
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2020) 6:721–740 
https://doi.org/10.1007/s40747-020-00173-0

ORIGINAL ARTICLE

An XGBoost‑based casualty prediction method for terrorist attacks

Yi Feng1 · Dujuan Wang1,2 · Yunqiang Yin3 · Zhiwu Li4,5 · Zhineng Hu1

Received: 13 May 2020 / Accepted: 19 June 2020 / Published online: 14 July 2020 
© The Author(s) 2020

Abstract
Terrorist attacks have been becoming one of the severe threats to national public security and world peace. Ascertaining 
whether the behaviors of terrorist attacks will threaten the lives of innocent people is vital in dealing with terrorist attacks, 
which has a profound impact on the resource optimization configuration. For this purpose, we propose an XGBoost-based 
casualty prediction algorithm, namely RP-GA-XGBoost, to predict whether terrorist attacks will cause the casualties of 
innocent civilians. In the proposed RP-GA-XGBoost algorithm, a novel method that incorporates random forest (RF) and 
principal component analysis (PCA) is devised for selecting features, and a genetic algorithm is used to tune the hyperpa-
rameters of XGBoost. The proposed method is evaluated on the public dataset (Global Terrorism Database, GTD) and the 
terrorist attack dataset in China. Experimental results demonstrate that the proposed algorithm achieves area under curve 
(AUC) of 87.00%, and accuracy of 86.33% for the public dataset, and sensitivity of 94.00%, AUC of 94.90% for the terrorist 
attack dataset in China, which proves the superiority and higher generalization ability of the proposed algorithm. Our study, 
to the best of our knowledge, is the first to apply machine learning in the management of terrorist attacks, which can provide 
early warning and decision support information for terrorist attack management.
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Introduction

Global Terrorism Database defines terrorist attacks as non-
state actors that threaten or actually use illegal force and 
violence to achieve political, economic, religious or social 
goals through fear, coercion or intimidation (https ://www.
start .umd.edu/gtd). All terrorist incidents contain three 
attributes: (i) the incident must be intentional; (ii) the inci-
dent must cause a degree of violence or a direct threat of 

violence; and (iii) the perpetrator of the incident must be 
sub-national actors (https ://www.start .umd.edu/gtd). Many 
researches emphasize that the purpose of terrorist attacks 
lies not in the violent act itself, but in furthering specific 
political, religious and other goal [4, 21]. The occurrence 
of an incident will not only bring death and injury to inno-
cent people, but also cause infrastructure damage and social 
panic. According to the statistics of the global terrorism 
dataset, from 1970 to 2017, the average number of terrorist 
attacks occurred 3800 per year. Between 2005 and 2015, 
the number of terrorist attacks increased significantly year 
by year, and its number has steadily declined since 2015. 
In 2014, the number of terrorist attacks occurred as high as 
16,000. Since September 11, 2001, 4000 people on average 
have been killed in terrorist attacks each year. Terrorism 
emerged as a global threat following the attacks on Sep-
tember 11th. Although the intention of terrorist attacks is to 
generate widespread fear, not to bring about any substantial 
harm [30, 54], it is invariably necessary to study whether the 
terrorist attacks will bring life threats to innocent people. 
Since the management and control of terrorist attacks are 
exceedingly complicated, it is important to develop efficient 
methods to predict casualties in terrorist attacks.
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Machine learning is a kind of algorithm (method) that 
parses data, learns from it, and then makes decisions or pre-
dictions about something in the world. In recent years, as a 
powerful tool for the decision support in emergency man-
agement, machine learning algorithms have been applied 
for studying the casualties caused by natural disasters, such 
as earthquakes [52, 53]. However, to date, machine learn-
ing algorithms have been rarely used in predicting the casu-
alties of terrorist attacks. To fill this gap, we propose an 
XGBoost-based casualty prediction algorithm namely RP-
GA-XGBoost to study whether terrorist attacks will lead to 
the casualties of innocent civilians. The results of this paper 
will not only assist the decision makers in rapidly allocat-
ing emergency resources and implementing the emergency 
plans, but also provide important reference values for the 
governments’ decision-making.

