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Abstract
This study addresses themultitasking scheduling problemswith batch distribution and due date assignment (DDA). Compared
with classical scheduling problemswith due date-related optimization functions, the job due dates are decision variables rather
than given parameters. The jobs completed are distributed in batches, and the sizes of all batches are identical, which may be
bounded or unbounded. The jobs in every batch are scheduled one by one. Each batch incurs a fixed cost. Under multitasking
environment, it allows the machine to put an uncompleted job on hold and turn to another uncompleted job. The goal is
to identify the optimal primary job sequence, the optimal job due dates, and the optimal batch production and distribution
strategy so that one of the following two optimization functions is minimised: the total cost composed of the earliness penalty,
DDA cost, tardiness penalty and batch distribution cost, and the total cost composed of the earliness penalty, weighted number
of late jobs, DDA cost and batch distribution cost. We devise efficient exact algorithms for the problems we consider, and
perform numerical experiments to check how multitasking affects the scheduling cost or value, the results of which can assist
decision-makers to justify the extent to put to use or refrain from multitasking.

Keywords Multitasking · Scheduling · Due date assignment · Batch distribution

Introduction

Theproblemwe investigate in this study covers threemomen-
tous sub-areas of scheduling research, i.e., multitasking
scheduling, scheduling with DDA, and batch distribution
scheduling. All of these three sub-areas have been widely
investigated in the literature. In the remaining part of this
section, we briefly review some related research from these
sub-areas.

The research about multitasking scheduling is initialized
by Hall et al. [12], where the processing of a chosen job
can be suspended by other uncompleted jobs. The authors
demonstrate that the solution algorithms for some classi-
cal scheduling criteria are more complex in terms of time
complexity than the corresponding problems without multi-
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tasking, and verify the effects ofmultitasking on the schedule
criteria through computational experiments. Subsequently,
the research on this line has attracted increasing attention.
Hall et al. [13] introduce two different multitasking schedul-
ing problems, inwhich the first one addresses alternate period
processing and the second one investigates shared process-
ing. Ji et al. [15] consider the identical parallel-machine
scheduling problem with slack due-window assignment
(DWA) under multitasking, in which the slack due windows
are machine dependent. Hall et al. [19] consider the multi-
tasking scheduling problem with common DDA such that all
the jobs have a commondue date.Xiong et al. [24] investigate
the unrelated parallel-machine scheduling problem under
multitasking, and present an exact mathematical-based pro-
gramming for the problem with the goal of minimising the
total completion time. Li et al. [18] and Wang et al. [23]
address multitasking scheduling with two competing agents,
and study the computational complexity and present exact
algorithms for the problems, in which every agent requires to
process its respective jobs and wishes to minimise its respec-
tive optimization function that is related to its respective jobs.
As for due window assignment scheduling, Zhu et al. [34]
address the multitasking scheduling problem with DDA and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00184-x&domain=pdf


192 Complex & Intelligent Systems (2021) 7:191–202

a rate-modifying activity (RMC), and Zhu et al. [33] fur-
ther generalize the model to the case with multiple RMCs, in
which the RMC may alter the process speed of the machine.

In the aforementioned studies, Ji et al. [15], Liu et al. [19]
and Zhu et al. [34] address the due date-related optimiza-
tion functions, in which the jobs’ due dates or time windows
require to be decided by the decision-makers in the decision-
making process along with the primary job sequence. This
kind of scheduling problems is referred to scheduling with
DDA or due window assignment in the literature, which has
been extensively studied in the area of just-in-time schedul-
ing and has been receiving widespread attention during the
past four decades. The literature on this topic is abound, the
interested readers are referred to the reviewpapers byGordon
et al. [9,10], and Kaminsky and Hochbaum [11]. Neverthe-
less, in contrast to our study, all the aforementioned studies
as well as the review papers concentrate only on the problem
of how to process the jobs while neglecting the problem of
scheduling job delivery.

Recently, some researchers pay attention to the study
of DDA (due window assignment) and batch distribution
scheduling. Chen [4] address the common DDA and batch
distribution scheduling, and devise an algorithmwith polyno-
mial running time to minimise the weighted sum of tardiness
penalty, earliness penalty, batch distribution cost and DDA
cost. Shabtay [22] considers the unrestricted DDA and batch
distribution scheduling with acceptable lead-times, in which
the jobs can be assigned different due dates, and prove that
the considered problem is N P-hard and demonstrate that
several special cases may be solved in polynomial time. Yin
et al. [29] consider the common DDA and batch distribu-
tion scheduling with a RMC to minimise the weighted sum
of earliness penalty, holding cost, tardiness penalty, batch
distribution cost and DDA cost, and demonstrate that sev-
eral special cases are polynomial time solvable. Yin et al.
[26,28] focus on the common DDA and batch distribution
scheduling, where we can reduce the job processing times
by assigning a certain amount of resources to process the
jobs. Mor and Mosheiov [20] and Yin et al. [30,32] study the
DDA and batch distribution scheduling with two competing
agents. Yin et al. [27] consider the common DWA and batch
distribution scheduling problem such that the due windows
of all jobs are identical, which specify the earliest and latest
delivery date, and show that the problem with the goal to
minimise the weighted sum of earliness cost, window loca-
tion cost, window size cost, holding cost, tardiness cost, and
batch distribution cost is polynomial time solvable. For more
results on DDA and batch distribution scheduling, the inter-
ested readers are recommended to read the recent papers by
Ahmadizar and Farhadi [1], Agnetis et al. [2,3], Gong et al.
[8], Kovalyov et al. [16], Li et al. [17], Xu et al. [25] and Yin
et al. [31], and the review papers by Chen [5] and Hall and
Potts [14].

