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Abstract
Simple rules can generate complexity and human can also learn fast with rules. Can machines learn in a similar way? Can 
artificial intelligence be independent of statistics? Machine learning is growing rapidly but models are poorly interpretable 
and depend on statistics. We propose a method by iteration based on causality which is the real one exists in the system. It 
is composed of fixed goals and basic rules called DNA rules. These DNA rules can be obtained from the definition and is 
not statistical rules. The causality in rules promises the process to be precise, because the potential attractor of the system 
is deterministic, because it is subjected to the rules although the system is complex especially under uncertain interference. 
Such a model not only works well in the traditional deterministic systems like the stable point and limited circle but also 
can work in some seemingly random and systems which are considered to be stochastic systems. The model is taken to play 
a game and it makes the machine learns fast and adaptively, and it is also interpretable with the causality and independent 
from the amount of data for it is based on causal iteration. It learns and even predicts the seemingly random interference in 
the game. We found such a model is adaptable, and it works well even in out-of-sample situations. The model is compared 
with an LSTM network in prediction a seemingly random sequence, the result shows the causality-based model also works 
well. We think that it may help to solve some problems hard for the traditional statistical method and become an enrichment 
for the current models.
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Introduction

Alan Turing outlined his ideas and proposed equations sup-
porting them in his original paper ‘The chemical basis of 
morphogenesis’ in 1952 [18]. In his paper, a complex pat-
tern resembling an animal’s fur pattern is generated by a 

mathematical formula, and such patterns are related to the 
Turing structure. Actually, simple rules can generate com-
plex phenomena that are even similar to life in nature. As is 
shown in Fig. 1, turbulence can be generated by convection 
[9], and the pattern similar to the shell can be generated 
by rule 30th with the cellular automaton [20]. Similar to 
complexity, the human may learn to play some games fast 
without many trains after knowing the rules. Therefore, we 
wonder if artificial intelligence can be generated based on 
simple rules? Can such intelligence adapt to out-of-sample 
conditions? (Fig. 1).

Recently, statistic learning methods boast notable capa-
bilities. However, these models need much data tab with 
complete information reflecting the system’s characteristics 
[4, 10, 17]. In addition, the models are hard to interpret, 
their function is single and they cannot predict in the out-
of-sample conditions [8, 12]. For example, the model is hard 
to interpret, because it is a ‘black box’ [12, 14, 16]. The 
structure and working process inside the ‘black box’ are 
unknown. The structure is important for the network [6], 
because data with different characteristics need networks 
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with different structures, CNN is good at processing image 
and RNN is good at time sequence. It is difficult to learn 
data with different features well by a common ‘black box’ 
without knowing the inside of the box.

In contrast, the rule-based models have better interpret-
ability. However, rules directly learned from data by statis-
tical learning may lack mathematical logic [13, 21]. Our 
method is based on ‘DNA rules’ which are different from 
the rules learned by statistics, because they are real causali-
ties that exist in the system. In addition we call them ‘DNA 
rules’ for they are like DNA on some aspect. Such a model 
can be interpreted by the causality. A biological mutation 
experiment showed that mutations considered to be random 
have the same mutation results under the same conditions in 
several experiments [2], which imply that there are certainty 
and causality even in complicated phenomena. The method 
we propose is based on a similar view, we believe there are 
causality and certainty between the causes and results and 
the causality can be mined, then we can take the causality to 
deductive and generate the evolution process of the system. 
This process is logically strict with certainty. The model 
can be interpreted by causality. In addition, it can generate a 
complete attractor corresponding to all the possible states in 
the system’s evolution. Therefore, comparing with statistical 
models, the model can also work well in out-of-sample con-
ditions. With the attractor, the model is more complete and 
has better adaptability to changes. In addition, the causal-
ity here not only works well in the traditional deterministic 
systems like the stable point and limited circle but also can 

work in some seemingly random and systems which are con-
sidered to be stochastic systems in the traditional statistical 
method. The method shows that these seemingly random sys-
tems can be mined, learned, and predicted in the short term. 
The method can be applied in some control and predicting in 
some complex and nonlinear evolutionary systems and could 
be an enrichment to the current model.