In the proposed algorithm RP-GA-XGBoost, we devise 
a hybrid feature selection method that incorporates random 
forest (RF) and principal component analysis (PCA), which 
is more advantageous than other feature selection methods 
as demonstrated by experiments. Meanwhile, a genetic 
algorithm is used to tune the hyperparameters of XGBoost. 
Based on Global Terrorism Database namely GTD, we 
compare the RP-GA-XGBoost algorithm with several 
state-of-the-art methods, such as Logistic Regression (LR), 
Adaboost, XGBoost, RF, decision tree (DT), support vec-
tor machine (SVM), in terms of performance and accuracy. 
The experimental results demonstrate that RP-GA-XGBoost 
significantly outperforms the aforementioned algorithms. 
We also conduct experiments on terrorist attacks in regions. 
Taking China as an example, the performance of RP-GA-
XGBoost has been greatly enhanced because the problem is 
more specific and targeted in a domestic setting. Therefore, 
one can conclude that RP-GA-XGBoost is an efficient and 
effective algorithm for terrorist’s incident management in 
specific scenarios.

The rest of this paper is organized as follows: In “Litera-
ture review” we briefly review the related literature to posi-
tion our research. In “Casualty prediction method for terror-
ist attacks”, we introduce the initial database, and describe 
the process of the whole experiment based on our proposed 
RP-GA-XGBoost in details. In “Experimental results”, we 
conduct extensive numerical experiments to evaluate the 
performance of the proposed method. Some conclusions 
are drawn and topics for future research are suggested in 
“Conclusion”.

Literature review

The quantitative methods used for studying the terrorist 
attacks are divided into two classes: (i) statistical methods, 
and (ii) machine learning methods. In the following we first 

give a brief literature review that use statistical and machine 
learning methods for studying the casualties of terrorist 
attacks, and then pose our research method and provide the 
main contributions of this paper.

In the early years, statistics as an effective data analy-
sis method is usually used by scholars to analyze terrorist 
attack data. Mohler et al. [33] and Clauset et al. [8] propose 
a general statistical estimation algorithm that combines a 
semi-parametric model of tail behavior and a nonparamet-
ric bootstrap to predict the future probability of a large ter-
rorist attack based on historical data on terrorist attacks. 
LaFree et al. [24] describe the collection of the dataset, 
discuss the pros and cons of general open source data, and 
conduct descriptive statistical analysis. Borooah et al. [5] 
carry out a study on terrorist attacks in India based on the 
dataset between 1998 and 2004, and perform a statistical 
analysis of the perpetrators and modus operandi of terrorist 
incidents to explore the extent to which the number of deaths 
is affected by the type of attack and different terrorist attack 
groups. Arnold et al. [3] compare the casualties and other 
outcomes caused by different types of explosions. Note that, 
however, the above statistics-based approaches focus mainly 
on searching, organizing, and describing data with no pre-
dictive results being involved. As an extension of statistical 
learning in practice, machine learning provides algorithm 
technical support for practical problems.

Machine learning is one of the popular techniques of 
emergency management and decision-making, which can 
effectively acquire and disseminate real-time disaster infor-
mation [59]. Classification is one of the core issues in data 
mining task, which reflects the association between features 
and classified labels [18, 59]. Recently, machine learning has 
been widely used to solve the classification problems on the 
terrorist attacks.

