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Abstract
The objective of this manuscript is to investigate the concept of generalized q-rung orthopair fuzzy sets (Gq-ROFSs) and
group generalized q-rung orthopair fuzzy sets (GGq-ROFSs) by incorporating the concept of generalized parameter and
group generalized parameters in q-rung orthopair fuzzy environment. The main advantage of generalized parameter in q-rung
orthopair fuzzy environment is to reduce uncertain errors in the original information to ensure the expert’s level of trust and
improve the accuracy of final decision. On the base of generalized parameter, some aggregation operators are introduced such
as generalized q-rung orthopair fuzzy average aggregation operators and group generalized q-rung orthopair fuzzy average
aggregation operators and studied their related properties. Furthermore, a multi-criteria decision-making method technique
based on proposed approach is presented. Finally, a numerical example is provided to illustrate the feasibility of the proposed
methods and deliver the sensitivity analysis and comparative analysis, which show the superiority of developed approached
than existing methods.

Keywords q-rung orthopair fuzzy sets · Gq-ROFSs · GGq- ROFSs · Gq-ROF aggregation operators · GGq-ROF
aggregation operators · MCDM

Introduction

In real life, decision making plays a significant role and is
commonly used to solve real-world problems. Due to the
rapid development of human society in technology andmany
other fields, decision making is a tedious task for the experts
to take an intelligent decision. Decision making is a pre-
plan process of selecting the logical choice among several
objects.A good decision can change the course of life style.A
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decision maker judges the limitations, advantages and char-
acteristics of each alternatives, and then he could reach to
the final decision. In recent era, it becomes difficult for an
individual expert to cope with all the decision making infor-
mation. In many situations of real world, multi-experts are
needed for decisionmaking. In recent scenario, multi-criteria
decision-making (MCDM)methods play a prominent role in
modern decision-making environment, in which one of the
most important methods is aggregation operators. Aggrega-
tion operators collectively aggregate the attributes and then
rank the alternatives to get the most suitable choice. To cope
with this uncertain and complex environment Atanassov [3]
originated the pioneer notion of intuitionistic fuzzy set (IFS)
which deals with the uncertain and complex situations in a
better way than the dominant concept of Zadeh [38] fuzzy
sets. IFS is characterized in two parts that is membership
grade and non-membership grade and this concept based
on the sum of membership grade and nonmembership grade
must belong to [0, 1].Many scholars extended the concept of
IFS in several directions in which one of them is aggregation
operators which collectively aggregate the information and
it is a significant process of decision making. The weighted
operators by Yager [30] and ordered weighted aggregation
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operators initiated by Yager and Kacprzyk [35] are used for
the fusion of data. Xu [28] originated the concept of IF
weighted average (IFWA) operator, IF ordered weighted
average (IFOWA)operator, IF hybrid average (IFHA)oper-
ator. Feng et al. [5] presented that the existing definition of
generalized intuitionistic fuzzy soft sets is clarified and refor-
mulated as a combination of an intuitionistic fuzzy soft set
over the universe of discourse and an intuitionistic fuzzy set
in the parameter set. Feng et al. [6] presented a number of lex-
icographic orders by means of several measures such as the
membership, non-membership, score, accuracy and expecta-
tion score functions. Some equivalent characterizations and
illustrative examples are provided, from which the relation-
ships among these lexicographic orders are ascertained. Ali
et al. [2] proposed a graphical ranking method based on the
uncertainty index and entropy. For the detail and comprehen-
sive analysis of different aggregation operators in the domain
of IFSs are given in [7,11,18,29,36,37]. To cope the short-
comings of existing decision-making problems, Zhang et al.
[39] investigated the concept of J-divergence and evidential
reasoning theory under IF environment and for details, see
[4,20,23]. However, scholars point out a quite few situations
where the dominant concept of IFS failed to cope the cir-
cumstances. To handle this deficiency, Yager [31] initiated
the remarkable notion of Pythagorean fuzzy (PF) set (PFS),
whose influential characteristic consists of square sum of
membership grade and non-membership belongs to [0, 1].
On the basis of PFS [31], Yager and Abassov [34] presented
the notion of Pythagorean membership grade in PFS and
they showed their application in decision making. Since the
appearance of PF S many practitioners widely extended this
remarkable concept in different directions such as,Yager [32]
presented the idea of PF weighted average (PFWA) opera-
tor and PF weighted power average operator to aggregate the
information, Peng and Yang [24] presented the detail study
of division and subtraction operations in P F environment,
Peng and Yuan [25] investigated the fundamental proper-
ties of point aggregation operators and their applications in
MCDM, Garg presented the concepts of various aggregation
operators in [8–10], Ma and Xu [22] initiated the notion of
symmetric PF weighted averaging and geometric (SPFW
A/G) operators, Hussain et al. [16] presented rough PF ide-
als in semigroups, Joshi [17] presented the combine study of
generalized parameter and PFWA operators to construct the
concept of generalized PFWA (GPFWA), generalized PF
ordered weighted average (GPFOWA), and generalized PF
hybrid average (GPFHA) operators and Hussain et al. [14]
proposed the concept of PF soft rough set and their desirable
properties with detail.

However, in real-life situations, sometimes it is difficult,
to take an intelligent decision becomes tedious for the schol-
ars and to point out a quite few situations where the dominant
concept of PFSs failed to cope the circumstances. For exam-

ple, if the decision maker/expert assigns membership grade
0.8 and non-membership 0.61, then (0.8)2 + (0.61)2 > 1.
Recently, to cope with this shortcoming Yager [33] initiated
the extensive idea of q-rung orthopair fuzzy (q-ROF) set (q-
ROFS), whose prominent characteristics consists of sum
of qth power of membership grade and qth power of non-
membership belongs to [0, 1] for q ≥ 1. So in this case,
(0.8)q + (0.61)q < 1 for q ≥ 3. It is also observed that the
feature of q-ROFS is more stronger than IFS and PFS, so
it is clear that q-ROFS is a useful generalization of both
IFS and PF S. After the initiation of q-ROFS, quite few
contributions to this concept are found in the literature. Ali
[1] initiated two new approaches such as L-fuzzy sets and
the notion of orbit in q-ROF environment. Hussain et al.
[12] presented covering-based q-ROF rough set hybrid with
TOPSIS for multi-attribute decision making. Liu and Wang
[21] extended the existing approach of aggregation operators
to q-ROF environment to get the q-ROF weighted aver-
age/geometric (q-ROFWA/G) operators and proved their
properties. Liu and Liu [19] found the relation between Bon-
ferroni mean operators and q-ROF numbers to achieved
different q-ROF Bonferroni mean operators. Hussain et al.
[15] proposed the concept of q-ROF soft averaging aggre-
gation operators and presented their desirable properties with
detail. The concept of hesitant q-ROF aggregation operators
was proposed by Hussain et al. [13]. Xing et al. [26] studied
the point weighted aggregation operators and Xing et al. [27]
presented hamy mean operators in q-RO F environment.

It has been observed that all the considered works are
accomplished under q-ROF environments by assuming that
the experts are absolutely familiar with the evaluated objects.
But in real life, situations like these are partially fulfilled. For
example, in MCDM the provided information by experts are
completely basedon their ownchoices andmaynot lead to the
accurate decisions. Therefore, acknowledging the described
preferences, it is necessary to justify the initial describedpref-
erences from other senior expert/judge. In real cases, there
are many circumstances where the initial provided prefer-
ences need the support of some other senior experts/judge
views. For example, in medical diagnose problem consider a
person/patient is suffering from an unknown disease and he
visits the hospital for the initial treatment to get his disease
diagnosed. He describes his preferences in a set of symp-
toms regarding his physical condition. These symptoms are
completely based on information provided by the patient. If
the doctor/physician diagnoses the problem according to the
patient’s preferences without verifying it from another senior
expert/doctor’s, then he may not be cured well or may be a
cause of causality, because the provided information has not
been verified from a senior physician/doctor. Therefore, after
acknowledging the patient’s described symptoms, it is neces-
sary to certify the described information from senior expert
physician/doctors. This is only possible by incorporating the

123



Complex & Intelligent Systems (2021) 7:123–144 125

idea of generalized parameter (in short GP) to the original
information.Theprimaryprovided informationby the patient
is further verified from another expert physician/senior doc-
tor’s and he gives his preference in the form of a generalized
parameter. The generalized parameter is itself a q-ROF
number (q-ROFN), which reduces the uncertain informa-
tion and improves the accuracy of the final decision. Without
generalized parameter the initial information described by
the patient remains in doubt. Similarly, in MCDM process,
to get an intelligent decision, the initially provided prefer-
ences from other seniors experts/decision makers need to be
verified to reduce the complexity and uncertain errors by
incorporating the generalized parameter in the initial infor-
mation to get the accurate decision.

Hence to cope with such situation, the point of views
of other senior expert/observer are needed by incorporat-
ing the notion of GP to the original information. In this
paper, we introduced the concept generalized q-ROFS (Gq-
ROFS) by incorporating generalized parameter to views
the expertise of other senior decision makers in q-ROF
environment, which reduce the complexity and uncertainty
errors in original information. Then this idea explored to
group generalized parameter where the preferences of two
or more senior experts/decision makers are analysed in q-
ROF environments to get new concept of group generalized
q-ROFSs (GGq-ROFSs). Themajor advantages of the gen-
eralized parameter or group generalized parameter is that to
reduced probability of complexities, uncertainties and errors
in the original information. The main focus of the present
work by the application of MCDM, by utilizing generalized
parameter and group generalized parameter. For ranking the
alternatives, some aggregation operators are introduced for
Gq-ROFSs and GGq-ROFSs. These developed aggrega-
tions operators have the ability to adjust the situations in
better sequence on the basis of parameterizations character.

The remaining portions of the manuscript are arranged
as. Section 2 consists of a brief review of the existing con-
cepts. Section 3 is devoted for the study of q-ROF ordered
weighted average (q-ROFOWA) operator and q-ROF
hybrid average (q-ROFHA) operator. Section 4 consists
of the definition of generalized q-ROFS and the detail
study of aggregation operators such as generalized q-ROF
weighted average (Gq-ROFWA) operator, generalized q-
ROF ordered weighted average (Gq-ROFOWA) operator
and generalized q-ROF hybrid average (Gq-ROFHA)
operator. In Sect. 5, the defined aggregation operators in
Sect. 4 are extended to group generalized q-ROF aggre-
gation operators. Section 6 consists of the MCDM process
and a decision algorithm based on the proposed concepts. In
Sect. 7, the application of the developed method is presented
through an illustrative example. The final Sect. 8 present the
comparative remarks of the developed method with existing

methods and it has been shown that the developed method is
more superior than the existing methods.

Preliminaries

This section consists of a brief discussion of IFS, PFS and
q-ROFSs are given which will help in coming sections.

Definition 1 [3] Let X be a universal set. An IFS J on X
can be expressed as

J = {< s, μJ (s) , ηJ (s) > /s ∈ X },

where μJ : X → [0, 1] denotes a membership grade and
ηJ : X → [0, 1] denotes a non-membership grade of an
object s ∈ X , to the set J and it holds that 0 ≤ μJ (s) +
ηJ (s) ≤ 1.

Definition 2 [31] Consider X be a universal set. A PFS J
on X can be expressed as

J = {< s, μJ (s) , ηJ (s) > /s ∈ X },

where μJ : X → [0, 1] represents a membership grade and
ηJ : X → [0, 1] represents a non-membership grade of
an object s ∈ X , to the set J , respectively, and it holds
that 0 ≤ (

μJ (s)
)2 + (

ηJ (s)
)2 ≤ 1. Furthermore, the

degree of hesitancy/nondeterminacy is defined as πJ (s) =√
1 − (μJ (s)

)2 − (ηJ (s)
)2 for all s ∈ X .

Definition 3 [33] LetX be a universal set. A q-ROFS J on
X can be expressed as

J = {< s, μJ (s) , ηJ (s) >q /s ∈ X }

where μJ : X → [0, 1] denotes a membership grade and
ηJ : X → [0, 1] denotes a non-membership grade of an
object s ∈ X , to the set J respectively and it holds that
0 ≤ (

μJ (s)
)q + (ηJ (s)

)q ≤ 1 where q ≥ 1. Further the
degree of hesitancy/ nondeterminacy is defined as πJ (s) =√
1 − (μJ (s)

)q − (ηJ (s)
)q for q ≥ 1 and for all s ∈ X .

For convenience (μJ (s) , ηJ (s)) is known to be a q-
ROF number (q-ROFN) and is written as d = (μd , ηd).

