
Complex & Intelligent Systems (2021) 7:249–295
https://doi.org/10.1007/s40747-020-00189-6

ORIG INAL ART ICLE

A comparative study of social group optimization with a few recent
optimization algorithms

Anima Naik1 · Suresh Chandra Satapathy2

Received: 22 January 2020 / Accepted: 17 August 2020 / Published online: 23 September 2020
© The Author(s) 2020

Abstract
From the past few decades, the popularity of meta-heuristic optimization algorithms is growing compared to deterministic
search optimization algorithms in solving global optimization problems. This has led to the development of several optimiza-
tion algorithms to solve complex optimization problems. But none of the algorithms can solve all optimization problems
equally well. As a result, the researchers focus on either improving exiting meta-heuristic optimization algorithms or intro-
ducing new algorithms. The social group optimization (SGO) Algorithm is a meta-heuristic optimization algorithm that was
proposed in the year 2016 for solving global optimization problems. In the literature, SGO is shown to perform well as
compared to other optimization algorithms. This paper attempts to compare the performance of the SGO algorithm with
other optimization algorithms proposed between 2017 and 2019. These algorithms are tested through several experiments,
including multiple classical benchmark functions, CEC special session functions, and six classical engineering problems etc.
Optimization results prove that the SGO algorithm is extremely competitive as compared to other algorithms.

Keywords Meta-heuristic · Benchmark functions · Optimization algorithms · Fitness evaluations

Abbreviations

Pop_size Population size
Max_FEs Maximum number of function evaluations
Fes Function evaluations
RS test Wilcoxon’s rank-sum test

Introduction

The meta-heuristic optimization algorithm is a practical
approach for solving global optimization problems. It is
mainly based on simulating nature and artificial intelligence
tools, invokes exploration and exploitation search procedures
to diversify the search all over the search space and intensify

B Anima Naik
animanaik@klh.edu.in

Suresh Chandra Satapathy
suresh.satapathyfcs@kiit.ac.in

1 Department of CSE, KL University, Hyderabad, Telangana,
India

2 School of Computer Engineering, KIIT Deemed To Be
University, Bhubaneswar, Odisha, India

the search in some promising areas. Flexibility and gradient-
free approaches are the two main characteristics that make
meta-heuristic strategies exceedingly popular for optimiza-
tion researchers. From 1960s till date, several meta-heuristic
optimization algorithms have been proposed. According to
no-free-lunch (NFL) [1] theorem for optimization, none
of the algorithms could solve all classes of optimization
problems. This motivated many researchers to design new
algorithms or modify/hybridize existing algorithms to solve
different problems or provide competitive results, as com-
pared to the current algorithms.

Meta-heuristic algorithms can be classified into mainly
four categories: (a) evolutionary-based algorithm, (b) swarm
intelligence-based algorithm, (c) human-based algorithm,
and (d) physics and chemistry-based algorithm. Evolution-
ary algorithms mimic concepts of evolution in nature. The
genetic algorithm (GA) [2] is the best example of an evolu-
tionary algorithm that simulates the concepts of Darwinian
theory of evolution. After that several other evolutionary
algorithms have been proposed such as evolutionary strat-
egy (ES) [3], and evolutionary programming (EP) [4], gene
expression programming (GEP) [5, 6], genetic programming
(GP) [7], covariance matrix adaptation evolution strategy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00189-6&domain=pdf

250 Complex & Intelligent Systems (2021) 7:249–295

CMA-ES) [8], differential evolution (DE) [9], biogeography-
based optimization (BBO) algorithm [10].

Swarm intelligence algorithms mimic the intelligence of
swarms. Each swarm consists of a group of creatures. So,
these algorithms originate from the collective behaviour of
a group of creatures in the swarm. Many swarm intelligence
algorithms are seen in the literature. These are particle swarm
optimization (PSO) [11] inspired by bird flocking, ant colony
optimization (ACO) [12] inspired by Ants behaviour while
collecting food, artificial bee colony (ABC) [13] mimicked
by Honey bee for collecting nectar, etc. Additionally, there
are many more algorithms such as bacterial foraging(BF)
[14], bat algorithm (BA) [15], firefly algorithm (FFA) [16],
krill herb (KB) [17], cuckoo search (CS) [18], monkey search
(MS) [19], bee colony optimization (BCO) [20], cat swarm
[21], wolf search (WS) [22], ant lion optimizer (ALO) [23],
grey wolf optimization (GWO) [24], whale-optimization
algorithm (WOA) [25], crow search algorithm (CSA) [26],
Salp swarm algorithm (SSA) [27], grasshopper optimiza-
tion algorithm (GOA) [28], butterfly optimization algorithm
(BOA) [29], squirrel search algorithm (SSA) [30], Harris
Hawks optimization (HHO) [31].

Human based algorithms are mainly inspired by behav-
iors of human. Some of the popular algorithms are
teaching–learning-based optimization (TLBO) [32], har-
mony search (HS) [33], Tabu (Taboo) search (TS) [34–36],
group search optimizer (GSO) [37, 38], imperialist compet-
itive algorithm (ICA) [39], league championship algorithm
(LCA) [40], firework algorithm [41], colliding bodies opti-
mization (CBO) [42], interior search algorithm (ISA) [43],
mine blast algorithm (MBA) [44], soccer league competi-
tion (SLC) algorithm [45], seeker optimization algorithm
(SOA) [46], social-based algorithm (SBA) [47], exchange
market algorithm (EMA) [48], and group counselling opti-
mization (GCO) algorithm [49, 50], social emotional opti-
mization (SEO) [51], ideology algorithm (IA) [52], social
learning optimization (SLO) [53], social group optimization
(SGO) [54, 55], election algorithm (EA) [56], cultural evo-
lution algorithm (CEA) [57], cohort intelligence (CI) [58],
anarchic society optimization (ASO) [59], volleyball premier
league algorithm (VPL) [60], socio evolution and learning
optimization algorithm (SELO) [61].

Physical and chemical based algorithms are inspired by
physical rules and chemical reactions of the universe. Some
popular algorithms are simulated annealing (SA) [62], grav-
itational local search (GLSA) [63], big-bang big-crunch
(BBBC) [64], gravitational search algorithm (GSA) [65],
charged system search (CSS) [66], central force optimiza-
tion (CFO) [67], artificial chemical reaction optimization
algorithm (ACROA) [68], black hole (BH) algorithm [69],
ray optimization (RO) [70] algorithm, small-world optimiza-
tion algorithm (SWOA) [71], galaxy-based-search algorithm
(GbSA) [72], curved space optimization (CSO) [73], water

cycle algorithm(WCA) [74]. Spiral optimization (SO) [75],
river formation dynamics (RFD) [76], sine cosine algorithm
(SCA) [77], multi verse optimizer (MVO) [78], lightning
attachment procedure optimization (LAPO) [79], golden
ratio optimization method (GROM) [80].

Meta-heuristic algorithms are extensively recognized as
effective approaches for solving large-scale optimization
problems (LOPs). These algorithms provide effective tools
with essential applications in business, engineering, eco-
nomics, and science. Recently, many researchers of meta-
heuristic algorithm have paid their attention to the solution
of large-scale optimization problems [81].However, the stan-
dard metaheuristic algorithms for solving LOPs suffer from
a main deficiency which is the curse of dimensionality, i.e.,
the performance of algorithms deteriorates when dimen-
sion of problems increases. There are two major reasons for
the performance deterioration of these algorithms: Firstly,
increasing size of the problem dimension increases its land-
scape complexity and characteristic alteration. Secondly, the
search space exponentially increases with the problem size;
so, an optimization algorithm must be able to explore the
entire search space efficiently; which is not a trivial task. It
is motivating to consider these reasons and difficulties while
proposing new approaches of tackling LOPs [82]. The exist-
ing algorithms for LOPs can be mainly classified into the
following two categories [83]: (1) the cooperative coevo-
lution methods for LOPs, (2) the methods with learning
strategies for LOPs. Since several real-world applications
are considered as optimization of a large number of vari-
ables, various meta-heuristic algorithms have been proposed
to handle the large-scale optimization problems [84–89].

In the real world, it is common to face an optimization
problem with more than three objectives. Such problems
are called many-objective optimization problems (MaOPs)
that pose great challenges to the area of evolutionary com-
putation. The failure of conventional Pareto based multi-
objective evolutionary algorithms in dealing with MaOPs
motivates various new approaches. Deb et al. [90] sug-
gest a reference-point-based many-objective evolutionary
algorithm following NSGA-II framework that emphasizes
population members that are nondominated, yet close to a
set of supplied reference points. This approach is applied
to several many-objective test problems and gets satisfac-
tory results to all problems [90]. Lin et al. propose a
balanceable fitness estimation method and a novel velocity
update equation to compose a novel multi-objective particle
swarm optimization algorithm to address the (MaOPs) [91].
Achieving a balance between convergence and diversity in
many-objective optimization is a great challenge. Liu et al.
suggest an evolutionary algorithm based on a region search
strategy that enhances the diversity of the population with-
out losing convergence [92].Ahybrid evolutionary algorithm
based on knee points and reference vector adaptation strate-

123

Complex & Intelligent Systems (2021) 7:249–295 251

gies (KnRVEA) is proposed to improve the convergence of
solution where a novel knee adaptation strategy is introduced
to adjust the distribution of knee points [93]. A new differ-
ential evolution algorithm (NSDE-R) capable of efficiently
solving many-objective optimization problems, where the
algorithms make use of reference points evenly distributed
through the objective function space to preserve diversity
and aid in multi-criteria-decision making was thus proposed
[94]. Generally, the methods proposed for solving MaOPs
can be roughly classified into three categories [95]. These
are (1) multi/many-objective optimization algorithms based
on dominance relationships. (2) multi/many-objective opti-
mization algorithms based on decomposition strategy and
(3) indicator-based evolutionary algorithms. The applica-
tion of many-objective optimization can be demonstrated
in stormwater management project selection, encouraging
decision-maker buy-in [96]. Additionally, the application
can also be seen in mixed-model disassembly line balanc-
ing along with multi-robotic workstation [97].

Many real-world optimization problems are challeng-
ing because the evaluation of solutions is computationally
expensive. For those expensive problems, there are three
kinds of models utilized in the meta-heuristic algorithms,
i.e., the global model, the local model, and the surrogate
ensembles [98]. Surrogate-assisted evolutionary algorithms
are promising approaches to tackle this kind of prob-
lems. They use efficient computational models, known as
surrogates, for approximating the fitness function in evolu-
tionary algorithms. These are found successful applications
not only in solving computationally expensive single or
multi-objective optimization problems but also in address-
ing dynamic optimization problems, constrained optimiza-
tion problems, and multi-modal optimization problems.
Surrogate models have shown to be effective in assist-
ing meta-heuristic algorithms for solving computationally
expensive complex optimization problems. Examples of
some surrogate-assisted optimization algorithms for expen-
sive optimization problems can be found in [99–103].

In the year 2017–2019, some of the popularmeta-heuristic
algorithms were proposed. Those are Salp swarm algorithm
(SSA), grasshopper optimization algorithm (GOA), light-
ning attachment procedure optimization (LAPO), golden
ratio optimization method (GROM), butterfly optimization
algorithm (BOA), squirrel search optimization algorithm
(SSOA), Harris Hawks optimization (HHO), volleyball pre-
mier league algorithm (VPL), socio evolution and learning
optimization algorithm (SELO). SGO algorithm was pro-
posed in the year of 2016 by Satapathy et.al. The SGO
algorithm is based on the social behavior of humans for solv-
ing a global optimization problem. Applications of the SGO
algorithm are discussed in papers [104–109]. In this work,
the authors plan to have an exhaustive comparative analy-
sis with SGO, their own proposed algorithm, and algorithms

that were developed from 2017 to 2019. The GOA algorithm
mimics the behavior of grasshopper swarms and their social
interaction. Applications of the GOA algorithm are elabo-
rated in papers [110–115]. The SSA algorithm is inspired by
the swarming behavior of salpswhen navigating and foraging
in oceans. In [116–121], applications of SSA are highlighted.
The LAPO algorithm is based on the concepts of the light-
ning attachment procedure. The application of LAPO is seen
in paper [122–125]. The GROM algorithm is inspired by the
golden ratio of plant and animal growth. The BOA algorithm
mimics the food search and mating behavior of butterflies.
The SSOA algorithm imitates dynamic foraging behavior of
southern flying squirrels and their efficient way of locomo-
tion. The HHO algorithm is based on cooperative behavior
and the chasing style of Harris’ hawks in nature. The VPL
algorithm is inspired by competition and interaction among
volleyball teams during a season. It also mimics the coaching
process during a volleyball match. The SELO algorithm is
inspired by the social learning behavior of humans organized
as families in a societal setup.

In this paper, we have compared the performance of
those nine algorithms developed between 2017 and 2019, to
SGO,which exhibit similar characteristics. These algorithms
are tested through several experiments using many classical
benchmark functions, CEC special session functions, and
six classical engineering design problems. The results of the
experiments are tabulated, and inferences are drawn in con-
clusion.

The remaining paper is organized as follows: In "Prelim-
inaries of SGO, SSA, GOA, LAPO, GROM, BOA, SSOA,
VPL, HHO, and SELO", all algorithms are briefly summa-
rized. In "Simulation and experimental results", simulation
and experimental results are discussed, and the paper con-
cludes with "Conclusion".

Preliminaries of SGO, SSA, GOA, LAPO,
GROM, BOA, SSOA, VPL, HHO, and SELO

Social group optimization (SGO) algorithm

The SGO algorithm is based on the social behavior of human
to solve complex problems. Each person represents a candi-
date solution empowered with some information (i.e., traits)
and has an ability to solve a problem. The human traits repre-
sent the dimension of the person, which in turn represents the
number of design variables of the problem. This optimiza-
tion algorithm goes through two-phase: improving phase
and acquiring phase. In the improving phase, an individual’s
knowledge (solution) level is improved based on the best
individual influence. In the acquiring phase, the individual’s
knowledge (solution) level is improved by mutual interac-
tion between individuals and the person who has the highest

123

252 Complex & Intelligent Systems (2021) 7:249–295

knowledge level, as well as the ability to solve the problem
under consideration. However, for a detailed description of
SGO, anyone’s paper can be referred to [54, 55]. Algorithm
1 details the flow of SGO.

Algorithm: SGO Algorithm

Start

Assume the N person (i = 1,2,………,N) in D-dimensional search space,
Randomly distribute the entire persons in the group throughout the search space during
initialization process.

Compute fitness value for each person based on the problem under concern

Step 1: Find the best person ‘gbest’ in the group

[minvalue, index]=min

gbest= (index,:)

for solving the minimization problem

Step 2: Initiate improving phase to update the knowledge of persons with the help of ‘gbest’

Step 3: Initiate acquiring phase to further update knowledge of a person by randomly choosing a person from
the group and following the ‘gbest’.

 Step 4: if
all persons have approximately similar to fitness values or reach termination criterion

then
 terminate the search and display the optimized result for the chosen problem

else
goto step 2.

endif

 Stop

SSA, GOA, LAPO, GROM, BOA, SSOA, VPL, HHO
and SELO algorithms

Preliminaries of the above-listed algorithms can be found in
the literature. The SSA can be referred to in [27]; the basic
of GOA is in [28], BOA is well described in [29]. The basic
of SSOA is in [30]. The basic of HHO is in [31], and basic of
VPL is in [60]. SELO, LAPO, and GROM can be followed
in [61, 79, 80], respectively.

Simulation and experimental results

We have carried out an extensive comparison of SGO with
the other nine algorithms. Individually, six experiments have
been conducted batch-wise, on selecting a few algorithms out
of nine algorithms; they are compared with SGO. Finally,
in the last experiment, an overall comparison analysis is

conducted with all nine algorithms with SGO. In the first
experiment, the LAPO and GROM algorithms are compared
with the SGO algorithm by considering twenty-nine bench-
mark functions in a combination of unimodal, multimodal,

fixed dimensional and composite benchmark functions. In
the second experiment, BOA is compared with the SGO
algorithm using thirty classical benchmark functions. In the
third experiment, SSOA is comparedwith the SGOalgorithm
using twenty-six classical benchmark functions, and seven
functions are taken from the CEC 2014 special session. In
the fourth experiment, VPL is compared with the SGO algo-
rithm using twenty-three classical benchmark functions. In
the fifth experiment, SELO is compared with the SGO algo-
rithm using fifty classical benchmark functions. In the sixth
experiment, HHO, SSA, and GOA algorithms are compared
with the SGO algorithm using twenty-nine classical bench-
mark functions. The selections of the batch of algorithms
are made based on the benchmark functions experiments
which have been made by reference papers and the avail-
ability of results. In the seventh experiment, all algorithms
are compared with each other by considering six classical
engineering problems.

123

Complex & Intelligent Systems (2021) 7:249–295 253

Fig. 1 Figure of benchmark functions

To compare the performance, the SGO algorithm is imple-
mented by us and, the results of all other algorithms are taken
from their respective papers (Fig. 1).

“For comparing the speed of the algorithms, the first thing
we require is fair time measurement. The number of itera-
tions or generations cannot be accepted as a time measure
since the algorithms perform the different amount of works
in their inner loops, and they have different population sizes
(pop_sizes). Hence, we choose the number of fitness function
evaluations (FEs) as a measure of computation time instead
of generations or iterations” [54]. Since meta-heuristic algo-
rithms are stochastic in nature, the results of two successive
runs usually do not match. Hence, we have taken different
independent runs (with different seeds of random number
generator) of each algorithm and find out the best function
value, mean function value, and standard deviation and put
in tables in each experiment. For comparing the performance
of algorithms, different tests have been conducted in experi-
ments.

Experiment 1

In this experiment, LAPO and GROM algorithms are com-
pared with the SGO algorithm. For comparison of the

performance of algorithms, twenty-nine classical benchmark
functions are considered. Out of which seven are unimodal
benchmark-functions. The unimodal functions (F1–F7) are
suitable for benchmarking the exploitation of algorithms
since they have only one global optimum. Six aremultimodal
benchmark-functions and, ten are fixed-dimensional multi-
modal benchmark-functions. Eachmultimodal function from
F8–F23 has massive numbers of local optima. These func-
tions are considered to examine the exploration capability of
algorithms. There are six composite benchmark functions.
The composite benchmark-functions (F24–F29) are consid-
ered fromCEC 2005 special session [126]. These benchmark
functions are kept for judging the capability of the algorithm
for the proper balance between exploration and exploitation
search to avoid local optima and are described in Appendix
A with illustrations in Fig. 2.

In our experiment test functions are solved for two cases,
low dimensional and high dimensional. SGO algorithm is
implemented in MATLAB 2016a. Experiments are con-
ducted on an Intel Core i5, 8 GB RAM, and Windows 10
environment. For the LAPO, results are taken from [79], and
for the GROM algorithm, the results are taken from [80].

For lowdimensional cases, the common control parameter
such as pop_size is set to 40, maximum iteration is 500, and

123

254 Complex & Intelligent Systems (2021) 7:249–295

Fig. 2 a Schematic of the spring; b stress distribution evaluated at the optimum design; and c displacement distribution evaluated at the optimum
design

Max_FEs is set to 40,000. The other specific parameters for
each algorithm are given below.

• SGOsetting: ForSGO, there is only oneparameterCcalled
a self-introspection factor. The value of C is empirically
set to 0.2.

• LAPO settings: There is no such specific parameter to set
value.

• GROM settings: There is no such specific parameter to set
value.

For each benchmark function, algorithms are run 30 times
with different randomly generated populations. Statistical
results in terms of best value, mean value, and correspond-
ing standard deviation are reported in tables. Table 1 is for
unimodal benchmark-functions. Table 2 is for multimodal
benchmark-functions. Table 3 is for fixed dimensional multi-
modal benchmark-functions and, Table 4 is for the composite
benchmark.

For the high dimensional case, the 200-dimensional ver-
sion of unimodal, multimodal functions are solved in two
cases. In case 1, pop_size is taken as 200, and the maximum
iteration is 2000, and the results are given in Table 5. In case
2, pop_size is taken as 40, and the maximum iteration is 500,
and the results are given in Table 6. The idea is to see how
the algorithms behave for high dimensions in a large popu-
lation with more iteration, and relatively small populations
with less iteration. For every benchmark function, the best
results have been put in bold letters in the result table.

To obtain statistically sound conclusions, Wilcoxon’s
rank-sum (WRS) test at a 0.05 significance level is con-
ducted on experimental results, and the last three rows of
each respective table summarize experimental results.

Discussion

The unimodal functions have only one global optimum.
These functions allow evaluating the exploitation capabil-
ity of the investigated meta-heuristic algorithms. As seen
in Table 1, SGO has gained the best performance, and it
has reached to first rank among other algorithms. SGO has

shown excellent performance in exploitation capability and
convergence characteristic. It has also successfully overcome
to solve all the problems within this category except F5. It is
clear from results that SGOachieves success in finding global
optimum on F1, F2, F3, and F4 within 40,000 max_FEs. For
F1, F2, F3, F4, F6, F7, the performance of SGO is better
than LAPO and GROM algorithm, whereas, for F5, the per-
formance of LAPO and GROM algorithm is far better than
SGO. From Table 1, we find that out of seven unimodal test
functions according to theWRS test, SGO performs superior
to LAPO and GROM in six test functions and worse in one
test function.

The multimodal functions test functions F8–F13 are ben-
eficial, while the exploration capability of the optimization
algorithm is considered. Form Table 2, results show that the
SGO algorithm is eligible for solving problems with chal-
lenging search space. In this case, SGO has demonstrated
excellent performance in comparison, and it has reached to
first rank among algorithms. Table 2 shows that SGOhas con-
sistently performed better than other algorithms. SGO has
an excellent performance in exploration, and it successfully
overcomes to solve all the problems within this category. It
is clear from table results that both SGO and GROM achieve
success in finding global optimum on F9 and F11, and for
F10, find equivalent results. From Table 2, we get that out
of six multimodal test functions according to the WRS test,
SGO performs superior to LAPO in all six test functions and
superior to GROM in three test functions and equivalent in
three test functions.

