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Abstract
Most existing fuzzy collaborative forecasting (FCF) methods adopt type-1 fuzzy numbers to represent fuzzy forecasts. 
FCF methods based on interval-valued fuzzy numbers (IFNs) are not widely used. However, the inner and outer sections of 
an IFN-based fuzzy forecast provide meaning information that serves different managerial purposes, which is a desirable 
feature for a FCF method. This study proposed an IFN-based FCF approach. Unlike existing IFN-based fuzzy association 
rules or fuzzy inference systems, the IFN-based FCF approach ensures that all actual values fall within the corresponding 
fuzzy forecasts. In addition, the IFN-based FCF approach optimizes the forecasting precision and accuracy with the outer 
and inner sections of the aggregation result, respectively. Based on the experimental results, the proposed FCF-II approach 
surpassed existing methods in forecasting the yield of a dynamic random access memory product.

Keywords Fuzzy collaborative forecasting · Interval fuzzy number · Mixed binary nonlinear programming

Introduction

Forecasting is a task that involves a lot of uncertainty and 
subjective judgments. Fuzzy collaborative forecasting (FCF) 
methods apply fuzzy logic to model uncertainty and incor-
porate experts’ subjective judgments. Therefore, FCF meth-
ods have great potential for forecasting tasks [9, 26]. Fuzzy 
association rules [3, 24, 35] and fuzzy inference systems 
(FISs) [28, 32, 51, 52] are conventional FCF methods that 
use multiple fuzzy rules from various points of view. How-
ever, existing applications of fuzzy association rules and 
FISs to forecasting have the following problems.

1. Most conventional fuzzy association rules and FISs can-
not ensure that all actual values are included in the cor-
responding fuzzy forecasts.

2. Most existing fuzzy association rules and FISs fuzzify 
the target variable to consider uncertainty. However, it 
will be more effective to fuzzify parameters instead.

3. To include actual values in the corresponding fuzzy fore-
casts, most existing fuzzy association rules and FISs add 
the same allowance to all forecasts, which is inflexible 
and imprecise.

To overcome these difficulties, several FCF methods fuzz-
ify parameters to guarantee that actual values are included 
in the corresponding fuzzy forecasts [6, 8, 34, 53]. In this 
study, an interval fuzzy number (IFN)-based FCF approach 
is proposed.

The motives for this study are explained as follows.

1. Owing to the existence of extreme cases, fuzzy forecasts 
generated using an existing FCF method are not suffi-
ciently precise.

2. Fuzzy forecasts generated using existing FCF methods 
are usually type-1 fuzzy numbers [7, 12, 23]. Compared 
with type-1 fuzzy numbers, IFNs can better consider 
uncertainty [22]. However, FCF methods that generate 
IFN-based fuzzy forecasts are not widely used.

3. Most existing FCF methods apply fuzzy intersection (FI) 
to aggregate fuzzy forecasts and defuzzify the aggre-
gation result using a back propagation network (BPN). 
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Whether the same mechanism is applicable to IFN-based 
fuzzy forecasts should be investigated.

However, we cannot achieve the purpose by simply 
replacing type-1 fuzzy parameters with IFN-based fuzzy 
parameters. In an FCF method, experts’ fuzzy forecasts 
are usually aggregated using fuzzy intersection (FI), which 
narrows the range of a fuzzy forecast, thereby enhancing 
forecasting precision [10]. A prerequisite for this is that all 
actual values are contained in the corresponding fuzzy fore-
casts [9]. Obviously, the outer section of an IFN-based fuzzy 
forecast meets this requirement, while the inner section does 
not, which is problematic if IFN-based fuzzy forecasts by 
several experts are to be aggregated. To address this issue, 
in the proposed methodology, the inner and outer sections 
of experts’ fuzzy forecasts are aggregated and defuzzified 
separately, thereby providing meaningful information that 
serves different managerial purposes.