The rest of this paper has been organized into 4 sections. 
Section “DNA rules” presents the concepts of DNA rules. 
Section “Our method” shows our method and related con-
cepts in detail. Section “Causality can be obtained” shows 
experiments based on the causality-based method. Lastly, 
Section “Experiment” discusses and outlines the advantages 
of the model. Conclusions and some inferences are also pro-
posed. The method is proved to be theoretically feasible in 
the supplement and the properties of the model are proved.

DNA rules

DNA rules are the basic rules. They are the causal relation-
ship in the system rather than the rules learned by statistical 
methods. Statistical rules may be wrong [12], because the 
data may mislead the model, but the causality of the system 
itself must be right. The DNA rules correspond to the sys-
tem’s complete hypothesis space of the solution (Theorem 3 
in Supplement) and can generate the attractor of the system 
which corresponding to the possible evolution process of the 
system. In contrast, the statistical rules may not be the basic 
rules, and their hypothesis space is not complete because 
of the constraints of the rules. Taking building blocks to 
compare these two rules. DNA rules are the basic building 
blocks, and the traditional statistical rules are blocks that 
have been shaped and fixed. It is clear the basic building 
blocks can make more shapes. Table 1 lists the main differ-
ences between DNA rules and traditional rules. The model 
based on DNA rules not only has the advantage of being 
interpretable but also has better adaptability to changes than 
the data-driven model [8].

Our method

The model we propose is based on the belief that the evo-
lution of the systems is based on causality. The causal-
ity is composed of goals and DNA rules. The goal is a 
fixed and general one that applies regardless of the state 
of the system. For example, the principle of generalized 
energy minimization that the system moves in a manner 
of “minimum energy consumption” in generalized motion, 
like following the gradient direction, getting more awards. 
In addition, the DNA rules are the basic causal rules of 
the system. Since the goal and DNA rules are fixed, the 

Fig. 1   Examples of the complex phenomenon and simple rules. 
Turbulence seems to be very chaotic, it can be generated based on 
simple rules. We simulated the process and generated it by convec-
tion between cold and heat. a and b are the cases of turbulence in a 
plane and a cup. The pattern generated by the iteration of the simple 
rule 30th in the cellular automaton in c is similar to the pattern on 
the shell in d. Sparse coding and IFS(iterating function system) also 
show that the basic abstract features that can constitute complex phe-
nomena
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causality is fixed, then the process of system evolution is 
logically strict and deterministic. From the perspective of 
system evolution,such a causality-based evolution process 
for the above system can be expressed by Formula (1), 
where X is the states of the system, A is the determinis-
tic laws in the system, B is the external input from the 
environment. In the formula, the deterministic laws are 
composed of the DNA rules and the general fixed goal, 
they are the laws of nature that exist in the system. A is 
deterministic and B is uncertain:

From the phase-space point of view, the method can 
generate attractors based on the iterative process with the 
causality [5, 15, 18], the Lorentz attractor in Fig. 2 is an 

(1)Ẋ = AX+B.

example. The attractor is a set of numerical values toward 
which a system tends to evolve, for a wide variety of start-
ing conditions of the system [1]. It reflects the system’s 
evolving process and shows a range, where the system is 
more stable. According to Theorem 1, the attractor can be 
classified by Lyapunov exponent.

Theorem 1  In mathematics, the Lyapunov exponent of a 
dynamical system is a quantity that characterizes the rate of 
separation of close orbits [1]. The orbits are the trajectories 
of the system’s evolution in phase space.