What is noteworthy is that, as far as our information goes,
there is no study addressing the batch delivery schedule in
the field of multitasking setting. This study tries to fill up
this gap, the contributions of which to the literature can be
summarized as follows.

• We introduce a new scheduling model which simul-
taneously considers batch delivery, multitasking and
DDA with the goal to identify the optimal primary job
sequence, the optimal jobduedates, and the optimal batch
production and delivery strategy such that two objective
functions considered are minimised.

• We demonstrate that the problem with the first optimiza-
tion function may be solved in polynomial time and that
the problem with the second optimization function is
pseudo-polynomial time solvable.

• We perform computational experiments to assess how
multitasking affects the scheduling cost or value, the
results of which can assist decision-makers to justify the
extent to put to use or refrain from multitasking.

We organize the study as follows. The next section for-
mally describes the studied problem, followed by which the
preliminary analysis and several properties about the optimal
schedule for the studied problems are presented. The subse-
quent section focuses on developing the solution procedures
for solving the problems. The computational experiments
to verify the effects of multitasking on the objective func-
tion values are shown before the concluding section. The last
section provides the conclusions and future studies.

Problem description

This section formally describes the studied problems. Table 1
summarizes the main notation used throughout this study.

To be precise, a set of n jobs N = {J1, . . . , Jn} needs
to be scheduled on a machine, which may schedule at most
one job at a time. Every job J j , j = 1, . . . , n, has a non-
negative processing time p j and a non-negative due date d j .
Different from the classical assumption that the due date d j

is pre-defined, it is a decision variable in this study.
As in Hall et al. [12] and Wang et al. [23], we allow

uncompleted jobs to suspend the jobs being processing, i.e., it
permits the machine to suspend an uncompleted job and turn
to another uncompleted job. We regard the job scheduled in
anytime as the primary job, and the other uncompleted jobs
as the waiting jobs, which may interrupt the processing of
the primary job. We assume that each job may be handled
as a primary job only once and immediately after another
primary job completing its processing.

In the execution of a primary job, two types of times, say
interruption time and switching time, are incurred, in which
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Table 1 Notation used in this study

Notation Meaning

n The number of jobs

J = {J1, J2, . . . , Jn} The set of jobs

p j The processing time of job
J j

d j The due date of job J j

r j
k The remaining processing

time of job Jk
immediately when job J j
becomes a primary job

fk(r) The remaining processing
time of job Jk after
interrupting
r , r = 1, . . . , n − 1,
primary jobs

Wj The set of jobs that are
waiting for processing
when job J j becomes a
primary job

ϕ(x) A nondecreasing function
on variable x ∈ [0,+∞)

with ϕ(0) = 0

Dj The distribution time of job
J j , which equals the
completion time of the
last job in the batch that
contains job J j

E j = max{d j − Dj , 0} The earliness of job J j

Tj = max{Dj − d j , 0} The lateness of job J j

U j The lateness indicator,
where Uj = 1 if Dj > d j
and Uj = 0 otherwise

α ∈ (0, 1) The interruption rate of all
the jobs

b The batch size which
indicates that any batch
can contains at most b
jobs

ϑ The distribution cost per
batch

μ The unit earliness cost

γ The unit lateness cost

η The unit DDA cost

ω j The cost of job J j being late

P =
n∑

j=1
p j The total processing time of

all jobs

the former represents the time duringwhich the primary job’s
waiting jobs interrupt its processing, and the latter measures
the time spent in the inspecting its waiting jobs. Specially,
given any primary job J j and each waiting job Jk ∈ Wj , the
time that job Jk suspends the processing of job J j is defined

as αr j
k , which is proportional to the remaining processing

time of job Jk . The switching time for reviewing the waiting
jobs of job J j is defined as ϕ(|Wj |), which only depends on
the number of waiting jobs. As a consequence, it is evident
that the remaining processing time of job Jk after interrupting
r , r = 1, . . . , n − 1, primary jobs equals

fk(r − 1) − α fk(r − 1) = (1 − α)r pk . (1)

Thus, the time that job Jk suspends the (r +1)th primary job
equals

α fk(r) = α(1 − α)r pk . (2)

We distribute the completed jobs to the customers in
batches, and process the jobs in a batch sequentially. We
refer to the sum of the processing times of all the jobs in a
batch to the processing time of the batch. The sizes of all
batches are identical, which may be bounded or unbounded.
By bounded batch size, we mean that there may be at most
b jobs in each batch. In this study, we mainly concentrate on
the case with bound batch size, and show how to extend the
results to the unbounded case.We distribute each batch to the
customers immediately after the last job in it completing its
processing, and each distribution incurs a fixed cost ϑ . We
call the corresponding time as the delivery time of the jobs
in the batch.