For any three q-ROFNs d = (μd , ηd), d1 = (μd1 , ηd1) and
d2 = (μd2 , ηd2), then the basic operation on them are defined
as:

i: d1 ∪ d2 = (max(μd1 , μd2),min(ηd1, ηd2)
) ;

ii: d1 ∩ d2 = (min(μd1 , μd2),max(ηd1, ηd2));
iii: ∼ d = (ηd , μd), where ∼ d denotes a complement of

d;
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iv: d1 ⊕ d2 =
(

q
√(

μd1

)q + (μd2

)q − μ
q
d1

μ
q
d2

, ηd1ηd2

)
;

v: d1 ⊗ d2 =
(
μd1μd2 ,

q
√(

ηd1
)q + (ηd2

)q − η
q
d1

η
q
d2

)
;

vi: αd =
(

q
√
1 − (1 − μ

q
d)

α, ηα
d

)
;

vii: dα =
(

μα
d , q
√
1 − (1 − η

q
d )

α

)
.

Definition 4 Suppose d1 = (μd1 , ηd1) and d2 = (μd2 , ηd2)

be two q-ROFNs, then the score function defined by Liu
and Wang [21] is given as, S(d1) = μ

q
d1

− η
q
d1

and S(d2) =
μ
q
d2

− η
q
d2

. Similarly the accuracy function of d1 and d2 are

defined as A(d1) = μ
q
d1

+ η
q
d1

and A(d2) = μ
q
d2

+ η
q
d2

,

respectively.

1: If S(d1) < S(d2), then d1 < d2 that is d1 is less than d2;
2: If S(d1) > S(d2), then d1 > d2 that is d1 is greater than

d2;

if S(d1) = S(d2), then larger the accuracy function batter
the orthopair is.

On the bases of above operations, Liu and Wang [21]
proved the following properties.

Theorem 1 [21] Let d = (μd , ηd), d1 = (μd1, ηd1) and
d2 = (μd2 , ηd2) be three q-ROFNs and α, α1, α2 > 0, then
the following are holds:

i: d1 ⊕ d2 = d2 ⊕ d1;
ii: d1 ⊗ d2 = d2 ⊗ d1;
iii: α(d1 ⊕ d2) = αd2 ⊕ αd1;
iv: α1d ⊕ α2d = (α1 + α2)d;
v: dα1 ⊗ dα2 = d(α1+α2);
vi: dα

1 ⊗ dα
2 = (d1 ⊗ d2)α

q-Rung orthopair fuzzy aggregation
operator

This section is devoted for a brief discussion of aggre-
gation operators such as q-ROFWA, q-ROFOWA and
q-ROFHA operators.

Definition 5 [21] Consider the collection d� = (μd�
, ηd�

)

of n q-ROFNs with weight vector u = (u1, u2, . . . , un)T

where u� ∈ [0, 1] such that
∑n

�=1 u� = 1( f or� =
1, 2, . . . , n), then the q-ROFWA operator is defined as:

q-ROFWA(d1, d2, . . . , dn)

=
⎛

⎝ q

√√√
√1 −

n∏

�=1

(1 − μ
q
d�

)u� ,

n∏

�=1

η
u�

d�

⎞

⎠

Example 1 Suppose four q-ROFNs d1 = (0.8, 0.7), d2 =
(0.9, 0.5), d3 = (0.7, 0.9), d4 = (0.6, 0.3) having weight
vector u = {0.33, 0.15, 0.3, 0.22} for q = 3, then

3
√
1 −∏4

�=1(1 − μ3
d�

)u� =
3
√
1 − (1 − 0.83)0.33(1 − 0.93)0.15(1 − 0.73)0.3(1 − 0.63)0.22

= 0.77072 and
3
√∏4

�=1η
u�

d�
= (0.70.33)(0.50.15)(0.90.3)(0.30.22)

= 0.595617
Now by Definition 5, we have

q-ROFWA(d1, d2, d3, d4)

=
⎛

⎝ 3

√√√√1 −
4∏

�=1

(1 − μ3
d�

)u� ,

4∏

�=1

(η
u�

d�
)

⎞

⎠

= (0.77072, 0.595617)

Definition 6 Let us consider the collection d� = (μd�
, ηd�

)

(for � = 1, 2, . . . , n) of n q-ROFNs , then the q-
ROFOWA operator is given as;

q-ROFOWA(d1, d2, d3, . . . , dn)

= n⊕
�=1

u�d̃�

= u1d̃1 ⊕ u2d̃2 ⊕ · · · ⊕ und̃n .

where d̃� = (μd̃�
, ηd̃�

) (� = 1, 2, . . . , n) indicate the
�th largest object of the collection of n q-ROFNs d� =
(μd�

, ηd�
).

The aggregation result of Definition 6 through operation
rules is described as in Theorem 2.

Theorem 2 Suppose the collection d� = (μd�
, ηd�

) (� =
1, 2, . . . , n) of q-ROFNs with weight vector u =
(u1, u2, . . . , un)T of d� where u� ∈ [0, 1] such that∑n

�=1 u� = 1, then the q-ROFOWA operator is described
as:

q-ROFOWA(d1, d2, d3, . . . , dn)

= n⊕
�=1

u�d̃�

=
⎛

⎝ q

√√√√1 −
n∏

�=1

(
1 − μ

q

d̃�

)u�

,

n∏

�=1

(
η
u�

d̃�

)
⎞

⎠ ,

where d̃� = (μd̃�
, ηd̃�

) indicate the �th largest object of the
collection of n q-ROFNs d� = (μd�

, ηd�
) (� = 1, 2, . . . , n).

Example 2 Consider four q-ROFNs d1 = (0.7, 0.3) , d2 =
(0.8, 0.65), d3 = (0.9, 0.6), d4 = (0.88, 0.7) having weight
vector u = (0.3, 0.25, 0.1, 0.35) for q = 5, then to find the
score functions of each q-ROFNs, that is
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S (d1) = 0.75 − 0.35 = 0.166, S (d2) = 0.85 − 0.655 =
0.212, S (d3) = 0.95 − 0.65 = 0.513, S (d4) = 0.885 −
0.75 = 0.360.

So S (d3) > S (d4) > S (d2) > S (d1) , this implies that
d4 > d3 > d2 > d1. Thus, d̃1 = d3, d̃2 = d4, d̃3 = d2, and
d̃4 = d1. Further we have

5
√
1 −∏4

�=1(1 − μ5
d̃�

)u� =
5
√
1 − (1 − 0.95)0.3(1 − 0.885)0.25(1 − 0.85)0.1(1 − 0.75)0.35

= 0.844094∏4
�=1(η

u�

d̃�
) = (0.60.3)(0.70.25)(0.650.1)(0.30.35)

= 0.493178
Now by Theorem 2, we have

q-ROFOWA(d1, d2, d3, d4)

=
⎛

⎝ 5

√√√√1 −
4∏

�=1

(
1 − μ5

d̃�

)u�

,

4∏

�=1

(
η
u�

d̃�

)
⎞

⎠

= (0.844094, 0.493178)

Definition 7 Suppose that d� = (μd�
, ηd�

) ( for � =
1, 2, . . . , n), be the collections of q-ROF Nswith associated
weight vector u = (u1, u2, . . . , un)T of d� where u� ∈ [0, 1]
such that

∑n
�=1 u� = 1. Then the q-ROFHA operator is

given as:

q-ROFH A(d1, d2, d3, . . . , dn)

= n⊕
�=1

u�d̃�

= u1d̃1 ⊕ u2d̃2 ⊕ · · · ⊕ und̃n

where d̃�(d̃� = nû�d�, for � = 1, 2, . . . , n) indicate the
�th largest object of the collection of q-ROFNs d� =
(μd�

, ηd�
)(� = 1, 2, . . . , n), and û = (û1, û2, . . . , ûn)T

be the weight vector of d�(� = 1, 2, . . . , n) where û� ∈
[0, 1] such that

∑n
�=1 û� = 1 and n indicate the balancing

coefficient.

The aggregation result of Definition 7 through operation
rules is described as in Theorem 3.

Theorem 3 Suppose d� = (μd�
, ηd�

)(� = 1, 2, . . . , n) be
the collection of q-ROFNs, then the q-ROFHA operator is
described as:

q-ROFH A(d1, d2, d3, . . . , dn) =
(

n⊕
�=1

u�d̃�

)

=
⎛

⎝ q

√√√
√1 −

n∏

�=1

(1 − μ
q

d̃�
)u� ,

n∏

�=1

(
η
u�

d̃�

)
⎞

⎠ ,

where d̃�(d̃� = nû�d�, for � = 1, 2, . . . , n) indicate the
�th largest object of the collection of q-ROFNs d� =

(μd�
, ηd�

)(� = 1, 2, . . . , n) and n indicate the balancing
coefficient.

Example 3 Suppose four q-ROFNs d1 = (0.5, 0.2) , d2 =
(0.83, 0.6), d3 = (0.95, 0.65), d4 = (0.9, 0.75) having
associated weight vector u = (0.3, 0.2, 0.32, 0.18) for q =
4, and weight vector ű= (0.4, 0.3, 0.1, 0.2) , then by using
operational law

nű�d� =
(

q
√
1 − (1 − μ

q
d�

)nű� , η
nű�

d�

)

we have

4ű1d1 =
(

4
√
1 − (1 − 0.54)4×0.4, 0.24×0.4

)

= (0.560, 0.076),

4ű2d2 =
(

4
√
1 − (1 − 0.834)4×0.3, 0.64×0.3

)

= (0.856, 0.542),

4ű3d3 =
(

4
√
1 − (1 − 0.954)4×0.1, 0.654×0.1

)

= (0.837, 0.842), 4ű4d4

=
(

4
√
1 − (1 − 0.94)4×0.2, 0.754×0.2

)

= (0.870, 0.794).

Now to find their score functions, that is

S (4ű1d1) = 0.5604 − 0.0764 = 0.098, § (4ű2d2)

= 0.8564 − 0.5424

= 0.451, S (4ű3d3)

= 0.8374 − 0.8424

= −0.012, S (4ű4d4)

= 0.0.8704 − 0.7944 = −0.396.

So S (4ű2d2) > S (4ű1d1) > S (4ű3d3) > S (4ű 4d4) , this
implies that

d̃1 = (0.856, 0.542), d̃2 = (0.560, 0.076),

d̃3 = (0.837, 0.842) and d̃4 = (0.870, 0.794)

Further, we have
4
√
1 −∏4

�=1(1 − μ4
d̃�

)u� =
4

√
1 − (1 − 0.8564)0.3(1 − 0.5604)0.2

(1 − 0.8374)0.32(1 − .8704)0.18
= 0.82465 and

∏4
�=1(η

u�

d̃�
) = (0.5420.3) (0.0760.2) (0.8420.32)

(
0.7940.18

) = 0.451263
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Now by Theorem 3, we have

q-ROFH A(d1, d2, d3, d4)

=
⎛

⎝ 4

√√
√√1 −

4∏

�=1

(
1 − μ4

d̃�

)u�

,

4∏

�=1

(
η
u�

d̃�

)
⎞

⎠

= (0.824648, 0.451263)

q-Rung orthopair fuzzy averaging
aggregation operator under generalized
parameter

In this section, first we will define generalized q-ROFS
and then we will present the detail study of some average
aggregation operators under generalized parameter like as
Gq-ROFW A operator, Gq-ROFOWA operator and Gq-
ROFHA operator and their properties in detail.

q-Rung orthopair fuzzy information under
generalized parameter

Consider a person/patient who is suffering from an unknown
disease and he visits the hospital for the initial checkup to
diagnose his disease. He describes his preferences in a set of
symptoms regarding his physical condition. His preferences
are in the form of q-ROF Ns that is X = {d1, d2, d3, d4}
where d j ( j = 1, 2, 3, 4) stand for d1 = high tempera-
ture, d2 = headache, d3 = cough and d4 = constipation,
respectively. Let the q-ROFSX = {(0.9, 0.6)hightemperature ,

(0.8, 0.4)headache , (0.95, 0.5)cough , (0.7, 0.3)constipation}
denotes the described symptoms of the patient. These symp-
toms are completely based on the initial information given
by the patient. If the expert means doctor/physician diag-
noses the patient according to the patient preferences without
verifying it from another senior expert/doctor, then he may
not be cured well or may be a cause of causality because
the provided information has not been verified from a
senior physician/doctor. Therefore, after acknowledging the
patient’s described symptoms, it is necessary to certify the
described information from senior expert physician/doctors.
This is only possible by adding the idea of generalized
parameter to the original information. The patient informa-
tion is further verified from another expert physician/senior
doctor and he gives their preference with the help of a
generalized parameter such as � = (0.88, 0.65), then the
new q-ROFS based on generalized parameter is defined
as X = {< (0.9, 0.6) , (0.8, 0.4) , (0.95, 0.5) , (0.7, 0.3) >

(0.88, 0.65)}. The generalized parameter is a q-ROFN
which deduct the uncertainty and complexity in original
information and improves the accuracy of the final deci-
sion. Without generalized parameter the initial information

described by the patient remains in doubt. Thus, the notion
of generalized q-RO FS (Gq-ROFS ) is defined as.