In the proposed IFN-based FCF approach, experts apply 
various fuzzy forecasting methods to generate diversified 
IFN-based fuzzy forecasts. To this end, a mixed binary non-
linear programming (MBNLP) problem is solved. Subse-
quently, FI is applied to aggregate all experts’ IFN-based 
fuzzy forecasts. Specifically, the inner and outer sections 
of IFN-based fuzzy forecasts are aggregated separately. 
Finally, two BPNs are constructed to defuzzify the aggre-
gation results of the inner and outer sections, respectively. 
The originality of the proposed methodology resides in the 
following:

• Owing to the existence of extreme cases, a fuzzy yield 
forecast generated using an existing FCF method usually 
has a wide range. In contrast, the proposed methodology 
is able to narrow the range of a fuzzy yield forecast by 
excluding extreme cases.

• In existing FCF methods, experts’ fuzzy yield forecasts 
are usually aggregated into a single value. In contrast, the 
proposed methodology aggregates the inner and upper 
sections of experts’ fuzzy yield forecasts into two values 
for optimizing forecast precision and accuracy, respec-
tively.

The contributions of this study include

• the development of a FCF method based on IFNs for 
collaborative yield forecasting,

• the further improvement of forecasting precision by 
excluding extreme cases, and

• two systematic mechanisms for aggregating the inner and 
upper sections of experts’ fuzzy yield forecasts, respec-
tively.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses relevant previous studies. Section 3 intro-
duces the proposed IFN-based FCF approach. Section 4 
details the application of the IFN-based FCF approach to 
forecast the yield of a dynamic random access memory 
(DRAM) product. Finally, Sect. 5 concludes this study and 
provides some directions for future research.

Literature review

Fuzzy association rules and FISs are prevalent FCF methods. 
Fuzzy association rules are an important topic in data min-
ing, and have been applied to pattern recognition and fore-
casting [3, 24, 35]. In extracting fuzzy association rules, the 
average satisfaction levels are compared. As a result, a fuzzy 
association rule may not be applicable to some historical 
data. A number of methods for extracting fuzzy association 
rules based on IFNs have been proposed [14, 36]. For exam-
ple, Zarandi et al. [54] established an expert system based 
on IFN-based fuzzy association rules for forecasting stock 
prices. In an IFN-based fuzzy association rule, the lower 
membership function of each premise was derived by shift-
ing the location of the upper membership function. There-
fore, the lower and upper membership functions of each 
premise had an identical shape. Antonelli et al. [1] applied 
IFN-based fuzzy association rules to the classification of 
financial time series. Each premise in a fuzzy association 
rule was represented with an IFN with lower membership 
function positioned in the middle of the upper membership 
function. As a result, only the upper membership function of 
a premise needed to be considered in satisfying the support 
and confidence. Obviously, in most existing IFN-based fuzzy 
association rules, the lower and upper membership functions 
of a premise are heavily dependent.

Soto et al. [41] constructed an adaptive network-based 
FIS (ANFIS) to forecast a time series, in which both type-1 
and type-2 fuzzy numbers were adopted. Both stochastic 
models and fuzzy sets are effective means of tackling uncer-
tainty. From this point of view, Zhou et al. [57] incorpo-
rated IFNs into a Markov chain for a multi-stage interactive 
group decision-making task. Muhuri et al. [29] proposed an 
IFN-based multiobjective reliability redundancy allocation 
model. The model was converted into a crisp problem and 
solved using the nondominated sorting genetic algorithm 
II. Tian and Cao [43] proposed a fuzzy mixed integer pro-
gramming model for a multimodal transportation problem, 
in which both transportation time and demand were esti-
mated with IFNs. Soto et al. [42] constructed a fuzzy neural 
network ensemble to forecast a time series. Parameters in the 
fuzzy neural networks were given in interval type-2 fuzzy 
numbers, for which genetic algorithms and particle swarm 
optimization (PSO) algorithms were applied to optimize the 
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membership functions. Wang et al. [48] applied the extended 
fuzzy-preference relation for IFNs to rank the priorities 
of factors critical to the cruise industry in Shanghai. The 
approach was similar to the hybrid of fuzzy extent analysis 
(FEA) and the technique for order preference by similarity 
to ideal solution (TOPSIS). In Wang [50], the weights of cri-
teria for a quality function deployment (QFD) process were 
given in IFNs. Based on IFN-based weights, fuzzy weighted 
average (FWA) was applied to compare the performances of 
product designs. Efe [19] evaluated the quality of an edu-
cational institution website using fuzzy TOPSIS, in which 
all parameters were given in or approximated with IFNs. 
Compared with FWA, fuzzy TOPSIS was more sensitive 
to changes in the distances between an alternative and two 
reference points.