For the discrete system,the average Lyapunov exponent 
is given by Formula (2) [3], where the λ is the average Lya-
punov exponent in function (2), f  represents the iteration 
process and n represents the times of iteration:

The direction of the multiple initial separation vectors of 
the system is different, and the separation rate is also differ-
ent. Among them, the maximal Lyapunov exponent (MLE) 
determines the predictability of the system [19]. When the 
Lyapunov exponent in all direction is negative, the attractor 
is a stable attractor, such a system is easy to predict for the 
system converges to the stable point. When all the Lyapu-
nov exponent is greater than zero, the system is divergent 
and cannot be further predicted. When the MLE is greater 
than zero, and the system is not infinitely divergent, which 
means the system also has the Lyapunov exponent less than 
zero or equal to zero, the system has a strange attractor. The 
classification is shown in Table 2.

Because the MLS is positive, the orbits in the attractor of 
the system separate. Therefore, the system will leave from 

(2)
(
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)
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1
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i=0

ln
|||f

�
(
xi
)|||.

Table 1   Main differences between DNA rules and traditional rules

The DNA rules are the basic causalities. They are Invariable in different conditions. In addition, iteration based on DNA rules can generated the 
attractor of the system. The traditional rules are not the most basic rules, and the statistical rules may be wrong. For example, the statistical con-
clusion that ‘the swan is white’. Such rules will constrain the model from adapting to the new condition

Differences DNA rules Rules in traditional concepts (for example, in expert system)

Causality based Accurate descriptions of real causalities in system System’s statistical associations mined by statistical learning
Basic Most basic rules, cannot or need not be subdivided into more 

basic rules
Not the most basic rules, and are composed by DNA rules

Invariable Invariable in different conditions Variable in different conditions, new rules should be proposed 
for new conditions

Iterable Can generate system’s complete attractors by iteration. The 
iteration process corresponds to the evolution of the system

Cannot iterate to generate system’s complete attractors, 
because they are not causalities

Adaptable Can be applied to different conditions. In addition, the attrac-
tor they generate also make the system to be adaptable

Not adaptable, new rules should be proposed in new condi-
tions. Therefore, the adaptability of such rules is worse

Interpretable Can be interpreted by causality Statistical associations in black box. May not be real and 
interpretable

Fig. 2   DNA rules and the DNA. The DNA defines life, and the DNA 
rules in figure define the Lorentz system. With the DNA rules, the 
evolution process of the Lorentz system can be accurately generated 
in the form of an attractor. Such a rule is different from the rules in 
the expert system. It is a rule with an interpretable causal relation-
ship. At the same time, systems based on DNA rules are highly 
adaptable. Just as twins grow up in different environments behave dif-
ferently because of adaptation
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the current orbit when there are external interferences, which 
means the attractor is sensitive to the changes and orbits are 
unstable. In addition, the orbits also converge to a certain 
range in the phase space. Therefore, the attractor has dense 
orbits in that certain range. These features cause the evo-
lution of the system to seem to be random and uncertain 
especially when there is an interference, for there seem to 
be many possibilities for the orbital migration.

However, there are certainties in this seemingly random 
process. The DNA rules and goals are fixed, so, the causality 
is fixed. With the constraints of causality, the attractor of the 
system and its orbits are determined. Even there is interfer-
ence, the process of system evolution is still subjected to 
causality. System attractors can be obtained based on causal-
ity or data reconstruction methods. The process of attractor 
generation also depicts the process that the system changes 
the unstable orbits because of external interferences. In addi-
tion, the attractor is coupling with the interference by the 
fixed goal. The more time of iteration, the more the method 
can get the approximate shape and orbits of the attractor. It 
needs emphasis that we do not need to traverse all the points 
of the attractor, an approximate shape of the attractor and 
some of its inner orbits are enough. System values that get 
close enough to the attractor values remain close even if 
slightly disturbed. In addition, because the causalities are 
fixed, there are fractal features in the attractor [1], we can 
also complement the attractors with fractal features. There-
fore, the method can also work for large size problems.