If we distribute a job to its customer before its due date, an
earliness penalty is incurred which depends on how early it
is (E j ). In addition, if we distribute a job to its customer after
its due date, a lateness penalty is incurred, which depends on
how late it is (Tj ) or whether it is late (Uj=0 or 1). A job is
referred to be early if Uj = 0, and late otherwise.

The goal is to find (1) the optimal primary job sequence,
(2) the optimal due dates, (3) the optimal number of
batches m, and (4) the optimal batch distribution partition
(B1, B2, . . . , Bm) such that the optimization function

�1 =
∑

J j∈N

(
μE j + ηTj + γ d j

) + mϑ

or

�2 =
∑

J j∈N

(
μE j + ω jU j + γ d j

) + mϑ

is minimised. In the remaining part of this study, we refer to
the problems of minimizing the objective functions �1 and
�2 as problems P1 and P2, respectively. In addition, as for
problem P2, we assume that the jobs which would be late
are not processed.

The following practical example concerning a two-level
supply chain, which involves a steelmanufacturer and a set of
orders from several customers, motivates the studied prob-
lems, where each order consists of producing numbers of
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variousmedium to small steel coils. In this example, theman-
ufacturer is referred to as a single “machine” and the orders
are referred to as “jobs”. A sufficient number of transport
vehicles are available to distribute the completed orders to the
customers, where the transport vehicles have fixed capacity,
and the cost per distribution is fixed. The processing require-
ment dictates that the orders containing in the same batch are
processed contiguously and the distribution date of a batch
equals the completion time of the last order in the batch. To
reduce the setup times that are needed to perform some clean-
ing operations, or remove a previous container and install a
new one when the manufacturer switches processing from
one type of steel coil to another type of steel coil, multitask-
ing is permitted, which allows unfinished orders to seize the
production resources and suspend the orders under process-
ing. The steel manufacturer will negotiate with customers
to set the due dates for completing their orders. To reduce
the operating cost and improve the overall satisfaction of the
customers, the steel manufacturer requires to determine an
effective way to allocate its services over time to perform the
orders of the customers in a timely and cost-effectivemanner.
This situation can be modeled as the studied models.

Structure property analysis

This section provides some structure properties on the opti-
mal solution for problems P1 and P2.

Given a job sequence, we let J[ j] be the j th primary job in
the sequence, and let Bk and |Bk | represent the set of primary
jobs scheduled in the kth batch and the number of primary
jobs in Bk (k = 1, 2, · · · ), respectively. The following lemma
illustrates the property about assignment due dates.

Proposition 3.1 There is an optimal solution to the problem
so that

(i) d j = Dj if γ < η and d j = 0 otherwise for all j =
1, 2, . . . , n when objective function is �1;

(ii) d j = Dj if γ Dj < ω j and d j = 0 otherwise for all
j = 1, 2, . . . , n when the objective function is �2.

Proof It is similar to the proof of Yin et al. [30]. For com-
pleteness, we provide a brief proof for (i). The proof for (ii)
is similarly. To be precise, we require to address two cases.

(1) γ < η. Assume there exists a solution S such that there
is a job J j with d j = Dj , i.e., d j < Dj or d j > Dj . In
what follows,we prove that a shift of d j to the right (resp.,
left) if d j < Dj (resp., d j > Dj ) such that d j = Dj can
only reduce the optimization function value of�1. When
d j < Dj , the change in the optimization function value
of �1 is (γ −η)(Dj −d j ) < 0. On the other hand, when

d j > Dj , the change in the optimization function value
of �1 is −(γ + μ)(d j − Dj ) < 0.

(2) γ ≤ η. Assume there exists a solution S such that there
is a job J j with d j > 0. In what follows, we prove that
a shift of d j to the left such that d j = 0 can only reduce
the optimization function value of �1. When d j ≥ Dj ,
the change in the optimization function value of �1 is
ηDj − (γ d j + μ(d j − Dj )) ≤ 0. When d j < Dj , the
change in the optimization function value of�1 is ηDj −
(γ d j + η(Dj − d j )) = (η − γ )d j ≤ 0. ��

The proposition above demonstrates that an optimal solu-
tion to each of the problems exists where the earliness of each
job equals zero. It follows that the optimization functions�1

and �2 reduce to

∑

J j∈N
ξDj + mϑ (3)

and

∑

J j∈N

(
ω jU j + γ Dj

) + mϑ, (4)

respectively, in which ξ = min{γ, η}. As a consequence, it
is beneficial to process the primary jobs consecutively from
time 0 (exclude the interruption and switching times).