FISs have been widely applied to system control and 
forecasting. For example, Ying and Pan [52] constructed an 
ANFIS to forecast the regional electricity load in Taiwan. 
Lohani et al. [28] established a modified Takagi, Sugeno, 
and Kang (TSK) FIS to forecast the possibility of a flood 
in terms of hourly rainfall and river flow. Osório et al. [32] 
constructed an ANFIS to forecast wind power, in which 
mutual information, wavelet transformation, and evolution-
ary particle swarm optimization were applied to choose rel-
evant features, preprocess the inputs, and tune the ANFIS 
configuration, respectively. Yang et al. [51] established a FIS 
to forecast several time series. The membership functions of 
premises in fuzzy inference rules were dynamic. In addition, 
a constant allowance was added to each forecast to consider 
uncertainty, which was imprecise. In the view of Sahin et al. 
[37, 38], the model of the forecasting error could be used to 
establish the lower and upper bounds, based on which fuzzy 
linguistic terms for forecasts were defined. Carvalho and 
Costa [4] proposed a fuzzy time series method, in which the 
range of a time series was divided into a number of fuzzy 
intervals. Then, the relationships between successive fuzzy 
intervals, rather than those between original values, were 
fitted as rules. To aggregate the consequences of rules, the 
weight of a rule was set to the maximal satisfaction level in 
fitting historical data. However, in this way, it was impos-
sible to guarantee that all actual values were included in in 
the corresponding aggregation results.

When experts’ fuzzy forecasts may not contain actual val-
ues, a less risky way to aggregate experts’ fuzzy forecasts 
is to apply the fuzzy union operator (or s-norm), which is a 
prevalent treatment in FIS studies [25, 39, 49]. However, the 
range of possible values was widened.

Proposed methodology

Before introducing the details of the proposed methodology, 
some concepts of IFNs are described as follows.

Preliminary

First of all, the definition of an IFN is given.

Definition 1 (Interval fuzzy number, IFN) An IFN Ã is a 
subset of real numbers R, which can be defined as a set of 
ordered pairs Ã = {(x, 𝜇Ã(x) )| x ∈ R}, where 𝜇Ã(x) : R → [0, 
1] is the interval-valued membership function of Ã [18].

An IFN Ã has two membership functions, namely 
the lower membership function (LMF) [ 𝜇Ãl

(x) ] and 
upper membership function (UMF) [ 𝜇Ãu

(x) ], such that 
𝜇Ã(x) = [𝜇Ãl

(x), 𝜇Ãu
(x)] . An IFN is a special case of type-II 

fuzzy sets [2].

Definition 2 The inner support, outer support, and core of 
an IFN Ã are defined respectively as 

Definition 3 (Interval-valued triangular fuzzy number, 
ITFN) When the LMF and UMF of an IFN Ã are triangu-
lar functions, the IFN is called an interval-valued triangu-
lar fuzzy number (ITFN) with the following membership 
functions: 

Ã can be denoted as ((Al1, A2, Al3 ), ( Au1, A2, Au3 )) or 
( Au1, Al1, A2, Al3, Au3).

Definition 4 (α cut of an interval fuzzy number) The α cut 
of an interval fuzzy number Ã is 

Definition 5 (Fuzzy intersection of two fuzzy numbers) The 
FI of two fuzzy numbers Ã and B̃ is a fuzzy number given by