System attractor is a prerequisite for complex decision 
making. Complex decision making is learning, adapting, 
and predicting complex behaviors. The process of generat-
ing attractors is the process of learning the system. In addi-
tion, there are two constraints and a fixed goal that promise 
the model can learn the system successfully and effectively 
predict and adapt. The first constraint is that the Lyapunov 
exponent is greater than zero but not infinity. The Lyapu-
nov exponent reflects the rate of separation of orbits is lim-
ited, which means system values that get close enough to 

the attractor values remain close even if slightly disturbed. 
The second constraint is we know the current state of the 
system. In addition, the goal is fixed. In a system evolv-
ing under interference, the fixed goal the law of the pas-
sive response of the system to external interference, and it 
drives the system to adapt during the iterative evolution. 
For example, the goal can be following the gradient direc-
tion, getting more awards, they are essentially following the 
lowest-energy principle. Because the goal is fixed and the 
attractor is sensitive to changes, the process of adapting to 
changes based on the goal can be done spontaneously. Com-
pared to other models, the external interferences may be fatal 
for statistical models; however, the instability of the attractor 
makes the model adaptable in such a method. In addition, 
according to the fixed goal, the responses of the system to 
interferences are recorded, which is the orbital migration in 
the generated attractor. Furthermore, the local manifold can 
be constructed based on the system’s current position in the 
attractor. Short-term prediction can be realized on the local 
attractor manifold for the rate of separation of orbits is not 
infinity (Theorems 1, 5 and 6 in Supplement).

The method of this paper is main according to the above 
theory, and it mainly focuses on the above nonlinear evo-
lutionary system which may seem random with a strange 
attractor. The DNA rules can be expressed in two forms: 
constraint rules and affirmative rules. These two forms can 
be converted to each other. The hypothesis space of the 
attractor of the system is subjected to DNA rules (Theo-
rem 3 in Supplement). The goal works based on the sys-
tem’s perception of external interferences and then drives 
the system to adapt to external conditions. The water may be 
a great example, although the shape of the water is complex 
and diverse, it flows following the gradient direction. As a 
result, in different environments, it can adapt and generate 
ever-changing shapes. We believe that causality is fixed in 
the process of system evolution although the external condi-
tions may always change. The changes in the conditions, the 
system’s state, and evolution are coupled by the causality. 

Table 2   Classify systems 
according to the Lyapunov 
index

The system are classified by the MLE(X) and there are 4 types. When λ < 0 or λ = 0, both the tradition sta-
tistical method and causality-based method can easily mine the its inner law. When 0 < λ < ∞, the system 
has a strange attractor, and it becomes more complex. The tradition statistical method treats the system as 
a stochastic system. However, statistical method may not work well in some scenarios. The method in this 
paper proposed a new method mainly for such a system. The method does not treat the system as a stochas-
tic system anymore for there are still causalities in the system although the system looks very random and 
complex. The attractor and the orbits in attractor in deterministic. In addition, we can learn the system and 
predict it in short term according to its causality

MLE (λ) System attractor type Traditional method Method in this paper

λ < 0 Stable point Statistics (easy) Causality (easy)
λ = 0 Limit cycle Statistics (easy) Causality (easy)
0 < λ < ∞ Strange attractor (main focus 

of this paper)
Statistics (random and not 

deterministic)
Causality (deterministic)

λ = ∞ Divergent system Cannot solve Cannot solve
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Therefore, external changes will cause and drive the sys-
tem to change and evolve. Although the results may look 
very complex and random in terms of timing, this problem 
may be solved on the phase-space. The attractor converges 
to a certain range with certainty, its inner orbits are also 
fixed although dense. Even in the case of external interfer-
ences and the system may leave from the current orbit of 
the attractor to a new one because of the sensitivity, short-
term prediction can still be achieved by attractor manifolds. 
Therefore, the method is to construct a system to generate 
the strange attractors and to construct an intelligent model 
with properties of attractors.