In what follows, we limit our attention to solutions
fulfilling the properties above. Now we analyze the formula-
tion of the optimization function �1 of a given schedule.
Given any such primary job sequence S, which is par-
titioned into m batches B1 = {J[1], J[2], . . . , J[h1]}, . . .,
Bm = {J[hm−1+1], J[hm−1+2], . . . , J[n]}, in which hk is the
number of primary jobs contained in the first k batches for
k = 0, 1, 2, . . . ,m, with h0 = 0 and hm = n. Thus, for each
j = 1, . . . , n, job J[ j]’s completion time is equal to

C[ j] =
j∑

l=1

p[l] +
(
1 − (1 − α) j

) n∑

l= j+1

p[l] +
j∑

l=1

ϕ(n − l), (5)

in which the first term is the sum of the total processing times
of the first j primary jobs, the second term denotes the sum
of the interruption times that the last n − j jobs interrupt the
first j primary jobs, and the third term gives the sum of the
switching times during processing the first j primary jobs.

By Eq. (5), the distribution time D[ j] of job J[ j] such that
hk−1 + 1 ≤ j ≤ hk for some k = 0, 1, . . . ,m is

D[ j] =
hk∑

l=1

p[l] +
(
1 − (1 − α)hk

) n∑

l=hk+1

p[l] +
hk∑

l=1

ϕ(n − l), (6)
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and thus the optimization function �1 of schedule S can be
formulated as

�1 =
∑

J j∈N
ξDj + mϑ

= ξ

m∑

k=1

hk∑

j=hk−1+1

D[ j] + mϑ

= ξ

( m∑

k=1

hk∑

j=hk−1+1

( hk∑

l=1

p[l] + (1 − (1 − α)hk )

n∑

l=hk+1

p[l] +
hk∑

l=1

ϕ(n − l)

))

+ mϑ

= ξ

( m∑

k=1

(

(n − hk−1)Pk + Pk

k−1∑

l=1

(1 − (1 − α)hl )|Bl |

+ (n − hk−1)

hk∑

j=hk−1+1

ϕ(n − j)

))

+ mϑ, (7)

in which Pk = ∑hk
j=hk−1+1 p[ j] represents the processing

time of batch Bk .
As for the optimization function �2, given any primary

job sequence S with ne early jobs, in which the early jobs are
partitioned into me batches B1 = {J[1], J[2], . . . , J[h1]}, . . .,
Bme = {J[hme−1+1], J[hme−1+2], . . . , J[ne]}, then the opti-
mization function �2 of schedule S can be formulated as

�2 =
∑

J j∈N
(γ Dj + ω jU j ) + mϑ

= γ

( me∑

k=1

(

(n − hk−1)Pk + Pk

k−1∑

l=1

(
1 − (1 − α)hl

)
|Bl |

+ (n − hk−1)

hk∑

j=hk−1+1

ϕ(n − j)

))

+
∑

J j∈L
w j + mϑ

(8)

in which L stands for the set of late jobs in solution S.
Based on Eqs. (7) and (8), one can draw the following

conclusion.

Proposition 3.2 There is an optimal solution to each of the
problems P1 and P2 so that the maximum processing time
among the primary jobs scheduled in any batch Bk, k =
1, 2, . . ., is equal to or less than the minimum processing
time among the primary jobs scheduled in batch Bk+1.

Proof We provide the proof for problem P1. The proof for
problem P2 is analogous. Assume there exists a solution S
with two continuous batches Bk and Bk+1 such that pi > p j

for some primary jobs Ji ∈ Bk and J j ∈ Bk+1. We create
a new solution S′ from S by exchanging primary jobs Ji
and J j while keeping the other primary jobs being the same.

According to Eq. (7), the difference between the optimization
function values of solutions S and S′ is

pi

(

(n − hk−1) +
k−1∑

l=1

(
1 − (1 − α)hl

)
|Bl |

)

+ p j

(

(n − hk) +
k∑

l=1

(
1 − (1 − α)hl

)
|Bl |

)

−
(

p j

(

(n − hk−1) +
k−1∑

l=1

(
1 − (1 − α)hl

)
|Bl |

)

+ pi

(

(n − hk) +
k∑

l=1

(
1 − (1 − α)hl

)
|Bl |

) )

= (pi − p j )
(
hk − hk−1 −

(
1 − (1 − α)hk

)
|Bk |

)

= (pi − p j )(1 − α)hk |Bk | > 0.

As a consequence, solution S′ is noworse than S, as required.
��

The proposition above demonstrates that both problems
P1 and P2 allow an optimal solution so that the primary
jobs are proceeded in terms of the SPT (Shortest Processing
Time first) rule. In what follows, we re-arrange the jobs in
terms of the SPT rule so that d1 ≤ d2 ≤ · · · ≤ dn .

Dynamic programming algorithms

This section devises dynamic programming (DP) algorithms
for problems P1 and P2 which relies on the properties given
in Lemmas 3.1 and 3.2. Specially, we prove that problem P1
is polynomial time solvable, whereas problem P2 may be
solved in pseudo-polynomial time.

Let us begin with devising a polynomial-time forward DP
algorithm, denoted as Algorithm MDBT , for problem P1.
The procedure of the algorithm is as follows. For each j =
0, 1, . . . , n, we let Hj stand for the set of states encoding the
partial solutions for the first j jobs J1, . . . , J j . Each state in
Hj is in the form of (a, g) such that

• There is exactly a primary jobs contained in the last batch
of the partial solution.