(1)isuppÃ = {x ∈ �|𝜇Ãl
(x)| > 0}

(2)osuppÃ = {x ∈ �| 𝜇Ãu
(x) | > 0}

(3)coreÃ = {x ∈ �|𝜇Ãl
(x) = 𝜇Ãu

(x) = 1}

(4)𝜇Ãl
(x) =

⎧⎪⎨⎪⎩

x−Al1

A2−Al1

if Al1 ≤ sx < A2

Al3−x

Al3−A2

if A2 ≤ sx < Al3

0 otherwise

(5)𝜇Ãu
(x) =

⎧
⎪⎨⎪⎩

x−Au1

A2−Au1

if Au1 ≤ sx < A2

Au3−x

Au3−A2

if A2 ≤ sx < Au3

0 otherwise

(6)A(�) = [[AL
u
(�), AL

l
(�)], [AR

l
(�), AR

u
(�)])

(7)�FI(Ã, B̃) = Ã ∩ B̃
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The membership function of F̃I can be derived by apply-
ing the minimum t-norm as 

In the proposed methodology, the FI of experts’ IFN-
based fuzzy forecasts is obtained, for which the following 
theorems are helpful.

Theorem 1 (α cut of the fuzzy intersection of fuzzy num-
bers) The α cut of the FI of two fuzzy numbers Ã and B̃ can 
be derived from those of the two fuzzy numbers as [5]

Theorem 2 (Fuzzy intersection of two interval fuzzy num-
bers) The FI of two IFNs Ã and B̃ is an IFN given by

with the following membership function

Proof According to the arithmetic for interval numbers: 

Theorem 2 is proved.

Theorem 3 (α cut of the fuzzy intersection of interval fuzzy 
numbers) The α cut of the FI of two IFNs Ã and B̃ can be 
derived as:

Proof According to Theorem 2,

Theorem 3 is proved.

(8)𝜇�FI
(x) = min(𝜇Ã(x), 𝜇B̃(x))

(9)
FI(�) = [FIL(�), FIR(�)]

= [max(AL(�), BL(�)), min(AR(�), BR(�))]

(10)�FI(Ã, B̃) = Ã ∩ B̃

(11)𝜇�FI
(x) = [min(𝜇Ãl

(x), 𝜇B̃l
(x)), min(𝜇Ãu

(x), 𝜇B̃u
(x))]

(12)

𝜇�FI
(x) = min(𝜇Ã(x), 𝜇B̃(x))

= min([𝜇Ãl
(x), 𝜇Ãu

(x)], [𝜇B̃l
(x), 𝜇B̃u

(x)])

= [min(𝜇Ãl
(x), 𝜇B̃l

(x)), min(𝜇Ãu
(x), 𝜇B̃u

(x))]

(13)
FI(�) =[[max(AL

u
(�), BL

u
(�)), max(AL

l
(�), BL

l
(�))],

[min(AR
l
(�), BR

l
(�)), min(AR

u
(�), BR

u
(�))]]

(14)

FI(�) = [FIL(�), FIR(�)]

= [max(AL(�), BL(�)), min(AR(�), BR(�))]

= [max([AL
u
(�), AL

l
(�)], [BL

u
(�), BL

l
(�)]), min([AR

l
(�), AR

u
(�)], [BR

l
(�), BR

u
(�)])]

= [[max(AL
u
(�), BL

u
(�)), max(AL

l
(�), BL

l
(�))], [min(AR

l
(�), BR

l
(�)), min(AR

u
(�), BR

u
(�))]]

Procedure for implementing the proposed 
methodology

The procedure for implementing the proposed methodology 
comprises the following steps:

Step 1 Each expert applies an IFN-based fuzzy forecasting 
method to generate a fuzzy yield forecast.

Step 2 Apply the FI operator to aggregate the inner and outer 
sections of experts’ IFN-based fuzzy yield forecasts.

Step 3 Construct BPNs to defuzzify the aggregation results.

Step 4 Evaluate the forecasting performance.

Step 5 If the forecasting performance is satisfactory, then 
proceed to Step 8; otherwise, proceed to Step 6.

Step 6 Experts modify their IFN-based fuzzy yield forecasts.

Step 7 Each expert returns to Step 2.

Step 8 End.

IFN‑based fuzzy forecasting method

In the proposed methodology, each expert applies the fol-
lowing IFN-based fuzzy forecasting method to generate a 
fuzzy forecast ỹj to forecast y by considering decision vari-
ables {xi} : 

where (+) denotes fuzzy addition. However, the values 
of fuzzy parameters in the IFN-based fuzzy forecasting 
method assigned by different experts are not the same. As a 
result, experts’ fuzzy forecasts are different and need to be 
aggregated.