Compared with the statistical methods, this method is not 
to model the data but to reconstruct the system’s causality 
and attractor. So that model can make logically rigorous and 
precise predictions. It may work in some conditions that tra-
ditional ML models cannot work well [8], because it is based 
on causality and has the complete attractor corresponding 
to the hypothesis space of the whole system. In contrast, 
statistical learning methods assume the model parameters to 
be fixed and mine the statistical relationship in data. Such a 
model may not be sensitive to small probability problems. 
In addition, the rule that the model learned from data is not 
DNA rules, and it is fixed. In fact, the parameters may vary 
in time. In addition, the statistical correlation obtained by 
statistical learning may not exist after the change.

As is the architecture of the method shown in Fig. 3, the 
DNA rules and the goal can be obtained to compose the 
causality. In addition, the causality can also be learned and 
mined from the data. Then, we can take the network, deci-
sion tree, formula, or other models to learn the mined causal-
ity, and then taking advantage of the fast iterative speed of 
the computer to generate the attractor based on the causality. 
In addition, such a system will be adaptable to changes and 
can be predicted in the short term. In addition, it needs to 
emphasize that the network in this model only learns the 
mined basic causal rules and causality instead of mining the 
statistical correlation between input and output. Although 
the inside of the network is a ‘black box’, the whole system 
is still interpreted for the relationship between input and out-
put is the causality. The comparison of proposed method and 
the traditional statistical method is shown in Fig. 4.

Causality can be obtained

Causality is composed of goals and DNA rules. The DNA-
rules are different from the rules learned in a statistical 
way, there are logical with strict causal relationships. The 
DNA rules can be obtained from the definition (proved 
in Supplement by Theorems 2) for the definition is the 
precise constraint of things. Especially, the definition of 
games is composed of DNA rules, as is shown in Table 3. 

The goal is also independent of statistics, for example, get-
ting more awards, following the lowest-energy principle, 
and gradient. It can be artificially defined, or it can be the 
response of the system itself. For example, in the jump and 
jump game below, there is an artificial goal to adapt the 
parameters to win more awards. In addition, in the process 
of predicting the time series, the target is the law of the 
passive response of the system to external interference, 
which is decided by the system itself (Table 3).

Causal can also be mined by data reconstruction [7]. 
Equivalent projections of the attractors can be recon-
structed using the time sequence of the system as shown 
in Fig. 5, and the causality can be further explored. The 
phase-space reconstruction method can be used to extend 
the one-dimensional data to the m-dimensional, and then 
the projection of the original system can be obtained. 
The phase-space reconstruction method is shown in For-
mula (3), where the x is the time-series data, and X is 

Fig. 3   System architecture and viewpoint of the proposed method. 
The theorem used and proposed in the paper is also listed. DNA 
rules are the basic evolution causalities of the system. According to 
Theorem  2, for some system, like the go game, DNA rules can be 
obtained from the definition. The causalities are composed of the 
basic evolution rules and the fixed general evolution goal, like win the 
game. According to Theorem 3, based on the causalities, the attrac-
tor manifold and evolution of the system can be generated by itera-
tion. The attractor is a complete set of orbits that corresponding to 
the evolution of the system in the phase space. From this view, the 
time-series data of the system is a part of the attractor observed from 
a certain dimension. The main causalities of the system can be mined 
and learned date, according to the Theorem 4, the attractor manifold 
can also be reconstructed from the time-series data when we can-
not directly get the DNA rules to generate attractor of the system. 
Then according to the attractor, the complex decisions can be made. 
According to Theorem  1, 5, 6, a system based on the attractor is 
predictable, so the model constructed by this method can be used to 
make predictions. In addition, According to Theorem  1, the model 
based on attractor can learn complex behaviors and adapt to change, 
which makes the model based on the attractor adaptable to changing 
conditions
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reconstructed m-dimensional data. In the formula, param-
eters τ and m can be obtained by the mutual information 
method and the Cao method [8]:

Experiment

The jump and jump game is easy to set up and everyone can 
reproduce the experiment. In the game, the player operates 
the doll to jump to the center of the next box by pressing the 
screen, and the distance the doll jumps is proportional to the 
duration of pressing time. The distance between the different 
boxes is different. The more boxes the doll jumps, the higher 
the score the player gets. A set of experimental devices was 
used to play the game, as shown in Fig. 6.

