.8ei0.7π
,

b

1ei1.3π
,

c

0.7e1.2π
,

x

0.6ei1.3π
,

y

0.5ei1.8π
,

z

0.9ei1.7π

〉

,
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Fig. 7 Two-step complex fuzzy
competition graph of CFDG

−→̂
Q =

〈 −−−→
(a, c)

0.6ei0.5π
,

−−−→
(b, z)

0.8ei1.2π
,

−−−→
(c, x)

0.6ei1.1π
,

−−−→
(c, y)

0.4ei0.3π
,

−−−→
(z, x)

0.6ei1π
,

−−−→
(z, y)

0.3ei0.9π

〉

.

In Fig. 7a, two-step out-neighborhood of the node a is
the CFS ℵp

2 (a) = {(x, 0.6ei0.5π ), (y, 0.4ei0.3π )} in−→
� . Sim-

ilarly, two-step in-neighborhood of the node x is the CFS
{(a, 0.6ei0.5π ), (b, 0.6ei1π )}.

Definition 26 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. The m-

step CFCG of � is symbolized by Cm

(−→
�

)

=
(

W ,̂P, C̆

)

with same CF node set as in
−→
� and possesses a CF edge

joining two nodes g and f in Cm

(−→
�

)

if and only if ℵp
m(g)∩

ℵp
m( f ) �= ∅ and the MV of the edge (g, f ) is given as

ξ
C̆
(g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
) × h̄ξ

(ℵp
m(g) ∩ ℵp

m( f )
)

,

ϕ
C̆
(g, f ) = 2π

[

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ

(ℵp
m(g) ∩ ℵp

m( f )
)

2π

]

,

for all g, f ∈ W .

Example 7 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG as presented

in Fig. 7a, given by

̂P =
〈

a

0.8ei0.7π
,

b

1ei1.3π
,

c

0.7e1.2π
,

x

0.6ei1.3π
,

y

0.5ei1.8π
,

z

0.9ei1.7π

〉

,

−→̂
Q =

〈 −−−→
(a, c)

0.6ei0.5π
,

−−−→
(b, z)

0.8ei1.2π
,

−−−→
(c, x)

0.6ei1.1π
,

−−−→
(c, y)

0.4ei0.3π
,

−−−→
(z, x)

0.6ei1π
,

−−−→
(z, y)

0.3ei0.9π

〉

.

The two-step out-neighborhood of the nodes are displayed
in Table 9.

Table 9 Two-step out-neighborhood of the nodes

g ℵp
2 (g)

a {(x, 0.6ei0.5π )

,
(

y, 0.4ei0.3π
)}

b {(x, 0.6ei1.0π )

,
(

y, 0.3ei0.3π
)}

c ∅

x ∅

y ∅

z ∅

Therefore,

ℵp
2 (a) ∩ ℵp

2 (b) = {(x, 0.6ei0.5π ), (y, 0.3ei0.3π )}.

The two-step CFCG of
−→
� is shown in Fig. 7b.

Now, we define the strength of CFCG below.

Definition 27 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. Let

the common node of m-step out-neighborhoods of nodes

s1, s2, · · · sn be x . Also, let ξ
̂Q

−−−−→
(d1, l1)e

iϕ
̂Q

−−−−→
(d1,l1), ξ

̂Q

−−−−→
(d2, l2)

eiϕ̂Q

−−−−→
(d2,l2), · · · ξ

̂Q

−−−−→
(dn, ln)e

iϕ
̂Q

−−−−→
(dn ,ln) denote theminimummem-

bership degrees of the edges of paths
−→
P m

(s1,x)
,
−→
P m

(s2,x)
, · · ·

−→
P m

(sn ,x)
, respectively. The m-step node x ∈ W is called

strong if ξ
̂Q

−−−−→
(d j , l j ) >

1

2
and ϕ

̂Q

−−−−→
(d j , l j ) > 1π, for all

j = 1, 2, 3, · · · , n.
For the prey x , the strength is measured by the mapping

s : W → {z|z ∈ C : |z| ≤ 1} such that

s(x) =
∑n

j=1 ξ
̂Q

−−−−→
(d j , l j )

n
ei

∑n
j=1 ϕ

̂Q

−−−−→
(d j ,l j )

n .