Definition 8 Suppose X be a universal set. Then a Gq-
ROFS J of a set X is defined as

J = {< s, μJ (s) , ηJ (s) >q (μ�, η�)/s ∈ X }

where the mappings μJ : X → [0, 1] and ηJ : X →
[0, 1], represents amembership grade and a non-membership
grade of s ∈ X , to the set J , respectively, and satisfying
that 0 ≤ (

μJ (s)
)q + (ηJ (s)

)q ≤ 1 and μ�, η� ∈ [0, 1]
represent the degree of truthfulness and falsity grades of
q-ROFS {< s, μJ (s) , ηJ (s) >q /s ∈ X } such that
0 ≤ μ

q
�

+ η
q
�

≤ 1 where q ≥ 1. Further � = (μ�, η�)

is known to be a generalized parameter. This generalized
parameter provide the preference assessment of the another
senior decision maker/expert. This generalized parameter is
itself a q-ROFN.

The generalized q-rung orthopair fuzzy weighted
average operator (Gq-ROFWA)

In this subsection,wewill present the study ofGq-ROFWA
operator and their properties in detail.

Definition 9 Consider a generalized parameter� = (μ�, η�)

for the q-ROFNs d� = (μd�
, ηd�

) (for � = 1, 2, . . . , n),

then the Gq-RO FWA operator is defined as;

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �)

= � ⊗ q-ROFWA(d1, d2, d3, . . . , dn).

The aggregation result for q-ROFNs through operation
rules is described as in Theorem 4.

Theorem 4 Suppose the collection d� = (μd�
, ηd�

) (� =
1, 2, . . . , n) of q-ROFNs with generalized parameter � =
(μ�, η�) and weight vector u = (u1, u2, . . . , un)T of d�

where u� ∈ [0, 1] such that
∑n

�=1 u� = 1, then the Gq-
ROFWA operator is described as:

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �)

= � ⊗
(

n⊕
�=1

u�d�

)

=
⎛

⎝μ�. q

√√
√
√1 −

n∏

�=1

(1 − μ
q
d�

)u� , q

√√
√
√η

q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

⎞

⎠

Proof As we know that

d1 ⊕ d2 =
(

q
√

μ
q
d1

+ μ
q
d2

− μ
q
d1

μ
q
d2

, ηd1ηd2

)

123



Complex & Intelligent Systems (2021) 7:123–144 129

and

u1d1 =
(

q
√
1 − (1 − μ

q
d1

)u1, η
u1
d1

)

and u2d2 =
(

q
√
1 − (1 − μ

q
d2

)u2 , η
u2
d2

)

We use the mathematical induction to prove this theorem.
Now for n = 2 we get

Gq-ROFWA(< d1, d2 >, �)

= � ⊗ (u1d1 ⊕ u2d2)

= (μ�, η�) ⊗
(

q
√
1 − (1 − μ

q
d1

)u1(1 − μ
q
d2

)u2 , η
u1
d1

η
u2
d2

)

= (μ�, η�) ⊗
⎛

⎝ q

√√
√√1 −

2∏

�=1

(1 − μ
q
d�

)u� ,

2∏

�=1

η
u�

d�

⎞

⎠

=
⎛

⎝μ�.
q

√√√√1 −
2∏

�=1

(1 − μ
q
d�

)u� ,

q

√√√√η
q
�

+ (1 − η
q
�
)

2∏

�=1

(η
u�

d�
)q

⎞

⎠

this implies for n = 2 the result holds. Next suppose that the
result true for n = k, that is

Gq-ROFWA(< d1, d2, . . . , dk >, �)

= � ⊗
(

k⊕
�=1

u�d�

)

= (μ�, η�) ⊗
⎛

⎝ q

√√
√
√1 −

k∏

�=1

(1 − μ
q
d�

)u� ,

k∏

�=1

η
u�

d�

⎞

⎠

=
⎛

⎝μ�.
q

√√
√
√1 −

k∏

�=1

(1 − μ
q
d�

)u� ,
q

√√
√
√η

q
�

+ (1 − η
q
�
)

k∏

�=1

(η
u�

d�
)q

⎞

⎠

Now to show that the result hold for n = k+1, then we have

Gq-ROFWA(< d1, d2, . . . dk , dk+1 >, �)

= � ⊗
(
u1d1 ⊕ u2d2 ⊕ · · · ⊕ ukdk⊕

uk+1dk+1

)

= � ⊗ {(u1d1 ⊕ u2d2 ⊕ · · · ⊕ ukdk) ⊕ uk+1dk+1
}

= (μ�, η�) ⊗

⎧
⎪⎪⎨

⎪⎪⎩

(
q

√

1 −
k∏

�=1
(1 − μ

q
d�

)u� ,
k∏

�=1
(η

u�

d�
)

)

⊕
(

q
√
1 − (1 − μ

q
dk+1

)uk+1 , η
uk+1
dk+1

)

⎫
⎪⎪⎬

⎪⎪⎭

= (μ�, η�) ⊗

⎛

⎜
⎜
⎜
⎝

q

√

1 −
k∏

�=1
(1 − μ

q
d�

)u� ·
(
1 − μ

q
dk+1

)uk+1
,

k∏

�=1
(η

u�

d�
) · η

uk+1
dk+1

⎞

⎟
⎟
⎟
⎠

= (μ�, η�) ⊗
⎛

⎝ q

√√
√
√1 −

k+1∏

�=1

(1 − μ
q
d�

)u� ,

k+1∏

�=1

(η
u�

d�
)

⎞

⎠

=
⎛

⎝μ�.
q

√√
√
√1 −

k+1∏

�=1

(1 − μ
q
d�

)u� ,
q

√√
√
√η

q
�

+ (1 − η
q
�
)

k+1∏

�=1

(η
u�

d�
)q

⎞

⎠

this implies that n is true for k+1.Hence, under the study of
generalized parameter, the given result hold for any number
of q-ROFNs. ��

Moreover, in the following, it is shown that the aggregated
result achieved fromGq-ROFWA is also a q-ROF Ns.Now
for any � = 1, 2, 3, . . . , n we have 0 ≤ μd�

, ηd�
≤ 1 with

0 ≤ μ
q
d�

+ η
q
d�

≤ 1 for q ≥ 1. This also implies that

0 ≤ 1 − μ
q
d�

≤ 1 ⇒ 0 ≤
n∏

�=1

(1 − μ
q
d�

) ≤ 1 ⇒ 0

≤
n∏

�=1

(1 − μ
q
d�

)u� ≤ 1

⇒ 0 ≤ 1 −
n∏

�=1

(1 − μ
q
d�

)u� ≤ 1 ⇒ 0

≤ q

√√
√√1 −

n∏

�=1

(1 − μ
q
d�

)u� ≤ 1

As � = (μ�, η�) is a generalized parameter where μ�, η� ∈
[0, 1] with 0 ≤ μ

q
�

+ η
q
�

≤ 1. Therefore,

0 ≤ μ�. q

√√
√
√1 −

n∏

�=1

(1 − μ
q
d�

)u� ≤ 1. Similarly we can show that

0 ≤ q

√√
√
√η

q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q ≤ 1

Furthermore,

0 ≤
⎛

⎝μ�. q

√√√√1 −
n∏

�=1

(1 − μ
q
d�

)u�

⎞

⎠

q

+
⎛

⎝ q

√√√√η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

⎞

⎠

q

= μ
q
�
.

(

1 −
n∏

�=1

(1 − μ
q
d�

)u�

)

+
(

η
q
�

+ (1 − η
q
�
)

n∏

�=1

(
η
u�

d�

)q
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= μ
q
�

− μ
q
�

n∏

�=1

(1 − μ
q
d�

)u�

)
+ η

q
�

+
n∏

�=1

(η
u�

d�
)q − η

q
�

n∏

�=1

(η
u�

d�
)q

= (μ
q
�

+ η
q
�
) +

n∏

�=1

(η
u�

d�
)q − μ

q
�

n∏

�=1

(1 − μ
q
d�

)u�

−η
q
�

n∏

�=1

(η
u�

d�
)q

As μ
q
d�

+ η
q
d�

≤ 1 ⇒ η
q
d�

≤ 1− μ
q
d�

⇒ −η
q
d�

≥ −(1− μ
q
d�

)

≤ (μ
q
�

+ η
q
�
) +

n∏

�=1

(η
u�

d�
)q − μ

q
�

n∏

�=1

(η
u�

d�
)q

−η
q
�

n∏

�=1

(η
u�

d�
)q

= (μ
q
�

+ η
q
�
) +

n∏

�=1

(η
u�

d�
)q −

(
μ
q
�

+η
q
�

) n∏

�=1

(η
u�

d�
)q

= (μ
q
�

+ η
q
�
)

(
1 −

n∏

�=1

(η
u�

d�
)q
)

+
n∏

�=1

(η
u�

d�
)q

≤ 1 −
n∏

�=1

(η
u�

d�
)q +

n∏

�=1

(η
u�

d�
)q = 1

implies 0 ≤
⎛

⎝μ�. q

√√√√1 −
n∏

�=1

(1 − μ
q
d�

)u�

⎞

⎠

q

+
⎛

⎝ q

√√
√√η

q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

⎞

⎠

q

≤ 1

Therefore, it is proved that the aggregated result obtained by
Gq-ROFWA operator is also a q-ROFN .

Remark 1 (a) If the generalized parameter � = (1, 0), and
q = 1, then the Gq-ROFWA operator reduces to I FWA
operator.

(b) If the generalized parameter � = (1, 0), and q = 2,
then the Gq-ROFWA operator reduces to PFWA operator.

(c) If the value of q = 2 is fixed then the Gq-RO FWA
operator reduces to GPFWA operator.

Example 4 Suppose the generalized parameter � =
(0.9, 0.6) of four q-ROFNs d1 = (0.8, 0.7), d2 =
(0.9, 0.5), d3 = (0.7, 0.9), d4 = (0.6, 0.3) having weight
vector u = {0.33, 0.15, 0.3, 0.22} for q = 3, then

μ�. 3
√
1 −∏4

�=1(1 − μ3
d�

)u� =
0.9 × 3

√
1 − (1 − 0.83)0.33(1 − 0.93)0.15(1 − 0.73)0.3

(1 − 0.63)0.22
= 0.9 ×

0.77072 = 0.69365 and
3
√

η3
�

+ (1 − η3
�
)
∏4

�=1(η
u�

d�
)3 =

3
√
0.63 + (1 − 0.63)(0.70.33)3(0.50.15)3(0.90.3)3(0.30.22)3 =

0.72537
Now by Theorem 4, we have

Gq-ROFWA(< d1, d2, d3, d4 >, �)

=
⎛

⎝μ�.
3

√√√√1 −
4∏

�=1

(1 − μ3
d�

)u� ,

3

√√√
√η3

�
+ (1 − η3

�
)

4∏

�=1

(η
u�

d�
)3

⎞

⎠

= (0.69365, 0.72537)

Theorem 5 Suppose the collection d� = (μd�
, ηd�

) (� =
1, 2, . . . , n) of q-ROFNs with generalized parameter � =
(μ�, η�) and weight vector u = (u1, u2, . . . , un)T of d�

where u� ∈ [0, 1] such that
∑n

�=1 u� = 1, then for Gq-
ROFWA operator the following are holes:

i: (Idempotency): If d� = d (for all � = 1, 2, 3, . . . , n),

then

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �) = � ⊗ d.

ii: (Boundary condition): If d−
� = (minμ�⊗d�

,max η�⊗d�
)

and d+
� = (maxμ�⊗d�

, min η�⊗d�
) (for all � =

1, 2, 3, . . . , n), then

d−
� ≤ Gq-ROFWA(< d1, d2, d3, . . . , dn >, �) ≤ d+

� .

iii: (Monotonicity): Suppose d� = (μd�
, ηd�

) and d∗
� =

(μd∗
�
, ηd∗

�
)(� = 1, 2, . . . , n) be the collection of n q-

ROFNs such that μd�
≤ μd∗

�
and ηd�

≥ ηd∗
�
, then

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �) ≤
Gq-ROFWA(< d∗

1 , d∗
2 , d∗

3 , . . . , d∗
n >, �).