The fixed-dimensional multimodal functions are designed
to have many local optimal where computation complexity
increases drastically with the increase of the problem size.
The results reported fromTable 3 for functions F14-F23 indi-
cate that SGO has an excellent exploration capability except
for the shekel family (F21, F22, F23) that SGO has. It is
clear from tabular results that the SGO algorithm achieves
success in finding a global optimum on F14–F20. In con-
trast, GROM achieves success in F16–F19, F21–F23, and
LAPO achieves success in F4, F16, F18, and F19 in find-
ing a globally optimal solution. GROM achieves success in
finding an optimum solution on the shekel family only. The

123

Complex & Intelligent Systems (2021) 7:249–295 255

Table 1 Unimodal benchmark
function on 30 repetitions Functions LAPO GROM SGO

Results WRS Test Results WRS Test results

F1

Best 1.3406e−15 – 0 − 0

Mean 2.0664e−13 3.1350e−247 0

Std 5.5098e−13 6.5961e−251 0

F2

Best 4.2412e−9 − 2.8836e−53 − 0

Mean 2.2547e−8 1.367e−52 0

Std 1.7473e−8 9.173e−53 0

F3

Best 4.1270e−7 − 0 − 0

Mean 1.1385e−5 3.398e−87 0

Std 3.6624e−5 9.6154e−87 0

F4

Best 2.7951e−7 − 7.155e−145 − 0

Mean 4.3915e−7 1.118e−131 0

Std 1.3825e−7 3.0352e−132 0

F5

Best 19.5667 + 18.46243 + 22.4419

Mean 22.7427 19.12 24.1058

Std 0.6846 0.6160 0.6143

F6

Best 1.3619e−6 − 1.594e−7 − 1.7698e−12

Mean 1.1151e−5 3.9096e−7 4.0337e−08

Std 1.0200e−5 3.573e−7 9.9545e−08

F7

Best 1.3323e−4 − 2.677e−5 − 4.5252e−06

Mean 7.1418e−4 0.000131 3.0393e−05

Std 4.3695e−4 4.7138e−5 1.7084e−05

Total + 01 01

Total − 06 06

Total ≈ 00 00

“−”, “+” and “≈” denote that performance of LAPO and GROM is worse, better and similar to SGO,
respectively

results for LAPO on the shekel family are better than the
SGO algorithm. From Table 3, as per WRS test, we find that
out of ten fixed dimensional multimodal test functions, SGO
performs superior to LAPO in two test functions, worse in
three test functions, and equivalent with five tests functions.
Again SGO performs superior to GROM in two test func-
tions, worse in three test functions and equivalent with five
test functions.

The composite functions are well enough to judge the
ability to escape from local minima of a meta-heuristics
optimization algorithm. Optimization of composite mathe-
matical functions is a challenging task because only a proper
balance between exploration and exploitation allows local
optima to be avoided. The results in Table 4 show that none

of the algorithms achieve success in finding the global opti-
mal solution. However, LAPO and GROM find a superior
solution than then SGO algorithm in solving F24, F25, and
F28, whereas SGO finds superior solution then LAPO and
GROM in solving F26, F27, and F29 benchmark functions.
From Table 4, it is seen that out of six composite test func-
tions according to the WRS test, SGO performs superior to
LAPO and GROM in three test functions, worse in three test
functions.

In Tables 5 and 6, seven unimodal and six multi-
modal functions are considered for judging high dimensional
parameter optimizations among SGO, LAPO, and GROM
algorithm by considering 200 dimensions. Table 5 is for the
results of pop_size 200 and 2000 iteration, and Table 6 is for

123

256 Complex & Intelligent Systems (2021) 7:249–295

Table 2 Multimodal benchmark
function on 30 repetitions Functions LAPO GROM SGO

Results WRS test Results WRS test Results

F8

Best − 1.0613e+4 − − 9467.296 − − 1.0871e+04

Mean − 1.036e+4 − 9070.8 − 1.0423e+04

Std 1.9994e+3 347.215 949.1964

F9

Best 0 − 0 ≈ 0

Mean 1.53344 0 0

Std 3.70144 0 0

F10

Best 9.5009e−9 − 8.8817e−16 ≈ 8.8818e−16

Mean 5.8694e−8 8.8817e−16 8.8818e−16

Std 5.0496e−8 0 0

F11

Best 1.7764e−15 − 0 ≈ 0

Mean 1.5914e−13 0 0

Std 2.9758e−13 0 0

F12

Best 6.8458e−9 − 3.8742e−9 − 2.4752e−13

Mean 0.0104 9.980e−9 1.8697e−10

Std 0.0311 5.7890e−9 6.1247e−10

F13

Best 5.5452e−7 − 5.2761e−7 − 2.7975e−12

Mean 0.0098 0.003506 0.00043

Std 0.0240 0.006430 0.00067

Total + 00 00

Total − 06 03

Total ≈ 00 03

“ −”, “+” and “≈” denote that performance of LAPO and GROM is worse, better and similar to SGO,
respectively

the results of pop_size 40 and iterations 500. It is clear from
both tables that SGO achieves success in finding global opti-
mum on F1, F2, F3, F4, F9, and F11 in both cases. GROM
achieves success in finding global optimum on F9 and F11
in both cases. GROM and SGO find equivalent results on
F10 for both cases. SGO algorithm finds better results than
GROMonF1–F8, F12, andF13 in both cases. In thefirst case,
the LAPO algorithm achieves success on finding global opti-
mum for F9 and F11, it finds equivalent results as of SGO for
F10, and worse results on F1–F8, F12 and F13 compared to
SGO. However, SGO algorithm finds superior results com-
pared to LAPO for all benchmark functions F1-F13 in the
second case. Hence, from Table 5 we summarize that as per
the WRS test, SGO performs superior to LAPO and GROM
in ten test functions and equivalent on three tests out of thir-
teen test functions.And from theTable 6, as per theWRS test,
SGO performs superior to LAPO in all thirteen test functions

and superior to GROM in ten test functions and equivalent
with three test functions out thirteen test functions.

Experiment 2

In this experiment, BOA (butterfly optimization algorithm)
[29] is compared with the SGO algorithm. For comparison
of the performance of algorithms, 30 classical benchmark
functions are considered. These benchmark functions are
described in appendixB. These functions are chosen from the
benchmark set proposed in [127, 128] to determine various
features of the algorithm, such as fast convergence, attain-
ment of a large number of local minima points, ability to
jump out of local optima and avoid premature convergence.
BOA results are taken from paper [29], and for results of
the SGO algorithm, the codes are implemented in MATLAB
2016a. Experiments are conducted on an Intel Core i5, 8 GB
RAM, and Windows 10 environment.

123

Complex & Intelligent Systems (2021) 7:249–295 257

Table 3 Fixed-dimensional
multimodal benchmark function
on 30 repetitions

Functions LAPO GROM SGO

Results WRS test Results WRS test Results

F14

Best 0.9980 ≈ 0.998 − 0.9980

Mean 0.9980 1.1964 0.9980

Std 5.7495e−8 0.5952 0

F15

Best 3.0749e−4 ≈ 3.0749e−4 ≈ 3.0749e−04

Mean 5.5811e−4 5.5811e−4 3.0749e−04

Std 2.2495e−4 2.83762e−19 2.1112e−15

F16

Best − 1.0316 ≈ − 1.0316 ≈ − 1.0316

Mean − 1.0316 − 1.0316 − 1.0316

Std 1.4460e−7 3.315148e−7 6.7752e−16

F17

Best 0.3979 − 0.397887 ≈ 0.3979

Mean 0.3983 0.39788 0.3979

Std 4.8405e−4 6.678e−7 0

F18

Best 3.0000 ≈ 2.999 ≈ 3.0000

Mean 3.0000 2.999 3.0000

Std 7.5626e−16 7.02166e−16 5.2804e−16

F19

Best − 3.8628 ≈ − 3.8627 ≈ − 3.8628

Mean − 3.8628 − 3.862 − 3.8628

Std 8.5422e−16 8.88178e−16 2.6712e−16

F20

Best − 3.3220 − − 3.3219 − − 3.3220

Mean − 3.2729 − 3.29821 − 3.3220

Std 0.0571 0.0475558 1.3897e−15

F21

Best − 10.1532 + − 10.153 + − 10.1532

Mean − 9.6960 − 10.1531 − 5.0552

Std 0.8042 7.944109e−16 1.0300e−15

F22

Best − 10.4029 + − 10.402 + − 10.4029

Mean − 10.1728 − 10.402 − 5.2648

Std 0.6905 1.4862e−15 0.9704

F23

Best − 10.5364 + − 10.536 + − 10.5364

Mean − 10.2295 − 10.53 − 5.3087

Std 0.6352 1.776e−15 0.9873

Total + 03 03

Total − 02 02

Total ≈ 05 05

“−”, “+” and “≈” denote that performance of LAPO and GROM is worse, better and similar to SGO respec-
tively

123

258 Complex & Intelligent Systems (2021) 7:249–295

Table 4 Composite benchmark
function on 30 repetitions Functions LAPO GROM SGO

Results WRS test Results WRS test Results

F24

Best 0 + 1.3254e−29 + 0

Mean 7.7214e−23 4.9821e−21 90.0000

Std 4.2143e−23 9.8425e−25 73.7865

F25

Best 2.7340 + 1.85201 + 5.8786

Mean 29.87214 23.75416 96.5807

Std 32.23484 19.4826 91.6926

F26

Best 116.0883 − 124.5176 − 6.9055

Mean 175.86457 165.9840 109.6482

Std 90.15781 38.4128 102.0611

F27

Best 265.2541 − 211.48966 − 100

Mean 312.145 263.7109 164.8116

Std 67.9681 48.9548 76.3725

F28

Best 0 + 0 + 18.4288

Mean 45.8928 34.41452 122.2605

Std 56.4218 29.4751 70.4767

F29

Best 500.000 − 440.9783 − 4.4439

Mean 544.8186 495.41875 93.0821

Std 119.6597 98.4126 113.6061

Total + 03 03

Total − 03 03

Total ≈ 00 00

“−”, “+” and “≈” denote that performance of LAPO and GROM is worse, better and similar to SGO respec-
tively

For the BOA algorithm, according to parameter setting
in its paper [29], the common control parameter such as
pop_size and maximum iterations are 50 and 10,000, respec-
tively. But for the SGO algorithm, we have taken the same
pop_size, but maximum iteration is reduced to 500. This is
due to our observation of the fast convergence characteristic
of SGO. Max_FEs is set to 50,000 (2×50×500 � 50,000).
It is due to two times fitness calculation in one iteration for
one particle in population. In this experiment, we have done
two tests. In one test, we have set common control parame-
ters the same as above, and in other, we have set pop_size is
ten andmaximum iteration 500. SoMax_FEs is set to 10,000
(2×10×500 � 10,000). The other specific parameters for
each algorithm are given below.

• SGO setting: For SGO, there is only one parameter C
called a self-introspection factor. The value of C is empir-
ically set to 0.2.

• BOA settings: Modular modality c is 0.01, and power
exponent a is increased from 0.1 to 0.3 throughout iter-
ations, p � 0.8. These parameters are set as reported by
authors in paper [29].

For each benchmark function, algorithms are run 30 times
with different randomly generated populations. Statistical
results in terms of mean value, standard-deviation value,
the best value, median value, and worse value are reported
in tables. Table 9 provides results for test 1 with 50,000
max_FEs, and Table 10 presents results for test 2 with 10,000
max_FEs. For every benchmark function, the best results are
boldfaced.

To obtain statistically sound conclusions, Wilcoxon’s
rank-sum test at a 0.05 significance level is conducted on
experimental results of Tables 9, 10 and put in Table 11. The
comparison results in terms of best value also are given in

123

Complex & Intelligent Systems (2021) 7:249–295 259

Table 5 Result 200 dimensional
with population size 200 and
2000 iterations

Functions LAPO GROM SGO

Results WRS test Results WRS test Results

F1

Best 3.7643e−29 − 4.0197e−283 − 0

Mean 8.1296e−29 5.0162e−283 0

Std 3.2204e−29 0 0

F2

Best 1.4339e−15 − 1.1623e−156 − 0

Mean 1.8098e−15 1.6258e−156 0

Std 2.7520e−16 3.2777e−157 0

F3

Best 0.4160 − 1.2908e−207 − 0

Mean 2.6872 1.7886e−191 0

Std 3.5371 0 0

F4

Best 2.0925e−10 − 6.8726e−122 − 0

Mean 7.2703e−10 7.808e−122 0

Std 3.3558e−10 7.3555e−123 0

F5

Best 192.6322 − 189.62 − 183.7878

Mean 193.0862 190.04 187.0531

Std 0.3316 0.30596 1.3745

F6

Best 0.0283 − 0.14347 − 3.0886e−09

Mean 0.0412 0.203 1.4761e−05

Std 0.0072 0.064899 3.7908e−05

F7

Best 2.8619e−5 − 1.9492e−5 − 9.1045e−07

Mean 1.8284e−4 5.4613e−5 3.8285e−06

Std 1.3097e−4 1.1139e−6 1.9758e−06

F8

Best − 5.617e4 − − 55,179 − − 7.1398e+04

Mean − 5.5361e4 − 53,752 − 6.4767e+04

Std 527.2355 1010.1 5.9902e+03

F9

Best 0 ≈ 0 ≈ 0

Mean 0 0 0

Std 0 0 0

F10

Best 8.8817e−16 ≈ 8.8817e−16 ≈ 8.8817e−16

Mean 8.8817e−16 8.8817e−16 8.8817e−16

Std 0 0 0

F11

Best 0 ≈ 0 ≈ 0

Mean 0 0 0

Std 0 0 0

F12

Best 8.64884e−5 − 1.4254e−5 − 4.1243e−11

123

260 Complex & Intelligent Systems (2021) 7:249–295

Table 5 continued
Functions LAPO GROM SGO

Results WRS test Results WRS test Results

Mean 1.1944e−4 5.3593e−5 4.2072e−07

Std 2.2692e−5 7.2927e−5 1.3192e−06

F13

Best 0.071735 − 0.09547 − 3.8861e−10

Mean 0.1748 1.0157 0.0030

Std 0.0712 1.4678 0.0049

Total + 00 00

Total − 10 10

Total ≈ 03 03

“−”, “+” and “≈” denote that performance of LAPO and GROM is worse, better and similar to SGO,
respectively

Table 11. The last three rows of Table 11 summarize experi-
mental results.

Discussion

In Tables 9 and 10, for the function F22, in the place of
best value, worse value, and median value, we have put star
‘*’ because we think that these values are wrongly put in the
paper [29]. For the function F28, theminimum function value
is given as−1500 [29].But theBOAalgorithmfinds less than
that − 1500 and hence a confusion arises on the minimum
value. To avoid any conflicts,we have excluded this result and
have put ‘*’ in Table 11. From Table 11, we see that except
for the F5 function, both Tables 9 and 10 show equivalent
results. From Tables 9 and 10, it is clear that SGO algorithm
reaches global optimum for 22 benchmark functions such as
F1–F4, F6, F8, F11–F13, F15–F24, F26, F27, F29 whereas
BOA reaches to global optimum for 18 benchmark functions
such as F1–F4, F6, F11–F13, F15–F17, F19, F21–F24, F27,
F29. SGO also shows its dominating performance in most
functions and satisfactory results in 10 functions such as F7,
F8, F9, F10, F14, F18, F20, F25, F26, and F30. For function
F26, i.e., shekel 4.5, the BOA algorithm finds superior results
than the SGO algorithm. Special attention should be paid to
the noisy (quartic) problems as these challenges frequently
occur in real-world applications. SGO provided a significant
performance boost on this noisy problem and gave an equiv-
alent solution in comparison to BOA, but the best result is
better than BOA’s best result. It is shown in Table 9. Besides
optimization accuracy, convergence speed is quite essential
to an optimizer. In this experiment, Table 9 provided the
results on 50,000 max_FES with 500 iterations as the ter-
mination criterion. Table 10 provided the results on 10,000
max_FES with 500 iterations as the termination, whereas for
BOA 10,000 iterations as the termination criterion.

ForTest 1, i.e., fromTables 9 and11, according to theWRS
test, it is clear that the SGO algorithm finds better results than

the BOA algorithm in nine functions and equivalent results in
19 functions out of 29 benchmark functions. So only in one
case, SGO finds worse results than BOA. For test 2, i.e., from
Tables 10 and 11, the SGO algorithm performs better than
the BOA algorithm in nine functions and equivalent results
in 18 functions out of 29 benchmark functions. So only in
two cases, the SGO algorithm finds worse results than the
BOA algorithm. Similarly, when we compare the results by
considering the best results, we find that SGO performs best
in ten functions and equally well for 18 functions than BOA
in both tests.

From the above experiment and results in discussion, it
is found that SGO outperformed than BOA, and the con-
vergence is much fast as it is evident from the maximum
numbers of FEs and iterations.

Experiment 3

In this experiment, SSOA (squirrel search optimization
algorithm) [30] is compared with the SGO algorithm. For
comparison of performances of both the algorithms, 33
benchmark functions are considered. Out of these, 26 func-
tions are classical benchmark functions, and seven are taken
from CEC 2014 special session [129]. These benchmark
functions are described in Appendix C. These benchmark
functions are also described in the paper [30] and taken
from [130, 131]. Out of these 26 classical benchmark func-
tions, four are unimodal separable benchmark functions,
eight are unimodal non-separable benchmark functions, six
aremultimodal separable benchmark functions, and eight are
multimodal non-separable benchmark functions.

We have directly derived results of SSOA from [30], and
for results of the SGO algorithm, the codes are implemented
inMATLAB2016a.Experiments are conducted on IntelCore
i5, 8 GB RAM, and Windows 10 environment.

According to parameter settings of SSOA in its respective
paper [30], the common control parameter such as pop_size

123

Complex & Intelligent Systems (2021) 7:249–295 261

Table 6 Result 200 dimensional
with population size 40 and 500
iterations

Functions LAPO GROM SGO

Results WRS test Results WRS test Results

F1

Best 1.0288e−12 − 3.1809e−65 − 0

Mean 1.8090e−9 5.3021e−65 0

Std 6.1216e−9 1.6155e−65 0

F2

Best 2.0087e−7 − 3.7697e−36 − 0

Mean 3.5023e−6 5.2158e−36 0

Std 4.3034e−6 1.0254e−36 0

F3

Best 0.9660 − 1.1586e−62 − 0

Mean 6.7051 2.8633e−57 0

Std 5.7391 2.553e−57 0

F4

Best 9.8895e−6 − 3.8682e−30 − 0

Mean 2.4845e−5 4.0382e−30 0

Std 1.4955e−5 1.4237e−31 0

F5

Best 196.3227 − 195.44 − 194.5407

Mean 197.3273 197.6 195.2793

Std 0.5454 0.55796 0.4570

F6

Best 13.7919 − 16.756 − 0.0345

Mean 16.5038 17.942 0.2781

Std 1.3669 1.1032 0.1591

F7

Best 3.5309e−4 − 1.7976e−4 − 5.1821e−07

Mean 0.0010 2.8908e−4 2.6497e−06

Std 4.5410e−4 1.1115e−4 1.5043e−05

F8

Best − 1.5279e4 − − 15,765 − − 6.5602e+04

Mean − 1.324e4 − 15,167 − 5.4946e+04

Std 815.8747 430.67 5.4972e+03

F9

Best 4.5475e−13 − 0 ≈ 0

Mean 9.2776e−10 0 0

Std 3.6949e−10 0 0

F10

Best 7.6647e−8 − 8.8818e−16 ≈ 8.8818e−16

Mean 4.2081e−6 8.8818e−16 8.8818e−16

Std 2.8691e−6 0 0

F11

Best 2.8019e−12 − 0 ≈ 0

Mean 5.6723e−10 0 0

Std 2.8363e−10 0 0

F12

Best 0.0995 − 0.15496 − 4.0511e−04

123

262 Complex & Intelligent Systems (2021) 7:249–295

Table 6 continued
Functions LAPO GROM SGO

Results WRS test Results WRS test Results

Mean 0.0149 0.1663 0.0025

Std 0.1178 0.00805 0.0020

F13

Best 12.7156 − 12.803 − 0.0177

Mean 1.9412 12.822 0.3140

Std 15.7881 0.024253 0.3987

Total + 00 00

Total − 13 10

Total ≈ 00 03

“ −”, “+” and “≈” denote that performance of LAPO and GROM is worse, better and similar to SGO,
respectively

Table 7 Overall algorithms comparison on Wilcoxon’s rank-sum test using Tables 1, 2, 3 and 4

Functions Unimodal Multimodal Fixed dimensional Composite Overall in LAPO Overall in
GROM

LAPO GROM LAPO GROM LAPO GROM LAPO GROM

Total + 01 01 00 00 03 03 03 03 7 07

Total − 06 06 06 03 02 02 03 03 17 14

Total ≈ 00 00 00 03 05 05 00 00 05 08

Total 07 07 06 06 10 10 06 06 29 29

07 06 10 06 29

Table 8 Overall algorithms comparison of Wilcoxon’s rank-sum test using Tables 5 and 6

Functions Test of 200 dimensional
with pop_size 200 and
maximum iteration 2000

Test of 200 dimensional
with pop_size 40 and
maximum iteration 500

Overall in LAPO Overall in
GROM

LAPO GROM LAPO GROM

Total + 00 00 00 00 00 00

Total − 10 10 13 10 23 20

Total ≈ 03 03 00 03 03 06

Total 13 13 13 13 26 26

13 13 26

is 50, and the maximum iteration is 500. For seven CEC2014
benchmark functions, pop_size is 50, and the maximum iter-
ation is 6000. So max_FEs is 300,000. So for the SGO
algorithm, we have taken pop_size is 25, and the maximum
iteration is 500. Hence max_FEs are 25,000(2×25×500
� 25,000, two is due to two-time fitness calculation in one
iteration for one particle in population) for classical bench-
mark functions, and pop_size is 50, and maximum iteration
is 3000. So max_FEs is 300,000 (2×50×3000 � 300,000)
for CEC2014 benchmark functions.