Example 8 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG as shown in

Fig. 8, given by
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Fig. 8 Complex fuzzy digraph

̂P =
〈

s

0.8ei1.4π
,

t

1ei1.3π
,

e

0.7e1.2π
,

f

0.6ei1.3π
,

g

0.5ei1.8π
,

h

0.9ei1.7π

〉

,

−→̂
Q =

〈 −−→
(s, e)

0.6ei1.1π
,

−−→
(t, h)

0.8ei1.2π
,

−−−→
(e, f )

0.6ei1.1π
,

−−−→
(e, g)

0.4ei1.2π
,

−−−→
(h, f )

0.6ei1.1π
,

−−−→
(h, g)

0.3ei1.4π

〉

.

In Fig. 8, the strength of the prey f is

s( f ) = 0.6 + 0.6

2
ei

1.1π+1.1π
2 .

Hence, the prey f is two-step strong node as 0.6 > 1
2 and

1.1π > 1π.

Theorem 6 If a node x of
−→
� is strong, then in strength of x,

1.
∑n

j=1 ξ
̂Q(d j ,l j )
n > 1

2 ,

2.
∑n

j=1 ϕ
̂Q(d j ,l j )
n > 1π.

Proof Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. Let x be

the common node of m-step out-neighborhood of nodes
s1, s2, · · · , sn, i.e., there exist CFDPs

−→
P m

(s1,x)
,
−→
P m

(s2,x)
, · · ·

−→
P m

(sn ,x)
, in

−→
� . Also, let

ξ
̂Q

−−−−→
(d1, l1)e

iϕ
̂Q

−−−−→
(d1,l1), ξ

̂Q

−−−−→
(d2, l2)e

iϕ
̂Q

−−−−→
(d2,l2), · · · ξ

̂Q

−−−−→
(d j , l j )

eiϕ̂Q

−−−−→
(d j ,l j ) be the minimum MVs of the edges of paths−→

P m
(a1,x)

,
−→
P m

(a2,x)
, · · · −→P m

(an ,x)
, respectively. If x is strong,

each arc
−−−−→
(d j , l j ), j = 1, 2, · · · , n is strong. So, ξ

̂Q

−−−−→
(d j , l j ) >

1
2 and ϕ

̂Q

−−−−→
(d j , l j ) > 1π . Now,

s(x) =
∑n

j=1 ξ
̂Q(d j , l j )

n
ei

∑n
j=1 ϕ

̂Q
(d j ,l j )

n ,

where

∑n
j=1 ξ

̂Q(d j , l j )

n
>

1
2 + 1

2 + · · · (n − times) + 1
2

n
>

1

2
,

∑n
j=1 ϕ

̂Q(d j , l j )

n
>

1π + 1π + · · · (n − times) + 1π

n
> 1π.

This completes the result. 
�
Theorem 7 If in

−→
� all the nodes are strong, then in Cm(

−→
�)

all the edges are strong.

Proof Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. Suppose that all

the nodes of
−→
� are strong. Let Cm(

−→
�) =

(

W ,̂P, C̆

)

be

m-step CFCG.

Case 1 Let ℵp
m(g) ∩ ℵp

m( f ) = ∅. Then there exists no edge
connecting g and f inCm(

−→
�).Thus, there is nothing

to proof.
Case 2 Let ℵp

m(g) ∩ ℵp
m( f ) be a non-empty set. As all the

nodes are strong, then clearly h̄ξ (ℵp
m(g)∩ℵp

m( f )) >
1
2 and h̄ϕ(ℵp

m(g) ∩ ℵp
m( f )) > 1π in

−→
� . Then the

amplitude and phase term for the edge (g, f ) is

ξ
C̆
(g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
) × h̄ξ

(ℵp
m(g) ∩ ℵp

m( f )
)

,

ξ
C̆
(g, f ) >

(

ξ
̂P(g) ∧ ξ

̂P( f )
) × 1

2
,

ϕ
C̆
(g, f ) = 2π

[

(

ξ
̂P(g)

2π
∧ ξ

̂P( f )

2π

)

× h̄ϕ

(ℵp
m(g) ∩ ℵp

m( f )
)

2π

]

,

ϕ
C̆
(g, f ) >

[

2π

(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× 1π

2π

]

.