iv: (Commutativity): Suppose d� = (μd�
, ηd�

) and d̃� =
(μd̃�

, ηd̃�
) (� = 1, 2, . . . , n) be the collection of n q-

ROFNs where d̃�(� = 1, 2, . . . , n) is the �th largest
object of d�(� = 1, 2, . . . , n), then

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �)

= Gq-ROFWA(< d̃1, d̃2, d̃3, . . . , d̃n >, �).
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Proof i: If d� = d (for all � = 1, 2, 3, . . . , n), then by The-
orem 4, we have

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �)

=
⎛

⎝μ�. q

√√
√
√1 −

n∏

�=1

(1 − μ
q
d�

)u� , q

√√
√
√η

q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

⎞

⎠

=
⎛

⎝μ�. q

√√
√√1 −

n∏

�=1

(1 − μ
q
d )u� , q

√√
√√η

q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d )q

⎞

⎠

=

⎛

⎜⎜
⎝μ�.

q

√

1 − (1 − μ
q
d )

n∑

�=1
u�

,
q

√√√
√
√
√η

q
�

+ (1 − η
q
�
)

⎛

⎜
⎝η

n∑

�=1
u�

d

⎞

⎟
⎠

q⎞

⎟⎟
⎠

=
(

μ�.
q
√
1 − (1 − μ

q
d ),

q
√

η
q
�

+ (1 − η
q
�
)(ηd )q

)

=
(

μ�.μd ,
q
√

η
q
�

+ (1 − η
q
�
)(ηd )q

)

= � ⊗ d

ii: Letd−
� = (minμ�⊗d�

,max η�⊗d�
) andd+

� = (maxμ�⊗d�
,

min η�⊗d�
) whereminμ�⊗d�

= μ�(minμd�
),maxμ�⊗d�

=
μ�(maxμd�

),max η�⊗d�
= (η

q
�
+(1−η

q
�
)(max ηd�

)q )
1
q and

min η�⊗d�
= (η

q
�

+ (1 − η
q
�
)(min ηd�

)q )
1
q .

Now for each � = 1, 2, 3, . . . , n, we have minμd�
≤

μd�
≤ maxμd�

and this also implies that 1 − max(μq
d�

) ≤
1 − μ

q
d�

≤ 1 − min(μq
d�

), ⇔ ∏n
�=1(1 − max(μq

d�
))u� ≤

∏n
�=1(1 − μ

q
d�

)u� ≤ ∏n
�=1(1 − min(μq

d�
))u� ⇔ (1 −

max(μq
d�

))

n∑

�=1
u�

≤∏n
�=1(1− μ

q
d�

)u� ≤ (1−min(μq
d�

))

n∑

�=1
u�

⇔ (1−max(μq
d�

)) ≤∏n
�=1(1−μ

q
d�

)u� ≤ (1−min(μq
d�

))

⇔ 1 − (1 − min(μq
d�

)) ≤ 1 −∏n
�=1(1 − μ

q
d�

)u� ≤ 1 −
(1 − max(μq

d�
))

⇔ min(μd�
) ≤ q

√
1 −∏n

�=1(1 − μ
q
d�

)u� ≤ max(μd�
)

As � = (μ�, η�) is a generalized parameter where
μ�, η� ∈ [0, 1], then

μ�(minμd�
) ≤ μ�. q

√√√√1 −
n∏

�=1

(1 − μ
q
d�

)u� ≤ μ�(maxμd�
)

⇔ minμ�⊗d�
≤ μ�. q

√√
√√1 −

n∏

�=1

(1 − μ
q
d�

)u� ≤ maxμ�⊗d�

(1)

Next for each � = 1, 2, 3, . . . , n, we have min ηd�
≤ ηd�

≤
max ηd�

and this also implies that

n∏

�=1

((min ηd�
)q)u�

≤
n∏

�=1

(η
u�

d�
)q ≤

n∏

�=1

((max ηd�
)q)u�

⇔ ((min ηd�
)q)

n∑

�=1
u� ≤

n∏

�=1

(η
u�

d�
)q ≤ ((max ηd�

)q)

n∑

�=1
u�

⇔ (min ηd�
)q ≤

n∏

�=1

(η
u�

d�
)q ≤ (max ηd�

)q

As � = (μ�, η�) is a generalized parameter where μ�, η� ∈
[0, 1], then

(1 − η
q
�
)(min ηd�

)q

≤ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q ≤ (1 − η

q
�
)(max ηd�

)q

⇔ η
q
�

+ (1 − η
q
�
)(min ηd�

)q

≤ η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q ≤ η

q
�

+ (1 − η
q
�
)(max ηd�

)q

⇔ q
√

η
q
�

+ (1 − η
q
�
)(min ηd�

)q

≤ q

√√√√η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

≤ q
√

η
q
�

+ (1 − η
q
�
)(max ηd�

)q

⇔ min η�⊗d�

≤ q

√√√√η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q ≤ max η�⊗d�

(2)

If Gq-ROFWA(< d1, d2, d3, . . . , dn >, � ) = δ =
(μ�⊗d�

, η�⊗d�
), then from the analysis of Eqs. (1) and (2) ,

we have
minμ�⊗d�

≤ μ�⊗d�
≤ maxμ�⊗d�

and min η�⊗d�
≤

η�⊗d�
≤ max η�⊗d�

. Therefore, by score function, we get

d−
� ≤ Gq-ROFWA(< d1, d2, d3, . . . , dn >, �) ≤ d+

�

iii: Sinceμd�
≤ μd∗

�
and ηd�

≥ ηd∗
�
for all �, then this implies

μd�
≤ μd∗

�
⇒ 1 − μ

q
d∗
�

≤ 1 − μ
q
d�

⇒
n∏

�=1

(1 − μ
q
d∗
�
)u� ≤

n∏

�=1

(1 − μ
q
d�

)u� ⇒

1 −
n∏

�=1

(1 − μ
q
d�

)u� ≤ 1 −
n∏

�=1

(1 − μ
q
d∗
�
)u�
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⇒ q

√√√√1 −
n∏

�=1

(1 − μ
q
d�

)u� ≤ q

√√√√1 −
n∏

�=1

(1 − μ
q
d∗
�
)u�

As � = (μ�, η�) is a generalized parameter where μ�, η� ∈
[0, 1], then

μ�. q

√√√√1 −
n∏

�=1

(1 − μ
q
d�

)u� ≤ μ�. q

√√√√1 −
n∏

�=1

(1 − μ
q
d∗
�
)u� (3)

Next

ηd�
≥ ηd∗

�
⇒

n∏

�=1

(η
u�

d�
)q ≥

n∏

�=1

(η
u�

d∗
�
)q

⇒ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q ≥ (1 − η

q
�
)

n∏

�=1

(η
u�

d∗
�
)q

⇒ η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q ≥ η

q
�

+(1 − η
q
�
)

n∏

�=1

(η
u�

d∗
�
)q

⇒ q

√√√√η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

≥ q

√√√√η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d∗
�
)q (4)

Let Gq-ROFWA(< d1, d2, d3, . . . , dn >, � ) = d and
Gq-ROFWA(< d∗

1 , d∗
2 , d∗

3 , . . . , d∗
n >, � ) = d∗. Now by

Eqs. (3) ,(4) and Part i: (idempotency), we have

(μ�)q .

(

1 −
n∏

�=1

(1 − μ
q
d∗
�
)u�

)

−
(

η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d∗
�
)q

)

≤ (μ�)q .

(

1 −
n∏

�=1

(1 − μ
q
d�

)u�

)

−
(

η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

)

⇒ S(d∗) ≥ S(d)

If S(d∗) > S(d), then

Gq-ROFWA(< d∗
1 , d∗

2 , d∗
3 , . . . , d∗

n >,

�) > Gq-ROFWA(< d1, d2, d3, . . . , dn >, �)

If S(d∗) = S(d), then

(μ�)q .

(
1 −

n∏

�=1
(1 − μ

q
d∗
�
)u�

)
−
(

η
q
�

+ (1 − η
q
�
)

n∏

�=1
(η

u�

d∗
�
)q
)

= (μ�)q .

(
1 −

n∏

�=1
(1 − μ

q
d�

)u�

)

−
(

η
q
�

+ (1 − η
q
�
)

n∏

�=1
(η

u�

d�
)q
)

. Since μd�
≤ μd∗

�
and ηd�

≥
ηd∗

�
for all �, so we have

⇒ (μ�)q .

(
1 −

n∏

�=1
(1 − μ

q
d∗
�
)u�

)

= (μ�)q .

(
1 −

n∏

�=1
(1 − μ

q
d�

)u�

)
and

(
η
q
�

+ (1 − η
q
�
)

n∏

�=1
(η

u�

d∗
�
)q
)

=
(

η
q
�

+ (1 − η
q
�
)

n∏

�=1
(η

u�

d�
)q
)

.

Thus by accuracy function

A(d∗) = A(d)

Therefore, from the above analysis, we have

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �) ≥
Gq-ROFWA(< d∗

1 , d∗
2 , d∗

3 , . . . , d∗
n >, �)

iv: Proof is straightforward and a trivial case of Theorem 4.
��

If it is suppose that the experts have enough knowledge
about the evaluated objects and assign value to generalized
parameter � = (1, 0) . In this case, the proposed Gq-
ROFWA operator reduces to q-ROFWA operator. While
these types of situations are partially fulfilled in real life. This
shortcoming is very carefully tackled by adding the evaluated
object/generalized parameter in the initial given preferences.

Proposition 1 (a) If the priority of the senior decision
maker/expert about generalized parameter is taken as � =
(1, 0) , then the proposed Gq-ROFWA operator reduces
to q-ROFWA operator.

(b) If the priority of the senior decision maker/expert
about generalized parameter is taken as � = (0, 1) , then the
proposed Gq-ROFWA operator gives the result (0, 1) .

Proof (a) If it is assumed that the experts have enough knowl-
edge about the evaluated objects, that is the generalized
parameter � = (1, 0), then in Theorem 4, we have

Gq-ROFWA(< d1, d2, d3, . . . , dn >, �)

=
⎛

⎝μ�. q

√√
√√1 −

n∏

�=1

(1 − μ
q
d�

)u� ,

q

√√√√η
q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d�
)q

⎞

⎠
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=
⎛

⎝ q

√√√√1 −
n∏

�=1

(1 − μ
q
d�

)u� , q

√√√√
n∏

�=1

(η
u�

d�
)q

⎞

⎠

as μ� = 1 and η� = 0

=
⎛

⎝ q

√√√√1 −
n∏

�=1

(1 − μ
q
d�

)u� ,

n∏

�=1

η
u�

d�

⎞

⎠

= q-ROFWA(d1, d2, d3, . . . , dn).

(b) The proof is similar to the Proof of (a). ��

The generalized q-rung orthopair fuzzy ordered
weighted average operator (Gq-ROFOWA)

FromGq-ROFWA, it is clear that inGq-ROFWAoperators
just the q-ROF values are weighed on the basis of general-
ized parameter, and the Gq-ROFOWA operator weight the
ordered positions through scoring the q-ROF values rather
than weighting the q-ROF values themselves on the basis of
generalized parameter. Therefore, here, we will present the
detailed study of Gq-ROFOWA operator and their proper-
ties.

Definition 10 Consider a generalizedparameter� = (μ�, η�)

for the q-ROFNs d� = (μd�
, ηd�

) (for � = 1, 2, . . . , n),

then the Gq-ROFOWA operator is given as

Gq-ROFOWA(< d1, d2, d3, . . . , dn >, �)

= � ⊗ q-ROFOWA(d̃1, d̃2, d̃3, . . . , d̃n).

The aggregation result of Definition 10 through operation
rules is described as in Theorem 6.

Theorem 6 Suppose the collection d� = (μd�
, ηd�

) (� =
1, 2, . . . , n) of q-ROFNs with generalized parameter � =
(μ�, η�) and weight vector u = (u1, u2, . . . , un)T of d�

where u� ∈ [0, 1] such that
∑n

�=1 u� = 1, then the Gq-
ROFOWA operator is described as:

Gq-ROFOWA(< d1, d2, d3, . . . , dn >, �)

= � ⊗ (
n⊕

�=1
u�d̃�)

=
⎛

⎝μ�. q

√√
√
√1 −

n∏

�=1

(1 − μ
q

d̃�
)u� , q

√√
√
√η

q
�

+ (1 − η
q
�
)

n∏

�=1

(
η
u�

d̃�

)q
⎞

⎠

where d̃� = (μd̃�
, ηd̃�

) indicate the permutation of �th largest
object of the collection of n q-ROFNs d� = (μd�

, ηd�
) (� =

1, 2, . . . , n).