The other specific parameters for each algorithm are given
below.

• SGO setting: For SGO, there is only one parameter C
called a self-introspection factor. The value of C is empir-
ically set to 0.2.

SOA settings: nutritious food resources Nfs � 4, gliding
constant Gc � 1.9 and predator presence probability Pdp �
0.1. Parameters are set as reported by authors in paper [30].

For each benchmark function, algorithms are run 30 times
with different randomly generated populations. Statistical
results in terms of mean value, corresponding standard-
deviation, the best value, and worse value are reported in
tables. Table 12 indicates the test results for unimodal sepa-
rable benchmark functions. Table 13 reports the test results
for unimodal non-separable benchmark functions. Table 14

123

Complex & Intelligent Systems (2021) 7:249–295 263

Table 9 Comparison on BOA and SGO on 30 independent runs with 50,000 fitness function evaluations

Fun no. Function Name Algorithms Mean Std Best Median Worse

F1 Sphere BOA 0 0 0 0 0

SGO 0 0 0 0 0

F2 Beale BOA 0 0 0 0 0

SGO 0 0 0 0 0

F3 Cigar BOA 0 0 0 0 0

SGO 0 0 0 0 0

F4 Step BOA 0 0 0 0 0

SGO 0 0 0 0 0

F5 Quartic function with noise BOA 3.8917e−05 2.9003e−05 5.8800e−05 3.5850e−05 1.2000e−05

SGO 2.4890e−05 1.0695e−05 4.0050e−06 4.6955e−05 4.2739e−05

F6 Bohachevsky BOA 0 0 0 0 0

SGO 0 0 0 0 0

F7 Ackley BOA 1.7183e+00 0 1.7183e+00 1.7183e+00 1.7183e+00

SGO 8.8818e−16 0 8.8818e−16 8.8818e−16 8.8818e−16

F8 Griewank BOA 1.8472e−19 2.6886e−20 1.6300e−19 1.6300e−19 2.1700e−19

SGO 0 0 0 0 0

F9 Levy BOA 4.4108e−01 5.7467e−02 2.8900e−01 3.7800e−01 5.7400e−01

SGO 4.5472e−04 2.3885e−04 7.2873e−05 4.7006e−04 8.7819e−04

F10 Michalewiz BOA − 5.3382 − 5.6092 − 5.7700 − 3.6200 − 2.2500

SGO − 9.1418 0.2639 − 9.6141 − 9.6141 − 8.6585

F11 Rastrigin BOA 0 0 0 0 0

SGO 0 0 0 0 0

F12 Alpine BOA 0 0 0 0 0

SGO 0 0 0 0 0

F13 Schaffer BOA 0 0 0 0 0

SGO 0 0 0 0 0

F14 Rosenbrock BOA 2.8837e+01 3.1281e−02 2.8754e+01 2.8754e+01 2.8927e+01

SGO 23.2241 0.7375 21.7366 23.2401 24.5057

F15 Easom BOA − 1.0000 0 − 1.0000 − 1.0000 − 1.0000

SGO − 1 0 − 1 − 1 − 1

F16 Shubert BOA − 1.8673e+02 2.06493e−11 − 1.8673e+02 − 1.8673e+02 − 1.8673e+02

SGO − 186.7309 4.7915e−14 − 186.7309 − 186.7309 − 186.7309

F17 Schwefel 1.2 BOA 0 0 0 0 0

SGO 0 0 0 0 0

F18 Schwefel 2.21 BOA 6.9906e−153 1.4788e−152 3.7983e−155 2.3793e−153 9.7687e−152

SGO 0 0 0 0 0

F19 Schwefel 2.22 BOA 0 0 0 0 0

SGO 0 0 0 0 0

F20 Schwefel 2.26 BOA − 2.2662e+03 4.5626e+02 − 2.8790e+03 − 2.3458e+03 − 1.8373e+03

SGO − 9.3595e+03 1.0556e+03 − 1.1721e+04 − 9.5886e+03 − 7.9691e+03

F21 Booth BOA 0 0 0 0 0

SGO 0 0 0 0 0

F22 Goldstein price BOA 3.0000e+00 0.0000e+00 0.0000e+00* 0.0000e+00* 0.0000e+00*

SGO 3.0000 0 3.0000 3.0000 3.0000

F23 Matyas BOA 0 0 0 0 0

SGO 0 0 0 0 0

123

264 Complex & Intelligent Systems (2021) 7:249–295

Table 9 continued

Fun no. Function Name Algorithms Mean Std Best Median Worse

F24 Powell BOA 0 0 0 0 0

SGO 0 0 0 0 0

F25 Power sum BOA 2.8400e−02 1.3179e−02 8.9600e−03 2.6800e−02 5.4300e−02

SGO 7.2637e−04 5.4052e−04 5.6591e−05 6.4722e−04 0.0020

F26 Shekel 4.5 BOA − 10.200 0 − 10.200 − 10.200 − 10.200

SGO − 5.3101 1.1399 − 10.1532 − 5.0552 − 5.0552

F27 Sum squares BOA 0 0 0 0 0

SGO 0 0 0 0 0

F28 Trid BOA − 2.7500e+07* 5.6500e+07* − 9.6100e+07* − 3.1800e+07* 7.3000e+07*

SGO − 3.6951e+03 340.1588 − 4.1038e+03 − 3.8835e+03 − 3.0904e+03

F29 Zettl BOA − 3.7900e−03 0 − 3.7900e−03 − 3.7900e−03 − 3.7900e−03

SGO − 3.7900e−03 0 − 3.7900e−03 − 3.7900e−03 − 3.7900e−03

F30 Leon BOA 1.1527e−06 9.4711e−07 1.0700e−08 6.9200e−07 2.6800e−06

SGO 2.4663e−12 3.3155e−12 1.3378e−13 5.9250e−13 9.5362e−12

reports the test results for multimodal separable benchmark
functions. Table 15 reports the test results for multimodal
non-separable benchmark functions, and Table 16 reports
the test results for CEC2014 functions. For every benchmark
function, the best results are boldfaced.

To obtain statistically sound conclusions, the WRS test at
a 0.05 significance level is conducted on the experimental
results of Tables 12, 13, 14, 15, 16 and reported in Table 17.
A comparison of the best results obtained in Tables 12, 13,
14, 15, 16, also published in Table 17. The last three rows of
Table 17 summarize experimental results.

Discussion

It is clear from Table 12 that the SGO achieves success in
finding global optimum on unimodal separable functions F1,
F2, and F3. For F1, the performance of the SSOA is found
identical to the SGO. Only for F4, the SGO could not reach
the global optimum region but find better results than the
SSOA.

Table 13provides results on unimodal non-separable func-
tions. It is clear from the table that the SGO achieves success
in finding global optimum on functions F5, F6, F7, F9, F10,
F11, but the SSOA achieves success in finding global opti-
mum only on F6. For F6 only, the performance of SSOA is
found identical to the SGO. Only for F8 and F12, SGO could
not reach the global optimum region. For the F8 function,
SSOA finds a better result than SGO, and for F12 SGO, find
a better result than SSOA.

It is clear from Table 14 that the SGO achieves success in
finding global optimum on multimodal separable functions
F13, F14, F15, F18, but SSOA achieves success in finding
only on F13 and F15. For F13 and F15, the performance of

SSOA is found identical to SGO. For F16 and F17, SGO
could not reach the global optimum region but find better
results than the SSOA.

It is clear fromTable 15 results that the SGO achieves suc-
cess in finding global optimum onmultimodal non-separable
functions F19, F20, F21, F22, F23, F25, but the SSOA
achieves success in finding only on F20, F21, F22, and F23.
Only for F24 and F26, SGO could not reach the global opti-
mum region. For F24, SSOA finds better results, and for F26,
SGO finds a better result.

It is clear from Table 16 that SGO finds a better solution
in F27, F28, F29, then SSOA, whereas SSOA finds better in
F30 and F31 then SGO, and in F32 and F33, both SGO and
SSOA finds equivalent results.

From Table 17, according to the WRS test, we find that
theSGOalgorithmperforms superior solutions in three cases,
equivalent solution in one case out of four unimodal separa-
ble benchmark functions than the SSOA algorithm. Out of
eight unimodal non-separable benchmark functions, theSGO
algorithm performs superior solutions in six cases, equiv-
alent solution in one case and worse solution in one case
than the SSOA algorithm. Out of six multimodal separable
benchmark functions, the SGO algorithm performs superior
solutions in four cases, an equivalent solution in two cases
than the SSOA algorithm. Out of eight multimodal non-
separable benchmark functions, the SGOalgorithm performs
superior solutions in three cases, equivalent solution in four
cases, worse solution in one case than the SSOA algorithm.
Out of seven CEC2014 benchmark functions, the SGO algo-
rithm performs superior solutions in three cases, equivalent
solutions in two cases, and worse solutions in two cases than
the SSOA algorithm.

123

Complex & Intelligent Systems (2021) 7:249–295 265

Table 10 Comparison of BOA and SGO on 30 independent runs with 10,000 fitness function evaluations

Fun no. Function name Algorithms Mean Std Best Median Worse

F1 Sphere BOA 0 0 0 0 0

SGO 0 0 0 0 0

F2 Beale BOA 0 0 0 0 0

SGO 0 0 0 0 0

F3 Cigar BOA 0 0 0 0 0

SGO 0 0 0 0 0

F4 Step BOA 0 0 0 0 0

SGO 0 0 0 0 0

F5 Quartic function with noise BOA 3.8917e−05 2.9003e−05 5.8800e−05 3.5850e−05 1.2000e−05

SGO 1.0432e−04 7.9660e−05 8.1471e−06 8.8846e−05 3.1340e−04

F6 Bohachevsky BOA 0 0 0 0 0

SGO 0 0 0 0 0

F7 Ackley BOA 1.7183e+00 0 1.7183e+00 1.7183e+00 1.7183e+00

SGO 8.8818e−16 0 8.8818e−16 8.8818e−16 8.8818e−16

F8 Griewank BOA 1.8472e−19 2.6886e−20 1.6300e−19 1.6300e−19 2.1700e−19

SGO 0 0 0 0 0

F9 Levy BOA 4.4108e−01 5.7467e−02 2.8900e−01 3.7800e−01 5.7400e−01

SGO 0.0016 7.9751e−04 4.5448e−04 0.0013 0.0032

F10 Michalewiz BOA − 5.3382 − 5.6092 − 5.7700 − 3.6200 − 2.2500

SGO − 8.1452 0.6628 − 9.3669 − 8.1402 − 6.8557

F11 Rastrigin BOA 0 0 0 0 0

SGO 0 0 0 0 0

F12 Alpine BOA 0 0 0 0 0

SGO 0 0 0 0 0

F13 Schaffer BOA 0 0 0 0 0

SGO 0 0 0 0 0

F14 Rosenbrock BOA 2.8837e+01 3.1281e−02 2.8754e+01 2.8754e+01 2.8927e+01

SGO 28.3809 0.3189 27.6996 28.4405 28.7686

F15 Easom BOA − 1.0000 0 − 1.0000 − 1.0000 − 1.0000

SGO − 1 0 − 1 − 1 − 1

F16 Shubert BOA − 1.8673e+02 2.06493e−11 − 1.8673e+02 − 1.8673e+02 − 1.8673e+02

SGO − 186.7309 4.7915e−11 − 186.7309 − 186.7309 − 186.7309

F17 Schwefel 1.2 BOA 0 0 0 0 0

SGO 0 0 0 0 0

F18 Schwefel 2.21 BOA 6.9906e−153 1.4788e−152 3.7983e−155 2.3793e−153 9.7687e−152

SGO 0 0 0 0 0

F19 Schwefel 2.22 BOA 0 0 0 0 0

SGO 0 0 0 0 0

F20 Schwefel 2.26 BOA − 2.2662e+03 4.5626e+02 − 2.8790e+03 − 2.3458e+03 − 1.8373e+03

SGO − 6.9949e+03 1.0556e+03 − 9.3437e+03 − 0.6536e+03 − 5.6009e+03

F21 Booth BOA 0 0 0 0 0

SGO 0 0 0 0 0

F22 Goldstein price BOA 3.0000 0 3.0000 3.0000 3.0000

SGO 3.0000 0 3.0000 3.0000 3.0000

F23 Matyas BOA 0 0 0 0 0

SGO 0 0 0 0 0

123

266 Complex & Intelligent Systems (2021) 7:249–295

Table 10 continued

Fun no. Function name Algorithms Mean Std Best Median Worse

F24 Powell BOA 0 0 0 0 0

SGO 0 0 0 0 0

F25 Power sum BOA 2.8400e−02 1.3179e−02 8.9600e−03 2.6800e−02 5.4300e−02

SGO 0.0012 0.0014 3.5053e−05 3.0905e−04 0.0045

F26 Shekel 4.5 BOA − 10.2000 0 − 10.2000 − 10.2000 − 10.2000

SGO − 5.3101 1.1399 − 10.1532 − 5.0552 -5.0552

F27 Sum squares BOA 0 0 0 0 0

SGO 0 0 0 0 0

F28 Trid BOA − 2.7500e+07* 5.6500e+07* − 9.6100e+07* − 3.1800e+07* 7.3000e+07*

SGO − 286.1084 448.9151 − 1.4262e+03 − 99.4426 –24.0904

F29 Zettl BOA − 3.7900e−03 0 − 3.7900e−03 − 3.7900e−03 − 3.7900e−03

SGO − 3.7912e−03 1.3348e−18 − 3.7912e−03 − 3.7912e−03 − 3.7912e−03

F30 Leon BOA 1.1527e−06 9.4711e−07 1.0700e−08 6.9200e−07 2.6800e−06

SGO 2.4663e−09 3.3155e−07 1.3378e−12 5.9250e−09 9.5362e−7

While comparing in terms of best solution value between
SGO and SSOA algorithm, then the SGO algorithm performs
better in three cases and similar to SSOA algorithm in one
case, out of four unimodal separable benchmark functions.
The SGOalgorithm is better performing in six cases, one case
being similar, and one case giving worse solution than SSOA
algorithm out of eight unimodal non-separable benchmark
functions. The SGOalgorithm is better in two cases and simi-
lar to the SSOAalgorithm in four cases, out of sixmultimodal
separable benchmark functions. The SGO algorithm is bet-
ter in one case, similar in six cases and gives worse solution
than SSOA algorithm in one case, out of eight multimodal
non-separable benchmark function. The SGO algorithm is
better in three cases and gives similar solution with SSOA
algorithm in four cases, out of seven CEC2014 benchmark
functions.

Experiment 4

In this experiment, the VPL (volleyball premier league)
algorithm [60] is compared with the SGO algorithm. For per-
formance comparison of algorithms, 23 classical benchmark-
functions are considered. Out of which seven are uni-
modal benchmark-functions, six aremultimodal benchmark-
functions, ten are fixed-dimension multimodal benchmark-
functions. These benchmark-functions are described in
Appendix A.

We have directly derived results of the VPL algorithm
from [60], and for results of the SGO algorithm, the codes
are implemented in MATLAB 2016a. Experiments are con-
ducted on an Intel Core i5, 8 GBmemory laptop inWindows
10 environment.

According to parameter settings of the VPL algorithm in
its respective paper [60], the common control parameter, such
asmax_FEs, is 100,000. So, for the SGO algorithm, common
control parameters such as pop_size are set to 50, and maxi-
mum iteration is set to 1000. So max_FEs is 2 × 50 × 1000
� 100,000. The other specific parameters for each algorithm
are given below.

• SGO setting: For SGO, there is only one parameter C
called a self-introspection factor. The value of C is empir-
ically set to 0.2.

• VPL setting: For VPL L � 60, PC � 0.5, rate of promoted
δPr � 0.05, δst � 0.54, N � 10, and β � 7.

Parameters are set as reported by authors in paper [60].
For each benchmark-function, algorithms are run 30 times

with different randomly generated populations. Statistical
results in terms of mean value, corresponding standard-
deviation, the best value, and worse value are reported in
tables. Table 18 reports the test results for unimodal bench-
mark functions. The test results for multimodal benchmark
functions are reported in Table 19. Table 20 reports the test
result for fixed dimensional multimodal benchmark func-
tions. For every benchmark function, the best results are
boldfaced.

To obtain statistically sound conclusions, the WRS test at
a 0.05 significance level is conducted on the experimental
results of Tables 18, 19, 20 and reported in their respective
tables. Also, comparisons on the best results are obtained and
are given in the respective table also. The last three rows of
tables summarize experimental results.

According to Table 18, SGO has gained the best perfor-
mance and consistently performed better than VPL algo-

123

Complex & Intelligent Systems (2021) 7:249–295 267

Table 11 Wilcoxon rank test
result and the comparison result
on the best value between BOA
and SGO

function Function Name Wilcoxon rank
test result using
Table 9

Comparison of
best result of
Table 9

Wilcoxon rank
test result using
Table 10

Comparison of
best result of
Table 10

F1 Sphere ≈ Same ≈ Same

F2 Beale ≈ Same ≈ Same

F3 Cigar ≈ Same ≈ Same

F4 Step ≈ Same ≈ Same

F5 Quartic function
with noise

≈ Best + Best

F6 Bohachevsky ≈ Same ≈ Same

F7 Ackley − Best − Best

F8 Griewank − Best − Best

F9 Levy − Best − Best

F10 Michalewiz − Best − Best

F11 Rastrigin ≈ Same ≈ Same

F12 Alpine ≈ Same ≈ Same

F13 Schaffer ≈ Same ≈ Same

F14 Rosenbrock − Best − Best

F15 Easom ≈ Same ≈ Same

F16 Shubert ≈ Same ≈ Same

F17 Schwefel 1.2 ≈ Same ≈ Same

F18 Schwefel 2.21 − Best − Best

F19 Schwefel 2.22 ≈ Same ≈ Same

F20 Schwefel 2.26 − Best − Best

F21 Booth ≈ Same ≈ Same

F22 Goldstein price ≈ Same ≈ Same

F23 Matyas ≈ Same ≈ Same

F24 Powell ≈ Same ≈ Same

F25 Power sum − Best − Best

F26 Shekel 4.5 + Worse + Worse

F27 Sum squares ≈ Same ≈ Same

F28 Trid ∗ * ∗ *

F29 Zettl ≈ Same ≈ Same

F30 Leon − Best − Best

Total + 01 1, worse 02 1, worse

Total − 09 10, best 09 10, best

Total ≈ 19 18, same 18 18, same

“−”, “+” and “≈” denote that performance of BOA is worse, better and similar to SGO respectively

Table 12 Comparison on SSOA
and SGO on 30 independent
runs on unimodal separable
benchmark functions

Function no. Function name Algorithms Best Worse Mean Std

F1 Step SSOA 0 0 0 0

SGO 0 0 0 0

F2 Sphere SSOA 7.9225e−20 5.7411e−07 4.1689e−08 1.4356e−07

SGO 0 0 0 0

F3 Sumsquares SSOA 2.0052e−28 2.3194e−06 1.5201e−07 4.6741e−07

SGO 0 0 0 0

F4 Quartic SSOA 3.0998e−02 9.9258e−01 5.0192e−01 2.9565e−01

SGO 2.5878e−06 8.2220e−05 3.6441e−05 2.5849e−05

123

268 Complex & Intelligent Systems (2021) 7:249–295

Table 13 Comparison on SSOA
and SGO on 30 independent
runs on unimodal nonseparable
benchmark functions

Function no. Function name Algorithms Best Worse Mean Std

F5 Beale SSOA 2.1832e−29 2.7633e−20 9.5584e−22 5.0400e−21

SGO 0 0 0 0

F6 Easom SSOA − 1 − 1 − 1 0

SGO − 1 − 1 − 1 0

F7 Matyas SSOA 1.5111e−29 2.0707e−24 1.542e−25 4.7571e−25

SGO 0 0 0 0

F8 Colville SSOA 8.5561e−21 2.4871e−08 1.4309e−09 4.6907e−09

SGO 4.2541e−11 6.9093e−05 8.4402e−06 1.8988e−05

F9 Zakharov SSOA 1.9954e−23 1.5225e−07 5.2215e−09 2.7772e−08

SGO 0 0 0 0

F10 Schwefel 2.22 SSOA 2.2266e−08 7.1423e−03 5.1849e−04 1.4144e−03

SGO 0 0 0 0

F11 Schwefel 1.2 SSOA 6.6803e−18 3.4907e−04 1.6925e−05 6.6811e−05

SGO 0 0 0 0

F12 Dixon-Price SSOA 1.8308e−01 6.6951e−01 2.2412e−01 1.2107e−01

SGO 3.3801e−04 0.1258 0.0946 0.0731

Table 14 Comparison on SSOA
and SGO on 30 independent
runs on multimodal separable
benchmark-functions

Function no. Function name Algorithms Best Worse Mean Std

F13 Bohachevsky1 SSOA 0 0 0 0

SGO 0 0 0 0

F14 Booth SSOA 1.2622e−29 8.1255e−24 9.5859e−25 1.7996e−24

SGO 0 0 0 0

F15 Michalewicz2 SSOA − 1.8013 − 1.8013 − 1.8013 1.0275e−15

SGO − 1.8013 − 1.8013 − 1.8013 6.8344e−16

F16 Michalewicz5 SSOA − 4.6877 − 3.5563 − 4.3479 3.2785e−01

SGO − 4.6877 − 4.4948 − 4.5862 0.0848

F17 Michalewicz10 SSOA − 9.4806 − 5.9146 − 7.5900 9.9570e−01

SGO − 9.5515 − 8.4770 − 9.0513 0.3087

F18 Rastrigin SSOA 0 7.6657e−06 4.9059e−07 1.5057e−06

SGO 0 0 0 0

rithms. SGO has an excellent performance in exploitation
and convergence then VPL, and it successfully overcomes to
solve all the problemswithin this category. It is clear from the
results that SGO achieves success in finding global optimum
on F1–F4. For F5, F6, and F7, the performance of SGO is
better than VPL.