• The optimization function value of the partial solution is
g.

Algorithm MDBT begins with an initial tag set F0 =
{(0, 0)}. For each j = 1, . . . , n, the tag set Fj is con-
structed from tag set Fj−1. To be precise, for each tag
(a, g) ∈ Fj−1 that corresponds to a partial solution for the
jobs J1, . . . , J j−1, to create a new solution by appending
the next unassigned job J j to the end of the above partial
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solution, one requires to take the following two cases into
account.

Case T1: Start a new batch and append job J j to it. What
is noteworthy is that we take into account the contributions
of the jobs to the optimization function value in batches, i.e.,
the contributions of all jobs contained in a batch are added
to the optimization function value of �1 immediately when
we complete the processing of all the jobs contained in the
batch. Thus, the contributions of all the jobs contained in the
previous batch to the optimization function value of �1 in
this case equals

ξ
(
(n − ( j − 1 − a))

j−1∑

l= j−a

pl + a

(
1 − (1 − α) j−1

) n∑

l= j

pl

+(n − ( j − 1 − a))

a−1∑

l=0

ϕ(n − j + 1 + l)
)

according to Eq. (7), in which j − 1− a gives the number of
primary jobs processed before the previous batch,

∑ j−1
l= j−a pl

gives the total processing times of all the jobs contained in the
previous batch, and

∑n
l= j pl measures the total processing

times of all the primary jobs processed after the previous
batch. Therefore, the value that increases in the optimization
function �1 due to this operation in thi

s case is

ξ
(
(n − ( j − 1 − a))

j−1∑

l= j−a

pl + a

(
1 − (1 − α) j−1

) n∑

l= j

pl

+(n − ( j − 1 − a))

a−1∑

l=0

ϕ(n − j + 1 + l)
)

+ ϑ.

As a consequence, one can construct a new tag

(

1, g + ξ
(
(n − ( j − 1 − a))

j−1∑

l= j−a

pl

+a
(
1 − (1 − α) j−1

) n∑

l= j

pl

+(n − ( j − 1 − a))
∑a−1

l=0
ϕ(n − j + 1 + l)

)
+ ϑ

)

and add it into Fj .
Case T2: Append job J j to the last batch. To ensure the

feasibility, there must be 1 ≤ a < b by the restriction on the

batch size. By the analysis in Case 1, the value that increases
in the optimization function �1 due to this operation in this

case is zero if j < n, and ξ(a+1)
(∑ j

l= j−a pl + ∑a
l=0 ϕ(l)

)

otherwise. Thus, if a < b, one can construct a new tag (a +
1, g̃) and add it into Fj , in which g̃ = g if j < n and

g̃ = g + ξ(a + 1)
(∑ j

l= j−a pl + ∑a
l=0 ϕ(l)

)
otherwise.

What is noteworthy is that not all the generated tags during
the procedure above will form a complete better schedule.
Thus, it is necessary to find the tags that can be discarded for
further consideration by the following dominant rule.

Lemma 4.1 Given any tags (a, g) and (a′, g′) in Fj such that
a ≤ a′, and g ≤ g′, one can discard the latter tag.

Proof Given the conditions stated in the lemma, it is evident
that every feasible extension of the partial solution corre-
sponding to the latter one is also feasible for the partial
solution corresponding to the former one, and leads to a com-
plete solution whose objective function value is equal to or
less tan that of the solution constructed by using the same
extension to the former one. ��

According to the above analyses,we provide the following
procedure for Algorithm MDBT :

Algorithm MDBT

Step 1. Re-arrange the jobs in terms of the SPT rule so that
p1 ≤ · · · ≤ pn .
Step 2. Set F0 = {(0, 0)}.
Step 3. Construct tag set Fj from Fj−1

For j = 1 to n do
Fj ← ∅;
For each (a, g) ∈ Fj−1, do
/* Correspond to Case 1 */
Fj ← Fj ∪{(1, g+ξ((n− ( j −1−a))

∑ j−1
l= j−a pl

+ a(1 − (1 − α) j−1)
∑n

l= j pl+
(n − ( j − 1− a))

∑a−1
l=0 ϕ(n − j + 1+ l)) + ϑ)};

/* Correspond to Case 2 */
If 1 ≤ a < b then
Fj ← Fj ∪{(a+1, g̃)}, in which g̃ = g if j < n

and g̃ = g + ξ(a + 1)(
∑ j

l= j−a pl + ∑a
l=0 ϕ(l))

otherwise;
Endif

/* Discard nondominated states from Fj */
Given any tags (a, g) and (a′, g) in Fj such that a ≤

a′, discard the latter tag from Fj ;
Given any tags (a, g) and (a, g′) in Fj such that g ≤

g′, discard the latter tag from Fj ;
Endfor

Step 4. Return the optimal optimization function value
min{g|(a, g) ∈ Fn}.
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Theorem 4.2 Problem P1 may be solved by Algorithm
MDBT with running time O(nb).