To derive the values of IFN-based fuzzy parameters in 
(15), Chen and Wang [13] optimized the following MBNLP 
model.

(MBNLP model)

(15)ỹj = ã0(+)

m∑
i=1

ãixji
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subject to

The objective function (16) minimizes the sum of the 
widths of IFN-based fuzzy forecasts by considering both 
LMF and UMF. Constraints (17) and (18) ensure that all 
actual values fall within the corresponding upper fuzzy fore-
casts. In contrast, only 100(1–p)% of actual values fall within 

(16)

Min Z1 =

n∑
j=1

(a0u3 +

m∑
i=1

aiu3xji − a0u1 −

m∑
i=1

aiu1xji+

a0l3 +

m∑
i=1

ail3xji − a0l1 −

m∑
i=1

ail1xji)

(17)yj ≥ a0u1 +

m∑
i=1

aiu1xji;j = 1 ∼ n

(18)yj ≤ a0u3 +

m∑
i=1

aiu3xji;j = 1 ∼ n

(19)
∑n

j=1
Xj1Xj2

n
≥ (1 − p)

(20)yj ≥ Xj1

(
a0l1 +

m∑
i=1

ail1xji

)
;j = 1 ∼ n

(21)yj ≤ Xj2

(
a0l3 +

m∑
i=1

ail3xji

)
;j = 1 ∼ n

(22)Xj1, Xj2 ∈ {0, 1};j = 1 ∼ n

(23)a0u1 ≤ a0l1 ≤ a02 ≤ a0l3 ≤ a0u3

(24)aiu1 ≤ ail1 ≤ ai2 ≤ ail3 ≤ aiu3;i = 1 ∼ m

the corresponding lower fuzzy forecasts, according to Con-
straint (19), which is illustrated in Fig. 1. In Constraints (20) 
and (21), Xj1 and Xj2 are two state variables. When Xj1 = 1 , 
an actual value is higher than the lower bound of the lower 
fuzzy forecast; when Xj2 = 1 , an actual value is lower than 
the upper bound of the lower fuzzy forecast. Constraints (23) 
and (24) define the sequences of the endpoints of ITFNs.

To generate diversified fuzzy forecasts, objective function 
(16) is modified as

where w1 and w2 are weights assigned to the sum of 
upper ranges and the sum of lower ranges, respectively. 
w1 + w2 = 1 . The value of o reflects the sensitivity of an 
expert to the uncertainty of a fuzzy forecast: from small (not 
sensitive) to large (very sensitive) [46]. If o is a large value, 
it becomes difficult to solve the MBNLP problem [47]. For 
this reason, Chen and Wang [12] advised to choose the value 
of o from (0, 4].

In the proposed methodology, experts assign different 
values to o, p, w1 , and w2 to generate diversified fuzzy fore-
casts. The values of parameters assigned by expert k are 
denoted with o(k), p(k), w1(k) , and w2(k) . The fuzzy forecast 
by expert k is indicated with ỹj(k).

FI for aggregating experts’ fuzzy forecasts

FI is applied to aggregate experts’ fuzzy forecasts [10, 27]:

According to Theorem 2,

An example, showing two experts’ IFN-based fuzzy fore-
casts, is given in Fig. 2. The FI results is illustrated in Fig. 3.

From Figs. 2 and 3, the following phenomena can be 
observed:

1. Both the lower and upper membership functions of the 
FI result are polygonal functions.

2. The lower and upper membership functions of the FI 
result can be of different shapes, which is the distinct 
nature of the proposed methodology from existing meth-
ods.

3. The outer supports of all experts’ fuzzy forecasts include 
an actual value. The outer support of the FI result also 

(25)

Min Z2 =w1

n∑
j=1

(
a0u3 +

m∑
i=1

aiu3xji − a0u1 −

m∑
i=1

aiu1xji

)o

+ w2

n∑
j=1

(
a0l3 +

m∑
i=1

ail3xji − a0l1 −

m∑
i=1

ail1xji

)o

(26)�FI({ỹj(k)}) = ∩
j
ỹj(k)

(27)𝜇�FI
(x) = [min

k
(𝜇ỹjl(k)

(x)), min
k
(𝜇ỹju(k)

(x))]

UMF
(100%)

LMF
(1 – p)

* *

*
*

*

* *

j

yj
~

Fig. 1  Inclusion intervals
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includes the actual value, at least for the training (or 
learned) data.