From Table 18, we find that in all the cases of unimodal
benchmark functions according to the WRS test, the SGO
algorithm shows better performance than the VPL algorithm.
Similarly, comparison on best results obtained by algorithms,
we find that the SGO algorithm gets either the best result
than the VPL algorithm or similar result with the VLP algo-
rithm. From the table, it is evident that the SGO algorithm
outperforms in solving unimodal benchmark functions in
comparison to VPL algorithms.

In Table 19, there is ‘*’ mark in the first rowwith the result
of theVPLalgorithm to say that the resultmaybeputwrongly
as the minimum value of the F8 function is − 12,569.487.
But we get less than that in the paper and hence a confusion
arising on the minimum value. To avoid any conflicts, we
have excluded this result and have put ‘*’ in Table 19. So,
for comparison, we have considered only five multimodal
functions. The multimodal functions are beneficial, while
the exploration capability of the optimization algorithm is
considered. Form Table 19, results show that the SGO algo-
rithm is eligible for solving problemswith challenging search
space. The table shows that SGO has consistently performed
better than VPL algorithms. SGO has an excellent perfor-
mance in exploration and convergence, and it successfully
overcomes to solve all the problems within this category. It
is clear from table results that both SGO and VPL achieve

123

Complex & Intelligent Systems (2021) 7:249–295 269

Table 15 Comparison on SSOA
and SGO on 30 independent
runs on multimodal
nonseparable functions

Function no. Function
name

Algorithms Best Worse Mean Std

F19 Schaffer SSOA 0 9.7159e−03 9.7159e−04 2.9646e−03

SGO 0 0 0 0

F20 Six Hump
Camel
Back

SSOA − 1.03163 − 1.03163 − 1.03163 4.5168e−16

SGO − 1.03163 − 1.03163 − 1.03163 0

F21 Boachevsky2 SSOA 0 0 0 0

SGO 0 0 0 0

F22 Boachevsky3 SSOA 0 0 0 0

SGO 0 0 0 0

F23 Shubert SSOA − 186.73 − 186.73 − 186.73 2.6389e−14

SGO − 186.73 − 186.73 − 186.73 1.6722e−15

F24 Rosenbrock SSOA 3.9637e−19 2.8475e+01 9.4919e−01 5.1988e+00

SGO 25.4955 26.6390 26.1690 0.3605

F25 Griewank SSOA 0 4.1375e−05 3.435e−06 9.6702e−06

SGO 0 0 0 0

F26 Ackley SSOA 2.2418e−10 2.5867e−03 1.3915e−04 4.8513e−04

SGO −
8.8818e−16

−
8.8818e−16

−
8.8818e−16

0

Table 16 Comparison on SSOA
and SGO on 30 independent
runs on CEC 2014
benchmark-functions with 30
dimension

Function no. Function name Algorithms Best Worse Mean Std

F27 CEC1 SSOA 9.1044e+04 1.7503e+06 8.1899e+05 4.0164e+05

SGO 3.7329e+04 3.6134e+05 1.5721e+05 9.9594e+04

F28 CEC2 SSOA 2.1599e+02 2.8185e+04 1.0049e+04 9.8268e+03

SGO 200.0005 635.8838 331.9643 119.1971

F29 CEC4 SSOA 4.0000e+02 5.4414e+02 4.5717e+02 3.9877e+01

SGO 400.0035 463.4008 402.8456 11.5184

F30 CEC17 SSOA 7.0506e+03 6.0131e+04 2.6151e+04 1.5238e+04

SGO 5.9331e+03 8.3743e+04 3.2450e+04 1.9765e+04

F31 CEC23 SSOA 2.500e+03 2.500e+03 2.500e+03 8.4083e−10

SGO 2500 2.6152e+03 2.5576e+03 58.6071

F32 CEC24 SSOA 2.600e+03 2.600e+03 2.600e+03 8.3747e−02

SGO 2600 2600 2600 0

F33 CEC125 SSOA 2.700e+03 2.700e+03 2.700e+03 4.8285e−11

SGO 2700 2700 2700 0

success in finding global optimum on F9 and F1. For F10,
both SGO and VPL get equivalent results. For F12 and F13,
the SGO algorithm finds better results than the VPL algo-
rithm. According to the WRS test from Table 19, we find
that in two out of five cases, SGO algorithm shows better
performance than the VPL algorithm and similar in three
out of five cases with the VPL algorithm. Similarly, com-
parison on best results obtained by algorithms, we get that
the SGO algorithm either gets the best result than the VPL
algorithm or similar result to the VPL algorithm. Hence, we
find that the SGO algorithm shows best performance in solv-

ing multimodal benchmark functions in comparison to VPL
algorithms.

In Table 20, there is ‘*’ mark with the result of the VPL
algorithm to say that there, the result might be put wrongly
as the minimum value of the F15 function is 3.0749e−04.
But we get different values in the paper and hence a confu-
sion arising on minimum value. To avoid any conflicts, we
have excluded this result and have put ‘*’ in Table 20. The
fixed-dimensionalmultimodal functions are designed to have
many local optimal where computation complexity increases
drastically with the problem size. The results reported from

123

270 Complex & Intelligent Systems (2021) 7:249–295

Table 17 Wilcoxon rank test result and comparison result on best value between SSOA and SGO

Function
no.

Wilcoxon
test

Comparison
on best

Function
no.

Wilcoxon
test

Comparison
on best

Function
no.

Wilcoxon
test

Comparison
on best

Function
no.

Wilcoxon
test

Comparison
on best

Function
no.

Wilcoxon
test

Comparison
on best

F1 ≈ Same F5 − Best F13 ≈ Same F19 − Same F27 − Best

F2 − Best F6 ≈ Same F14 − Best F20 ≈ Same F28 − Best

F3 − Best F7 − Best F15 ≈ Same F21 ≈ Same F29 − Same

F4 − Best F8 + Worse F16 − Same F22 ≈ Same F30 + Best

F9 − Best F17 − Best F23 ≈ Same F31 + Same

F10 − Best F18 − Same F24 + Worse F32 ≈ Same

F11 − Best F25 − Same F33 ≈ Same

F12 − Best F26 − Best

T − 03 S 1 06 S 1 04 S 4 03 S 6 03 S 4

T + 00 B 3 01 B 6 00 B 2 01 B 1 02 B 3

T ≈ 01 W 0 01 W 1 02 W 0 04 W 1 02 W 0

“ −”, “+” “≈” denote that performance of SSOA is worse, better and similar to SGO respectively and same, best, and worse are similar, better and worse solutions of SGO then
SSOA algorithm in term of the best result

Table 18 Result of unimodal benchmark functions

Function no. Algorithms Best Comparison on best result Worse Mean Std WRS test

F1 VPL 0.00e+00 Same 2.34e−130 7.81e−132 4.20e−131 −
SGO 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F2 VPL 1.12e−102 Best 2.85e−89 1.13e−90 5.13e−90 −
SGO 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F3 VPL 1.93e−33 Best 1.53e−02 8.16e−04 2.85e−03 −
SGO 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F4 VPL 0.00e+00 Same 1.63e−28 1.54e−29 3.96e−29 −
SGO 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F5 VPL 2.58e+01 Best 2.67e+01 2.62e+01 2.76e−01 −
SGO 17.8419 21.6899 20.4626 1.0124

F6 VPL 1.82e−05 Best 2.34e−03 4.09e−04 5.33e−04 −
SGO 1.0720e−26 2.9247e−18 1.3337e−19 5.4652e−19

F7 VPL 4.67e−05 Best 4.81e−03 1.93e−03 1.36e−03 −
SGO 1.6238e−07 2.3695e−05 9.9687e−06 7.6441e−06

Total no of the best 05 Total + 00

Total no. of worse 00 Total − 00

Total no. of the same 02 Total ≈ 07

“ −”, “+”,“≈” denote performance of VPL is worse, better and similar to SGO respectively and same, best, and worse are the similar, better, and
worse solutions of SGO then SSA algorithm in terms of the best result

Table 20 shows that the SGO algorithm achieves success in
finding global optimumon F14, F15, F16, F17, F18, and F19.

In contrast, VPL reaches optimal solution only for F14,
F16, F17, and F18. For shekel family, i.e., for F21, F22 and
F23 VPL finds better result than SGO algorithm. From Table
20, according to theWRS, we find that out of ten cases, SGO
algorithm shows better performance in three cases and sim-
ilar performance in four cases than the VPL algorithm In
contrast, the VPL algorithm shows its better performance in
three cases out of ten than theSGOalgorithm.Similarly, com-
parison on best results obtained by algorithms, we find that
the SGO algorithm either gets the best result than the VPL

algorithm or similar result with the VLP algorithm except for
two cases. Hence, we can see that the VPL algorithm shows
best performance in solving fixed dimensional multimodal
benchmark functions in comparison to SGO algorithms.

Experiment 5

In this experiment, SELO (socio evolution and learning
optimization) [61] algorithm is comparedwith the SGOalgo-
rithm. For comparison of the performance of algorithms, a
set of 50 benchmark functions are considered. These set of
test functions include problems of varying complexity levels,

123

Complex & Intelligent Systems (2021) 7:249–295 271

Table 19 Result of multimodal benchmark functions

Function no. Algorithms Best Comparison on best result Worse Mean Std WRS test

F8 VPL − 1.19e+112* – − 7.38e+90* − 4.68e+110* 2.15e+111* –

SGO − 1.1385e+04 − 7.7527e+03 − 9.0646e+03 1.0705e+03

F9 VPL 0.00e+00 Same 0.00e+00 0.00e+00 0.00e+00 ≈
SGO 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F10 VPL 8.88e−16 Same 8.88e−16 8.88e−16 9.86e−32 ≈
SGO 8.8818e−16 8.8818e−16 8.8818e−16 0.00e+00

F11 VPL 0.00e+00 Same 0.00e+00 0.00e+00 0.00e+00 ≈
SGO 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F12 VPL 1.11e−06 Best 6.56e−05 2.58e−05 1.74e−05 −
SGO 3.6451e−26 5.6154e−23 7.3910e−24 1.3826e−23

F13 VPL 2.63e−05 Best 2.31e−03 4.18e−04 4.84e−04 −
SGO 2.5068e−25 0.0110 6.8145e−12 2.2671e−08

Total no of the best 02 Total + 01

Total no. of worse 01 Total − 02

Total no. of the same 03 Total ≈ 03

“ −”, “+”, “≈” denote performance of VPL is worse, better, and similar to SGO respectively and same, best and worse are the similar, better and
worse solution of SGO then VPL algorithm in term of the best result

Table 20 Results on fixed-dimensional benchmark functions

Function no. Algorithms Best Comparison on best result Worse Mean Std WRS test

F14 VPL 9.98e−01 Same 9.98e−01 9.98e−01 2.32e−13 ≈
SGO 0.9980 0.9980 0.9980 5,3418e−15

F15 VPL 2.45e−05* Best 1.82e−03 1.25e−03 3.08e−04 −
SGO 3.0749e−04 3.0749e−04 3.0749e−04 1.2533e−19

F16 VPL − 1.03e+00 Same − 1.03e+00 − 1.03e+00 2.56e−06 ≈
SGO − 1.0316 − 1.0316 − 1.0316 6.7752e−16

F17 VPL 3.98e−01 Same 3.98e−01 3.98e−01 2.69e−06 ≈
SGO 0.3979 0.3979 0.3979 4.1563e−15

F18 VPL 3.00e+00 Same 3.00e+00 3.00e+00 7.58e−05 ≈
SGO 3.0000 3.0000 3.0000 2.1377e−15

F19 VPL − 3.85e+00 Best − 3.49e+00 − 3.77e+00 9.37e−02 −
SGO − 3.8628 − 3.8628 − 3.8628 2.7101e−15

F20 VPL − 3.32e+00 Same − 3.20e+00 − 3.28e+00 5.41e−02 −
SGO − 3.3220 − 3.2031 − 3.3061 0.0411

F21 VPL − 1.02e+01 Same − 5.06e+00 − 9.30e+00 1.90e+00 +

SGO − 10.1532 − 5.0552 − 8.9012 2.0231

F22 VPL − 1.04e+01 Same − 5.09e+00 − 8.99e+00 2.35e+00 +

SGO − 10.4029 − 5.2648 − 8.2761 2.9251

F23 VPL − 1.05e+01 Same − 3.57e+00 − 9.40e+00 2.28e+00 +

SGO − 10.5364 − 5.3087 − 7.0231 2.4619

Total no of the best 02 Total + 03

Total no. of worse 00 Total − 03

Total no. of same 08 Total ≈ 04

“−”, “+”, “≈” denote performance of VPL is worse, better and similar to SGO respectively and same, best and worse are the similar, better and
worse solution of SGO then VPL algorithm in term of the best result

123

272 Complex & Intelligent Systems (2021) 7:249–295

such as unimodal, multimodal, separable, and non-separable
[132–134]. All benchmark test problems are divided into
four categories, such as unimodal separable (US), multi-
modal separable (MS), unimodal non-separable (UN), and
multimodal non-separable (MN). Also, the range, formula-
tion, characteristics, and dimensions of these problems and
listed in paper [61].

We have directly derived results of the SELO algorithm
from [61], and for results of the SGO algorithm, the codes
are implemented in MATLAB 2016a. Experiments are con-
ducted on an Intel-Core-i5, 8 GBmemory laptop inWindows
10 environment.

According to parameter settings of the SELO algorithm
in its respective paper [61], the common control parameter,
such as a maximum number of iterations, is 70,000. In this
experiment for each function, the SGO algorithm is tested
twice. So, in the first test, we have considered pop_size 50,
and the maximum iteration is 250. Hence Max_FEs is (2
× 50 × 250 � 25,000), and in the second test, we have
found pop_size is 20, and the maximum iteration is 50, so
maximum Max_FEs is (2 × 20 × 50 � 2,000). The other
specific parameters for each algorithm are given below.

• SGO setting: For SGO, there is only one parameter C
called a self-introspection factor. The value of C is empir-
ically set to 0.2.

• For SELO initial number of families createdM � 03, num-
ber of parents in each family p� 02, number of children in
each family � 03, parent_follow_probability rp� 0.999,
follow_prob_ownparent� 0.999,peer_follow_probability
rk � 0.1, follow_prob_factor _otherkids � 0.9991 and
sampling interval reduction factor r � 0.95000 to 0.99995.
Parameters are set as reported by authors in paper [61].

For each benchmark-function, algorithms are run 30 times
with different randomly generated populations. Statistical
results in terms of mean value, corresponding standard devi-
ation, and best value are reported in Table 21. The table
reports the results corresponding to SGO(1) with (2×50×
250) Max_FEs and results corresponding to SGO(2) with
(2×20×50) Max_FEs. In this experiment values below 1
E−16 are considered to be zero. For every benchmark func-
tion, the best results are boldfaced.

To obtain statistically sound conclusions, the WRS test at
a 0.05 significance level is conducted on experimental results
of Table 21 for both SGO(1) and SGO(2) and reported in the
same table. The last three rows of the table summarize results.

Discussion

AccordingTable 21, SGOalgorithm achieves success in find-
ing global optimum on F1, F5, F11, F14–F18, F25, F30, F33,
F35, F36, F37, F38, F42–F47, F50 functions and near-global

optimum for functions F2, F19, F20, F21, F26. For function
F3, F4, F6, F12, F13, F14, F19, F21, F22, F27, F28, F29,
F36, F37, F48, F49, SGO finds better results than SELO
algorithm. For F23, F24, F31, F34, F39, F40, F41 function
SELO finds better results than SGO algorithm.

In Table 21, there is ‘*’ mark with the result of the
SELO algorithm for the function F14 and F26 to say that
there the result might be put wrongly as the minimum value
of F14 function is − 1, and minimum value for F26 is
− 1.801303410098554. To avoid any conflicts, we have
excluded this result and have put ‘*’ in Table 21. From Table
21, according to theWRS test, we find that in 19 cases out of
50 cases SGO(1) algorithm shows better performance than
the SELO algorithm and similar to 24 cases out of 50 cases
with the SELO algorithm. In contrast, the SELO algorithm
shows its better performance in 7 cases out of 50 than the
SGO (1) algorithm. Similarly, we find that in 19 cases out of
50 cases SGO (2) algorithm shows better performance than
SELO algorithm and similar with 20 cases out of 50 cases
withSELOalgorithm. In contrast, theSELOalgorithmshows
its better performance in eleven cases out of 50 than the SGO
(2) algorithm.

Hence, we find that the SGO algorithm shows superior
performance than the SELO algorithm in this experiment.
However, max_FEs for SGO is much less than max_FEs for
SELO algorithm, i.e. (25,000 FEs in SGO(1)<70,000 itera-
tions) and (2000 FEs in SGO(2)<70,000 iterations). So we
can claim that the SGO algorithm outperformed than SELO
algorithm in Experiment 5.

Experiment 6

In this experiment, HHO (Harris hawks optimization) [31],
SSA (Salp swarm algorithm) [27], GOA (grasshopper opti-
misation algorithm) [28] and SGO (Social Group optimiza-
tion) [54] algorithm are compared together. For comparison
of the performance of algorithms, a set of 29 benchmark func-
tions are considered. Details of these benchmark functions
are given in experiment 1.

We have directly derived results of the HHO algo-
rithm from [31], and the results of the SGO algorithm,
SSA algorithm, and GOA algorithm, the codes are imple-
mented in MATLAB 2016a. The source code for the SSA
algorithm and GOA algorithm is taken from https://www.
alimirjalili.com/SSA.html and https://www.alimirjalili.com/
GOA.html, respectively. Experiments are conducted on an
Intel-Core−i5, 8 GB memory laptop in Windows 10 envi-
ronment.

According to parameter settings of the HHO algorithm
in its respective paper [31], the common control parameter,
such as amaximumnumber of iterations is 500, and Pop_size
is 30. So, for the GOA algorithm and SSA algorithm, the
maximum number of iteration and pop_size is set to 500

123

https://www.alimirjalili.com/SSA.html
https://www.alimirjalili.com/GOA.html

Complex & Intelligent Systems (2021) 7:249–295 273

Table 21 Comparison on SELO and SGO on 30 repetitions

Fun no. Function name Algorithms Mean WRS test Std Best

F1 Foxholes SELO 0.9980038538690870 0.0000013769725269 0.9980038383022720

SGO(1) 0.998003837794450 ≈ 0 0.998003837794450

SGO(2) 0.998003837794450 ≈ 0 0.998003837794450

F2 Goldstein-Price SELO 3.0013971187248700 0.0018936009191261 3.0000021202023800

SGO(1) 2.999999999999922 ≈ 0 2.999999999999922

SGO(2) 2.999999999999932 ≈ 0 2.999999999999922

F3 Penalized SELO 0.2899597890213580 0.0159272187796787 0.2497905224307240

SGO(1) 6.626245443150890e−08 − 7.52597822238106e−08 3.058821148321699e−09

SGO(2) 0.010200028675921 − 0.009202450188521 0.001628725501707

F4 Penalizd2 SELO 2.3720510573781100 0.1531241868389090 2.0664368584658500

SGO(1) 2.877561733141524e−06 − 5.85184409308598e−06 7.490617403906734e−08

SGO(2) 0.085954598316699 − 0.054697463554651 0.014253156952674

F5 Ackley SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F6 Beale SELO 0.0000997928359263 0.0001311815541321 0.0000007530509495

SGO(1) 4.368615398517635e−13 − 5.28892784615697e−13 0

SGO(2) 1.895031504568669e−06 − 2.60630701264704e−06 1.104986488459038e−08

F7 Bonachevsky1 SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

SGO(2) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

F8 Bonachevsky2 SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

SGO(2) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

F9 Bonachevsky3 SELO 0.0000000000000000 0.0000000000000001 0.0000000000000000

SGO(1) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

SGO(2) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

F10 Booth SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

SGO(2) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

F11 Branin SELO 0.3978943993817670 0.0003536060523484 0.3978822494361650

SGO(1) 0.397887357729738 ≈ 0 0.397887357729738

SGO(2) 0.397887357747411 ≈ 5.5627150160592e−11 0.397887357729738

F12 Colville SELO 3.6688019971758100 1.7577708967227600 0.8388908577815620

SGO(1) 1.507864423649453e−04 ≈ 2.96207622896498e−04 5.829850050174075e−10

SGO(2) 0.882361880633636 ≈ 1.387258853940873 1.154167980463728e−04

F13 Dixon-Price SELO 0.9737369841168760 0.0054869670667257 0.9541730938494050

SGO(1) 0.666666670526110 − 5.3066451465398e−09 0.666666666666667

SGO(2) 0.676421575540618 − 0.003921661696013 0.671115588054493

F14 Easom SELO 0.0000000000000000* 0.1083854312160620 0.5936514558196160*

SGO(1) − 1 − 0 − 1

SGO(2) − 1 − 0 − 1

F15 Fletcher SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

SGO(2) 2.150797382901120e−06 + 7.05840633570035e−05 3.013791380954771e−09

F16 Fletcher SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

SGO(2) 2.467632725158199e−05 + 5.2319588043272e−04 2.980057177690114e−09

F17 Fletcher SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0.0000000000000000 ≈ 0.0000000000000000 0.0000000000000000