Thenclearly ξ
C̆
(g, f ) > 1

2

(

ξ
̂P(g) ∧ ξ

̂P( f )
)

andϕ
C̆
(g, f ) >

1
2

(

2π
(

ϕ
̂P(g)
2π ∧ ϕ

̂P( f )
2π

))

. Hence, the edge (g, f ) is strong.

Since (g, f ) is an arbitrary edge of Cm(
−→
�), then in Cm(

−→
�)

all the edges are strong. 
�
Now, we establish a relation between m-step CFCG of a

CFDG and CFCG of m-step CFDG.

Theorem 8 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. If m > |W |
then Cm

(−→
�

)

has no edges.

Proof Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be CFDG and Cm

(−→
�

)

=
(

W ,̂P, C̆

)

be the corresponding m-step CFCG, where

ξ
C̆

(g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
) × h̄ξ

(

ℵp
m(g) ∩ ℵp

m( f )
)

,

ϕ
C̆
(g, f ) = 2π

⎡

⎣

(

ξ
̂P

2π
(g) ∧ ξ

̂P( f )

2π

)

×
h̄ϕ

(

ℵp
m(g) ∩ ℵp

m( f )
)

2π

⎤

⎦ .
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If m > |W | there does not exists any CFDP of length m in−→
� . So, the CFS (ℵp

m(g) ∩ ℵp
m( f )) = ∅, i.e., h̄ξ (ℵp

m(g) ∩
ℵp
m( f )) = 0 and h̄ϕ(ℵp

m(g) ∩ ℵp
m( f )) = 0. Hence, there

does not exist any edge in Cm(
−→
�). This proves the result.


�

Definition 28 Complex fuzzy m-step neighborhood of a
node g of a CFG � = (W ,̂P, ̂Q) is the CFS

ℵm(g) = (Sg, ρge
iηg ),

where

Sg = { f | if a complex fuzzy path (CFP) of length m

from g to f exists, Pm
(g, f )}

such that ρg : Sg ∈ [0, 1] given by ρg( f ) = {min ξ
̂Q(a, b) |

(a, b) is an edge of Pm
(g, f )} and ηg : Sg ∈ [0, 2π ] given by

ηg( f ) = {min ϕ
̂Q(a, b) | (a, b) is an edge of Pm

(g, f )}.

Definition 29 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be CFG. The m-step

CFNG
−→
� is symbolized byNm(�) = (W ,̂P, C̆) with same

CF node set as
−→
� and possesses a CF edge joining two nodes

g and f in Nm(�) if and only if CFS ℵm(g) ∩ ℵm( f ) �= ∅

and the MV of the edge (g, f ) is calculated as

ξ
C̆

(g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
) × h̄ξ (ℵm(g) ∩ ℵm( f )) ,

ϕ
C̆
(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ (ℵm(g) ∩ ℵm( f ))

2π

]

,

for all g, f ∈ W .

Example 9 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFG as presented in

Fig. 9a, given by

̂P =
〈

a

0.9ei0.8π
,

b

0.8ei1.3π
,

c

0.9ei1.7π
,

d

1ei0.7π
,

e

0.6ei1.7π
,

f

0.7ei0.9π

〉

,

−→̂
Q =

〈

(a, b)

0.7ei0.7π
,

(b, c)

0.8ei1.2π
,

(a, f )

0.7ei0.7π
,

(e, d)

0.6ei0.6π
,

(d, f )

0.7ei0.6π
,

(d, c)

0.8ei0.5π

〉

.

The CF two-step neighborhood of the nodes are displayed
in Table 10.

The CFSs ℵ(g) ∩ ℵ( f ) and h̄(ℵ(g) ∩ ℵ( f )) are given in
Table 11.

The two-step CFNG of
−→
� is shown in Fig. 9b.