Proof The proof is straightforward to Theorem 4. ��

Remark 2 (a) If the generalized parameter � = (1, 0), and
q = 1, then the Gq-ROFOWA operator reduces to
IFOWA operator.

(b) If the generalized parameter � = (1, 0), and q =
2, then the Gq-ROFOWA operator reduces to PFOWA
operator.

(c) If the value of q = 2 is fixed then the Gq-ROFOWA
operator reduces to GPFOWA operator.

Example 5 Suppose the generalized parameter � =
(0.95, 0.7) of four q-ROFNs d1 = (0.7, 0.3) , d2 =
(0.8, 0.65), d3 = (0.9, 0.6), d4 = (0.88, 0.7) having weight
vector u = {0.3, 0.25, 0.1, 0.35} for q = 5, then to find the
score functions of each q-ROFNs, that is

S (d1) = 0.75 − 0.35 = 0.166, S (d2) = 0.85 − 0.655 =
0.212, S (d3) = 0.95 − 0.65 = 0.513, S (d4) = 0.885 −
0.75 = 0.360.

So S (d3) > S (d4) > S (d2) > S (d1) , this implies that
d4 > d3 > d2 > d1. Thus d̃1 = d3, d̃2 = d4, d̃3 = d2, and
d̃4 = d1. Further we have

μ�. 5
√
1 −∏4

�=1(1 − μ5
d̃�

)u� = 0.95 ×
5

√
1 − (1 − 0.95)0.3(1 − 0.885)0.25(1 − 0.85)0.1

(1 − 0.75)0.35
= 0.802

5
√

η5
�

+ (1 − η5
�
)
∏4

�=1(η
u�

d̃�
)5 =

5
√
0.75 + (1 − 0.75)(0.60.3)5(0.70.25)5(0.650.1)5(0.30.35)5 = 0.720
Now by Theorem 6, we have

Gq-ROFOWA(< d1, d2, d3, d4 > �)

=
⎛

⎝μ�.
5

√√√
√1 −

4∏

�=1

(1 − μ5
d̃�

)u� ,
5

√√√
√η5

�
+ (1 − η5

�
)

4∏

�=1

(η
u�

d̃�
)5

⎞

⎠

= (0.802, 0.720)

Theorem 7 Suppose the collection d� = (μd�
, ηd�

) (� =
1, 2, . . . , n) of q-ROFNs with generalized parameter � =
(μ�, η�)andassociatedweight vector u = (u1, u2, . . . , un)T

of d� where u� ∈ [0, 1] such that∑n
�=1 u� = 1, then for Gq-

ROFOWA operator the following are holes:

i: (Idempotency): If d̃� = d̃ (for all � = 1, 2, 3, . . . , n),

then

Gq-ROFOWA(< d1, d2, d3, . . . , dn >, �) = � ⊗ d̃.

ii: (Boundary condition): If d̃−
� = (minμ

�⊗d̃�
,max η

�⊗d̃�
)

and d̃+
� = (maxμ

�⊗d̃�
, min η

�⊗d̃�
) (for all � =

1, 2, 3, . . . , n), then

d̃−
� ≤ Gq-ROFOWA(< d1, d2, d3, . . . , dn >, �) ≤ d̃+

� .

123



134 Complex & Intelligent Systems (2021) 7:123–144

iii: (Monotonicity): Suppose d� = (μd�
, ηd�

) and d∗
� =

(μd∗
�
, ηd∗

�
)(� = 1, 2, . . . , n) be the collection of n q-

ROFNs such that μd�
≤ μd∗

�
and ηd�

≥ ηd∗
�
, then

Gq-ROFOWA(< d1, d2, d3, . . . , dn >, �) ≤
Gq-ROFOWA(< d∗

1 , d∗
2 , d∗

3 , . . . , d∗
n >, �).

iv: (Commutativity): Suppose d� = (μd�
, ηd�

) and d̃� =
(μd̃�

, ηd̃�
) (� = 1, 2, . . . , n) be the collection of n q-

ROFNs where d̃�(� = 1, 2, . . . , n) is any permutation of
d�(� = 1, 2, . . . , n), then

Gq-ROFOWA(< d1, d2, d3, . . . , dn >, �)

= Gq-ROFOWA(< d̃1, d̃2, d̃3, . . . , d̃n >, �).

Proof Proofs are easy and can be done from Theorem 5. ��
Proposition 2 (a) If the priority of the senior decision
maker/expert about generalized parameter is taken as � =
(1, 0) , so in this case the proposed Gq-ROFOWA opera-
tor degenerates to q-ROFOWA operator.

(b) If the priority of the senior decisionmaker/expert about
generalized parameter is taken as � = (0, 1) , so in this
case the proposed Gq-ROFOWA operator gives the result
(0, 1) .

Proof The proofs are similar to the Proposition 1. ��

The generalized q-rung orthopair fuzzy hybrid
aggregation (Gq-ROFHA) operator

From the detail discussion of Gq-ROFWA and Gq-
ROFOWA operators, it is clear that in Gq-R OFWA
operators just the q-ROF values are weighed on the basis
of generalized parameter, and similarly in Gq-ROFOWA
operator just the ordered positions of the q-ROF values
are weighed rather than weighting the q-R OF values
themselves on the base of generalized parameter. So, it is
clear that the weights denote distinct attributes in both Gq-
ROFWA and Gq-ROFOWA operators. However, at the
same time both the operators weigh just one of them. To
handle this restriction, here we will originate the concept of
Gq-ROFHA operator, which weighs both the given values
at the same time, that is q-ROF values and its ordered posi-
tion on the basis of generalized parameter and discuss their
properties in detail.

Definition 11 Considerd� = (μd�
, ηd�

) (for � = 1, 2, . . . , n),

be the collections of q-ROFNs with associated weight vec-
tor u = (u1, u2, . . . , un)T of d� where u� ∈ [0, 1] such that∑n

�=1 u� = 1, under generalized parameter � = (μ�, η�)

and ű= (ű1,ű2, . . . ,űn)T be the weight vector of d�(� =

1, 2, . . . , n) where ű� ∈ [0, 1] such that∑n
�=1ű� = 1. Then,

the Gq-ROFHA operator is given as:

Gq-ROFH A(< d1, d2, d3, . . . , dn >, �)

= � ⊗ q-ROFH A(d̃1, d̃2, d̃3, . . . , d̃n).

The aggregation result of Definition 11 through operation
rules is described as in Theorem 8.

Theorem 8 Consider a generalized parameter � = (μ�, η�)

for the q-ROFNsd� = (μd�
, ηd�

) (for � = 1, 2, . . . , n), then
the Gq-ROFHA operator is described as:

Gq-ROFH A(< d1, d2, d3, . . . , dn >, �) = � ⊗
(

n⊕
�=1

u�d̃�

)

=
⎛

⎝μ�. q

√√√
√1 −

n∏

�=1

(1 − μ
q

d̃�
)u� , q

√√√
√η

q
�

+ (1 − η
q
�
)

n∏

�=1

(η
u�

d̃�
)q

⎞

⎠

where d̃�(d̃� = nű�d�, for � = 1, 2, . . . , n) indicate the per-
mutation of �th largest object of the collection of q-ROFNs
d� = (μd�

, ηd�
) (� = 1, 2, . . . , n) such that n indicate the

balancing coefficient.

Proof Straightforward like Theorem 4. ��
Remark 3 (a) If the generalized parameter � = (1, 0), and
q = 1, so in this case Gq-ROFHA operator degenerates to
IFHA operator.

(b) If the generalized parameter � = (1, 0), and q = 2,
so in this case Gq-ROFHA operator degenerates to PFHA
operator. (c) If the value of parameter q = 2 is fixed then the
Gq-ROFHA operator reduces to GPFHA operator.

Example 6 Suppose thegeneralizedparameter� = (0.8, 0.7)
of four q-ROFNs d1 = (0.5, 0.2) , d2 = (0.83, 0.6),
d3 = (0.95, 0.65), d4 = (0.9, 0.75) having associated
weight vector u = {0.3, 0.2, 0.32, 0.18} for q = 4, and
weight vector ű= {0.4, 0.3, 0.1, 0.2}, then using operational
law

nű�d� =
(

q
√
1 − (1 − μ

q
d�

)nű� , η
nű�

d�

)

we have

4ű1d1 =
(

4
√
1 − (1 − 0.54)4×0.4, 0.24×0.4

)

= (0.560, 0.076),

4ű2d2 =
(

4
√
1 − (1 − 0.834)4×0.3, 0.64×0.3

)

= (0.856, 0.542),

4ű3d3 =
(

4
√
1 − (1 − 0.954)4×0.1, 0.654×0.1

)

= (0.837, 0.842),
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4ű4d4 =
(

4
√
1 − (1 − 0.94)4×0.2, 0.754×0.2

)

= (0.870, 0.794).

Now to find their score functions, that is

S (4ű1d1) = 0.5604 − 0.0764 = 0.098,

S (4ű2d2) = 0.8564 − 0.5424 = 0.451,

S (4ű3d3) = 0.8374 − 0.8424

= −0.012,

S (4ű4d4) = 0.0.8704 − 0.7944 = −0.396.

So S (4ű2d2) > S (4ű1d1) > S (4ű3d3) > S (4ű 4d4) , this
implies that

d̃1 = (0.856, 0.542), d̃2 = (0.560, 0.076),

d̃3 = (0.837, 0.842) and d̃4 = (0.870, 0.794)

Furthermore, we have μ�. 4
√
1 −∏4

�=1(1 − μ4
d̃�

)u� = 0.8 ×
0.824648 = 0.65972, and 4

√
η4

�
+ (1 − η4

�
)
∏4

�=1(η
u�

d̃�
)4 =

0.72192
Now by Theorem 8, we have

Gq-ROFH A(< d1, d2, d3, d4 >, �)

=
⎛

⎝μ�.
4

√√
√
√1 −

4∏

�=1

(1 − μ4
d̃�

)u� ,
4

√√
√
√η4

�
+ (1 − η4

�
)

4∏

�=1

(η
u�

d̃�
)4

⎞

⎠

= (0.65972, 0.72192)

Theorem 9 Suppose the collection d� = (μd�
, ηd�

) (� =
1, 2, . . . , n) of q-ROFNs with associated weight vector
u = (u1, u2, . . . , un)T of d� where u� ∈ [0, 1] such that∑n

�=1 u� = 1, on the base of generalized parameter � =
(μ�, η�) and ű= (ű1,ű2, . . . ,űn)T be the weight vector of
d�(� = 1, 2, . . . , n)where ű� ∈ [0, 1] such that∑n

�=1ű� = 1
then for Gq-ROFHA operator the following assertions are
hole:

i: (Idempotency): If d̃� = d̃ (for all � = 1, 2, 3, . . . , n),

then

Gq-ROFH A(< d1, d2, d3, . . . , dn >, �) = � ⊗ d̃.

ii: (Boundary condition): If d̃−
� = (minμ

�⊗d̃�
,max η

�⊗d̃�
)

and d̃+
� = (maxμ

�⊗d̃�
, min η

�⊗d̃�
) (for all � =

1, 2, 3, . . . , n), then

d̃−
� ≤ Gq-ROFH A(< d1, d2, d3, . . . , dn >, �) ≤ d̃+

� .

iii: (Monotonicity): Suppose d� = (μd�
, ηd�

) and d∗
� =

(μd∗
�
, ηd∗

�
)(� = 1, 2, . . . , n) be two collections of n q-

ROFNs in which μd�
≤ μd∗

�
and ηd�

≥ ηd∗
�
, then

Gq-ROFH A(< d1, d2, d3, . . . , dn >, �)

≤ Gq-ROFH A(< d∗
1 , d∗

2 , d∗
3 , . . . , d∗

n >, �).

iv: (Commutativity): Suppose d� = (μd�
, ηd�

) and d̃� =
(μd̃�

, ηd̃�
) (� = 1, 2, . . . , n) be two collection of n q-

ROFNs in which d̃�(� = 1, 2, . . . , n) is the �th largest
object of d�(� = 1, 2, . . . , n), then

Gq-ROFH A(< d1, d2, d3, . . . , dn >, �)

= Gq-ROFH A(< d̃1, d̃2, d̃3, . . . , d̃n >, �).

Proof Proofs are easy and can be done from Theorem 5. ��
Proposition 3 (a) If the priority of the senior decision
maker/expert about generalized parameter is taken as � =
(1, 0) , then the proposed Gq-ROFH A operator reduces to
q-ROFH A operator.