123

274 Complex & Intelligent Systems (2021) 7:249–295

Table 21 continued

Fun no. Function name Algorithms Mean WRS test Std Best

SGO(2) 3.080801090891568e−05 + 6.0194808128832e−05 0.274919045293553e−09

F18 Griewank SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F19 Hartman3 SELO − 2.2922815000937700 0.5795350381767260 − 3.5841184056629400

SGO(1) − 3.862782147820754 − 0 − 3.862782147820756

SGO(2) − 3.862782147820719 − 6.5228542918761e−14 − 3.862782147820755

F20 Hartman6 SELO − 1.1719158908829300 0.0003690446342091 − 1.1727699585993300

SGO(1) − 3.322368011415514 − 0 − 3.322368011415516

SGO(2) − 3.322364207472817 − 0.026555990240542 − 3.322367990993992

F21 Kowalik SELO 0.0003493601571991 0.0000226057336871 0.0003226283751593

SGO(1) 3.076983923252769e−04 − 5.61846636883800e−07 3.074859878057995e−04

SGO(2) 3.077095661972494e−04 − 1.0500275462894e−04 3.076322880214414e−04

F22 Langermann2 SELO − 1.0835400071766800 0.5277882902242550 − 2.1933014645645000

SGO(1) − 1.811847812568286 − 0.005275898770057 − 1.816046503083688

SGO(2) − 1.805545479911096 − 0.043450476166699 − 1.816031587779646

F23 Langermann5 SELO − 1.4999998390866700 0.0000000818646069 − 1.4999999590992100

SGO(1) − 1.0966771227191070 + 0.169499381875222 − 1.096711632260348

SGO(2) − 1.096643509059383 + 0.252772872708808 − 1.096671357897672

F24 Langermann10 SELO − 1.4999991427332700 0.0000003717669841 − 1.4999999303979900

SGO(1) − 0.758576555648690 + 0.298898483760396 − 1.096671262010903

SGO(2) − 0.336386278772926 + 0.222342169689975 − 1.096613119161391

F25 Matyas SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F26 Michalewicz2 SELO − 1.8166465888521900* 0.0072804985619476 − 1.8106292157333700*

SGO(1) − 1.801303410098554 − 6.83438873551149e−16 − 1.801303410098554

SGO(2) − 1.801303410098554 − 9.42055475210266e−16 − 1.801303410098554

F27 Michalewicz5 SELO − 3.3591408962129900 0.2009584117455920 − 3.9631157953194900

SGO(1) − 4.630088626421673 − 0.065864489928322 − 4.687658179088150

SGO(2) − 4.470327732745007 − 0.185850086498683 − 4.687327806500385

F28 Michalewicz10 SELO − 3.9793838974626000 0.0005104314209355 − 3.9806353395021300

SGO(1) − 9.006441111102800 − 0.311393097467809 − 9.443832461708885

SGO(2) − 9.000011111102800 − 0.216734109908823 − 9.22441111102800

F29 Perm SELO 2.0169277899221400 1.2374893392409200 0.3208703882956150

SGO(1) 0.118539980853471 − 0.177190100467076 8.561870933468390e−04

SGO(2) 1.561978679351149 − 1.880078781358827 0.100091999152719

F30 Powell SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F31 Powersum SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0.006946315911962 + 0.007668016054973 2.606821962241941e−04

SGO(2) 0.098635720687768 + 0.084418253336401 0.010937757009189

F32 Quartic SELO 0.0000989055208389 0.0000521772789680 0.0000104209894311

SGO(1) 2.4890e−05 ≈ 1.0695e−05 4.0050e−06

SGO(2) 5.600438682972288e−04 ≈ 3.86799368671367e−04 7.704746295587896e−05

F33 Rastrigin SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F34 Rosenbrock SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 25.035766221298609 + 0.611250805204646 23.907706666327510

123

Complex & Intelligent Systems (2021) 7:249–295 275

Table 21 continued

Fun no. Function name Algorithms Mean WRS test Std Best

SGO(2) 28.429285971794421 + 0.148799583491346 28.038832676808092

F35 Schaffer SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0.002428978248610 + 0.004316407618997 0

F36 Schwefel SELO − 0.3402784042291390 3.2212919091274600 − 0.0325083488969540

SGO(1) −
8.461065358958511e+03

− 1.51802365024271e+03 −
1.114791885433872e+04

SGO(2) −
5.205982653292700e+03

− 1.06445694628382e+03 −
8.685216618435348e+03

F37 Schwefel 1.2 SELO 0.0000000000000009 0.0000000000000001 0.0000000000000007

SGO(1) 0 − 0 0

SGO(2) 0 − 0 0

F38 Schwefel 2.22 SELO 0.000000000000000 0.000000000000000 0.000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F39 Shekel10 SELO − 10.536281667618100 0.0000481237097736 − 10.5363928369535000

SGO(1) − 8.128589453290765 + 3.74659045343333e−04 − 10.5363989876543000

SGO(2) − 7.893427865009119 + 3.39874357819912 − 9.06579934232111154

F40 Shekel5 SELO − 10.1531669871808000 0.0000172333322304 − 10.1531973132210000

SGO(1) − 7.05529877773245551 + 9.03368988843222e−03 −
10.15329067674322995

SGO(2) − 5.98564390999007122 + 3.9067544443900010 − 8.95647808884321001

F41 Shekel17 SELO − 10.4028748144797000 0.0000478046191696 − 10.4029869270437000

SGO(1) − 8.2648567899765433 + 0.970478900654556 − 10.402989342189900

SGO(2) − 6.98877811908877666 + 3.897656789000011 − 9.9009015643335678

F42 Shubert SELO −
186.7153981691330000

0.0190762312882078 −
186.7363874875390000

SGO(1) −
1.867309088310239e+02

− 2.35095908427784e−14 −
1.867309088310239e+02

SGO(2) −
1.867309025071344e+02

− 2.79033681398514e−05 −
1.867309088310239e+02

F43 Six ump camelback SELO − 1.0303924506027700 0.0025133845110030 − 1.0314918740874000

SGO(1) − 1.031628453489878 − 1.4408156546143e−16 − 1.031628453489878

SGO(2) − 1.031628453489878 − 1.44081565461429e−16 − 1.031628453489878

F44 Sphere2 SELO 0.000000000000000 0.000000000000000 0.000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F45 Step2 SELO 0.0000000000000010 0.0000000000000001 0.0000000000000006

SGO(1) 0 − 0 0

SGO(2) 0 − 0 0

F46 Stepint SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F47 Sumsquares SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

F48 Trid6 SELO − 46.672022811734100 1.1721159591339900 − 48.933141750726300

SGO(1) − 50.000000000000128 − 2.3509590842779e−14 − 50.000000000000171

SGO(2) − 49.271240785282032 − 0.976855025960445 − 49.999991413401290

F49 Trid10 SELO − 162.571266865506000 − 162.571266865506000 − 162.922114827822000

SGO(1) −
2.099999999933476e+02

− 1.2523636396815e−08 −
2.100000000000009e+02

123

276 Complex & Intelligent Systems (2021) 7:249–295

Table 21 continued

Fun no. Function name Algorithms Mean WRS test Std Best

SGO(2) −
2.021218477684638e+02

− 1.27911440793196007 −
2.04763477684638e+02

F50 Zakharov SELO 0.0000000000000000 0.0000000000000000 0.0000000000000000

SGO(1) 0 ≈ 0 0

SGO(2) 0 ≈ 0 0

Total + for SGO(1) 07 Total + for SGO(2) 11

Total − for SGO(1) 19 Total − for SGO(2) 19

Total ≈ for SGO(1) 24 Total ≈ for SGO(2) 20

“−”, “+”, “≈” denote performance of SELO is worse, better and similar to SGO respectively

and 30, respectively. For the SGO algorithm, the maximum
number iteration is set to 250.and pop_size is set 30. Hence
max_FEs for SGO (2×30×250) are the same with other
algorithms. The other specific parameters for each algorithm
are given below.

• SGO setting: For SGO, there is only one parameter C
called a self-introspection factor. The value of C is empir-
ically set 0.2.

• SSA settings: For SSA, there is a parameter c1 � 2 ×
e−(4L)

2

, where L � max_iteration � 500 as in [27]
• GOA settings: For GOA, cmax=1, cmin �0.00004 for find-
ing value of c � cmax − l × ((cmax − cmin)/Max_iter),
Max_iter � 500 as in [28]

• HHO setting: referred to paper [31].

In this experiment, all algorithms are utilized to tackle
scalable unimodal and multimodal F1–F13 test cases with
30, 100, 500, and 1000 dimensions. For each benchmark-
function, algorithms are run 30 times with different ran-
domly generated populations. Statistical results in terms of
mean value, corresponding standard-deviation are reported
in tables. Table 22 reports the result for 30 dimensions. Table
23 reports the result for 100 dimensions. Table 24 reports the
result for 500 dimensions. Table 25 reports the result for 1000
dimensions, and Table 26 reports the result for fixed dimen-
sional multimodal and composite benchmark functions. For
every benchmark function, the best results are boldfaced.

To obtain statistically sound conclusions, the WRS test at
a 0.05 significance level is conducted on experimental results
of Tables 22, 23, 24, 25 and 26 and reported in their respective
tables. The last three rows of each respective table summarize
experimental results.

Discussion

According to Tables 22, 23, 24 and 25, SGO has gained the
best performance and consistently performedbetter thanSSA
and GOA algorithms. SGO has an excellent performance in
exploitation as well as an exploration than SSA and GOA

algorithms. It is clear from the results that SGO achieves
success in finding global optimum on F1, F3, F9, and F11.
HHO algorithm makes success in finding global optimum
for the function F9 and F11. For F5, F6, F8, F12, F13, the
performance of HHO is better than SSA, GOA, and SGO,
whereas, for F1, F2, F3, F4, F7, the performance of SGO is
better than HHO, SSA, and GOA. For F19, F10, and F11,
both HHO and SGO find equivalent solutions.

From Table 22, according to the WRS test, we find that
the SGO algorithm performs superior to the HHO algo-
rithm in five cases, equivalent with four cases out of 13 in
30-dimensional functions. Similarly, the SGO algorithm per-
forms superior to the SSA algorithm in 12 cases and from
the GOA algorithm in 13 cases out of 13. In contrast, the
HHO algorithm performs superior to the SGO algorithm
in four cases, and the SSA algorithm performs superior to
SGO in one case. Hence it is seen that the SGO algorithm is
outperforming than HHO, SSA, and GOA algorithm in solv-
ing 30-dimensional benchmark functions. From Table 23,
according to the WRS test, we find that the SGO algorithm
performs superior to the HHO algorithm in five cases, equiv-
alent with three cases out of 13 in 100-dimensional functions.

Similarly, the SGO algorithm performs superior to the
SSA algorithm in 13 cases and from the GOA algorithm in
13 cases out of 13. In contrast, the HHO algorithm performs
superior to the SGO algorithm in five cases. Hence it is seen
that both SGO and HHO algorithms are performing equiv-
alent performance, and both SGO and HHO algorithms are
outperforming than SSA and GOA algorithm in solving 100-
dimensional benchmark functions. FromTable 24, according
to the WRS test, we find that the SGO algorithm performs
superior to the HHO algorithm in five cases, equivalent with
three cases out of 13 in 500-dimensional functions. Similarly,
the SGO algorithm performs superior to the SSA algorithm
in 13 cases and from the GOA algorithm in 13 cases out
of 13. In contrast, the HHO algorithm performs superior to
the SGO algorithm in five cases. Hence it is seen that the
SGO algorithm is performing equivalent performance with
the HHO algorithm and outperforming than SSA and GOA
algorithm in solving 500-dimensional benchmark functions.

123

Complex & Intelligent Systems (2021) 7:249–295 277

Table 22 Comparison result on
HHO, SSA, GOA, and SGO on
3O repetitions on 30 dimension

Functions HHO SSA GOA SGO

Results WRS test Results WRS test Results WRS test Results

F1

Mean 3.95e−97 − 2.6663e−07 − 32.1323 − 0

Std 1.72e−96 3.3145e−07 25.0649 0

F2

Mean 1.56e−51 − 2.7193 − 9.6642 − 4.1502e−173

Std 6.98e−51 1.9372 4.7732 0

F3

Mean 1.92e−6 − 1.3772e+03 − 2.7763e+03 − 0

Std 1.05e−62 663.1158 979.5025 0

F4

Mean 1.02e−47 − 11.3980 − 13.3983 − 1.5744e−173

Std 5.01e−47 3.1804 1.8694 0

F5

Mean 1.32e−02 + 311.3904 − 4.6817e+03 − 26.4532

Std 1.87e−02 469.2823 2.9084e+03 0.5254

F6

Mean 1.15e−04 ≈ 2.1058e−07 + 26.9521 − 1.5225e−04

Std 1.56e−04 3.8546e−07 12.3120 0.0081

F7

Mean 1.40e−04 − 0.1738 − 0.0405 − 7.5202e−05

Std 1.07e−04 0.0768 0.0106 5.2364e−05

F8

Mean − 1.25e+04 + −
7.4013e+03

− −
7.3496e+03

− −
8.4145e+03

Std 1.47e+02 639.3972 479.3866 1.0912e+03

F9

Mean 0.00e+00 ≈ 54.2915 − 81.0099 − 0

Std 0.00e+00 22.3942 22.1101 0

F10

Mean 8.88e−16 ≈ 2.4587 − 4.6578 − 8.8818e−16

Std 4.01e−31 0.8542 0.7395 0

F11

Mean 0.00e+00 ≈ 0.0195 − 1.0406 − 0

Std 0.00e+00 0.0167 0.1348 0

F12

Mean 2.08e−06 + 6.1578 − 7.4999 − 9.3737e−05

Std 1.19e−05 2.2550 3.3588 2.1044e−04

F13

Mean 1.57e−04 + 12.0079 − 49.1074 − 3.3322e−04

Std 2.15e−04 15.4045 14.0232 2.3423e−03

Total + 04 01 00

Total − 05 12 13

Total ≈ 04 00 00

“−”, “+”, “≈” denote that performance of HHO, SSA and GOA are worse, better and similar to SGO
respectively

123

278 Complex & Intelligent Systems (2021) 7:249–295

Table 23 Comparison result on
HHO, SSA, GOA and SGO on
3O repetitions on 100 dimension

Functions HHO SSA GOA SGO

Results WRS test results WRS test Results WRS test Results

F1

Mean 1.91e−94 − 1.3120e+03 − 1.1420e+04 − 0

Std 8.66e−94 368.2236 1.2257e+03 0

F2

Mean 9.98e−52 − 46.1574 − 91.9275 − 6.1579e−173

Std 2.66e−51 7.0802 9.9197 0

F3

Mean 1.84e−59 − 5.4964e+04 − 6.2409e+04 − 0

Std 1.01e−58 3.0366e+04 1.0232e+04 0

F4

Mean 8.76e−47 − 28.6121 − 30.7976 − 1.7327e−173

Std 4.79e−46 3.1910 3.7461 0

F5

Mean 2.36e−02 + 1.5948e+05 − 3.9104e+06 − 96.7537

Std 2.99e−02 7.3288e+04 1.1528e+06 0.4560

F6

Mean 5.12e−04 + 1.4014e+03 − 1.1686e+04 − 0.0285

Std 6.77e−04 421.3000 1.5398e+03 0.1388

F7

Mean 1.85e−04 − 2.6735 − 0.6814 − 7.1811e−05

Std 4.06e−04 0.5435 0.1922 5.0044e−05

F8

Mean − 4.19e+04 + −
2.1568e+04

− −
1.7308e+04

− −
2.4282e+04

Std 2.82e+00 1.5894e+03 2.4081e+03 4.7056e+03

F9

Mean 0.00e+00 ≈ 232.0861 − 404.9512 − 0

Std 0.00e+00 43.8589 39.2338 0

F10

Mean 8.88e−16 ≈ 9.9830 − 13.3441 − 8.8818e−16

Std 4.01e−31 1.0140 0.7088 0

F11

Mean 0.00e+00 ≈ 15.0274 − 101.8061 − 0

Std 0.00e+00 4.5248 10.9556 0

F12

Mean 4.23e−06 + 33.1875 − 7.6639e+03 − 2.2716e−04

Std 5.25e−06 11.1185 8.7399e+03 0.0018

F13

Mean 9.13e−05 + 7.9763e+03 − 2.6647e+06 − 0.0230

Std 1.26e−04 1.3000e+04 2.1350e+06 1.7442

Total + 05 00 00

Total − 05 13 13

Total ≈ 03 00 00

“−”, “+”, “≈” denote that performance of HHO, SSA and GOA are worse, better and similar to SGO
respectively

123

Complex & Intelligent Systems (2021) 7:249–295 279

Table 24 Comparison result on
HHO, SSA, GOA and SGO on
3O repetitions on 500 dimension

Functions HHO SSA GOA SGO

Results WRS test Results WRS test Results WRS test Results

F1

Mean 1.46e−92 − 9.4569e+04 − 8.7478e+04 − 0

Std 8.01e−92 6.2059e+03 4.3559e+03 0

F2

Mean 7.87e−49 − 530.3178 − 500.1891 − 4.2194e−172

Std 3.11e−48 19.8194 10.6519 0

F3

Mean 6.54e−37 − 1.4517e+06 − 4.5669e+14 − 0

Std 3.58e−36 6.2641e+05 2.9900e+14 0

F4

Mean 1.29e−47 − 40.1866 − 32.9244 − 1.7939e−173

Std 4.11e−47 2.7635 41.9023 0

F5

Mean 3.10e−01 + 3.6217e+07 − 7.6774e+07 − 493.9169

Std 3.73e−01 4.2649e+06 6.9429e+06 0.3720

F6

Mean 2.94e−03 + 9.3480e+04 − 1.3352e+05 − 4.6227

Std 3.98e−03 7.0249e+03 8.7871e+03 2.4453

F7

Mean 2.51e−04 − 276.0543 − 117.6845 − 9.3814e−05

Std 2.43e−04 45.7197 267.8912 5.8056e−05

F8

Mean − 2.09e+05 + −
5.9853e+04

− −
4.7092e+04

− −
8.2593e+04

Std 2.84e+01 4.2282e+03 2.9012e+04 2.2958e+04

F9

Mean 0.00e+00 ≈ 3.1838e+03 − 4.8912e+03 − 0

Std 0.00e+00 119.4264 2.7615e+03 0

F10

Mean 8.88e−16 ≈ 14.2634 − 891.2316 − 8.8818e−16

Std 4.01e−31 0.2265 262.5149 0

F11

Mean 0.00e+00 ≈ 854.4929 − 13.0011 − 0

Std 0.00e+00 66.3466 0.9623 0

F12

Mean 1.41e−06 + 1.3346e+06 − 1.8308e+07 − 8.5429e−04

Std 1.48e−06 8.0189e+05 4.5409e+06 0.0113

F13

Mean 3.44e−04 + 3.6253e+07 − 9.6599e+07 0.3790

Std 4.75e−04 9.4885e+06 2.9012e+06 19.2315

Total + 05 00 00

Total − 05 13 13

Total ≈ 03 00 00

“−”, “+” and “≈” denote that performance of HHO, SSA, and GOA are worse, better and similar to SGO
respectively

123

280 Complex & Intelligent Systems (2021) 7:249–295

Table 25 Comparison result on
HHO, SSA, GOA, and SGO on
3O repetitions on 1000
dimension

Functions HHO SSA GOA SGO

Results WRS test Results WRS test Results WRS test Results

F1

Mean 1.06e−94 − 2.3895e+05 − 4.6729e+05 − 0

Std 4.97e−94 1.0130e+04 3.9023e+04 0

F2

Mean 2.52e−50 − 1.1980e+03 − 978.7342 − 8.8515e−172

Std 5.02e−50 25.9659 23.3419 0

F3

Mean 1.79e−17 − 5.5065e+06 − 4.8911e+16 − 0

Std 9.81e−17 2.1001e+06 2.0211e+16 0

F4

Mean 1.43e−46 − 46.0339 − 61.5621 − 1.8015e−173

Std 7.74e−46 2.2454 10.9793 0

F5

Mean 5.73e−01 + 1.2061e+08 − 2.0374e+08 − 989.8076

Std 1.40e+00 1.0872e+07 1.8934e+07 0.9994

F6

Mean 3.61e−03 + 2.2885e+05 − 2.9168e+05 − 10.8339

Std 5.38e−03 9.0680e+03 5.8715e+03 6.4262

F7

Mean 1.41e−04 − 1.7908e+03 − 680.8912 − 7.5620e−05

Std 1.63e−04 178.7950 92.1475 4.7538e−05

F8

Mean − 4.19e+05 + −
8.7049e+04

− −
6.4190e+04

− −
1.5102e+05

Std 1.03e+02 9.3834e+03 3.5412e+03 4.7114e+04

F9

Mean 0.00e+00 ≈ 7.5972e+03 − 7.0342e+03 − 0

Std 0.00e+00 205.0048 3.7534e+03 0

F10

Mean 8.88e−16 ≈ 14.5380 − 3.6790e+03 − 8.8818e−16

Std 4.01e−31 0.1588 1.1832e+03 0

F11

Mean 0.00e+00 ≈ 2.1056e+03 − 13.9612 − 0

Std 0.00e+00 102.3777 0.4812 0

F12

Mean 1.02e−06 + 1.1915e+07 − 3.8182e+07 − 0.0022

Std 1.16e−06 3.2836e+06 1.9756e+07 0.0078

F13

Mean 8.41e−04 + 1.4035e+08 − 3.5707e+08 − 2.0727

Std 8.41e−04 1.9003e+07 6.4523e+07 42.0966

Total + 05 00 00

Total − 05 13 13

Total ≈ 03 00 00

“−”, “+” and “≈” denote that performance of HHO, SSA, and GOA are worse, better and similar to SGO
respectively

123

Complex & Intelligent Systems (2021) 7:249–295 281

Table 26 Comparison result on
HHO, SSA, GOA and SGO on
3O repetitions on
fixed-dimensional and
composite benchmark functions