Table 10 CF two-step neighborhood of the nodes

g ℵ2(g)

a {(c, 0.7ei0.7π ), (d, 0.7ei0.6π )}
b {( f , 0.7ei0.7π ), (d, 0.8ei0.5π )}
c {( f , 0.7ei0.5π ), (e, 0.6ei0.5π ), (a, 0.7ei0.7π )}
d {(a, 0.7ei0.6π ), (b, 0.8ei0.5π )}
e {(c, 0.6ei0.5π ), ( f , 0.6ei0.6π )}
f {(e, 0.6ei0.6π ), (c, 0.7ei0.5π ), (b, 0.7ei0.7π )}

Table 11 CFSs ℵ(g) ∩ ℵ( f ) and h̄(ℵ(g) ∩ ℵ( f ))

g f ℵ(g) ∩ ℵ( f ) h̄(ℵ(g) ∩ ℵ( f ))

a b {(d, 0.7ei0.5π )} {(0.7ei0.5π )}
a c ∅ ∅

a d ∅ ∅

a e {(c, 0.6ei0.5π )} {(0.6ei0.5π )}
a f {(c, 0.7ei0.5π )} {(0.7ei0.5π )}
b c {( f , 0.7ei0.5π )} {(0.7ei0.5π )}
b d ∅ ∅

b e {( f , 0.6ei0.6π )} {(0.6ei0.6π )}
b f ∅ ∅

c d {(a, 0.7ei0.6π )} {(0.7ei0.6π )}
c e {( f , 0.6ei0.5π )} {(0.6ei0.5π )}
c f {(e, 0.6ei0.5π )} {(0.7ei0.5π )}
d e ∅ ∅

d f {(b, 0.7ei0.5π )} {(0.7ei0.5π )}
e f {(c, 0.6ei0.5π )} {(0.6ei0.5π )}

Complex fuzzy economic competition
graphs

Now a days, the transfer of money from one place to another
place is very easy because of the advancement of internet.
During this exchange of money, there are destinations and
sources. Let us consider three projects, namely, C1,C2,C3

as sources of money and let five organizations, namely
D1, D2, D3, D4, D5 in which some projects are running in
(see Fig. 10). Here, the projects and organizations can be
taken as vertices and interconnection between them can be
illustrated by arcs. The two organizations are connected by an
edge if they are under a certain project, and so on. The graph
of this type is called economic competition graph. Now, we
develop complex fuzzy economic competition graphs and
m-step complex fuzzy economic competition graphs.

Definition 30 The complex fuzzy economic competition

graph (CFECG) E

(−→
�

)

of a CFDG
−→
� = (W ,̂P,

−→̂
Q ) is an

undirected CFG denoted by � = (

W ,̂P, ̂Q
)

with same CF

node set as in
−→
� and possesses a CF edge joining two nodes
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Fig. 9 Two-step complex fuzzy
neighborhood graph

Fig. 10 Projects

g, f ∈ W in E

(−→
�

)

if and only if CFS ℵn(g) ∩ ℵn( f ) �= ∅

in
−→
� and the MV of the edge (g, f ) in E(

−→
�) is calculated

as

ξ
̂Q(g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
) × h̄ξ

(ℵn(g) ∩ ℵn( f )
)

,

ϕ
̂Q(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵn(g) ∩ ℵn( f )

2π

]

.

Definition 31 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. The m-

step complex fuzzy economic competition graph (m-step

CFECG) of
−→
� is denoted by Em

(−→
�

)

=
(

W ,̂P, C̆

)

with

same CF node set as in
−→
� and possesses a CF edge join-

ing two distinct nodes g, f ∈ W in Em(
−→
�) if and only if

ℵn
m(g) ∩ ℵn

m( f ) is non-empty CFS in
−→
� and the MV of the

edge (g, f ) in Em(
−→
�) is calculated as

ξ
C̆

(g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
)×, h̄ξ

(ℵn
m(g) ∩ ℵn

m( f )
)

,

ϕ
C̆
(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵn
m(g) ∩ ℵn

m( f ))

2π

]

,

for all g, f ∈ W .