Proof Due to the fact that all possible scheduling choices for
each job J j are addressed in Step 3, Algorithm 1 can find an
optimal schedule. In Step 1, we execute a sorting procedure
requiring n log n time. In Step 3, since there are b different
values of a, there are at most b different combinations of
{a, g} according to the dominant rule. For any state, at most
two new states can be constructed. As a consequence, going
through n iterations, Step 3 may be implemented in O(nb)
time, which completes the proof. ��

In what follows, we use the following example to demon-
strate Algorithm MDBT .

Example 4.3 Let n = 3, α = 0.1, μ = η = 3, γ = 1, ϑ =
10, p1 = 30, p2 = 20, p3 = 15, b = 2, and ϕ(x) = x for
all x ∈ [0,+∞). We implement Algorithm MDBT to solve
this example in the following way.

Step 1: The jobs are already re-arranged in the LPT order.
Step 2: Set F0 = {(0, 0)} and ξ = min{γ, η} = 1.
Step 3: For j = 1, we generate a tag (1, ϑ) = (1, 10)
from the tag (0, 0) ∈ F0. Thus, F1 = {(1, 10)}.

For j = 2, we generate two tags (1, 10+ 3p1 + 0.1(p2 +
p3) + 3ϕ(2) + ϑ) = (1, 119.50) and (2, 10) from the tag
(1, 10) ∈ F1. Thus, F2 = {(1, 119.50), (2, 10)}.

For j = 3,we generate two tags (1, 119.5+2p2+(1−(1−
α)2)p3+2ϕ(1)+ϑ) = (1, 174.35) and (2, 119.50+2(p2+
p3 + ϕ(1))) = (2, 191.50) from the tag (1, 119.50) ∈ F2;
and a tag (1, 10 + 3(p1 + p2) + 2(1 − (1 − α)2)p3 +
3(ϕ(1) + ϕ(2)) + ϑ) = (1, 184.70) from the tag (2, 10).
During the elimination process, (1,184.70) is deleted. Thus,
F2 = {(1, 174.35), (2, 191.50)}, and the optimal solution
value is 174.35 and the optimal primary job sequence is
(J1, J2, J3), where each single job forms a batch.

What is noteworthy is that AlgorithmMDBT with a slight
amendment by deleting the constraint on a can be applied for
solving problem P1with unbound batch size. In terms of this
modification, there are at most n possible values for a. Thus,
problem P1 with unbounded batch size may be solved in
O(n2) time.

Now we turn to the solution algorithm for problem P2.
It’s worth noting that AlgorithmMDBT with directly amend-
ments cannot be used to solve problem P2 since we cannot
determine which jobs would be scheduled after the current
batch. Instead, we devise a backward dynamic programming
algorithm, denoted as MDBL , that appends a job immedi-
ately before the partial schedule. To keep things simple, in the
sequel we re-arrange the jobs so that p1 ≥ p2 ≥ · · · ≥ pn .

Specially, we need to enumerate all possible values of the
number of early jobs in the complete optimal solution. Given
each such value e and each j , e, j = 0, 1, . . . , n, we let H(e, j)

represent the set of tags encoding the partial solutions for jobs
J1, . . . , J j so that the number of early jobs in the complete
optimal solution is exactly e. Each tag in H(e, j) is in the form
of (x, a, t1, t2, g) such that

• there is exactly x primary jobs processed after the first
batch of the partial solution,

• there is exactly a primary jobs in the first batch of the
partial solution,

• the total processing time of the primary jobs processed
after the first batch of the partial solution is t1,

• the total processing time of the primary jobs processed
in the first batch of the partial solution is t2,

in which g is defined similarly as that in Algorithm MDBT .
The algorithm begins with an initial tag set H(e,0) =

{(0, 0, 0, 0, 0)}. For each j = 1, · · · , n, the tag set H(e, j)

is generated from tag set H(e, j−1). To be exact, given any tag
(x, a, t1, t2, g) ∈ F(e, j−1) that corresponds to a partial solu-
tion for the jobs J1, . . . , J j−1, to generate a new schedule
by appending the next unassigned job J j to the start of the
above partial solution, one require to take the following two
cases into account.

Case L1: assign job J j as a late job. The value that
increases in the optimization function �2 due to this
operation is ω j . Thus, one can construct a new tag
(x, a, t1, t2, g + w j ) and add it into H(e, j).
Case L2: assign job J j as an early job. There must be
a + x < e in this case, and we require to further address
two subcases.

Subcase L21: Start a new batch and append job J j
to the new batch. The contributions of all jobs in the
previous batch to the objective function value of �2

in this case is

γ

(

(x + a)t2 + a
(
1 − (1 − α)e−x) t1

+(x + a)

a−1∑

l=0

ϕ(x + l)

)

by Eq. (8). Thus, the value that increases in the opti-
mization function of �2 due to this operation in this
case equals
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γ

(

(x + a)t2 + a
(
1 − (1 − α)e−x) t1

+(x + a)

a−1∑

l=0

ϕ(x + l)

)

+ ϑ.

As a consequence, one can construct a new tag

(

x + a, 1, t1 + t2, p j , g + γ ((x + a)t2.