4. It is highly possible that the inner supports of all experts’ 
fuzzy forecasts include an actual value. It is also pos-
sible for the inner support of the FI result to include the 
actual value. However, the possibility declines as more 
experts’ fuzzy forecasts are aggregated.

BPNs for defuzzifying the aggregation results

Two BPNs are constructed to defuzzify the aggregation 
results with the following configuration:

1. Input: inputs to the first BPN include each corner’s 
value and membership of the lower membership func-
tion. Inputs to the second BPN are those of the upper 
membership function.

2. A single hidden layer: the number of nodes in the hidden 
layer is the same as that of inputs.

3. Output: the output from the first BPN is the most pos-
sible forecast. The output from the second BPN is the 
forecast that considers extreme cases.

4. Training algorithm: the gradient descent (GD) algorithm 
is applied to train the BPNs to avoid overfitting [45].

5. Convergence criteria: the training process stops when 
the sum of squared error (SSE) falls below a pre-speci-
fied threshold,

or a maximal number of epochs have been run.

Application to a real case

The proposed methodology has been applied to forecast the 
yield of a DRAM product to evaluate its effectiveness. The 
case, including the yield data of the DRAM product within 
ten periods, was first investigated by Chen and Wang [11]. 
The yield data were decomposed into two parts: data of the 
first six periods for building the models, and the remaining 
data for evaluating forecasting performance.

Three experts applied the fuzzy forecasting method to 
forecast the yield of the DRAM product. The parametric 
values assigned by experts are summarized in Table 1. The 
MBNLP problems were coded in Lingo and solved using 
a branch-and-bound algorithm on a PC with i7-7700 CPU 
3.6 GHz and 8 GB RAM. The execution time was less than 
3 s. Experts’ forecasting results are shown in Fig. 4.

FI was applied to aggregate experts’ fuzzy forecasts. Tak-
ing period 10 as an example, the FI result is illustrated in 
Fig. 5. The aggregation results at all periods are summarized 
in Fig. 6. Most actual values in test data fell within the inner 
and outer supports of the aggregation results. Since an inner 
support was much narrower than the outer support, the range 
of possible values by considering the inner support was more 
precise.

Subsequently, the aggregation results were defuzzified 
using two BPNs. For this purpose, first, the corners of the 
aggregation result at each period were found out for the inner 
and outer sections, respectively. The results are summarized 
in Tables 2 and 3. The inner section of the aggregation result 
had at most three corners, while the outer section had at 
most four corners. As a result, the numbers of inputs to the 
two BPN defuzzifiers were set to six and eight, respectively. 
The number of nodes in the hidden layer was the same with 
that of inputs.

(28)SSE =

n∑
j=1

(yj − oj)
2

Fig. 2  An illustrative example

Fig. 3  FI result

Table 1  The settings of 
parametric values by experts

Expert (k) o(k) p(k) w
1

w
2

1 2 0.4 0.5 0.5
2 1 0.4 0.7 0.3
3 4 0.3 0.4 0.6
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Fig. 4  Experts’ forecasting results

Fig. 5  FI result at period 7

Fig. 6  Aggregation results at all periods

Table 2  Corners of the inner section of the aggregation result at each 
period

j Corners

1 (0.313, 0.000), (0.372, 0.631), (0.374, 0.000)
2 (0.472, 0.000), (0.584, 0.960), (0.587, 0.000)
3 (0.541, 0.000), (0.660, 0.820), (0.663, 0.000)
4 (0.586, 0.009), (0.702, 0.752), (0.705, 0.000)
5 (0.610, 0.000), (0.728, 0.706), (0.731, 0.000)
6 (0.631, 0.000), (0.746, 0.681), (0.750, 0.000)
7 (0.643, 0.000), (0.758, 0.657), (0.762, 0.000)
8 (0.656, 0.000), (0.767, 0.633), (0.770, 0.000)
9 (0.664, 0.000), (0.776, 0.631), (0.780, 0.000)
10 (0.670, 0.000), (0.784, 0.630), (0.788, 0.000)