(b) If the priority of the senior decision maker/expert
about generalized parameter is taken as� = (0, 1) , so in this
case the proposed Gq-ROFH A operator gives the result
(0, 1) .

Proof Proofs are straightforward. ��
Remark 4 (a) If ű= ( 1n , 1

n , . . . , 1
n )T, then the proposed Gq-

ROFH A operator reduces to Gq-ROFW A operator.
(b) If u = ( 1n , 1

n , . . . , 1
n )T, then the proposed Gq-

ROFH A operator reduces to Gq-ROFOW A operator.

Group generalized parameter based on
q-rung orthopair fuzzy average aggregation
operator

In this section, we will present the generalized study of the
proposed aggregation operators. This analysis will based on
two or more expert’s/observer’s opinion in original infor-
mation by combining the different choice and expertise of
the senior decision makers/experts in a more accurate way.
Therefore, this can be obtained by introducing a group Gq-
ROFWA (GGq-ROFWA) operator, group Gq-ROFOWA
(GGq-ROFOWA) operator and group Gq-ROFHA (GGq-
ROFHA) operator.

The GGq-ROFWA operator

In this subsection, the idea of generalized q-ROFWA
operator is explored to group generalized q-ROFWA oper-
ator where the preferences of two or more other senior
experts/decisionmakers are analyze in q-ROF environments.
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Definition 12 Consider a group of experts/observers who
justify the information under the q-ROF environment. Let
�k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the preferences
suggested by the senior experts for the q-ROFNs d� =
(μd�

, ηd�
)(� = 1, 2, . . . , n), then the GGq-ROFWA opera-

tors is given as:

GGq-ROFW A(< d1, d2, . . . , dn >,

(�1, �2, . . . , �m)) = q-ROFW A(�1, �2, . . . , �m)⊗
q-ROFW A(d1, d2, . . . , dn)

The aggregation result for q-ROFNs through operation
rules is described as in Theorem 10.

Theorem 10 Let �k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the
preferences suggested by the senior experts for the q-ROFNs
d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), having weight vector û =

(û1, û2, . . . , ûm)T with
∑m

k=1 ûk = 1 where ûk ∈ [0, 1].
Let u = (u1, u2, . . . , un)T with

∑n
�=1 u� = 1 where u� ∈

[0, 1], be the associated weight vector for q-ROFNs d� =
(μd�

, ηd�
), then GGq-ROFWA operator is given as

GGq-ROFW A(< d1, d2, . . . , dn >, (�1, �2, . . . , �m))

=
(

m⊕
k=1

ûk�k

)
⊗
(

n⊕
�=1

u�d�

)
.

=

⎛

⎜
⎜⎜⎜
⎝

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk . q

√

1 −
n∏

�=1
(1 − μ

q
d�

)u� ,

q

√
m∏

k=1
(η

ûk
�k

)q +
(
1 −

m∏

k=1
(η

ûk
�k

)q
)

n∏

�=1
(η

u�

d�
)q

⎞

⎟
⎟⎟⎟
⎠

Proof We use mathematical induction to prove this theorem.
Now for n = 2 we get

GGq-ROFW A(< d1, d2 >, (�1, �2, . . . , �m))

=
(

m⊕
k=1

ûk�k

)
⊗ (u1d1 ⊕ u2d2)

=
(

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk ,
m∏

k=1
η
ûk
�k

)

⊗ (u1d1 ⊕ u2d2)

=
(

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk ,
m∏

k=1
η
ûk
�k

)

⊗
(

q

√

1 −
2∏

�=1
(1 − μ

q
d�

)u� ,
2∏

�=1
η
u�

d�

)

=
⎛

⎝ q

√√√√1 −
m∏

k=1

(1 − μ
q
�k

)ûk .
q

√√√√1 −
2∏

�=1

(1 − μ
q
d�

)u� ,

q

√√√√
√√√

m∏

k=1

(
η
ûk
�k

)q +
(
1 −

m∏

k=1

(
η
ûk
�k

)q)

2∏

�=1
(η

u�

d�
)q

⎞

⎟⎟⎟
⎠

this implies for n = 2 the result holds.
Next assume that the result holds for n = K , that is

GGq-ROFW A(< d1, d2, . . . , dK >, (�1, �2, . . . , �m))

=
(

m⊕
k=1

ûk�k

)
⊗
(

K⊕
�=1

uK dK

)

=
⎛

⎝ q

√√
√√1 −

m∏

k=1

(1 − μ
q
�k

)ûk ,

m∏

k=1

η
ûk
�k

⎞

⎠⊗
⎛

⎝ q

√√√√1 −
K∏

�=1

(1 − μ
q
d�

)u� ,

K∏

�=1

η
u�

d�

⎞

⎠

=
⎛

⎝ q

√√√√1 −
m∏

k=1

(1 − μ
q
�k

)ûk .
q

√√√
√1 −

K∏

�=1

(1 − μ
q
d�

)u� ,

q

√√√√√
√√

m∏

k=1

(
η
ûk
�k

)q +
(
1 −

m∏

k=1

(
η
ûk
�k

)q)

K∏

�=1
(η

u�

d�
)q

⎞

⎟
⎟⎟
⎠

Now to show that the result hold for n = K + 1, then we
have

GGq-ROFW A(< d1, d2, . . . , dK , dK+1 >, (�1, �2, . . . , �m))

=
(

m⊕
k=1

ûk�k

)
⊗ (u1d1 ⊕ u2d2 ⊕ · · · ⊕ uK dK ⊕ uK+1dK+1)

=
(

m⊕
k=1

ûk�k

)
⊗ {(u1d1 ⊕ u2d2 ⊕ · · · ⊕ uK dK ) ⊕ uK+1dK+1}

=
(

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk ,
m∏

k=1
η
ûk
�k

)

⊗

⎧
⎪⎪⎨

⎪⎪⎩

(
q

√

1 −
k∏

�=1
(1 − μ

q
d�

)u� ,
k∏

�=1
(η

u�

d�
)

)

⊕
(

q
√
1 − (1 − μ

q
dk+1

)uk+1, η
uk+1
dk+1

)

⎫
⎪⎪⎬

⎪⎪⎭

=
(

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk ,
m∏

k=1
η
ûk
�k

)

⊗

⎛

⎜⎜⎜
⎝

q

√

1 −
k∏

�=1
(1 − μ

q
d�

)u� · (1 − μ
q
dk+1

)uk+1 ,

k∏

�=1
(η

u�

d�
) · η

uk+1
dk+1

⎞

⎟⎟⎟
⎠
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=
(

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk ,
m∏

k=1
η
ûk
�k

)

⊗
(

q

√

1 −
K+1∏

�=1
(1 − μ

q
d�

)u� ,
K+1∏

�=1
η
u�

d�

)

=
(

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk . q

√

1 −
K+1∏

�=1
(1 − μ

q
d�

)u� ,

q

√√√√√√
√

m∏

k=1

(
η
ûk
�k

)q +
(
1 −

m∏

k=1

(
η
ûk
�k

)q)

K+1∏

�=1

(
η
u�

d�

)q

⎞

⎟⎟⎟
⎠

this implies that n is

true for K + 1. Therefore, the given result is holds for any
number of q-ROFNs on the based of expert preferences. ��

Moreover, the aggregated result achieved from GGq-
ROF WA is also a q-ROFNs.

Remark 5 (a) If the generalized parameter pk = (1, 0) ( for
all k = 1, 2, . . . ,m), and q = 1, so in this case the GGq-
ROFWA operator degenerates to IFWA operator.

(b) If the generalized parameter pk = (1, 0)(for all
k = 1, 2, . . . ,m), and q = 2, then the GGq-ROFWA oper-
ator degenerates to PFWA operator. (c) If the assign value
q = 2 is fixed then the GGq-ROFWA operator reduces to
GGPFWA operator.

Theorem 11 Let �k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the
preferences suggested by the senior experts for the q-ROFNs
d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), having weight vector û =

(û1, û2, . . . , ûm)T with
∑m

k=1 ûk = 1 where ûk ∈ [0, 1].
Let u = (u1, u2, . . . , un)T with

∑n
�=1 u� = 1 where u� ∈

[0, 1], be the associated weight vector for q-ROFNs d� =
(μd�

, ηd�
), then for GGq-ROFWA operator the following

assertions are hold:

i: (Idempotency): If d� = d (for all � = 1, 2, 3, . . . , n),

and �k = �(for all k = 1, 2, . . . ,m) then

GGq-ROFWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) = � ⊗ d.

ii: (Boundary condition): If d−
� = (minμ�k⊗d�

,max η�k⊗d�
)

andd+
� = (maxμ�k⊗d�

,min η�k⊗d�
)(∀� = 1, 2, 3, . . . , n)

(∀k = 1, 2, 3, . . . ,m), then

d−
� ≤ GGq-ROFWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) ≤ d+
� .

iii: (Monotonicity): Suppose d� = (μd�
, ηd�

) and d∗
� =

(μd∗
�
, ηd∗

�
)(� = 1, 2, . . . , n) be two collection of n q-

ROFNs such that μd�
≤ μd∗

�
and ηd�

≥ ηd∗
�
, then

GGq-ROFWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) ≤ GGq-ROFWA
(< d∗

1 , d∗
2 , d∗

3 , . . . , d∗
n >, (�1, �2, . . . , �m)).

iv: (Commutativity): Suppose d� = (μd�
, ηd�

) and d̃� =
(μd̃�

, ηd̃�
) (� = 1, 2, . . . , n) be two collection of n q-

ROFNs where d̃�(� = 1, 2, . . . , n) is the �th largest
object of d�, then
GGq-ROFWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) = GGq-ROFWA
(< d̃1, d̃2, d̃3, . . . , d̃n >, (�1, �2, . . . , �m)).

Proof Straightforward. ��

Proposition 4 (a) If the priority of the senior decision
maker/expert about generalized parameter is taken as �k =
(1, 0) (for all k = 1, 2, . . . ,m), then the proposed GGq-
ROFWA operator reduces to q-ROFWA operator.

(b) If the priority of the senior decisionmaker/expert about
generalized parameter is taken as �k = (0, 1) (for all k =
1, 2, . . . ,m), then the proposed GGq-ROFWA operator
presents the same result (0, 1) .

Proof Proofs are straightforward. ��

The GGq-ROFOWA operator

FromGGq-ROFWA, it is clear that in GGq-ROFWAoper-
ators just the q-ROF values areweighedon thebasis of group
generalized parameter, while the GGq-ROFOWA operator
weights the ordered positions after scoring the q-ROF val-
ues rather than weighting the q-ROF values themselves on
the base of group generalized parameter. Therefore, here, we
will present the detail study of GGq-ROFOWA operator
and their properties.

Definition 13 Consider a group of experts/observers who
justify the information under the q-ROF environment.
Let �k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the priori-
ties/preferences suggested by the senior experts for the
q-ROFNs d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), then the GGq-

ROFOWA operators is given as:

GGq-ROFOWA(< d1, d2, . . . , dn >, (�1, �2, . . . , �m))

= q-ROFW A(�1, �2, . . . , �m)⊗
q-ROFOW A(d1, d2, . . . , dn)

The aggregation result for q-ROFNs through operation
rules is described as in Theorem 12.

Theorem 12 Suppose that�k = (μ�k , η�k )(k = 1, 2, . . . ,m)

be the priorities/preferences suggested by the senior experts
for the q-ROFNs d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), hav-

ing weight vector û = (û1, û2, . . . , ûn)T with
∑m

k=1 ûk =
1 where ûk ∈ [0, 1]. Let u = (u1, u2, . . . , un)T with∑n

�=1 u� = 1 where u� ∈ [0, 1], be the associated
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weight vector for q-ROFNs d� = (μd�
, ηd�

), then GGq-
ROFOWA operator is given as;

GGq-ROFOWA(< d1, d2, . . . , dn >, (�1, �2, . . . , �m))

=
(

m⊕
k=1

ûk�k

)
⊗
(

n⊕
�=1

u�d̃�

)
.

=

⎛

⎜⎜⎜⎜
⎝

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk . q

√

1 −
n∏

�=1
(1 − μ

q

d̃�
)u� ,

q

√
m∏

k=1
(η

ûk
�k

)q +
(
1 −

m∏

k=1
(η

ûk
�k

)q
)

n∏

�=1
(η

u�

d̃�
)q

⎞

⎟⎟⎟⎟
⎠

where d̃� = (μd̃�
, ηd̃�

) indicate the �th largest object of n
q-ROFNs d� = (μd�

, ηd�
).