Functions HHO SSA GOA SGO

Results WRS test Results WRS test Results WRS test Results

F14

Mean 9.98e−01 ≈ 1.0643 − 0.9980 ≈ 0.9980

Std 9.23e−01 0.2567 1.5701e−16 3.4303e−08

F15

Mean 3.10e−04 ≈ 9.1497e−04 ≈ 0.0086 − 3.1049e−04

Std 1.97e−04 2.8876e−04 0.0101 2.3310e−05

F16

Mean − 1.03e+00 ≈ − 1.0316 ≈ − 1.0316 ≈ − 1.0316

Std 6.78e−16 2.4267e−14 1.5289e−13 6.7752e−16

F17

Mean 3.98e−01 ≈ 0.3979 ≈ 0.3979 ≈ 0.3979

Std 2.54e−06 2.6978e−04 3.8926e−13 4.5168e−16

F18

Mean 3.00e+00 ≈ 3.0000 ≈ 3.0000 ≈ 3.0000

Std 0.00e+00 2.2603e−13 3.2446e−12 1.5003e−15

F19

Mean − 3.86e+00 ≈ − 3.8628 ≈ − 3.8589 − − 3.8628

Std 2.44e−03 2.3584e−11 0.0084 2.2584e−16

F20

Mean − 3.322 ≈ − 3.2222 − − 3.2729 − − 3.3220

Std 0.137406 0.0521 0.0673 0.0363

F21

Mean − 10.1451 + − 6.8073 − − 6.1441 − − 7.0552

Std 0.885673 3.3663 3.7934 9.0336e−03

F22

Mean − 10.4015 + − 7.5677 − − 6.2905 − − 8.2648

Std 1.352375 3.6407 3.8768 0.9704

F23

Mean − 10.5364 + − 8.4837 − − 4.2256 − − 8.1285

Std 0.927655 3.5235 3.5349 3.7465

F24

Mean 396.8256 − 20.0000 + 180.0000 − 56.6667

Std 79.58214 44.7214 148.3240 67.8911

F25

Mean 910 − 35.0843 + 378.5491 − 99.9197

Std 0 43.9729 113.3010 90.4498

F26

Mean 910 − 202.1367 + 342.4062 − 228.5903

Std 0 83.0302 157.5014 46.0290

F27

Mean 910 − 320.4287 + 286.0073 + 457.9925

Std 0 33.0710 139.0947 110.2783

F28

Mean 860.8925 − 25.2016 + 199.6790 − 59.3325

Std 0.651222 41.8286 120.4731 70.9304

123

282 Complex & Intelligent Systems (2021) 7:249–295

Table 26 continued
Functions HHO SSA GOA SGO

Results WRS test Results WRS test Results WRS test Results

F29

Mean 558.9653 − 582.7280 − 206.6856 + 486.6667

Std 5.112352 179.4161 90.5928 73.0297

Total + 03 05 02

Total − 06 06 10

Total ≈ 07 05 04

“−”, “+” and “≈” denote that performance of HHO, SSA, and GOA are worse, better and similar to SGO
respectively

From Table 25, according to Wilcoxon’s rank-sum test, we
find that the SGO algorithm performs superior to the HHO
algorithm in five cases, equivalent with three cases out of 13
in 1000 dimensional functions. Similarly, the SGO algorithm
performs superior to the SSA algorithm in 13 cases and from
the GOA algorithm in 13 cases out of 13, whereas the HHO
algorithm performs superior to the SGO algorithm in five
cases. It is seen that the SGO algorithm is performing equiva-
lent performancewith theHHOalgorithmand outperforming
than SSA and GOA algorithm in solving 1000-dimensional
benchmark functions.

The fixed-dimensional multimodal functions are designed
to have many local optimal where computation complex-
ity increases drastically with the problem size. The results
reported from Table 26, it is clear that the SGO algorithm
achieves success in finding an optimal solution for func-
tions F14, F16, F17, F18, F19, and F20. Similarly, the GOA
algorithm makes success in finding an optimal solution for
functions F14, F16, F17, and F18. SSA algorithm finds suc-
cess for function F16–F19. HHO algorithm finds success for
function F14, F16–F20, F22–F23. For the shekel family, the
HHO algorithm finds superior solutions than SSA,GOA, and
SGO algorithm.

The composite functions are well enough to judge the
ability to escape from local minima of meta-heuristics opti-
mization algorithms. The results from Table 26, it is clear
that the SSA algorithm finds a superior solution for F24,
F25, F26, and F28, and for F27 and F29, GOA finds supe-
rior solution than other algorithms. The performance of the
HHO algorithm for solving composite benchmark functions
is worse than other algorithms.

From Table 26, according to the WRS test, we find that
the SGO algorithm performs superior to the HHO algorithm
in six cases, equivalent with seven cases out of 16 benchmark
functions. Similarly, the SGO algorithm performs superior to
the SSA algorithm in six cases, equivalent with five cases out
of 16 benchmark functions. SGO algorithm performs supe-
rior to the GOA algorithm in ten cases, equivalent with four
cases out of 16 benchmark functions.Whereas theHHOalgo-
rithm performs superior to the SGO algorithm in three cases,

the SSA algorithm performs superior to SGO in five cases,
and the GOA algorithm performs superior to SGO in two
cases. Hence it is seen that the SGO algorithm is outper-
forming performance than HHO, SSA and GOA algorithm
in solving ten fixed dimensional multimodal and six com-
posite benchmark functions.

Experiment 7: on classical engineering problem

In this experiment, we have applied all the algorithms such
as LAPO, GROM, BOA, SSA, VPL, HHO, SELO, SSOA,
GOA, and SGO algorithm for solving classical engineering
problems. Here we have considered six classical engineering
problems. These are.

Tension/compression spring design problem

The objective of this test problem is to minimize the weight
of tension/compression spring shown in Fig. 2 [135, 136].
The optimum design must satisfy constraints on shear stress,
surge frequency, and deflection. There are three design vari-
ables: wire diameter (d), mean coil diameter (D), and many
active coils (N). The formulated optimization problem is
given in Appendix D.

The optimization result of all algorithms for the compres-
sion spring design problem is given in Table 27. The result of
LAPO algorithm is reported from paper [79], for GROM the
result is reported from [80], for BOA the result is reported
from [29], for VPL the result is reported from [60], for HHO
the result is reported from [31], for SSA the result is taken
reported from [27] and result for SGO is found by us. “NA”
stands for an experiment that is not conducted for that algo-
rithm. The best result is represented in boldface. From the
table, we find that the BOA algorithm outperforms than all
other algorithms.

The welded beam design problem

The objective of this test problem is to minimize the fab-
rication cost of the welded beam shown in Fig. 3 [137].

123

Complex & Intelligent Systems (2021) 7:249–295 283

Table 27 Comparison of
tension/compression spring
design problem

Algorithm Optimum variables Optimum weight

d D N

SGO 0.05167575 0.3563976 11.3077598 0.0126652

LAPO 0.0519038638 0.361890902 11.28885 0.01265722

GROM 0.0517271517 0.357630345 11.2361437 0.01265809

BOA 0.051343 0.334871 12.922700 0.0119656

SSOA NA

VPL 0.0501910! 0.331680! 12.834269! 0.0123947!

HHO 0.051796393 0.359305355 11.138859 0.012665443

SELO NA

SSA 0.051207 0.345215 12.004032 0.0126763

GOA NA

Fig. 3 Welded beam design problem: a schematic of the weld; b stress distribution evaluated at the optimum design; c displacement distribution at
the optimum design

Optimization constraints are on shear stress (τ), and bending
stress in the beam (θ), buckling load (Pc), end deflection of
beam (δ). There are four optimization variables: the thick-
ness of the weld (h), length of clamped bar (l), the height
of the bar (t), and thickness of the bar (b). The formulated
optimization problem is given in Appendix D.

The optimization result of all algorithms forWelded beam
design problem is given in Table 28. The result of LAPO
algorithm is reported from paper [79], for GROM the result
is reported from [80], for BOA the result is reported from
[29], for VPL the result is reported from [60], for HHO the
result is reported from [31], for SSA the result is reported
from [27]. The result for SGO is found by us. “NA” stands
for an experiment that is not conducted for that algorithm.
The best result is represented in boldface. From the table,
we find that the SGO algorithm outperforms than all other
algorithms.

Pressure vessel design problem

This problem goal is to minimize the total cost (material,
forming, and welding) of cylindrical pressure vessels shown
in Fig. 4 [25]. Both ends of the vessel are capped while the
head has a hemispherical shape. There are four optimization

variables: the thickness of the shell (Ts), the thickness of the
head (Th), inner radius (R), length of the cylindrical section
without considering head (L). The formulated optimization
problem is given in Appendix D.

The optimization result of algorithms for the pressure ves-
sel design problem is given in Table 29. The result of the
LAPO algorithm is reported from paper [79], for the GROM
the result is reported from [80], for the VPL the result is
reported from [60], for HHO the result is reported from [31]
and result for SGO is foundbyus.A“NA” stand for the exper-
iment is not conducted for that algorithm. The best result is
represented in boldface. From table, we find that the SGO
algorithm outperforms all other algorithms.

Cantilever beam design problem

In this problem, the goal is to minimize the weight of a
cantilever beam with hollow square blocks. There are five
squares of which the first block is fixed, and the fifth one bur-
dens a vertical load, box girders, and lengths of those girders
are design parameters for this problem. This cantilever beam
design is shown in Fig. 5 [78]. The formulated optimization
problem is defined in Appendix D.

123

284 Complex & Intelligent Systems (2021) 7:249–295

Table 28 Comparison of Welded beam design problem

Algorithm Variables Optimum cost

h l t b

SGO 0.21542798 0.21542796 7.41442256 0.21542797 1.5921491

LAPO 0.205528028615 3.394773587424 9.076635213428 0.2055309791245 1.71960676580

GROM 0.205530838237860 3.39469488081047 9.07663928640037 0.20553083824796 1.7196019906343

BOA 0.1736 2.9690 8.7637 0.2188 1.6644

SSOA NA

VPL 0.215235! 6.898945! 8.815033! 0.216253! 2.264711!

HHO 0.204039 3.531061 9.027463 0.206147 1.73199057

SELO NA

SSA 0.2057 3.4714 9.0366 0.2057 1.72491

GOA NA

Fig. 4 Pressure vessel design problem: a schematic of the vessel; b stress distribution evaluated at the optimum design; and c displacement
distribution evaluated at the optimum design

Table 29 Comparison of pressure vessel design problem

Algorithm Optimum variables Optimum cost

Ts Th R L

SGO 1.258846989 0 65.22523267 10.00000000 2611.921927

LAPO 0.786283665 0.39160673845 40.758736322 194.296457539 5916.1935786

GROM 0.778168641372626 0.384649162633450 40.3196187241064 200 5885.33277364205

BOA NA

SSOA NA

VPL 0.815200 0.426500 42.0912541 176.742314 6044.9565

HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259

SELO NA

SSA NA

GOA NA

Fig.5 Cantilever beam design

123

Complex & Intelligent Systems (2021) 7:249–295 285

Table 30 Results for cantilever beam design problem

Algorithm Optimal values for variables Optimum weight

x1 x2 x3 x4 x5

SGO 6.01605811183 5.30964910182 4.4941343030 3.50169590256 2.152122757 1.3365206094

LAPO 6.01243634 5.314870556 4.4959135494 3.4993942765 2.151154796 1.336521415

GROM 6.015401113310 5.30998470907 4.49536712598 3.50063527673 2.152272871848 1.33652066668

BOA NA

SSOA NA

VPL NA

HHO NA

SELO NA

SSA 6.015134526133 5.30930467605 4.4950067163 3.5014262863 2.15278790 1.3399563910

GOA 6.011674 5.31297 4.48307 . 3.50279 2.16333 1.33996

Fig. 6 Gear train design

The optimization result of algorithms for cantilever beam
design problem is given in Table 30. The result of LAPO
algorithm is reported from paper [79], for GROM the result
is reported from [80], for VPL the result is taken from [60],
for SSA the result is reported from [27], for GOA the result is
reported from [28] and result for SGO is found by us. “NA”
stands for the experiment are not conducted for that particular
algorithm. The best result is represented in boldface. From
the Table, we get that the SGO algorithm outperforms than
all other algorithms.

Gear train design problem

The objective of Gear train design problem is to minimize
gear ratio where gear ratio is calculated as by Eq. 1:

Gear ratio � angular velocity of output shaft

angular velocity of input shaft
. (1)

This problem has four parameters. The parameters of this
problem are discrete with an increment size of 1 since they
define teeth of the gears (nA, nB, nC, nD). These constraints
are only limited to the ranges of the variables. This Gear train

design is shown in Fig. 6 [78]. The formulated optimization
problem is defined in Appendix D.

The optimization result of algorithms for the gear train
design problem is given in Table 31. The result of the LAPO
algorithm is reported from paper [79]. For GROM, the result
is reported from [80], for BOA, the result is reported from
[28], the result for SGO is found by us. “NA” stands for the
experiment is not conducted for that particular algorithm.
The best result is represented by boldface. From the table,
we get that all the algorithms perform equally.

Three-bar truss design problem

Here the objective is to design a truss with aminimumweight
that does not violate constraints. A most important issue in
designing truss is constraints that include stress, deflection,
and buckling constraints. Figure 7 [78] shows the structural
parameters of this problem. The formulated design problem
is given in Appendix D. We can see that the objective func-
tion is quite simple, but it is subject to several challenging
constraints. This truss design problems are prevalent in the
literature of meta-heuristics [138, 139]

123

286 Complex & Intelligent Systems (2021) 7:249–295

Table 31 Comparison results for gear train design problem

Algorithm Variables Optimum gear

nA nB nC nD

SGO 43 16 19 49 2.7008571488865e−12

LAPO 49 16 19 43 2.700857E−12

GROM 43 16 19 49 2.7008571E−12

BOA 43 16 19 49 2.7008571E−12

SSOA NA

VPL NA

HHO NA

SELO NA

SSA NA

GOA NA

Fig. 7 Three-bar-truss design

The optimization result of algorithms for the three-bar-
truss design problem is given in Table 32. The result for the
HHO algorithm is reported from paper [31], for SSA, the
result is reported from [27], for GOA, the result is reported
from [28], the result for SGO is found by us. “NA” stands for
the experiment are not conducted for that algorithm. The best
result is represented in boldface. From the Table, we get that
the SGO algorithm outperforms than all other algorithms.

Overall conclusion

This section applies all the algorithms such as LAPO,
GROM, BOA, SSA, VPL, HHO, SELO, SSOA, GOA, and
SGO algorithm for solving benchmark functions as well as
classical engineering problems. From the above experiments,
we conclude that the performance of the SGO algorithm
is worse than other algorithms while solving Rosenbrock’s
benchmark function, shekel family benchmark function, i.e.,
shekel 2, shekel 5, and shekel 7. While solving composite
benchmark functions, SSA (Salp swarm algorithm) is supe-
rior, and the HHO algorithm is worse than other algorithms.
On solving high dimensional and classical engineering prob-
lems, the SGO algorithm is superior to other algorithms.

Conclusion

As we know, meta-heuristic optimization algorithms are
more popular than deterministic search optimization algo-
rithms in solving global optimization problems, and several
optimization algorithms are proposed to solve global opti-
mization problems. The exploration search and exploitation
search are two important factors related to meta-heuristic
optimization methods. These two factors are in contrast with
each other. In otherwords, focusing toomuch on local search,
i.e., exploitation may result in getting stuck in local optimum
points, and too much focusing on global search, i.e., explo-
ration, may cause the low quality of the final best answer.
So an algorithm should be in the form that it can balance
in between and find out an optimal solution to the prob-
lem. Free-Lunch theorem for optimization says that none of
the optimization algorithms can solve all optimization prob-
lems and makes this area of research open. So, researchers
improve/adapt the current algorithms for solving different
problems or propose new algorithms for providing competi-
tive results compared to the existing algorithms. As a result,

Table 32 Results of the
three-bar truss design problem Algorithm Variables Optimal weight

x1 x2

SGO 0.788674579690751 0.408249860015748 263.8958433810869

LAPO NA

GROM NA

BOA NA

SSOA NA

VPL NA

HHO 0.788662816 0.408283133832900 263.8958434

SELO

SSA 0.788665414258065 0.408275784444547 263.8958434

GOA 0.788897555578973 0.407619570115153 263.895881496069

123

Complex & Intelligent Systems (2021) 7:249–295 287

a number of optimization algorithms have been proposed
from a few decades to till date. It is difficult to compare all
algorithms or challenging to say, which is the best because
none of the algorithms can solve all optimization prob-
lems. In this paper, we have considered ten algorithms SGO,
LAPO, GROM, BOA, SSOA, VPL, HHO, SELO, GOA,
and SSA those are proposed in the year 2017–2019 except
SGO as SGO is proposed in the year of 2016, and have con-
ducted seven experiments by considering a different type of
problems such as mathematical classical optimization prob-
lems, CEC global optimization problems, and six classical
engineering design problems. We have seen that the SGO
algorithm has shown its superior performance in compar-
ison to all other algorithms in solving problems in each
experiment. Still, while addressing Rosenbrock benchmark
function and shekel family benchmark function, i.e., shekel
2, shekel 5, and shekel 7, the performance of SGO is not so
well in comparison to other algorithms.One of the best things
we see in SGO is that the performance does not deteriorate
as the dimension of the problem increases, and at the same
time, it can find an optimum result in less fitness evaluation.
As further research, we improve the performance of the SGO
algorithm by balancing between exploration and exploitation
search so that it can find the optimal solution of benchmark
function like shekel family and other. Also, we compare SGO

performance with newly proposed optimization algorithms,
solving the problem of large-scale optimizations and multi-
objective optimizations.

Compliance with ethical standards

Conflict of interest Authors declares that they have no conflict of inter-
est on publication of this paper

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A

See Tables 33, 34, 35, and 36.

Table 33 Unimodal benchmark
functions Function Dim Range fmin

F1(x) � ∑n
i�1 x

2
i 30 [− 100, 100] 0

F2(x) � ∑n
i�1|xi | +

∏n
i−1|xi | 30 [− 10, 10] 0

F3(x) � ∑n
i�1

(∑i
j�1 x j

)2
30 [− 100,1 00] 0

F4(x) � maxi {|xi |, 1 ≤ i ≤ n} 30 [− 100, 100] 0

F5(x) � ∑n−1
i�1 [100

(
xi+1 − x2i

)2
+ (xi − 1)2] 30 [− 30, 30] 0

F6(x) � ∑n
i�1 ([xi + 0.5])2 30 [− 100, 100] 0

F7(x) � ∑n
i�1 i x

4
i + random[0, 1) 30 [− 1.28, 1.28] 0

Table 34 Multi-modal benchmark functions

Function Dim Range fmin

F8(x) � ∑n
i�1 −xi sin(

√|xi |) 30 [− 500, 500] 0

F9(x) � ∑n
i�1[x

2
i − 10cos(2πxi) + 10] 30 [− 5.12, 5.12] 0

F10(x) � −20exp(−0.2
√

1
n

∑n
i�1 x

2
i) − exp(1n

∑n
i�1 cos(2πxi))+20 + e 30 [− 32, 32] 0

F11(x) � 1
4000

∑n
i�1 x

2
i − ∏n

i�1 cos
(

xi√
i

)
+ 1 30 [− 600, 600] 0

F12(x) � 30 [− 50, 50] 0

F12(x) � π
n {10sin(πyi)+

∑n−1
i�1 (yi − 1)2

[
1 + 10sin2(πyi+1)

]
+ (yn − 1)2} + ∑n

i�1 u(xi , 10, 100, 4)

yi � 1 + xi+1
4 u(xi , a, k, m) �

⎧
⎨

⎩

k(xi − a)mxi > a
0 − a < xi < a

k(−xi − a)mxi < −a

F13(x)=0.1{sin2(3πx1) +
∑n

i�1 (xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]} + ∑n
i�1 u(xi ,

5, 100, 4)

30 [− 50, 50] 0

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

288 Complex & Intelligent Systems (2021) 7:249–295

Table 35 Fixed –dimensional
multimodal benchmark
functions

Function Dim Range fmin

F14(x) �
(

1
500 +

∑25
j�1

1
j+

∑2
i�1 (xi−ai j)

6

)−1
2 − [65, 65] 1

F15(x) � ∑11
i�1 [ai − x1(b2i +bi x2)

b2i +bi x3+x4
]
2

4 [− 5, 5] 0.00030

F16(x) � 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [− 5, 5] − 1.0316

F17(x) � (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)

2
+ 10

(
1 − 1

8π

)
cosx1 + 10 2 [− 5, 5] 0.398

F18(x) � [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2+6x1x2+3x22)]
X[30+(2x1 − 3x2)2x(18–32x1+12x21+48x2 − 36x1x2 + 27x22)]

2 [− 2, 2] 3

F19(x) � − ∑4
i�1 c1exp(−

∑3
j�1 ai j (x j − pi j)2) 3 [1, 3] − 3.86

F20(x) � − ∑4
i�1 c1exp(−

∑6
j�1 ai j (x j − pi j)2) 6 [0, 1] − 3.32

F21(x) � − ∑5
i�1 [(X − ai)(X − ai)T + ci]

−1
4 [0. 10] − 10.1532

F22(x) � − ∑7
i�1 [(X − ai)(X − ai)T + ci]

−1
4 [0. 10] − 10.4028

F23(x) � − ∑10
i�1 [(X − ai)(X − ai)T + ci]

−1
4 [0. 10] − 10.5363

Table 36 Composite functions
Functions Dim Range fmin

F24(CF1)
f1, f2, f3,…, f10 � Sphere function
[σ1, σ2, σ3, , σ10] � [1,1,1,…,11]
[λ1, λ2, λ3 , λ10] � [5

100 ,
5

100 ,
5

100 ,…, 5
100]

30 [− 5, 5] 0

F25(CF2)
f1, f2, f3,…, f10 � Griewank’s function
[σ1, σ2, σ3, , σ10] � [1,1,1,…,1]
[λ1, λ2, λ3 , λ10] � [5

100 ,
5

100 ,
5

100 ,…, 5
100]

30 [− 5, 5] 0

F26(CF3)
f1, f2, f3,…, f10 � Griewank’s Function
[σ1, σ2, σ3, , σ10] � [1,1,1,…,1]
[λ1, λ2, λ3 , λ10] � [1,1,1,…,1]

30 [− 5, 5] 0

F27(CF4)
f1, f2 � Ackley’s function, f3, f4 � Rastrgin’s function, f5, f6 � Weierstrass
function, f7, f8 � Griewank’s function, f9, f10 � Sphere function

[σ1, σ2, σ3, , σ10] � [1,1,1,…,1]
[λ1, λ2, λ3 , λ10] � [5

32 ,
5
32 ,1,1,

5
0.5 ,

5
0.5 ,

5
100 ,

5
100 ,

5
100 ,

5
100]

30 [− 5, 5] 0

F28(CF5)
f1, f2 � Rastrigin’s function, f3, f4 � Weierstrass function, f5, f6 � Griewank’s
function, f7, f8 � Ackley’s function, f9, f10 � Sphere function

[σ1, σ2, σ3, , σ10] � [1,1,1,…,1]
[λ1, λ2, λ3 , λ10] � [15 ,

1
5 ,

5
0.5 ,

5
0.5 ,

5
100 ,

5
100 ,

5
32 ,

5
32 ,

5
100 ,

5
100]

30 [− 5, 5] 0

F29(CF6)
f1, f2 � Rastrigin’s function, f3, f4 � Weierstrass function, f5, f6 �
Griewank’s function, f7, f8 � Ackley’s function, f9, f10 � sphere function

[σ1, σ2, σ3, , σ10] � [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]
[λ1, λ2, λ3 , λ10] � [0.1× 1

5 , 0.2× 1
5 , 0.3× 5

0.5 , 0.4 × 5
0.5 , 0.5 × 5

100 ,

0.6 × 5
100 , 0.7 × 5

32 , 0.8 × 5
32 , 0.9 × 5

100 , 1 × 5
100]

30 [− 5, 5] 0

123

Complex & Intelligent Systems (2021) 7:249–295 289

A
p
p
en

d
ix
B

Se
e
Ta
bl
es

37
.