Table 3  Corners of the outer section of the aggregation result at each 
period

j Corners

1 (0.313, 0.000), (0.372, 0.631), (0.374, 0.000)
2 (0.473, 0.000), (0.589, 0.852), (0.592, 0.000)
3 (0.541, 0.000), (0.686, 0.920), (0.689, 0.000)
4 (0.582, 0.000), (0.586, 0.011), (0.741, 

0.960), (0.744, 0.000)
5 (0.610, 0.000), (0.775, 0.980), (0.779, 0.000)
6 (0.631, 0.000), (0.800, 1.000), (0.800,0.000)
7 (0.643, 0.000), (0.814, 0.979), (0.818, 0.000)
8 (0.656, 0.000), (0.827, 0.978), (0.831, 0.000)
9 (0.664, 0.000), (0.834, 0.957), (0.838, 0.000)
10 (0.670, 0.000), (0.843, 0.956), (0.846, 0.000)
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BPNs were trained using the GD algorithm to prevent 
overfitting. The convergence criteria were established as 
follows:

1. SSE < 10−4;
2. 500 epochs have been run.

The BPN defuzzifiers were implemented using the neural 
network toolbox of MATLAB 2017 on a PC with i7-7700 
CPU 3.6 GHz and 8 GB RAM. The execution time was less 
than 1 s. The defuzzification results are shown in Figs. 7 and 
8. A comparison of the defuzzification results using the two 
BPNs is provided in Fig. 9.

The forecasting accuracy of the proposed methodology 
to test data was evaluated in terms of mean absolute error 
(MAE), mean absolute percentage error (MAPE), and root 
mean-squared error (RMSE):

Table 4 summarizes the results.
For comparison, experts’ IFN-based fuzzy yield forecasts 

were defuzzified using an extension of the center-of-gravity 
(COG) method [15]:

Then, forecasting performance without collaboration was 
evaluated for each expert. The results are summarized in 
Table 5.

According to the experimental results,

(29)MAE =

∑n

j=1
�yj − ŷj�
n

,

(30)MAPE =

∑n

j=1

�yj−ŷj�
yj

n
⋅ 100%,

(31)RMSE =

�∑n

j=1
(yj − ŷj)

2

n
.

(32)D(ỹj) =
yjl1 + yjl2 + yjl3 + yju1 + yju2 + yju3

6

Fig. 7  Defuzzification result for the inner section of the aggregation 
result

Fig. 8  Defuzzification result for the outer section of the aggregation 
result

Fig. 9  Comparison of the defuzzification results by the two BPNs

Table 4  Forecasting accuracy achieved using the proposed methodol-
ogy (for test data)

Defuzzification MAE MAPE RMSE

BPN (inner) 0.034 5.71% 0.066
BPN (outer) 0.034 5.62% 0.065

Table 5  Experts’ forecasting performances without collaboration

Expert# MAE MAPE RMSE

1 0.064 10.1% 0.086
2 0.087 13.5% 0.105
3 0.091 14.1% 0.108
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1. Obviously, forecasting performance was improved better 
after experts collaborated.

2. The most significant advantage of the proposed meth-
odology over experts’ original fuzzy forecasts was in 
reducing MAE, which was up to 57% on average.

3. It was noteworthy that after defuzzification the result 
might exceed the range of the inner section.

4. The outer section of the aggregation result had more cor-
ners, which increased the degree of freedom in defuzzi-
fying the aggregation result, thereby contributing to 
higher forecasting accuracy.

5. By contrast, the inner section of the aggregation result 
effectively narrowed the range of possible values and 
enhanced forecasting precision by up to 62%.

6. Table 6 shows the results from a paired t test to evalu-
ate whether the advantage of the proposed methodology 
over existing methods was significant, with

• H0: The forecasting accuracy of the proposed methodol-
ogy in terms of absolute error is the same as that of the 
existing method;

• H1: The forecasting accuracy of the proposed methodol-
ogy in terms of absolute error is more effective than that 
of the existing method.