Proof Proof is easy and directly follows form Theorem 10.
��

Remark 6 (a) If the generalized parameter pk = (1, 0) ( for
all k = 1, 2, . . . ,m), and q = 1, then the GGq-ROFOWA
operator reduces to IFWA operator.

(b) If the generalized parameter pk = (1, 0)(for all
k = 1, 2, . . . ,m), and q = 2, then the GGq-ROFOWA
operator reduces to PFOWA operator.

(c) If the value of parameter q = 2 is fixed then the GGq-
ROFOWA operator reduces to GGPFOWA operator.

Theorem 13 Let �k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the
priorities/preferences suggested by the senior experts for the
q-ROFNs d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), having weight

vector û = (û1, û2, . . . , ûn)T with
∑m

k=1 ûk = 1where ûk ∈
[0, 1]. Let u = (u1, u2, . . . , un)T with

∑n
�=1 u� = 1 where

u� ∈ [0, 1], be the associated weight vector for q-ROFNs
d� = (μd�

, ηd�
), then the GGq-ROFOWA operator has the

properties:

i: (Idempotency): If d̃� = d̃ (for all � = 1, 2, 3, . . . , n),

and �k = �(for all k = 1, 2, . . . ,m) then

GGq-ROFOWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m))

= � ⊗ d̃.

ii: (Boundary condition): If d̃−
� =(

minμ
�k⊗d̃�

,max η
�k⊗d̃�

)
and

d̃+
� =

(
maxμ

�k⊗d̃�
,min η

�k⊗d̃�

)

(∀� = 1, 2, 3, . . . , n)

(∀k = 1, 2, 3, . . . ,m), , then

d̃−
� ≤ GGq-ROFOWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) ≤ d̃+
� .

iii: (Monotonicity): Suppose d� = (μd�
, ηd�

) and d∗
� =

(μd∗
�
, ηd∗

�
)(� = 1, 2, . . . , n) be two collection of n q-

ROFNs such that μd�
≤ μd∗

�
and ηd�

≥ ηd∗
�
, then

GGq-ROFOWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) ≤ GGq-ROFOWA
(< d∗

1 , d∗
2 , d∗

3 , . . . , d∗
n >, (�1, �2, . . . , �m)).

iv: (Commutativity): Suppose d� = (μd�
, ηd�

) and d̃� =
(μd̃�

, ηd̃�
) (� = 1, 2, . . . , n) be two collection of n q-

ROFNs where d̃�(� = 1, 2, . . . , n) is represents the �th
largest object of d�, then
GGq-ROFOWA(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) = GGq-ROFOWA
(< d̃1, d̃2, d̃3, . . . , d̃n >, (�1, �2, . . . , �m)).

Proof Proofs is straightforward. ��
Proposition 5 (a) If the priorities/preferences of the senior
decision makers/experts about generalized parameters are
taken as �k = (1, 0) (k = 1, 2, . . . ,m), then the proposed
GGq-ROFOWA operator reduces to q-ROFOWA
operator.

(b) If the priorities/preferences of the senior decision
makers/experts about generalized parameters are taken as
�k = (0, 1) (k = 1, 2, . . . ,m), then the proposed GGq-
ROFOWA operator presents the same result (0, 1) .

Proof Straightforward. ��

The GGq-ROFHA operator

From the above discussion, it is concluded that the GGq-
ROFWA operator just weights the q-ROF values on the
basis of group generalized parameter, and similarly the GGq-
ROFOWA operator just weights the ordered positions after
scoring the q-ROF values rather than weighing the q-ROF
values themselves on the basis of group generalized param-
eter. Therefore, it is clear that the weights denote distinct
attributes in both GGq-ROFWA and GGq-ROFOWA
operators. However, at the same time both the operators
weighs just one of them. To handle this restriction, here we
will originate the study of GGq-ROFHA operator, which
weighs both the given values at the same time, that is q-
ROF values and its ordered position on the basis of group
generalized parameter.

Definition 14 Consider a group of experts/observers who
justify the information under the q-ROF environment.
Let �k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the priori-
ties/preferences suggested by the senior experts for the
q-ROFNs d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), then the GGq-

ROFHA operator is given as:

GGq-ROFH A(< d1, d2, . . . , dn >, (�1, �2, . . . , �m))
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= q-ROFH A(�1, �2, . . . , �m)⊗
q-ROFH A(d1, d2, . . . , dn)

The aggregation result for q-ROFNs through operation
rules is described as in Theorem 14.

Theorem 14 Let �k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the
priorities/preferences suggested by the senior experts for the
q-ROFNs d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), having weight

vector û = (û1, û2, . . . , ûn)T with
∑m

k=1 ûk = 1where ûk ∈
[0, 1]. Let ű= (ű1, ű2, . . . , űn)T with

∑n
�=1ű� = 1 where

ű� ∈ [0, 1], be the weight vector and u = (u1, u2, . . . , un)T

with
∑n

�=1 u� = 1 where u� ∈ [0, 1], be the associated
weight vector of q-ROFNs d� = (μd�

, ηd�
), then GGq-

ROFHA operator is given as;

GGq-ROFH A(< d1, d2, . . . , dn >, (�1, �2, . . . , �m))

=
(

m⊕
k=1

ûk�k

)
⊗
(

n⊕
�=1

u�d̃�

)

=

⎛

⎜⎜⎜⎜
⎝

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk . q

√

1 −
n∏

�=1
(1 − μ

q

d̃�
)u�,

q

√
m∏

k=1

(
η
ûk
�k

)q +
(
1 −

m∏

k=1

(
η
ûk
�k

)q) n∏

�=1

(
η
u�

d̃�

)q

⎞

⎟⎟⎟⎟
⎠

where d̃�(d̃� = nű�d�, for � = 1, 2, . . . , n) indicate the
permutationwhich is the �th largest object of the collection of
q-ROFNs d� = (μd�

, ηd�
) (� = 1, 2, . . . , n) and n indicate

the balancing coefficient.

Remark 7 (a) If the generalized parameter pk = (1, 0) ( for
all k = 1, 2, . . . ,m), and q = 1, then the GGq-ROFHA
operator reduces to IFHA operator.

(b) If the generalized parameter pk = (1, 0)(for all k =
1, 2, . . . ,m), and q = 2, then the GGq-ROFHA operator
reduces to PFHA operator.

(c) If the value of parameter q = 2 is fixed then the GGq-
ROFHA operator reduces to GGPFHA operator.

Theorem 15 Let �k = (μ�k , η�k )(k = 1, 2, . . . ,m) be the
priorities/preferences suggested by the senior experts for the
q-ROFNs d� = (μd�

, ηd�
)(� = 1, 2, . . . , n), having weight

vector û = (û1, û2, . . . , ûn)T with
∑m

k=1 ûk = 1where ûk ∈
[0, 1]. Let ű= (ű1, ű2, . . . , űn)T with

∑n
�=1ű� = 1 where

ű� ∈ [0, 1], be the weight vector and u = (u1, u2, . . . , un)T

with
∑n

�=1 u� = 1 where u� ∈ [0, 1], be the associated
weight vector of q-ROFNs d� = (μd�

, ηd�
), then for GGq-

ROFHA operator the following conditions are hold:

i: (Idempotency): If d� = d̃ (for all � = 1, 2, 3, . . . , n),

and �k = �(for all k = 1, 2, . . . ,m) then

GGq-ROFH A(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) = � ⊗ d̃.

ii: (Boundary condition): If d̃−
� =(

minμ
�k⊗d̃�

,max η
�k⊗d̃�

)
and

d̃+
� =

(
maxμ

�k⊗d̃�
, min η

�k⊗d̃�

)

(∀� = 1, 2, 3, . . . , n)

(∀k = 1, 2, 3, . . . ,m), then

d̃−
� ≤ GGq-ROFH A(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) ≤ d̃+
� .

iii: (Monotonicity): Suppose d� = (μd�
,

ηd�
) and d∗

� = (μd∗
�
, ηd∗

�
)(� = 1, 2, . . . , n) be two col-

lection of n q-ROFNs such that μd�
≤ μd∗

�
and ηd�

≥
ηd∗

�
, then

GGq-ROFH A(< d1, d2, d3, . . . , dn >,

(�1, �2, . . . , �m)) ≤ GGq-ROFH A(< d∗
1 , d∗

2 ,

d∗
3 , . . . , d∗

n >, (�1, �2, . . . , �m)).

iv: (Commutativity): Suppose d� = (μd�
, ηd�

) and d̃� =
(μd̃�

, ηd̃�
) (� = 1, 2, . . . , n) be two collection of n q-

ROFNs where d̃�(� = 1, 2, . . . , n) is any permutation
of d�, then
GGq-ROFH A(< d1, d2, d3, . . . , dn >, (�1, �2,

. . . , �m)) = GGq-ROFH A(< d̃1, d̃2, d̃3, . . . , d̃n >

, (�1, �2, . . . , �m)).

Proof Proofs are straightforward. ��

Proposition 6 (a) If the priority of the senior decision
maker/expert about generalized parameter is taken as � =
(1, 0) , so in this case the proposedGGq-ROFH Aoperator
degenerates to q-ROFH A operator.

(b) If the priority of the senior decisionmaker/expert about
generalized parameter is taken as � = (0, 1) , then the pro-
posed GGq-ROFH A operator gives the result (0, 1) .

Remark 8 (a) If ű= ( 1n , 1
n , . . . , 1

n )T, so in this case the
improved GGq-ROFH A operator degenerates to GGq-
ROFW A operator.

(b) If u = ( 1n , 1
n , . . . , 1

n )T, so in this case the proposed
GGq-ROFH A operator degenerates toGGq-ROFOW A
operator.

An approach toMCDM and its application
based on the generalization parameter

In this section, the technique of MCDM is constructed on
the concept of GGq-ROF information under generalized
parameter. The general concept and steps of construction of
the developed approach are given below.
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MCDM approach

To demonstrate the MCDM approach on the basis of devel-
oped approach, let X = {d1, d2, . . . , dm} be a certain
discrete set of alternatives and C = {c1, c2, . . . , cn} be
the corresponding set of criteria having weight vector u =
{u1, u2, . . . , un}where ui ∈ [0, 1]with∑n

i=1 ui = 1, on the
base of generalized parameter. A team of experts is called to
for the judgement of each alternative di (i = 1, 2, . . . ,m)

to their corresponding criteria c j ( j = 1, 2, . . . , n). The
experts give their assessment details in the formof q-ROFNs
denoted by di j = (μdi j , ηdi j ) where in points of view of
experts μdi j represents the membership and , ηdi j repre-
sents the non-membership grades to which alternative di j
satisfies the the criteria c j having the condition that 0 ≤(
μdi j

)q + (ηdi j
)q ≤ 1 for q ≥ 1.

To certify the collected information inmore accurateman-
ner, the group {�1, �2, . . . , �k} of other senior experts are
constituted which provide their preferences/ priorities for
each alternative in the form of q-ROFNs represented by
�l = (μ�l , η�l )(l = 1, 2, . . . , k), with weight vector û =
(û1, û2, . . . , ûk)T such that ûl ∈ [0, 1] with∑k

l=1 ûl = 1.

Algorithm

The algorithm for the developed operator consists of the fol-
lowing steps.

step 1 From the above analysis collect the decision mak-
ers/expert’s information provided for each alternative
to their corresponding criteria and then construct a
decision matrix

[X ]m×n =

⎛

⎜⎜⎜
⎝

d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...

dm1 dm2 · · · dmn

⎞

⎟⎟⎟
⎠

,

step 2 Collect the priorities/preferences of the senior’s group
experts against each alternatives under the general-
ized parameter and from these information construct
the generalized parameter matrix

[Y]m×k =

⎛

⎜⎜
⎜
⎝

�11 �12 · · · �1k

�21 �22 · · · �2k
...

...
. . .

...

�m1 �m2 · · · �mk

⎞

⎟⎟
⎟
⎠

,

step 3 Append the matrices obtained from steps 1: and 2: to
get the newmatrix [Z]m×(n+k) which shows the prior-
ities/preferences of expert’s for each alternatives di j

corresponding to criteria c j on the bases of general-
ized parameter �l .

[Z]m×(n+k) =

⎛

⎜⎜⎜
⎝

d11 d12 · · · d1(n+k)

d21 d22 · · · d2(n+k)
...

...
. . .

...

dm1 dm2 · · · dm(n+k)

⎞

⎟⎟⎟
⎠

,

step 4 Utilized the developedGGq-ROFWAoperator to get
the overall aggregated result frommatrix [Z]m×(n+k)

for alternative di ,
step 5 Determine the score of each aggregated result in step

4: and rank the results in a specific order to get the
best alternative.