Ta
bl
e
37

B
en
ch
m
ar
k
fu
nc
tio

ns
us
ed

in
bu
tte
rfl
y
op
tim

iz
at
io
n
al
go
ri
th
m

N
o

B
en
ch
m
ar
k
fu
nc
tio

ns
Ty

pe
Fo

rm
ul
a

D
im

ra
ng
e

f m
in

F1
Sp

he
re

M
.S

f (
x)

�
∑

D i�
1
x2 i

30
[−

10
0,

10
0]

0

F2
B
ea
le

U
.N

f (
x)

�
(1

.5
−

x 1
+
x 1

x 2
)2

+
(2

.2
5

−
x 1

+
x 1

x2 2
)2

+
(2

.6
25

−
x 1

+
x 1

x3 2
)2

2
[−

4.
5,

4.
5]

0

F3
C
ig
ar

U
.N

f (
x)

�
x2 1

+
10

6
∑

D i�
2
x2 i

30
[−

10
0,

10
0]

0

F4
St
ep

U
.S

f (
x)

�
∑

D i�
1
(⌊
x i

+
0.
5⌋

)2
30

[−
10
0,

10
0]

0

F5
Q
ua
rt
ic
fu
nc
tio

n
w
ith

no
is
e

U
.S

f (
x)

�
∑

D i�
1
ix

4 i
+
ra
nd

om
(0
,
1)

30
[−

1.
28
,1

.2
8]

0

F6
B
oh
ac
he
vs
ky

M
.N

f (
x)

�
x2 1

+
2x

2 2
−

0.
3c
os

(3
π
x 1

)
−

0.
4c
os
(4

π
x 2
)+
0.
7

2
[−

10
0,

10
0]

0

F7
A
ck
le
y

M
.N

(x
)
�

−2
0
ex
p(

−0
.2

√
1 D

∑
D i�

1
x2 i

)

−
20

+
e

30
[−

32
,3

2]
0

F8
G
ri
ew

an
k

M
.N

f (
x)

�
1

40
00

∑
D i�

ex
p(

1 n
∑

D i�
1
co
s(2×

pi
×x

i))
+
1
x2 i

−
∏

D i�
1
co
s(

x i √ i
)+

1
30

[−
60
0,

60
0]

0

F9
L
ev
y

M
.S

f (
x)

�
si
n2

(3
π
x 1

)
+

(x
1

−
1)
2
[1

+
si
n2

(3
x 2

)]
+

(x
1

−
1)
2
[1

+
si
n2

(2
π
x 2

)]

2
[−

10
,1

0]
0

F1
0

M
ic
ha
le
w
iz

M
.S

f (
x)

�
−

∑
D i�

1
si
n(
x i
)(
si
n(
ix

2 i
/
π
))
2m

,m
�

10
10

[0
,p

i]
−

0.
96
60
15

F1
1

R
as
tr
ig
in

M
.S

f (
x)

�
∑

D i�
1
[x

2 i
−

10
co
s(2π

x i
)
+
10
]

30
[−

5.
12

,5
.1
2]

F1
2

A
lp
in
e

M
.S

f (
x)

�
∑

D i�
1
∣ ∣ x
is
in

(x i
)
+
0.
1x

i∣ ∣
30

[−
10
,1

0]
0

F1
3

Sc
ha
ff
er

M
.N

f (
x)

�
si
n2

(
√
x2 1

+
x2 2

)

−0
.5

(1
+
0.
00
1(
x2 1

+
x2 2

))
2

2
[−

10
0,

10
0]

0

F1
4

R
os
en
br
oc
k

U
.N

f (
x)

�
∑

D
−1

i�
1
[1
00

(
x i
+
1

−
x2 i

)
2
+
(x
i
−

1)
2
]

30
[−

10
,1
0]

0

F1
5

E
as
om

M
.S

f (
x)

�
−c

os
(x
1
)c
os
(x
2
)e
xp
(−

(x
1

−
π

)2
−

(x
2

−
π
)2
)

2
[−

10
0,

10
0]

−
1

F1
6

Sh
ub
er
t

M
.S

f (
x)

�
(∑

5 i�
1
ic
os
((
i
+
1)
x 1

+
i)
)(

∑
5 i�

1
ic
os
((
i
+
1)
x 2

+
i)
)

2
[−

10
,1

0]
−

18
6.
73
09

F1
7

Sc
hw

ef
el
1.
2

U
.N

f (
x)

�
∑

D i�
1
(∑

i j�
1
x
j)
2

30
[−

10
,1

0]
0

F1
8

Sc
hw

ef
el
2.
21

U
.S

f (
x)

�
m
ax i

{∣ ∣ x
i∣ ∣ ,

1
≤

i
≤

D
}

30
[−

10
,1

0]
0

F1
9

Sc
hw

ef
el
2.
22

U
.N

f (
x)

�
∑

D i�
1
∣ ∣ x
i∣ ∣
+

∏
D i�

1
∣ ∣ x
i∣ ∣

30
[−

10
,1

0]
0

F2
0

Sc
hw

ef
el
2.
26

M
.S

f (
x)

�
∑

D i�
1
[x
is
in
(√

∣ ∣ x
i∣ ∣)

]
30

[−
50
0,

50
0]

−
41
8.
98
2X

D

F2
1

B
oo
th

U
.N

f (
x)

�
(x
1
+
2x

2
−

7)
2
+
(2
x 1

+
x 2

−
5)
2

2
[−

10
,1

0]
0

F2
2

G
ol
ds
te
in

pr
ic
e

M
.N

�
[1

+
(x
1
+
x 2

+
1)
2
(1
9

−
14

x 1
+
3x

2 1
−

14
x 2
+
6
x 1

x 2
+
3
x2 2

)]

X
[3
0+

(2
x 1

−
3x

2
)2

x(
18
–3
2
x 1
+
12

x2 1
+
48

x 2
−
36

x 1
x 2

+
27

x2 2
)]

2
[−

2,
2]

3

F2
3

M
at
ya
s

U
.N

f (
x)

�
0.
26

(
x2 1

+
x2 2

)
−

0.
48

x 1
x 2

2
[−

10
,1

0]
0

F2
4

Po
w
el
l

U
.N

f (
x)

�
∑

D
/
4

i�
1
(x
4i

−3
+
10

x 4
i−

2
)2

+
5(
x 4

i−
1

−
x 4

i)
2
+
(x
4i

−2
−

x 4
i−

1
)4

+
10

(x
4i

−3
−

x 4
i)
4

24
[−

4,
5]

0

F2
5

Po
w
er

su
m

M
.N

f (
x)

�
∑

D k�
1
[(

∑
D i�

1
xk i

)
−

b k
]2

4
[0
,D

]
0

F2
6

Sh
ek
el
4.
5

M
.N

f (
x)

�
−

∑
5 i�

1
[(x

−
a i

)(
x

−
a i

) T
+
c i
]−1

4
[0
,1

0]
−

10
.1
53
2

F2
7

Su
m

sq
ua
re

U
.S

f (
x)

�
∑

D i�
1
ix

2 i
30

[−
10
,1

0]
0

F2
8

T
ri
d

M
.N

f (
x)

�
∑

D i�
1
(x
i
−

1)
2

−
∑

D i�
2
x i
x i

−1
30

[−
D
2
,
−D

2
]

−
15
00

F2
9

Z
et
tl

U
.N

f (
x)

�
(x

2 1
+
x2 2

−
2x

1
)2

+
0.
25

x 1
2

[−
1,
5]

0.
00
37
9

F3
0

le
on

U
.N

f (
x)

�
10
0(
x 2

−
x3 1

)2
+
(1

−
x 1
)2

2
[−

1.
2,

1.
2]

0

M
m
ul
tim

od
al
,U

un
im

od
al
,S

se
pa
ra
bl
e,
N

no
n
se
pa
ra
bl
e,
D
im

di
m
en
si
on

123

290 Complex & Intelligent Systems (2021) 7:249–295

Appendix C

See Tables 38, 39, 40, 41 and 42.

Table 38 Unimodal separable function

Function Name Formulae Dim Range fmin

F1 Step Description in Appendix B

F2 Sphere Description in Appendix B

F3 Sum squares Description in Appendix B

F4 Quartic Description in Appendix B

Table 39 Unimodal nonseparable function

Function Name Formulae Dim Range fmin

F5 Beale Description in Appendix B

F6 Easom Description in Appendix B

F7 Matyas Description in Appendix B

F8 Colville f (x) � 100(x21 − x2)
2
+ (x1 − 1)2+(x3 − 1)2+90 (x23 − x4)

2
+10.1 (x2 − 1)2+

(x2 − 1)(x4 − 1)
4 [− 10, 10] 0

F9 Zakharov f (x) � ∑D
i�1 x

2
i + (

∑D
i�1 0.5i xi)

2
+ (

∑D
i�1 0.5i xi)

4
10 [− 5, 10] 0

F10 Schwefel 2.22 Description in Appendix B

F11 Schwefel 1.2 Description in Appendix B

F12 Dixon-Price f (x) � (x1 − 1)2 +
∑D

i�2 i(2x
2
i − xi − 1)

2
30 [− 10, 10] 0

Table 40 Multimodal separable function

Function Name Formulae Dim Range fmin

F13 Bohachevsky1 Description in Appendix B

F14 Booth Description in Appendix B

F15 Michalewicz2 f (x) � − ∑D
i�1 sin(xi)(sin(i x

2
i /π))

2m
, m � 10 2 [0, π] −1.8013

F16 Michalewicz5 f (x) � − ∑D
i�1 sin(xi)(sin(i x

2
i /π))

2m
, m � 10 5 [0, π] −4.6877

F17 Michalewicz10 f (x) � − ∑D
i�1 sin(xi)(sin(i x

2
i /π))

2m
, m � 10 10 [0, π] −9.6602

F18 Rastrigin Description in Appendix B

Table 41 Multimodal nonseparable function

Function Name Formulae Dim Range fmin

F19 Schaffer Description in Appendix B

F20 Six Hump Camel Back f (x) � 4 x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [− 5, 5] − 186.73

F21 Boachevsky2 f (x) � x21 + 2x22 − 0.3cos(3πx1) × cos(4πx2) + 0.3 2 [− 100, 100] 0

F22 Boachevsky3 f (x) � x21 + 2x22 − 0.3cos((3πx1) + (4πx2))+
0.3

2 [− 100, 100] 0

F23 Shubert Description in Appendix B

F24 Rosenbrock Description in Appendix B

F25 Griewank Description in Appendix B

F26 Ackley Description in Appendix B

123

Complex & Intelligent Systems (2021) 7:249–295 291

Table 42 Brief description of
CEC 2014 benchmark functions Function Name Dim Range fmin

F27 Rotated high conditional elliptic function (CEC1) 30 [− 100, 100] 100

F28 Rotated bent cigar function (CEC2) 30 [− 100, 100] 200

F29 Shifted and rotated Rosenbrock’s function (CEC4) 30 [− 100, 100] 400

F30 Hybrid function 1 (CEC17) 30 [− 100, 100] 1700

F31 Composition function 1 (CEC23) 30 [− 100, 100] 2300

F32 Composition function 2 (CEC24) 30 [− 100, 100] 2400

F33 Composition function 3 (CEC25) 30 [− 100, 100] 2500

Appendix D

Welded beam design problem

Min f (x1, x2, x3, x4) � 1.10471x21 x2 + 0.04811x3x4
(14.0 + x2)

Subject to:

g1(X) � x1 − x4 ≤ 0

g2(X) � δ − 0.25 ≤ 0

g3(X) � τ − 13600 ≤ 0

g4(X) � ρ − 30000 ≤ 0

g5(X) � 0.10471x21 + 0.04811x3x4(14.0 + x2) − 5 ≤ 0

g6(X) � 0.125 − x1 ≤ 0

g7(X) � 6000 − F ≤ 0

where the variables satisfy 0.1 ≤ x1, x4 ≤ 2.0 and 0.1 ≤ x2,
x3 ≤ 10.

ρ � 50400/x23 x4

Q � 6000(14 + x2/2)

D � 1
2

√
x22 + (x1 + x3)2β � QD

J

J� √
2x1x2 (x22/6+(x1 + x3)2/2)

δ � 65856/3000x33 x4α � 6000/(
√
2x1x2)

τ �
√

α2 +
αβx2
D

+ β2

F � 0.61423 ×106
x34 x3
6 (1 − x3

√
30/48
28)

Pressure vessel design problem

Min f (x1, x2, x3, x4) � 0.6224x1x2x3 +
1.7881x2x23+3.1661 x4x21+19.84 x3x21

Subject to:

g1(X) � −x1 + 0.0193x3 ≤ 0

g2(X) � −x2 + 0.0954x3 ≤ 0

g3(X) � −πx23 x4 − 4

3
πx23 + 1296000 ≤ 0

g4(X) � x4 − 240 ≤ 0

where the variables satisfy 0 ≤ x1, x2 ≤ 100 and 10 ≤ x3,
x4 ≤ 200.

Tension/compression spring design problem

Min f (x1, x2, x3) � (x3 + 2)x21 x2
Subject to:

g1(X) � 1 − x22 x3
71785x41

≤ 0

g2(X) � x2(4x2 − x1)

12566x31 (x2 − x1)
+

1

5108x21
− 1 ≤ 0

g3(X) � 1 − 140.45x1
x22 x3

≤ 0

g4(X) � 2(x2 + x1)

3
− 1 ≤ 0

where the variables satisfy 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3
and

2 ≤ x3 ≤ 15.

Gear train design problem

Min f (x1, x2, x3, x4)=(1
6.931 − x3x2

x1x4
)
2

Variable range 12 ≤ x1, x2, x3, x4 ≤ 60

123

292 Complex & Intelligent Systems (2021) 7:249–295

Three-bar truss design problem

Min f (x1, x2) �
(
2
√
2x1 + x2

)
× l

Subject to:

g1(X) �
√
2x1 + x2√

2x21 + 2x1x2
P − σ ≤ 0

g2(X) � x2√
2x21 + 2x1x2

P − σ ≤ 0

g3(X) � 1√
2x21 + 2x1x2

P − σ ≤ 0

Variable range 0 ≤ x1, x2 ≤ 1
Where l �100 cm. P � 2 KN/cm2σ � 2KN/cm2

Cantilever beam design problem

Min f (x1, x2, x3, x4, x5) � 0.6224(x1 + x2 + x3 + x4 + x5)
Subject to:

g1(X) � 61

x31
+
27

x32
+
19

x33
+

7

x34
+

1

x35
− 1 ≤ 0

Variable range 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

References

1. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. Evol Comput IEEE Trans 1:67–82

2. GoldbergDE,Holland JH (1988)Genetic algorithms andmachine
learning. Mach Learn 3:95–99

3. Rechenberg I (1973) Evolution strategy: optimization of tech-
nical systems through biological evolution, vol 104. Fromman
Holzboog, Stuttgart, pp 15–16

4. Yao X, Liu Y, Lin G (1999) Evolutionary programming made
faster. Evol Comput IEEE Trans 3:82–102

5. Ferreira C (2001) Gene expression programming: a new adaptive
algorithm for solving problems. Complex Syst 13(2):87–129

6. Ferreira C (2006) Gene expression programming: mathematical
modeling by an artificial intelligence. Springer, Berlin (ISBN 3-
540-32796-7)

7. Koza JR, Rice JP (1992) Genetic programming: the movie. MIT
Press, Cambridge

8. Hansen N, Kern S (2004) Evaluating the CMA evolution strategy
on multimodal test functions. Springer, Berlin, pp 282–291

9. Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11:341–359

10. Simon D (2008) Biogeography-based optimization. Evol Comput
IEEE Trans 12:702–713

11. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of the 1995 IEEE international conference on neural
networks, pp 1942–1948

12. DorigoM, Birattari M, Stutzle T (2006) Ant colony optimization.
IEEE Comput Intell 1:28–39

13. Basturk B, Karaboga D (2006) An artificial bee colony (ABC)
algorithm for numeric function optimization. In: Proceedings of
the IEEE swarm intelligence symposium, pp 12–14

14. KevinMP (2002) Biomimicry of bacterial foraging for distributed
optimization and control. Control Syst IEEE 22(3):52–67

15. Yang XS (2010) A new metaheuristic bat-inspired algorithm.
In: Proceedings of the workshop on nature inspired cooperative
strategies for optimization (NICSO 2010). Springer, pp 65–74

16. Yang XS (2010) Firefly algorithm, stochastic test functions and
design optimization. Int J Bio-Inspired Comput 2:78–84

17. Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired
optimization algorithm. Commun Nonlinear Sci Numer Simul
17(12):4831–4845

18. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Pro-
ceedings of the world congress on nature & biologically inspired
computing, NaBIC 2009, pp 210–214

19. Mucherino A, Seref O (2007) Monkey search: a novel meta-
heuristic search for global optimization. In: AIP conference
proceedings, p 162

20. Duˇsan T, Dell’OrcoM (2005) Bee colony optimization—a coop-
erative learning approach to complex transportation problems. In
Advanced OR and AI methods in transportation: proceedings of
16th Mini–EURO conference and 10th meeting of EWGT, pp
51–60

21. Chu SA, Tsai PW, Pan JS (2006) Cat swarm optimization. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 4099
LNAI 2006, pp 854–858

22. Tang R, Fong S, Yang XS, Deb S (2012) Wolf search algorithm
with ephemeral memory. Dig Inf Manag (ICDIM) 2012:165–172

23. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw
83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

24. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61

25. Mirjalili S, Lewis A (2016) The whale optimization algorithm.
Adv Eng Softw 95:51–67

26. Alireza A (2016) A novel metaheuristic method for solving
constrained engineeringoptimizationproblems: crowsearch algo-
rithm. Comput Struct 169:1–12

27. Mirjalili S, Gandomi AH, Mirjalili SZ, Faris SH,Mirjalili SM
(2017)Salp swarm algorithm: a bio-inspired optimizer for engi-
neering design problems. Adv Eng Soft 1–29

28. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimization
algorithm: theory and application. Adv Eng Softw 105:30–47

29. Arora S, Singh S (2019) Butterfly optimization algorithm: a
novel approach for global optimization. Soft Comput 23:715–734.
https://doi.org/10.1007/s00500-018-3102-4

30. Jain M, Singh V, Rani A (2019) A novel nature-inspired algo-
rithm for optimization: squirrel search algorithm. Swarm Evolut
Comput 44:148–175

31. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H
(2019) Harris hawks optimization: algorithm and applications.
Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/
j.future.2019.02.028

32. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-
based optimization: a novel method for constrained mechanical
design optimization problems. Comput Aided Des 43:303–315

33. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-
mization algorithm: harmony search. Simulation 76:60–68

34. Fogel D (2009) Artificial intelligence through simulated evolu-
tion. Wiley-IEEE Press

35. Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206
36. Glover F (1990) Tabu search—part II. ORSA J Comput 2:4–32
37. He S, Wu Q, Saunders J (2006) A novel group search optimizer

inspired by animal behavioural ecology. In: Proceedings of the
2006 IEEE congress on evolutionary computation, CEC 2006, pp
1272–1278

123

https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1007/s00500-018-3102-4
https://doi.org/10.1016/j.future.2019.02.028

Complex & Intelligent Systems (2021) 7:249–295 293

38. He S, Wu QH, Saunders J (2009) Group search optimizer: an
optimization algorithm inspired by animal searching behavior.
IEEE Trans EvolComput13:973–90