The experimental device is not a linear system because 
of the interference. For example, the interference in the 
motor is always changing and affected by many factors. 
Therefore, as shown in Fig. 7, the interference is chang-
ing and seems to be random. In addition, the conversion 
ratio r of distance and time also changes according to the 

(3)Xm×Nm
=

⎡
⎢⎢⎢⎣

X1

X2

…

Xm

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

x1 x2 … xNm

x1+� x2+� … xNm+�

… …

x1+(M−1)� x2+(M−1)� … xN

⎤
⎥⎥⎥⎦
.

display pixel on different phones. If we set a fixed ratio 
r to play the game, it will fail because of the changing 
interference. Therefore, the ratio here should also be a 
variable value rather than an invariable value. It need not 
only convert the distance to pressing time but also consider 
the interference. That means the system is not to simply 
find a fixed optimal ratio r, it should become adaptable and 
even predict the interference.

In the above game, the 4 DNA rules shown in Table 2 
can be obtained. In addition, the iteration process is based 
on these rules. In the process of playing, the control error 
because of the interference is given by te(k) , the control time 
is tc(k) and the actual time to press the screen is ta(k) . The 
distance that the doll to the center of the next box is ld(k) , the 
distance the doll actually jumps is la(k) and the error is le(k) . 
The s is the state after each jump: 1 means jump onto the box 
and 0 means not on the box. fr means the iteration process 
based on four DNA rules. There are relationships as follows:

(4)ta(k) = tc(k) + te(k).

(5)la(k) = ld(k)+le(k).

(6)

r(k+1) = fr(r(k), la(k), ld(k), s(k)) =

⎧
⎪⎨⎪⎩

2ld(k)−la(k)

ld(k)
r(k), s(k) = 1�

1 + 0.2
ld(k)−la(k)

�ld(k)−la(k)�
�
r(k), s(k) = 0

.

Fig. 4   Comparison of methods. Based on the viewpoint of this arti-
cle, the evolution of the system is a process in which the system iter-
ates based on DNA rules and generates attractors. The time-series 
data of system evolution is the observation result of the system 
attractor in certain dimensions. The statistical method is to use neu-
ral networks to mine possible statistical associations directly based 

on time-series data of system evolution. Our method is to generate 
attractors through the iterative evolution of DNA rules or construct 
the equivalent attractor projection of the system through time-series 
data. In addition, for some systems, DNA rules can be obtained from 
the definition of the system
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Therefore, the r(k) is changing to adapt to the interference 
by iteration process based on DNA rules. In addition, the 
iteration process is shown by Algorithm 1.

The iteration based on DNA rules is actually reconstruct-
ing the nonlinear system which includes the changing inter-
ference, it generates the attractor of the whole system. Then 
it can adapt and predict the system within the Lyapunov time 
based on the attractor. Furthermore, the iterative process con-
tinually corrects r, so the errors will not accumulate and lead 
to failure. Therefore, it is possible to jump to the center of 
the next box in the following game and get a very high score 
as shown in Fig. 8. And the iterative process in the game is 
shown in Fig. 9.

We also compare our method with the statistical method 
by predicting the disturbance sequence in the above system. 
The interference sequence is shown in Fig. 7. The data is 
generated by pressing the screen at the same time interval, 
the real interval between each pressing is changing. The 
interference is a part of the whole experiment device, and 
the causality of the interference is unknown, so we tried to 
mining the causality from the data and reconstruct it.