+a
(
1 − (1 − α)e−x) t1 + (x + a)

∑a−1

l=0
ϕ(x + l)

)

+ ϑ)

and add it into H(e, j).
Subcase L22: Append job J j to the first batch. In
this case, there must be a < b by the restriction on
the batch size. The value that increases in the opti-
mization function �2 due to this operation is zero if

j < n, and γ (x + a)
(
t2 + ∑a−1

l=0 ϕ(x + l)
)
, oth-

erwise. Thus, if a < b, one can construct a new
tag (x, a + 1, t1, t2 + p j , g̃) and add it into H(e, j),
in which g̃ = g if j < n and g̃ = g + γ (x +
a)

(
t2 + ∑a−1

l=0 ϕ(x + l)
)
otherwise.

To cut down the number of states, one can use the follow-
ing dominant rule.

Lemma 4.4 Given any tags (x, a, t1, t2, g) and (x ′, a′, t ′1, t ′2,
g′) in Fj such that x ≤ x ′, a ≤ a′, t1 ≤ t ′1, t2 ≤ t ′2, and
g ≤ g′, one can discard the latter one.

Proof It is similar to the proof Lemma 3.1. ��
According to the analyses above,we provide the following

procedure for Algorithm MDBL .

Algorithm MDBL

Step 1. Re-arrange the jobs so that p1 ≥ · · · ≥ pn .
Step 2. Let H(e,0) = {(0, 0, 0, 0, 0)} for all e = 0, 1, · · · , n.
Step 3. Construct tag set H(e, j) from H(e, j−1)

For e = 0 to n do
For j = 1 to n do
H(e, j) ← ∅;
For each (x, a, t1, t2, g) ∈ H(e, j−1), do
/* Correspond to Case L1 */
H(e, j) ← H(e, j) ∪ {(x, a, t1, t2, g + w j )};
/* Correspond to Case L2 */
If x + a < e then
/* Correspond to Case L21 */
H(e, j) ← H(e, j) ∪ {(x + a, 1, t1 + t2, p j , g +

γ ((x + a)t2 + a(1 − (1 − α)e−x )t1+
(x + a)

∑a−1
l=0 ϕ(x + l)) + ϑ)};

/* Correspond to Case L22 */
If a < b then
H(e, j) ← H(e, j) ∪{(x, a+1, t1, t2 + p j , g̃)},

in which g̃ = g if j < n and
g̃ = g + γ (x + a)(t2 + ∑a−1

l=0 ϕ(x + l)) oth-
erwise;

Endif
Endif

Endfor
/* Discard nondominated tags from H(e, j) */
Given any tags (x, a, t1, t2, g) and (x ′, a, t1, t2, g)

in H(e, j) such that x ≤ x ′, discard the
latter one from H(e, j);
Given any tags (x, a, t1, t2, g) and (x, a′, t1, t2, g)

in H(e, j) such that a ≤ a′, discard the
latter one from H(e, j);
Given any tags (x, a, t1, t2, g) and (x, a, t ′1, t2, g)

in H(e, j) such that t1 ≤ t ′1, discard the
latter one from H(e, j);
Given any tags (x, a, t1, t2, g) and (x, a, t1, t ′2, g)

in H(e, j) such that t2 ≤ t ′2, discard the
latter one from H(e, j);
Given any tags (x, a, t1, t2, g) and (x, a, t1, t2, g′)

in H(e, j) such that g ≤ g′, discard the
latter one from H(e, j);

Endfor
Endfor

Step 4. Return the optimal optimization function value
min{ f A|(x, e − x, t1, t2, g) ∈ H(e,n), e = 0, 1, · · · , n}.
Theorem 4.5 Problem P2 may be solved by Algorithm
MDBL with running time O(n3bP2).

Proof It is analogous to the proof of Theorem 3.2, in which
the only differences lie in that: x , t1 and t2 take at most n, P
and P different values, respectively. ��

Similarly, Algorithm MDBL with a slight amendment by
deleting the constraint on a can be applied for solving prob-
lem P2 with unbound batch size, which runs in O(n4P2)

time.

Computational experiments

This section assesses howmultitasking affects the scheduling
cost or value through computational experiments. In terms of
the parameter settings in Hall et al. [12] andWang et al. [23],
we generate different sets of parameter values as follows.

• We selected n from the set {50, 60, . . . , 120} for problem
P1 and from the set {5, 10, 15, 20} for problem P2.

• We randomly selected p j from the uniform distribution
[10, 50].
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• We randomly selected η and γ from the uniform distri-
bution [1, 10].

• We randomly selected ϑ from the uniform distribution
[20, 100], and b from the discrete uniform [2, n].

• We randomly selected ω j from the uniform distribution
[bP/n, P/2].

• We selected α from the set {0.01, 0.05, 0.10, 0.15}.

The reason for the setting of n is as follows: the pre-
liminary computational test indicates that AlgorithmMDBT

takes 2 h on average for solving the instanceswith n = 120 of
problem P1, andAlgorithmMDBl takesmore 2 h on average
for solving the instances with n = 20 of problem P2. The
average running times of the algorithms on testing instances
with different numbers of jobs are depicted in Tables 2 and
3, respectively.