Example 10 Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG, where

̂P =
〈

a

0.8ei1.7π
,

b

0.7ei1.2π
,

c

0.9ei1.1π
,

d

0.6ei0.9π
,

e

1ei0.8π
,

f

0.8ei1.3π
,

g

0.8ei1.3π

〉

,

−→̂
Q =

〈 −−−→
(a, b)

0.7ei1.1π
,

−−−→
(a, d)

0.6ei0.8π
,

−−−→
(a, f )

0.7ei1.2π
,

−−−→
(b, c)

0.6ei1π
,

−−−→
(d, c)

0.5ei0.8π
,

−−−→
(d, e)

0.6ei0.7π
,

−−−→
( f , g)

0.6ei1.2π
,

−−−→
( f , e)

0.7ei0.6π

〉

.

The CFDG is presented in Fig. 11a.
The CFIN of the nodes are shown in Table 12.
The heights of CFSs ℵn(a) ∩ ℵn(b) and ℵn

2(a) ∩ ℵn
2(b)

are given in Table 13.
The corresponding CFECG and two-step CFECGs are

shown in Fig. 11b and c.

Theorem 9 CFECG and CFCG of any complete graphs are
same.

123



554 Complex & Intelligent Systems (2021) 7:539–558

Fig. 11 Complex fuzzy
economic competition graphs

Table 12 CFIN of the nodes x ℵn(x) ℵn
2(x)

g {( f , 0.6ei1.2π )} {a, 0.6ei1.2π }
f {(a, 0.7ei1.2π )} ∅

a ∅ ∅

b {(a, 0.7ei1.1π )} ∅

c {(d, 0.5ei0.8π ), (b, 0.6ei1.0π )} {(a, 0.6ei1.0π )} or {(a, 0.5ei0.8π )}
e {( f , 0.7ei0.6π ), (d, 0.6ei0.7π )} {(a, 0.7ei0.6π )} or {(a, 0.6ei0.7π )}
d {(a, 0.6ei0.8π )} ∅

Proof Let
−→
� =

(

W ,̂P,
−→̂
Q

)

be a CFDG. Let C(
−→
�) =

(

W ,̂P,
−→̂
Q

)

and E(
−→
�) =

(

W ,̂P,
−→̆
C

)

are the correspond-

ing CFCG and CFECG, respectively.
We have to show that C(

−→
�) and E(

−→
�) are same. For this,

we have to show that CF node set and CF edge set of both the
graphs are same. Clearly, the CF node set of C(

−→
�) is same

as the
−→
� and also the CF node set of E(

−→
�) is same as the−→

� . Thus, the CF node set of C(
−→
�) is same as E(

−→
�). Now,

we need to show that CF edge set of C(
−→
�) is equal to the CF

edge set of E(
−→
�). The MV of the edge (g, f ) in C(

−→
�) is

ξ
̂Q(g, f ) = (

ξ
̂P(g) ∧ ξ

̂P( f )
) × h̄ξ (ℵp(g) ∩ ℵp( f )),

ϕ
̂Q(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵp(g) ∩ ℵp( f ))

2π

]

.

Also, the MV of the edge (g, f ) in E(
−→
�) is

ξ
C̆

(g, f ) = (ξ
̂P(g) ∧ ξ

̂P( f )) × h̄ξ (ℵn(g) ∩ ℵn( f )),

ϕ
C̆
(g, f ) = 2π

[(

ϕ
̂P(g)

2π
∧ ϕ

̂P( f )

2π

)

× h̄ϕ(ℵp(g) ∩ ℵp( f ))

2π

]

.

As
−→
� is a complete fuzzy digraph, then clearly

h̄(ℵp(g) ∩ ℵp( f )) = h̄(ℵn(g) ∩ ℵn( f )),

i.e.,

h̄ξ

(ℵp(g) ∩ ℵp( f )
) = h̄ξ

(ℵn(g) ∩ ℵn( f )
)

,

h̄ϕ

(ℵp(g) ∩ ℵp( f )
) = h̄ϕ

(ℵn(g) ∩ ℵn( f )
)

.

Then ξ
̂Q(g, f ) = ξ

C̆
(g, f ) and ϕ

̂Q(g, f ) = ϕ
C̆
(g, f ).