In the experiment, a low-pass filter is firstly used to filter 
out the glitch while maintaining the characteristics of the 
data. Then the phase-space reconstruction method is taken 
to reconstruct the attractor and mine the causality. A simple 
BP (Back Propagation) Network learns the reconstructed 
data and causality and makes further predictions. The LSTM 
(Long–Short-Term Memory) Network is used to compare 
the effectiveness of the model for its network structure is 
suitable for sequence data. The results are shown in Fig. 10.

The results show the trend of the LSTM predicted curve 
and the causality-based method curve is similar, they both fit 
the main trend of the time series. It implies this seemingly 
random interference has inherent rules and they can be mined 
and learned. Therefore, this sequence is not actually random. 
Compare with the LSTM model, the causality-based model 
requires only a simple BP network rather than a complex 
network. The model only needs to learn the mined causality. 
This makes ordinary networks more versatile. Further from 
the details, the reconstructed network predicts better perfor-
mance than LSTM in some details. In addition, the mean 
square error of these two models is similar. The LSTM is 
6.8 and the BPNN is about 6.9, which means the BPNN also 
works well. In addition, the results also show both models 
have shortcomings in detail fitting. On the one hand, the dis-
turbance is very short, it is easily affected by other secondary 
factors. On the other hand, there is an error in the process of 
collecting data, because the accuracy of the timer is limited.

In the jump and jump game, an attractor is generated 
by iteration based on causality, and the adaptability of the 
attractor is utilized to realize the adaptation to the constantly 
changing interference in the system, so the system can get 
a very high score. The second experiment realized the pre-
diction by mining and learning the causality. Learning the 
causality is equivalent to learning the system’s attractor, 

Fig. 5   Data-based causal mining and reconstruction. a Lorentz attrac-
tor, and b reconstructed attractor obtained by the phase-space recon-
struction method. It is a projection of the original attractor on the 
observed data dimension
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because attractor can be generated by causality. Accord-
ing to the experiments, we believe that the data appearing 
to be chaotic and random in time sequence is predictable 
from the perspective of the attractor except for the system 
of infinite divergence. The reason for the uncertainty in the 
time sequence data may because the evolutionary iteration 
of the system in phase space may seem to be random when 
observing from a single dimension, or the uncertainty may 
also be caused by the external interference which will drive 

Table 3   DNA rules and the definition

We can obtain the DNA rules according to the definitions of the game rather than by statistic. The rules are equivalently obtained from the defi-
nition for the definition of the game is exactly composed of the DNA rules. Take the shooting game as an example. According to the definition, 
the player should try to shoot the center of the slowly moving target, so it will adjust the orientation to shoot. Then on the basis of considering 
the movement of the target, four DNA rules for four situations. If you let the machine to play the game, the machine can also use four DNA rules 
to play. Because we know that the orientation influent the trajectory of the bullet. The causality does not need to learn from amounts of data. 
That is the advantage of the causal model. In addition, the jump and jump game is similar. In addition, 4 DNA rules can be obtained to play the 
game and make the ratio constantly adapts to the changing disturbance

Fig. 6   Experiment devices. The game runs on the phone and the 
real-time images are pushed to the PC. The PC analyses images and 
controls the stepper motor to press the screen with a capacitive pen. 
There is a changing interference in the device and we should con-
stantly change the ratio of time and distance to adapt to it and even 
predict it

Fig. 7   Interference in the experiment devices. The data t is gener-
ated by pressing the screen at the same time interval, the real interval 
between each pressing is changing. This data appears to be random 
and difficult to predict. In addition, it cannot be predicted by simply 
using a network. It interferes with the system and makes it complex
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the system to change orbits in the attractor. In the first case, 
the forecast can be achieved by constructing the attractor. 
In addition, for the second reason, the system can be pre-
dicted in the short term using our method basing on attractor 
(Theorems 1, 5 and 6 in Supplement).