Given any combination of the parameters above, we per-
form two computational experiments, i.e., ϕ(x) = 0.05x and
ϕ(x) = − 0.05x . And for any combination of n and α, 30
instances were randomly chosen and the average results were
reported.

We apply the algorithm for each problem by setting α = 0
for solving the corresponding problem without multitasking.
The developedDP algorithms are coded inMATLAB and the
numerical experiments are performed on a notebook com-
puter with a 3.80-GHz CPU and 16 GB memory.

Let �1 and �
′
1 be the optimal optimization function val-

ues to the multitasking problem P1 and the corresponding
problemwithout multitasking, respectively, and LTavg be the

mean value of
�1−�′

1
�′

1
over the 50 chosen instances for any

combination of n and α, which demonstrates the average
multitasking cost or value. In a similar way, we let �2 and
�

′
2 be the optimal optimization function values to the multi-

tasking problem P2 and the corresponding problem without
multitasking, respectively, and LLavg be the mean value of
�2−�′

2
�′

2
over the 50 chosen instances.

The results for problems P1 and P2 are summarized in
Tables 2 and 3, from which we have the following observa-
tions.

• As expected, the affect of multitasking on the scheduling
cost or value increases as theα value increases, especially
for problem P1. For instances, when ϕ(x) = 0.05x , the
LTavg value for α = 0.15, 0.10 and 0.05 respectively
increases 54.02%, 39.12% and 28.17% on average com-
pared to that for α = 0.01 for problem P1, and the LLavg

value for α = 0.15, 0.10 and 0.05 respectively increases
512.17%, 158.37% and 158.71% on average compared
to that for α = 0.01 for problem P2. In addition, when
ϕ(x) = − 0.05x , the LTavg value for α = 0.15, 0.10 and
0.05, respectively increases 96.81%, 84.05% and 43.47%
on average compared to that for α = 0.01 for problem

P1, and the LLavg value for α = 0.15, 0.10 and 0.05,
respectively, increases 301.63%, 196.56% and 112.32%
on average compared to that for α = 0.01 for problem
P2. The reason behind this is that the interruption time
that the waiting jobs suspend the primary jobs becomes
large when α increases.

• The affect of the number of jobs on the LTavg and LLavg

values is obviously. From Tables 1 and 2, we can see
that the instances with more larger n induce more lager
cost of multitasking for most problem instances. For
instance, the average cost of multitasking ranges from
98.15 to 143.61% when (α, ϕ(x)) = (0.10,− 0.05x)
and ranges from 98.50 to 116.67% when (α, ϕ(x)) =
(0.10,− 0.05x), which increases approximately in pro-
portion to the number of jobs.

• Negative LTavg or LLavg value is possible, implying
that we can get some revenue from multitasking. For
instance, when n = 5, we can get 0.01% revenue from
multitasking when (α, ϕ(x)) = (0.05,− 0.05x), and
get 0.05% revenue from multitasking when (α, ϕ(x)) =
(0.01,− 0.05x) for problem P2. However, this result
does not continue as the number of jobs increases.

• The affect of multitasking for problem P1 is more larger
than that for problem P2. This is due to the fact that mul-
titasking will affect the completion times of jobs, and the
optimization function of problem P1 is more related to
the completion times of jobs compared to that of problem
P2.

Conclusions

In this study, we investigate a novel scheduling model that
coinstantaneously involves batch distribution, multitasking
and DDA. In the developed model, the job due dates are to be
decided by the decision-makers in the decision-making pro-
cess. The completed jobs are distributed to their customers
in batches, and the sizes of all batches are identical, which
may be bounded or unbounded. The jobs contained in each
batch are scheduled sequentially. In addition, it permits the
machine to suspend an uncompleted job and turn to another
uncompleted job. The goal is to identify the optimal primary
job sequence, the optimal job due dates, and the optimal batch
production and delivery strategy so that one of the following
optimization functions are minimised: the total cost com-
posed of the earliness penalty, DDA cost, tardiness penalty
and batch distribution cost, and the total cost composed of
the earliness penalty, weighted number of late jobs, DDA
cost and batch distribution cost. We prove that the problem
with the first optimization function may be solved in polyno-
mial time and that the problem with the second optimization
function is pseudo-polynomial time solvable. We also con-
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duct numerical experiments on randomly chosen instances to
assess how multitasking affects the scheduling cost or value,
the results of which can assist decision-makers to justify the
extent to put to use or refrain multitasking.

As for future research, the following topics are interesting
and necessary.

• Providing the computational complexity status of the
problem P2, i.e. whether it is N P-hard.

• Investigating the model with other due date assignment
methods.

• Extending the model to other machine setting, for exam-
ple, flowshop or parallel-machine setting.

• Investigating the model in a uncertain or dynamic envi-
ronment, for example in the present of randomprocessing
times, unexpected machine breakdown, etc.

• Extending the model to the case with energy efficiency,
consumption, or cost as constraints or objectives (Gao et
al. [7]).

• Developing effective intelligent optimization algorithms
for solving large-scale problem, such as Tabu search,
genetic algorithm, or genetic programming (Nguyen et
al. [21]).
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