Hence, the result is proved. 
�
Theorem 10 If

−→
� 1 is the CF-sub-digraph of

−→
� . Then
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Table 13 Heights of CFSs
ℵn(a) ∩ ℵn(b) and
ℵn
2(a) ∩ ℵn

2(b)

a b ℵn(a) ∩ ℵn(b) ℵn
2(a) ∩ ℵn

2(b) h̄(ℵn(a) ∩ ℵn(b)) h̄(ℵn
2(a) ∩ ℵn

2(b))

g f ∅ ∅ ∅ ∅

g a ∅ ∅ ∅ ∅

g b ∅ ∅ ∅ ∅

g c ∅ {(a, 0.5ei0.8π )} ∅ {(0.5ei0.8π )}
g e {( f , 0.6ei0.6π )} {(a, 0.6ei0.6π )} {(0.6ei0.6π )} {(0.6ei0.6π )}
g d ∅ ∅ ∅ ∅

f a ∅ ∅ ∅ ∅

f b {(a, 0.7ei1.1π )} ∅ {(0.7ei1.1π )} ∅

f c ∅ ∅ ∅ ∅

f e ∅ ∅ ∅ ∅

f d {(a, 0.6ei0.8π )} ∅ {(0.6ei0.8π )} ∅

a b ∅ ∅ ∅ ∅

a c ∅ ∅ ∅ ∅

a e ∅ ∅ ∅ ∅

a d ∅ ∅ ∅ ∅

b c ∅ ∅ ∅ ∅

b e ∅ ∅ ∅ ∅

b d {(a, 0.6ei0.8π )} ∅ {(0.6ei0.8π )} ∅

c e {(a, 0.5ei0.7π )} {(a, 0.5ei0.7π )} {(0.5ei0.7π )} {(0.5ei0.7π )}
c d ∅ ∅ ∅ ∅

e d ∅ ∅ ∅ ∅

1. Cm(
−→
� 1) ⊂ Cm(

−→
�).

2. Em(
−→
�1) ⊂ Em(

−→
�).

Proof Let
−→
� =

(

W ,̂P,
−→̂
Q

)

and
−→
�1 =

(

W1,̂P1,
−→̂
Q 1

)

,

where W1 ⊂ W , ξ
̂P1

(g) ≤ ξ
̂P(g) and ϕ

̂P1
(g) ≤ ϕ

̂P(g) for

all g ∈ W1 and ξ
̂Q1

−−−→
(g, f ) ≤ ξ

̂Q

−−−→
(g, f ) and ϕ

̂Q1

−−−→
(g, f ) ≤

ϕ
̂Q

−−−→
(g, f ), for all g, f ∈ W1.

1. The complex fuzzy node set of Cm(
−→
� 1) is the subset of

Cm(
−→
�) as W1 ⊂ W . Now, for any complex fuzzy edge

(g, f ) in Cm(
−→
�1), ℵp

m(g) ∩ ℵp
m( f ) is the complex fuzzy

subset of the same in Cm(
−→
�). So, ξ

̂Q1

−−−→
(g, f ) ≤ ξ

̂Q

−−−→
(g, f )

and ϕ
̂Q1

−−−→
(g, f ) ≤ ϕ

̂Q

−−−→
(g, f ) for all g, f ∈ W1. Hence,

this proves the result.
2. Similar to the proof 1.


�

Application

Competition betweenobjects of realworld canbe represented
by competition graphs. However, there are some competi-
tions of real worldwhich cannot be represented through these

competition graphs. This motivates to introduce CFCGs. In
this section, we discuss an application of CFCGs to study the
competition among the species of ecology.

For example, suppose a small ecosystem, sea otters like
to feed on starfish and sea urchins, killer whales like to
feed on sea otters, starfish want to feed on sea urchins and
snails, both snails and sea urchins feed on seaweed. These
six species seaweed, snail, sea urchin, starfish, sea otter and
killerwhale are taken as vertices. Suppose that seaweed exists
90% in the ecosystem and seaweed is 20% strong under
a certain interval of time, i.e., the MV of the seaweed is
0.9ei0.4π .Similarly,we assume theMVsof the other nodes as
0.7ei0.8π , 0.8ei1π , 0.9ei1.2π , 0.8ei1.6π , 0.9ei1.8π , where the
amplitude terms show the degree of existence of species
while the phase terms show that how much the specie is
strong under certain time interval. Suppose killer whale like
to feed on sea otter say 60% and the prey sea otter is 70%
tasty for the predator killer whale under a certain duration of
time. The MV of the edge between killer whale and sea otter
is 0.6ei0.7π and similarly the likeness and tastiness of preys
for predators is shown in Table 14. The corresponding food
web is shown in Fig. 12.