39. Atashpaz GE, Lucas C (2007) Imperialist competitive algorithm:
an algorithm for optimization inspired by imperialistic competi-
tion. In: Proceedings of the 2007 IEEE congress on evolutionary
computation, CEC 2007, pp 4661–4667

40. Kashan AH (2009) League championship algorithm: a new algo-
rithm for numerical function optimization. In: Proceedings of the
international conference on soft computing and pattern recogni-
tion, SOCPAR’09, pp 43–48

41. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization.
Advances in swarm intelligence. Springer, Berlin, pp 355–364

42. KavehA (2014)Colliding bodies optimization.Advances inmeta-
heuristic algorithms for optimal design of structures. Springer,
Berlin, pp 195–232

43. Gandomi AH (2014) Interior search algorithm (ISA): a novel
approach for global optimization. ISA Trans 53(4):1168–1183.
https://doi.org/10.1016/j.isatra.2014.03.018

44. Sadollah A, Bahreininejad A, Eskandar H, HamdiM (2013)Mine
blast algorithm: a new population-based algorithm for solving
constrained engineering optimization problems. Appl Soft Com-
put 13:2592–2612

45. Moosavian N, Roodsari BK (2014) Soccer league competition
algorithm: a new method for solving systems of nonlinear equa-
tions. Int J Intell Sci 4(1):7–16. https://doi.org/10.4236/ijis.2014.
41002

46. Dai C, Zhu Y, Chen W (2007) Seeker optimization algorithm.
Computational intelligence and security. Springer, Berlin, pp
167–176

47. Ramezani F, Lotfi S (2013) Social-based algorithm (SBA). Appl
Soft Comput 13:2837–2856

48. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl
Soft Comput 19:177–187

49. Eita MA, Fahmy MM (2014) Group counseling optimization.
Appl Soft Comput 22:585–604

50. Eita MA, Fahmy MM (2010) Group counseling optimization: a
novel approach. In: Research and development in intelligent sys-
tems XXVI. Springer, London, pp 195–208

51. Xu Y, Cui Z, Zeng J (2010) Social emotional optimization
algorithm for nonlinear constrained optimization problems. In:
Swarm, evolutionary, and memetic computing. Springer, pp
583–590

52. Huan TT, Kulkarni AJ, Kanesan J (2017) Ideology algorithm:
a socio-inspired optimizationmethodology. Neural Comput Appl
28:845–876. https://doi.org/10.1007/s00521-016-2379-4

53. Liu ZZ, Chu DH, Song C, Xue X, Lu BY (2016) Social learn-
ing optimization (SLO) algorithm paradigm and its application in
QoS-aware cloud service composition. Inf Sci 326:315–333

54. Satapathy SC, Naik A (2016) Social group optimization (SGO):
a new population evolutionary optimization technique. Complex
Intel Syst 2(3):173–203

55. Naik A, Satapathy SC, Ashour AS, Dey N (2018) Social group
optimization for global optimization of multimodal functions and
data clustering problems. Neural Comput Appl 30(1):271–287

56. Emami H, Derakhshan F (2015) Election algorithm: a new socio-
politically inspired strategy. AI Commun 28(3):591–603

57. Kuo HC, Lin CH (2013) Cultural evolution algorithm for
global optimizations and its applications. J Appl Res Technol
11(4):510–522

58. Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence:
a self supervised learning behavior. In: Systems, man, and cyber-
netics, SMC, IEEE international conference, IEEE, Manchester,
pp 1396–1400

59. JavidAA (2011)Anarchic society optimization: a human-inspired
method. In: Evolutionary computation, CE 2011 IEEE congress,
IEEE, New Orleans, pp 2586–2592

60. Moghdani R, SalimifardK (2018) Volleyball premier league algo-
rithm. Appl Soft Comput 64:161–185

61. Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution
& learning optimization algorithm: a socio-inspired optimization
methodology. Future Gener Comput Syst 81:252–272. https://doi.
org/10.1016/j.future.2017.10.052

62. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220:671–680

63. Webster B, Bernhard PJ (2003) A local search optimization algo-
rithmbased on natural principles of gravitation. In: Proceedings of
the 2003 international conference on information and knowledge
engineering (IKE’03), pp 255–261

64. ErolOK,Eksin I (2006)Anewoptimizationmethod: big bang–big
crunch. Adv Eng Softw 37:106–111

65. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a grav-
itational search algorithm. Inf Sci 179:2232–2248

66. Kaveh A, Talatahari S (2010) A novel heuristic optimization
method: charged system search. Acta Mech 213:267–289

67. Formato RA (2007) Central force optimization: a new meta-
heuristic with applications in applied electromagnetics. Prog
Electromagn Res 77:425–491

68. Alatas B (2011) ACROA: artificial chemical reaction opti-
mization algorithm for global optimization. Expert Syst Appl
38:13170–13180

69. Hatamlou A (2013) Black hole: a new heuristic optimization
approach for data clustering. Inf Sci 222:175–184

70. Kaveh A, Khayatazad M (2012) A new meta-heuristic method:
ray optimization. Comput Struct 112:283–294

71. Du H, Wu X, Zhuang J (2006) Small-world optimization algo-
rithm for function optimization. Advances in natural computation.
Springer, Berlin, pp 264–273

72. Shah-Hosseini H (2011) Principal components analysis by the
galaxy-based search algorithm: a novel metaheuristic for contin-
uous optimization. Int J Comput Sci Eng 6:132–140. https://doi.
org/10.1504/IJCSE.2011.041221

73. MoghaddamFF,MoghaddamRF, CherietM (2012) Curved space
optimization: a random search based on general relativity theory.
arXiv: 1208.2214

74. EskandarH, SadollahA,BahreininejadA,HamdiM (2012)Water
cycle algorithm—a novel metaheuristic optimization method for
solving constrained engineering optimization problems. Comput
Struct. https://doi.org/10.1016/j.compstruc.2012.07.010

75. Tamura K, Yasuda K (2011) Spiral dynamics inspired optimiza-
tion. J Adv Comput Intell Intell Inform 15(8):1116–1122

76. Rabanal P, Rodríguez I, Rubio F (2007) Using river formation
dynamics to design heuristic algorithms. In: Unconventional com-
putation. UC 2007. Lecture notes in computer science, vol 4618.
Springer, Berlin, pp 163–177. https://doi.org/https://doi.org/10.1
007/978-3-540-73554-0_16

77. Mirjalili S (2016) SCA: a sine cosine algorithm for solving opti-
mization problems. Knowl Based Syst 96:120–133

78. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse opti-
mizer: a nature-inspired algorithm for global optimization. Neural
Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1
870-7

79. Nematollahi AF, Rahiminejad A, Vahidi B (2017) A novel
physical based meta-heuristic optimization method known as
lightning attachment procedure optimization. Appl Soft Comput
59:596–621. https://doi.org/10.1016/j.asoc.2017.06.033

80. Nematollahi AF, Rahiminejad A, Vahidi B (2020) A novel meta-
heuristic optimizationmethodbasedongolden ratio in nature. Soft
Comput 24:1117–1151. https://doi.org/10.1007/s00500-019-039
49-w

123

https://doi.org/10.1016/j.isatra.2014.03.018
https://doi.org/10.4236/ijis.2014.41002
https://doi.org/10.1007/s00521-016-2379-4
https://doi.org/10.1016/j.future.2017.10.052
https://doi.org/10.1504/IJCSE.2011.041221
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1007/978-3-540-73554-0_16
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.asoc.2017.06.033
https://doi.org/10.1007/s00500-019-03949-w

294 Complex & Intelligent Systems (2021) 7:249–295

81. Omidvar MN, Li X, Tang K (2015) Designing benchmark prob-
lems for large-scale continuous optimization. Inf Sci 316:419–436

82. Tang K, Li X, Suganthan PN, Yang Z,Weise T (2010) Benchmark
functions for the CEC 2010 special session and competition on
large-scale global optimization. Technical report, University of
Science and Technology of China

83. Wang H, Liang M, Sun C, Zhang G, Xie L (2020) Multiple-
strategy learning particle swarm optimization for large-scale
optimization problems. Complex Intell Syst. https://doi.org/10.
1007/s40747-020-00148-1

84. Gu Q, Li X, Jiang S (2019) Hybrid genetic grey wolf algorithm
for large-scale global optimization. Complexity. https://doi.org/1
0.1155/2019/2653512

85. Hadi AA, Mohamed AW, Jambi KM (2019) LSHADE-SPA
memetic framework for solving large-scale optimization prob-
lems. Complex Intell Syst 5:25–40. https://doi.org/10.1007/s407
47-018-0086-8

86. QiaoW, Yang Z (2019) Solving large-scale function optimization
problem by using a new metaheuristic algorithm based on quan-
tum Dolphin swarm algorithm. IEEE Access 7:138972–138989

87. Wen L, Jianjun J, Ximing L,Mingzhu T (2018) Inspired grey wolf
optimizer for solving large-scale function optimization problems.
Appl Math Model 60:112–126. https://doi.org/10.1016/j.apm.20
18.03.005

88. Ran C, Jin Y (2014) A competitive swarm optimizer for large
scale optimization. IEEE Trans Cybern 45(2):191–204

89. RanC, JinY (2015) A social learning particle swarm optimization
algorithm for scalable optimization. Inf Sci 291:43–60

90. Deb K, Jain H (2014) An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach. Part I: solving problems with box constraints. IEEE
Trans Evol Comput 18:577–601

91. Lin Q, Liu S, Zhu Q (2018) Particle swarm optimization with
a balanceable fitness estimation for manyobjective optimization
problems. IEEE Trans Evol Comput 22(4):32–46

92. LiuY QH, Zhang Z, Yao L,Wang C, Mo L, Ouyang S, Li J (2019)
A region search evolutionary algorithm for many-objective opti-
mization. Inf Sci 488:19–40. https://doi.org/10.1016/j.ins.2019.0
3.016

93. Dhiman G, Kumar V (2019) KnRVEA: a hybrid evolutionary
algorithm based on knee points and reference vector adap-
tation strategies for many-objective optimization. Appl Intell
49:2434–2460. https://doi.org/10.1007/s10489-018-1365-1

94. Reddy SR, Dulikravich GS (2019) Many-objective differential
evolution optimization based on reference points:NSDE-R. Struct
Multidisc Optim 60:1455–1473. https://doi.org/10.1007/s00158-
019-02272-0

95. Qin S, Sun C, Zhang G, He X, Tan Y (2020) A modified particle
swarm optimization based on decomposition with different ideal
points for many-objective optimization problems. Complex Intell
Syst. https://doi.org/10.1007/s40747-020-00134-7

96. Matteo MD, Maier HR, Dandy GC (2019) Many-objective port-
folio optimization approach for stormwater management project
selection encouraging decision-maker buy-in. Environ Model
Softw 111:340–355

97. Fang Y, Liu Q, Li M, Laili Y, Pham DT (2019) Evolution-
ary many-objective optimization for mixed-model disassembly
line balancing with multi-robotic workstations. Eur J Oper Res
276(1):160–174. https://doi.org/10.1016/j.ejor.2018.12.035

98. Sun C, Jin Y, Zeng J, Yu Y (2015) A two-layer surrogate-
assisted particle swarm optimization algorithm. Soft Comput
19(6):1461–1475. https://doi.org/10.1007/s00500-014-1283-z

99. Sun C, Jin Y, Cheng R, Ding J, Zeng J (2017) Surrogate-assisted
cooperative swarm optimization of high-dimensional expensive
problems. IEEE Trans Evol Comput 21(4):644–660

100. WangH, JinY,Doherty J (2017) Committee-based active learning
for surrogate-assisted particle swarm optimization of expensive
problems. IEEE Trans Cybern 9:2664–2677

101. HaiboY,YingT, JianchaoZ,Chaoli S,Yaochu J (2018) Surrogate-
assisted hierarchical particle swarm optimization. Inf Sci. https://
doi.org/10.1016/j.ins.2018.04.062

102. Sun C, Ding J, Zeng J (2018) A fitness approximation assisted
competitive swarm optimizer for large scale expensive optimiza-
tion problems. Memet Comput 10:123–134. https://doi.org/10.10
07/s12293-016-0199-9

103. WanK, HeC, CamachoA, ShangK, Cheng R, Ishibuchi H (2018)
A hybrid surrogate-assisted evolutionary algorithm for com-
putationally expensive many-objective optimization. In: IEEE
congress on evolutionary computation (CEC), Wellington, pp
2018–2025

104. Dey N, Rajinikanth V, Ashour A, Tavares JM (2018) Social
group Optimization supported segmentation and evaluation of
skin melanoma images. Symmetry 10(2):51

105. Rajinikanth V, Satapathy SC (2018) Segmentation of ischemic
stroke lesion in brain MRI based on social group optimization
and Fuzzy–Tsallis entropy. Arab J Sci Eng 43(8):4365–4378

106. MadhaviG,HarikaV (2018) Implementation of social group opti-
mization to economic load dispatch problem. Int J Appl Eng Res
13:11195–11200

107. Monisha R, Mrinalini R, Britto MN (2019) Social group opti-
mization and Shannon’s function-based RGB image multi-level
thresholding. Smart Intell Comput Appl 105:123–132

108. Praveen SP, Rao KT, Janakiramaiah B (2018) Effective allocation
of resources and task scheduling in cloud environment using social
group optimization. Arab J Sci Technol 43(8):4265–4272

109. Rao KT (2018) Client-awareness resource allotment and job
scheduling in heterogeneous cloud by using social group opti-
mization. Int J Nat Comput Res. https://doi.org/10.4018/IJNCR.
2018010102

110. Mafarja M, Aljarah I, Heidari AA, Abdelaziz I, Hammouri FH
(2018) Evolutionary population dynamics and grasshopper opti-
mization approaches for feature selection problems. Knowl Based
Syst 145:25–45

111. Heidari AA, Faris H, Aljarah I (2019) An efficient hybrid multi-
layer perceptron neural network with grasshopper optimization.
SoftComput 23:7941–7958. https://doi.org/10.1007/s00500-018-
3424-2

112. Jie L, Huiling C, Qian Z (2018) An improved grasshopper opti-
mization algorithm with application to financial stress prediction.
Appl Math Model 64:654–668

113. Arora S, Anand P (2019) Chaotic grasshopper optimiza-
tion algorithm for global optimization. Neural Comput Appl
31:4385–4405. https://doi.org/10.1007/s00521-018-3343-2

114. Aljarah I, Al-Zoubi AM, Faris H (2018) Simultaneous feature
selection and support vector machine optimization using the
grasshopper optimization algorithm. Cogn Comput 10:478–495.
https://doi.org/10.1007/s12559-017-9542-9

115. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM,
Mirjalili S (2019) Binary grasshopper optimisation algorithm
approaches for feature selection problems. Expert Syst Appl
117:267–286

116. Faris H, Mafarja MM, Heidari AA, Ibrahim AI, Mirjalili S,
Fujita H (2018) An efficient binary Salp swarm algorithm with
crossover scheme for feature selection problems. Knowl Based
Syst 154:43–67

117. Abbassi R, Abbassi A, Heidari AA,Mirjalili S (2019) An efficient
Salp swarm-inspired algorithm for parameters identification of
photovoltaic cell models. Energy Convers Manag 179:362–372

118. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp
swarm algorithm for global optimization and feature selection.

123

https://doi.org/10.1007/s40747-020-00148-1
https://doi.org/10.1155/2019/2653512
https://doi.org/10.1007/s40747-018-0086-8
https://doi.org/10.1016/j.apm.2018.03.005
https://doi.org/10.1016/j.ins.2019.03.016
https://doi.org/10.1007/s10489-018-1365-1
https://doi.org/10.1007/s00158-019-02272-0
https://doi.org/10.1007/s40747-020-00134-7
https://doi.org/10.1016/j.ejor.2018.12.035
https://doi.org/10.1007/s00500-014-1283-z
https://doi.org/10.1016/j.ins.2018.04.062
https://doi.org/10.1007/s12293-016-0199-9
https://doi.org/10.4018/IJNCR.2018010102
https://doi.org/10.1007/s00500-018-3424-2
https://doi.org/10.1007/s00521-018-3343-2
https://doi.org/10.1007/s12559-017-9542-9

Complex & Intelligent Systems (2021) 7:249–295 295

Appl Intell 48:3462–3481. https://doi.org/10.1007/s10489-018-1
158-6

119. Attia A, Fergany E (2018) Extracting optimal parameters of
PEM fuel cells using Salp swarm optimizer. Renew Energy
119:641–648

120. Ibrahim RA, Ewees AA, Oliva D (2019) Improved Salp swarm
algorithm based on particle swarm optimization for feature selec-
tion. J Ambient Intell Human Comput 10:3155–3169. https://doi.
org/10.1007/s12652-018-1031-9

121. Ibrahim A, Ahmed A, Hussein S, Hassanien AE (2018) Fish
image segmentation using Salp swarm algorithm. In: The inter-
national conference on advanced machine learning technologies
and applications. AMLTA 2018. Advances in intelligent systems
and computing. Springer, p 723

122. Nematollahi FA, Rahiminejad A, Vahidi B (2019) A novel
multi-objective optimization algorithm based on lightning attach-
ment procedure optimization algorithm. Appl Soft Comput
75:404–427. https://doi.org/10.1016/j.asoc.2018.11.032

123. Shuang S, Zhiwei Y, Lingyu Y, Jun S, Ruoxi W (2018) Wrap-
per feature selection based on lightning attachment procedure
optimization and support vector machine for intrusion detec-
tion. In: 2018 IEEE 4th international symposium on wireless
systems within the international conferences on intelligent data
acquisition and advanced computing systems (IDAACS-SWS).
https://doi.org/https://doi.org/10.1109/IDAACS-SWS 8525742

124. Zheng T, Luo W (2019) An enhanced lightning attachment pro-
cedure optimization with quasi-opposition-based learning and
dimensional search strategies. Comput Intell Neurosci. https://
doi.org/10.1155/2019/1589303

125. Mahrous AT, Kamel S, Jurado F, Ebeed M (2020) Optimal
power flow solution incorporating a simplifiedUPFCmodel using
lightning attachment procedure optimization. Electr Energy Syst
30(1):e12170

126. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A,
Tiwari S (2005) Problem definitions and evaluation criteria for the
cec 2005 special session on real-parameter optimization. Tech-
nical Report, Nanyang Technological University, Singapore and
KanGAL Report Number 2005005 (Kanpur Genetic Algorithms
Laboratory, IIT Kanpur)

127. Yao X, Liu Y, Lin G (1999) Evolutionary programming made
faster. Evolut Comput IEEE Trans 3(2):82–102

128. Liang JJ,QuBY,SuganthanPN,Hernández-DíazAG(2013)Prob-
lem definitions and evaluation criteria for theCEC2013 special
session on real-parameter optimization. Computational Intelli-
gence Laboratory, Zhengzhou University, Zhengzhou, China and
Nanyang Technological University, Singapore, Technical Report
12, pp 3–18

129. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and
evaluation criteria for the CEC 2014 special session and competi-
tion on single objective. Technical Report 201311, Computational
IntelligenceLaboratory, ZhengzhouUniversity, ZhengzhouChina
and Technical Report, Nanyang Technological University, Singa-
pore Real-Parameter Numerical Optimization

130. ChengMY, Prayogo D (2014) Symbiotic organisms search: a new
metaheuristic optimization algorithm. Comput Struct 139:98–112

131. Cheng MY, Lien LC (2012) Hybrid artificial intelligence-based
PBA for benchmark functions and facility Layout design opti-
mization. J Comput Civ Eng 26(5):612–624

132. Karaboga D, Basturk B (2008) On the performance of artificial
bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

133. Krink T, Filipic B, Fogel GB (2004) Noisy optimization problem-
s—a particular challenge for differential evolution? In: Congress
on evolutionary computation, CEC2004, IEEE, vol 1, pp 332–339

134. Surjanovic S, Bingham D (2017) British Columbia, 2015.
https://www.sfu.ca/~ssurjano/optimization.html. Accessed 15
Jan 2017

135. Arora JS (2004) Introduction to optimumdesign.Academic Press.
136. BelegunduAD (1983) Study ofmathematical programmingmeth-

ods for structural optimization. Diss Abstr Int Part B Sci Eng
43:1983

137. Coello CA (2000) Use of a self-adaptive penalty approach for
engineering optimization problems. Comput Ind 41:113–127

138. Sadollah A, Bahreininejad A, Eskandar H, HamdiM (2013)Mine
blast algorithm: a newpopulation based algorithm for solving con-
strained engineering optimization problems. Appl Soft Comput
13:2592–2612

139. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algo-
rithm: metaheuristic approach to solve structural optimization
problems. Eng Comput 29:17–35

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10489-018-1158-6
https://doi.org/10.1007/s12652-018-1031-9
https://doi.org/10.1016/j.asoc.2018.11.032
https://doi.org/10.1109/IDAACS-SWS
https://doi.org/10.1155/2019/1589303

	A comparative study of social group optimization with a few recent optimization algorithms
	Abstract
	Abbreviations
	Introduction
	Preliminaries of SGO, SSA, GOA, LAPO, GROM, BOA, SSOA, VPL, HHO, and SELO
	Social group optimization (SGO) algorithm
	SSA, GOA, LAPO, GROM, BOA, SSOA, VPL, HHO and SELO algorithms

	Simulation and experimental results
	Experiment 1
	Discussion
	Experiment 2
	Discussion
	Experiment 3
	Discussion
	Experiment 4
	Experiment 5
	Discussion
	Experiment 6
	Discussion
	Experiment 7: on classical engineering problem
	Tension/compression spring design problem
	The welded beam design problem
	Pressure vessel design problem
	Cantilever beam design problem
	Gear train design problem
	Three-bar truss design problem

	Overall conclusion

	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Welded beam design problem
	Pressure vessel design problem
	Tension/compression spring design problem
	Gear train design problem
	Three-bar truss design problem
	Cantilever beam design problem

	References