Numerical illustration

This section is devoted for the presentation of an illustrating
example to demonstrate the validity and effectiveness of the
developed approach with q-ROF information.

Consider Pneumonia is a common disease and initially
having four basic symptoms such as chest pain, f ever ,
cough and f atigue. The disease of Pneumonia can be
treated with four medicines. These medicines have various
therapeutic effects on these four symptoms. Now for treat-
ing this disease, a doctor advise needs to analyze the best
and worst therapeutic effects of these four medicines. Let
X = {d1, d2, d3, d4} denotes the four medicines (alterna-
tives) and C = {c1, c2, c3, c4} represents the fours symptoms
(criteria). Furthermore, considering the significance degree
of the four symptoms, the doctor provide the weight vector
u = (u1 = 0.3, u2 = 0.25, u3 = 0.18, u4 = 0.27)T of
the criteria set. The doctor presents their evaluation for each
medicine (alternative) to their corresponding symptom (cri-
teria) in the form of q-ROFNs which is given in Table 1.
To justify the collected information in more accurate man-
ner, consider a group of senior doctors/experts {�1, �2, �3}
provide their priority/preferences with weight vector û =
(û1 = 0.35, û2 = 0.32, û3 = 0.33)T such that ûi ∈ [0, 1]
with

∑3
i=1 ûi = 1.Agroup of senior doctors/experts provide

their preferences report in the form of q-ROFNs which is
given in Table 2. The steps-wise algorithm of the presented
approach for MCDM is given as

step 1 The collected information of decision maker/expert
evaluation [X ]m×n = (di j )m×n = (μdi j , ηdi j )m×n

for each alternative to their corresponding criteria are
given in Table 1.

step 2 The preferences/priorities of the group of other
senior decision makers/experts evaluation against
each alternatives under the generalized parameter
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Table 1 q-ROF expert’s evaluation matrix [X ]m×n

c1 c2 c3 c4

d1 (0.9, 0.2) (0.8, 0.3) (0.95, 0.15) (0.4, 0.2)

d2 (0.8, 0.5) (0.7, 0.2) (0.93, 0.35) (0.6, 0.1)

d3 (0.9, 0.3) (0.6, 0.8) (0.85, 0.52) (0.7, 0.5)

d4 (0.7, 0.2) (0.9, 0.4) (0.78, 0.62) (0.5, 0.3)

Table 2 Other senior expert’s evaluation matrix [Y]m×k based on q-
ROF gen- eralized Parameter

�1 �2 �3

d1 (0.91, 0.23) (0.88, 0.38) (0.9, 0.2)

d2 (0.85, 0.5) (0.86, 0.35) (0.7, 0.3)

d3 (0.9, 0.3) (0.65, 0.58) (0.6, 0.4)

d4 (0.76, 0.25) (0.91, 0.42) (0.5, 0.6)

matrix [Y]m×k = [�il ]m×k = (μ�il , η�il )m×k is
given in Table 2.

step 3 Combine the matrices of steps 1: and 2: to get
the new matrix [Z]m×(n+k) which shows the prior-
ities/preferences of experts for each alternatives di j
corresponding to criteria c j on the bases of general-
ized parameter �l .

step 4 Utilized the developedGGq-ROFWAoperator to get
the over all aggregated result frommatrix [Z]m×(n+k)

row wise for each alternative di .

Now the aggregated result for d1 is as, for q = 3;
ξ1 = GGq-ROFW A(< d1, d2, . . . , dn >,

(�1, �2, . . . , �m))

ξ1 =

⎛

⎜⎜
⎜⎜
⎝

q

√

1 −
m∏

k=1
(1 − μ

q
�k

)ûk . q

√

1 −
n∏

�=1
(1 − μ

q
μd�

)u�,

q

√
m∏

k=1
(η

ûk
η�k

)q +
(
1 −

m∏

k=1

(
η
ûk
η�k

)q) n∏

�=1

(
η
u�

d�

)q

⎞

⎟⎟
⎟⎟
⎠

= (0.89792 × 0.8477,
3
√
1.7156 × 10−2 + 0.98284 × 9.2831 × 10−3)

ξ1 = (0.76117,0.29731)
Similarly we can find the others;
ξ2 = (0.64677,0.40586),ξ3 = (0.62707,0.55885),ξ4 =

(0.61011,0.45385).

step 5 Determine the score of each aggregated result in step
4: and rank the results in descending order to get the
best alternative.

S(ξ1) = 0.41473,S(ξ2) = 0.20370,S(ξ3) =
0.072038,S(ξ4) = 0.13362

Hence from the score values we get the ranking result as;

d1 ≥ d2 ≥ d4 ≥ d3. Therefore, from overall calculation it
is clear that, the best medicine (alternative) against the given
symptom (criteria) is d1.

Comparative analysis

From the above analysis, it is clear that the best alternative
to the corresponding criteria is d1. If a single senior expert
is recommended rather than a group of senior experts, which
provide his preference/priority for the mention information,
then the following results are concluded,

1: If the expert �1 is recommended for the consideration
of mentioned information, then the score results are given as,

S(ξ1) = 0.43771, S(ξ2) = 0.16556, S(ξ3) = 0.24166,

S(ξ4) = 0.14959.

This implies that d1 ≥ d3 ≥ d2 ≥ d4.
2: If the expert �2 is recommended for the consideration

of mentioned information, then the score results are given as,

S (ξ1) = 0.35148, S (ξ2) = 0.25734, S (ξ3) = −0.14418,

S (ξ4) = 0.23582.

This implies that d1 ≥ d2 ≥ d4 ≥ d3.
3: Similarly if the expert �3 is recommended for the con-

sideration of mentioned information, then the score results
are given as,

S(ξ1) = 0.42686, S(ξ2) = 0.12847, S(ξ3) = −0.058680,

S(ξ4) = −0.18629.

This implies that d1 ≥ d2 ≥ d3 ≥ d4.
The ranking results for the single expert for the same alter-

natives to their corresponding criteria is different but the best
alternative remain same, which represents the importance of
expert preferences, knowledge, consciousness and expertise
on their preference values.

Moreover, by comparing the superiorities and advantages
of the developed approach with existing methods in the
literature using the sameexample and ignoring the groupgen-
eralized parameter matrix [Y]m×k . Thesemethods including
intuitionistic fuzzyweighted averaging (IFWA) operator pre-
sented by Xu [28] and Li [18], Pyhtagorean fuzzy weighted
averaging (PFWA) operator presented by Yagger [32], Ma
and Xu [22], symmetric Pythagorean fuzzy weighted aver-
aging (SPFWA)operator presented byMa andXu [22], group
generalized parameter Pythagorean fuzzy weighted averag-
ing (GGPFWA) operator initiated by Joshi [17], q-ROFWA
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Table 3 GGq-ROF expert’s
priority/preferences matrix
[Z]m×(n+k)

c1 c2 c3 c4 �1 �2 �3

d1 (0.9, 0.2) (0.8, 0.3) (0.95, 0.15) (0.4, 0.2) (0.91, 0.23) (0.88, 0.38) (0.9, 0.2)

d2 (0.8, 0.5) (0.7, 0.2) (0.93, 0.35) (0.6, 0.1) (0.85, 0.5) (0.86, 0.35) (0.7, 0.3)

d3 (0.9, 0.3) (0.6, 0.8) (0.85, 0.52) (0.7, 0.5) (0.9, 0.3) (0.65, 0.58) (0.6, 0.4)

d4 (0.7, 0.2) (0.9, 0.4) (0.78, 0.62) (0.5, 0.3) (0.76, 0.25) (0.91, 0.42) (0.5, 0.6)

Table 4 Comparative analysis
of distinct aggregation operators

Operators Score values Ranking

ξ1 ξ2 ξ3 ξ4

IFWA5,9 Inaccessible ×
PFWA15 0.75078 0.71123 0.60872 0.66425 d1 ≥ d2 ≥ d4 ≥ d3

PFWA20 0.66052 0.55713 0.40420 0.47255 d1 ≥ d2 ≥ d4 ≥ d3

SPFWA20 0.53681 0.46357 0.28674 0.3795 d1 ≥ d2 ≥ d4 ≥ d3

GGPFWA21 0.46035 0.21881 0.018209 0.11228 d1 ≥ d2 ≥ d4 ≥ d3

q-ROFWA24 0.59987 0.47911 0.40693 0.41913 d1 ≥ d2 ≥ d4 ≥ d3

GGq-ROFWA 0.41473 0.20370 0.072038 0.13362 d1 ≥ d2 ≥ d4 ≥ d3

Table 5 Comparative analysis
of distinct aggregation operators
on [Z]m×(n+k)

Operators Score values Ranking

ξ1 ξ2 xi3 ξ4

IFWA5,9 Inaccessible ×
PFWA15,20 Inaccessible times

SPFWA20 Inaccessible ×
GGPFWA21 0.46035 0.21881 0.018209 0.11228 d1 ≥ d2 ≥ d4 ≥ d3

q-ROFWA24 Inaccessible ×
GGq-ROFWA 0.41473 0.20370 0.072038 0.13362 d1 ≥ d2 ≥ d4 ≥ d3

operator presented byLiu andWang [21]. The ranking results
of these aggregation operators are given in Table 4.

From the analysis the Table 4 it is clear that only IFWA
operator by Xu [28] and Li [18] is inaccessible to rank
the MCDM problem because it cannot tackle the assessment
value satisfy μd + ηd > 1. The ranking result for the rest
of MCDM methods remain same and the best optimal value
is d1. But the methods proposed by Yager [32], Ma and Xu
[22] and Joshi [17] have also some restriction and they can-
not handle the assessment value satisfy (μd)

2 + (ηd)
2 > 1.

For example, if wemake aminor change in Table 4 that is, by
replace the alternatives d11, d24, d32 and d44 by (0.9, 0.85) .

Then the methods presented by by Yager [32], Ma and Xu
[22] and Joshi [17] are also fail. However, the method pre-
sented in Liu and Wang [21] and the method developed in
this paper still deal the situations by adjusting the value of q.

If we consider GGq-ROF expert’s priority/preferences
matrix [Z]m×(n+k) as given in Table 3, and utilize the meth-
ods proposed by by Yager [32], Ma and Xu [22] , Joshi [17]
and Liu and Wang [21] on matrix [Z]m×(n+k), as their rank-
ing result is shown in Table 5.

From Table 5, it is observed that the methods proposed
by Yager [32], Ma and Xu [22] and Liu and Wang [21] are
inaccessible to provide the ranking results and the method
presented by Joshi [17] and our developed method is still
working and produces the same result.

However, the method presented by Joshi [17] has some
limitations and it cannot handle the assessment value satis-
factorily (μd)

2+(ηd)
2 > 1.For example, if wemake aminor

change in Table 5 that is, by replace just a single alternatives
by (0.9, 0.8) . Then, the method presented by Joshi [17] fails
to handle the situation. However, the method developed in
this paper is still works by adjusting the value of q. Thus
IFWA operator by Xu [28] and Li [18], PFWA operator by
Yager [32], Ma and Xu [22], GGPFWA operator by Joshi
[17], and q-ROFWA operator Liu andWang [21] are the spe-
cial cases of the developed aggregation operators as shown in
Remark 1, and Proposition 1. Finally from the above analysis
and comparison, this fact is observed that the method pro-
posed in this paper is more effective, powerful and superior
to solve the MCDM problems than the existing methods.
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Conclusion

It has been observed, that in real-life situation provided
information of a single expert are completely based on his
own priority and may not lead to the accurate decisions.
Therefore, acknowledging the initial preferences, it is neces-
sary to justify the initially described preferences from other
senior experts/judges to ensure the expert’s level of trust and
improve the accuracy of the final decision. This is only possi-
ble by adding the idea of generalized parameter to the original
information. In this paper, the concept Gq-ROFSs is intro-
duced by incorporating generalized parameter to the original
information to the views of other senior decision makers or
to the expertise of other senior decision makers in q-ROF
environment. Then this idea explored to the group gener-
alized parameter in which the preferences of two or more
other senior experts/decision makers are analyzed in q-ROF
environments. Different aggregation operators are presented
on the basis of generalized parameter. Then, the defined
aggregation operators are extended toGGq-ROF aggregation
operators. These developed aggregations operators have the
ability to adjust the situations in a better sequence on the basis
of parameterization character. The major advantages of the
developed concept is to reduce the probability of complexi-
ties, uncertainties and errors in the original information. The
main focus of the developed work is on MCDM application
by using the proposed approach. Finally, through compara-
tive remark, it has been shown that the developed method is
superior to the existing methods.
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