Forecasting accuracy using the proposed methodology 
was significantly improved (at the 95% level) when com-
pared with existing methods.

7. To elaborate the effectiveness of the proposed meth-
odology, it was applied to another case containing the 
yield data of another DRAM product within fifteen peri-
ods. The yield data of the first ten periods were used to 
build the model, while the remaining was reserved for 
evaluating forecasting performance. In this case, three 

Table 6  Paired t test results for improved forecasting accuracy

IFN-based yield learning 
model (Expert#1)

IFN-based yield learning 
model (Expert#2)

IFN-based yield learning 
model (Expert#3)

The proposed 
methodology

Mean 0.061 0.072 0.074 0.044
Variation 0.002 0.002 0.002 0.002
Observations 10 10 10 10
Pearson correlation coefficient 0.874 0.789 0.764
Degree of freedom 9 9 9
t statistic 2.272 2.934 2.878
P(T ≤ t) one-tail 0.025 0.008 0.009
t Critical one-tail 1.833 1.833 1.833
P(T ≤ t) two-tail 0.049 0.017 0.018
t Critical two-tail 2.262 2.262 2.262

Fig. 10  Fuzzy yield forecasts by the experts
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experts fulfilled the yield forecasting task collabora-
tively. Firstly, experts’ fuzzy yield forecasts are shown 
in Fig. 10. Subsequently, FI was applied to aggregate 
experts’ fuzzy yield forecasts. The results are sum-
marized in Fig. 11. After defuzzifying the aggrega-
tion results using two BPNs, the representative yield 
forecasts were obtained, as shown in Fig. 12. Then, the 
forecasting performance using the proposed methodol-
ogy was evaluated. The results are provided in Table 7. 
Obviously, the proposed methodology achieved high 
forecasting accuracy.

Conclusions

An IFN-based FCF approach was proposed in this study. In 
the proposed methodology, each expert solves a MBNLP 
problem to generate IFN-based fuzzy forecasts. Subse-
quently, FI is applied to aggregate the inner and outer sec-
tions of IFN-based fuzzy forecasts. Finally, two BPNs are 
constructed to defuzzify the aggregation results. Unlike 
existing IFN-based fuzzy association rules or FISs, the 
IFN-based FCF approach guarantees that all actual values 

fall within the corresponding fuzzy forecasts. In addition, 
compared with existing FCF methods, the IFN-based FCF 
approach improves forecasting precision and accuracy by 
considering the inner and outer sections of the aggregation 
result, respectively.

After applying the IFN-based FCF approach to forecast 
the yield of a DRAM product, the following conclusions 
are made:

1. The experimental results confirmed the effectiveness of 
experts’ collaboration in improving forecasting perfor-
mance.

2. The inner and outer sections of the aggregation result 
could be considered in improving the forecasting preci-
sion and accuracy, respectively.

3. A compromise way was, therefore, to estimate the range 
of possible values by considering the inner section of the 
aggregation result, and to derive the most possible value 
based on the outer section.

In this study, experts solved the same MBNLP problem, 
but with different parametric values, to generate IFN-based 
fuzzy forecasts. In future studies, different MBNLP prob-
lems can be formulated to further diversify IFN-based fuzzy 
forecasts. In addition, FCF methods based on interval-valued 
intuitionistic fuzzy numbers [31, 44], hesitant interval-val-
ued fuzzy numbers [55], and interval-valued pythagorean 
fuzzy numbers [20, 33] can be proposed as well. Further, an 
advanced algorithm needs to be designed to further enhance 
the efficiency of solving the MBNLP problem [e.g., PSO 
algorithms [16, 30, 40], ant colony optimization (ACO) 
algorithms [17, 21, 56].
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Fig. 11  Aggregation results

Fig. 12  Defuzzification results

Table 7  Forecasting 
performance using the proposed 
methodology

Section MAE MAPE RMSE

Inner 0.020 2.17% 0.022
Outer 0.024 2.65% 0.030
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