It is detected that if starfish are taken out from the food
web then sea urchins and snails grow limitless and sea otters
must be disappear. The food web can be seen by help of
CFDG.
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Table 14 Likeness and tastiness
of predators and preys

Name of predator Name of prey Like to eat(%) Tasty to eat(%)

Killer whale Sea otter 60 70

Sea otter Sea urchin 60 45

Sea otter Starfish 70 55

Starfish Sea urchin 80 40

Starfish Snail 70 40

Snail Seaweed 70 20

Sea urchin Seaweed 70 20

Fig. 12 Complex fuzzy digraph (food web)

Table 15 Complex fuzzy out-neighborhoods

y ∈ Z ℵp(y)

Killer whale φ

Sea otter
{(

killerwhale, 0.6ei1.4π
)}

Sea urchin {(sea otter, 0.6ei0.9π ), (starfish,0.8ei0.8π )}

Starfish { (sea otter,0.7ei1.1π )}

Snail {(starfish,0.7ei0.4π )}

Seaweed {(sea urchin,0.7ei0.4π ),(snail,0.7ei0.4π )}

The CFONs of the nodes are displayed in Table 15.
There exist only two edges in CFCG as

ℵp(star f ish) ∩ ℵp(sea urchin) = {(sea otter , 0.6ei0.9π )},
ℵp (sea urchin) ∩ ℵp (snail) = {(sea otter , 0.7ei0.4π )}.

The corresponding CFCG is shown in Fig. 13.
Now, sea urchin and starfish are connected by an edge, and

similarly sea urchin and snail are connected by an edge in the
CFCG. There is no edge in theCFCG for the other pair of ver-
tices. TheMVs of the edges between sea urchin and starfish is
0.48ei0.45π , and sea urchin and snail is 0.49ei0.16π calculated
by the definition of CFCG.Hence, sea urchin and starfish; sea
urchin and snail compete for sea otter and starfish, respec-

Fig. 13 Complex fuzzy competition graph

tively. Thus, there is competition between sea urchin and
starfish; sea urchin and snail in the ecosystem. The method
which is used in our ecosystem application is shown in Table
16 .

Comparative analysis

CGs are very useful to show the competitions among
the different objects. Fuzzy competition graphs were pro-
posed by Samanta et al. [20] to show all the competitions
of the real world. Fuzzy competition graphs have larger
ability to deal with vagueness and uncertainty. There are
many applications of fuzzy competition graphs in vari-
ous fields of life. Ecosystem is one of these applications
of fuzzy competition graphs. For example, in ecology,
let {( f1, 0.9), ( f2, 0.8), ( f3, 0.9), ( f4, 0.8), ( f5, 0.7)} be the
set of species and let {(−−→f2 f1, 0.7), (−−→f3 f2, 0.8), (−−→f5 f3, 0.7),
(
−−→
f4 f3, 0.8), (

−−→
f6 f5, 0.7)}be the edge set,where f1, f2, f3, f4,

f5, f6 represent the species killer whale, sea otters, urchins,
starfish, snails and seaweed, respectively. The MVs of the
species show the existence of these species in ecosystem and
the MVs of edges show the degree of likeness of predators
for the prey. These MVs of the species only show the exis-
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Table 16 Method to find
competition among species

Method Ecosystem

Step 1 Assign the MVs for the set of n species in the food web.
−→
� = (̂P,

−→̂
Q )(say).

Step 2 If for any two nodes yi and y j , ξ
̂Q(yi , y j ) > 0, then

(y j , ξ̂Q(yi , y j )e
iϕ

̂Q(yi ,y j )) ∈ ℵp(yi ).

Step 3 Find out the CFON ℵp(yi ) for all vertices yi , y j .

Step 4 calculate the ℵp(yi ) ∩ ℵp(y j ).