Conclusion

Artificial intelligence is programming to simulate, achieve, 
and even eventually exceed the level of human intelligence, 
and prediction is one of the important issues of AI. In this 
paper, the method generates model by iteration based on 
causality and it is different from current methods based on 
statistical learning. It is adaptable and has the ability to 
predict, and it works well even in out-of-sample situations 

Fig. 8   Based on the method in this paper, the model can adapt to the 
interference and get a very high score after training. The above pic-
tures are shot during the game. a Model failed for the first time just 
like the person plays at the beginning. b Model failed again, but it 
performed better than the first time. c Doll successfully jumped to the 
box although still inaccurate. d Doll jumped closer to the center of 
the next box. e, f Model plays well although there is a random inter-
ference in the game. The process from a to f shows that the model can 
master the game quickly. It learns, predicts, and adapts the interfer-
ence as it is a part of the whole system. g, h Results of the model 
plays after adjusting the device. After adjusting, interference and 
ratio will also change. Fortunately, the model is highly adaptable to 
changes, it can quickly master the game again and get a very high 
score again even after changing the game device

Fig. 9   System iterative process during the game. The iterative process 
is the process of learning and adapting the game and generated the 
attractor of the system. The generation of attractors records the orbits 
of the attractors and the system’s response to interferences. When the 
system is iterating, ratio r iterates basing on DNA rules and the goal. 
This process can be vividly explained by a tree although the attrac-
tor is not a decision tree. The tree simply shows the changes in the 
iteration on a plane, but the iterative process is actually the attractor 
which is converged in a certain range in the phase space. The value in 
the horizontal coordinates of the tree corresponds to the value of the 
ratio, and each fork represents an iteration. This continuously iterated 
tree can reach all positive numbers by iteration. At the same time, 
the rules will flexibly adjust the ratio when the conditions change. 
The bolded portion of the orange represents the process of iterations 
according to the interference in a certain game and the picture on the 
right corresponding to the progress of the game

Fig. 10   Predictions of the interference. Predictions of the interfer-
ence. The prediction process is implemented by mining the causality 
and learning the causality by BP network. In the reconstruction, the 
optimal delay time of the sequence is 2, and the dimension m is 4. 
After reconstructing the time series, the main causality generating the 
interference is mined. Then the BP network can learn this causality 
and make predictions. a The simple BP network performs just like the 
complex LSTM method. b Compares these two prediction methods
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for it has complete attractor. These promise the model can 
work well prediction. In addition, it is also interpretable, 
not dependent on the amount of data [11]. In addition, this 
model also robust and flexible. In addition, the attractor 
shows the distribution of optimal solutions is sparse and 
fractal. These properties are proved in the supplement. 
This method may be a fruitful subject for further research. 
In addition, conjecture is proposed.

Conjecture 1  Definition is the best DNA rules for the itera-
tion to generate the intelligent system.

The model based on the definition is modeling the sys-
tem, but the model based on data is different, because the 
data may only reflect a part of the system. The definition is 
the exact meaning of an object. If one exceeds the defini-
tion, then it does not belong to that category anymore. In the 
experiment, if the rule is more than defined, the range of the 
attractor will be smaller, which will result in poor adapta-
tion and if the rule is less than the definition, the range of 
the attractor obtained by the iteration will become larger, 
resulting in making errors. We compare the solution sets of 
definitions and other features that describe the same thing. 
Sd is the solution set corresponding to the definition, and Si is 
the solution set corresponding to other features. There must 
be the following relationship, given by Formula (7):

The solution set of Si is a subset of the solution set of Sd. 
This also shows why the model based on DNA rules is more 
adaptable and can work even in out-of-sample conditions.

Just like the fruits that are grown without pesticides and 
fertilizers are more fragrant. Our model does not require 
complex human knowledge and statistics, so we call the 
model generated by an iterative process based on DNA rules 
corresponding to the definition as natural intelligence (NI).
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