Step 5 calculate h̄(ℵp(yi ) ∩ ℵp(y j )).

Step 6 If ℵp(yi ) ∩ ℵp(y j ) �= ∅ then draw an edge (yi , y j ).

Step 7 Repeat the Step 6 for all the disjoint nodes of the digraph.

Step 8 Calculate the MVs using

ξ
̂Q(yi , y j ) = (ξ

̂P(yi ) ∧ ξ
̂Qy j ) × h̄ξ (ℵp(yi ) ∩ ℵp(y j )) and

ϕ
̂Q(yi , y j ) = 2π

[(

ϕ
̂P(yi )
2π ∧ ϕ

̂P(y j )
2π

)

× h̄ϕ(ℵp(yi )∩ℵp(y j ))
2π

]

.

tence of these species but it does not give the information
that howmuch the specie is strong. Similarly, theMVs of the
edges show only the likeness of preys for the predators but
fails to illustrate that how much the prey is tasty to eat for
the predator. This information about the preys and predators
is two-dimensional which cannot be modeled by one dimen-
sional phenomenon. This lack of knowledge motivates us
to introduce the more generalized concept, CFCGs of FCGs,
which have a capability to handle the two dimensional data
with more perfection. The proposed work provides us a bet-
ter platform to show the periodicity of the phenomenon. An
application is designed in our presented work, in which the
phase terms of the nodes and edges show the strength and
tastiness of these species under some specific time inter-
val. Therefore, CFCGs are more useful then the FCGs, as
these graphs can handle the two-dimensional information.
The aptitude of these graphs to represent the two-dimensional
phenomena make it worthier to manage the ambiguous and
intuitive data.

Further discussion

From the above comparison, it is clear that the proposed
competition graphs are more generalized and superior the
the existing competition graphs because they are efficient to
deal with two-dimensional data of species in a single set. The
drawbacks of the existing CGs and the main advantages of
proposed CGs are given below.

1. The existing competition graphs are developed under
fuzzy environment in which the uncertainties and ambi-
guities present in the data are handled with the help of
degrees of membership that are the subset of real num-
bers, which may lose some useful information.

2. The proposed competition graphs are developed under
CF environment in which the uncertainties of data are

handled by complex numbers. The CFS can handle two
dimensional and periodic information more precisely
then the other existing models. The phase term of CFS
is efficient which discriminates this set from all other
existing models of the literature.

3. On removing the phase term of CFS, the CFS reduces to
ordinary FS. Thus, CFS is an effective generalization of
FS.

The characteristics comparison of our proposed approach
with different existing approaches is given in Table 17.

Conclusion

CFS is an indispensable tool to deal with two-dimensional
or periodic information due to the existence of additional
term named as phase term which discriminate this set from
all other existing sets of literature. In this paper, we have
introduced a novel concept of CGs and economic competi-
tion graphs under CF environment.We have also investigated
two worthwhile extensions of complex fuzzy competition
graphs, named as complex fuzzy k-competition graphs and
p-competition complex fuzzy graph. Moreover, we have
developed neighborhood graphs and m-step neighborhood
graphs under complex fuzzy environment with some of their
remarkable results. In addition, to reveal the importance
of these competition graphs in realistic situations, we have
designed an application of complex fuzzy competition graphs
in ecology. Finally, we have compared our proposed complex
fuzzy competition graphs with existing graphs to show the
superiority and authenticity of proposed graphs which leads
us to the result that competition graphs are useful to repre-
sent the competition among those entities which possess the
two-dimensional information. Our next interest of research
is to extend our work to (1) complex fuzzy mixed graphs,
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Table 17 The characteristic comparison of different graphs with existing graphs

Method Whether have ability Whether have ability Whether have the characteristics
to handle periodic problems to represent 2-D information of generalization

Samanta et al. [20] × × ×
Sahoo and Pal [18] × × ×
Sarwar [21] × × ×
Habib et al. [9] × × �
The proposed CFCGs � � �

(2) Fermatean fuzzy competition graphs, (3) complex Fer-
matean fuzzy sets , (4) Fermatean fuzzy planar graphs, and
(5) complex Fermatean fuzzy competition graphs.
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