Several studies use traditional classifiers or simple mod-
els to explore and predict terror-related issues. Fahey et al. 
[13] study the difference between terrorist air hijacking 
and non-terrorist air hijacking. First, they divide 1019 air 
hijackings that occurred worldwide from 1948 to 2007 into 
terrorist incidents and non-terrorist incidents according to 
the definition of terrorism. After that, they predict whether 
air hijacking aims at terrorist attacks by using LR analysis. 
The results demonstrate that organization resources, public 
resources and publicity can effectively distinguish whether 
an air hijacking is a terrorist. Due to the scale and complex-
ity of the data, it is difficult to determine the patterns and 
trends of terrorists. For this, Sachan and Roy [38] establish 
a terrorist group prediction model (TGPM), and predict ter-
rorist incidents by learning the means and other informa-
tion of terrorist group attacks from various terrorist attacks. 
Enders et al. [12] design a time series method of dividing 
terrorism into transnational and domestic terrorist events. 
Based on calibrated data, the authors explore the dynamic 
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relationship and correlation between domestic and transna-
tional terrorist events, and find that there is a significant 
simultaneous and lagging cross-correlation between domes-
tic and transnational terrorist events. We can observe that the 
above studies are more about the exploration and prediction 
of terror-related issues by using traditional classifiers or sim-
ple learning devices.

Hybrid models are also proposed to solve predicted issues 
related to terrorist attacks. Zhang and Mahadevan [58] 
develop a hybrid model that combines neural network and 
SVM to quantify the risk level of aviation event anomaly, 
by which one can predict the severity of an aviation event. 
Meng et al. [31] put forward a hybrid classifier which uses 
SVM, K-nearest neighbor (KNN), Bagging and C4.5 to pre-
dict the types of terrorist attacks, and use a genetic algorithm 
to determine the weight of each model. Shafiq et al. [40] pro-
pose a hybrid classifier that includes KNN, Naïve Bayes, DT 
to predict the types of terrorist attacks. Khorshid et al. [20] 
predict which terrorist organizations should be responsible 
for attacks in the Middle East and North Africa using SVM, 
DT and Naïve Bayes. Soliman and Tolan [43] use Naïve 
Bayes, SVM and DT to predict terrorism organizations in 
Egyptian terrorist attacks from 1970 to 2013.

Based on the above literature review, we find that there 
are few research results on the casualties of terrorist attacks 
using machine learning methods. However, prediction of 
casualties and demand using machine learning methods has 
been investigated in the field of natural disasters. For exam-
ple, Xu et al. [53] develop a hybrid prediction method based 
on empirical mode decomposition (EMD) and autoregres-
sive integrated moving average model (ARIMA) to predict 
the commodity demand after natural disasters. Wang [50] 
uses a genetic algorithm based on GM (1,1) and Fourier 
series to predict food demand after snow disasters. Wang 
et al. [48] build a back propagation (BP) neutral network 
model to forecast earthquake casualties, by considering 
earthquake magnitude, depth of hypocenter, intensity of 
epicenter, level of preparedness, earthquake acceleration, 
population density, and disaster forecasting as the experi-
mental features. Dogan and Akgungor [10] use nonlinear 
multiple regression (NLMR) and artificial neural network 
(ANN) methods to predict road injuries in Turkey.

Obviously, the factors affecting casualties caused by 
natural disasters and terrorist attacks are different. Disaster 
grades and building quality are the main influencing factors 
of casualties caused by natural disasters, and the informa-
tion on these two factors can generally be quickly obtained 
through geological monitoring, weather warning and field 
investigations. However, terrorist attacks are man-made dis-
asters. They are commonly caused by human beings. The 
casualties of terrorist attacks are not only directly related 
to natural factors (weather, geographical location, etc.), 
but also human factors (number of perpetrators and their 

psychological mindset). Human factors make the casualty 
prediction of terrorist attacks more complicated and difficult 
than that of natural disasters. As a consequence, it is nec-
essary to devise more efficient machine learning methods 
to predict the casualties in terrorist attacks. Motivated by 
this, this paper aims at developing a novel machine learning 
method to predict the casualties in terrorist attacks so as to 
provide early warning and decision support information for 
terrorist attack management.

At present, many studies have found that two factors 
directly affect the performance of machine learning meth-
ods: the value of hyperparameters and the selection of fea-
tures [18, 31, 42, 53, 56].

• For the determination of the optimal value of hyper-
parameters, the commonly used methods are manual 
search, grid search algorithm, and Bayesian hyperpa-
rameter optimization [31, 42, 53, 56]. For grid search 
algorithm, since the classification accuracy correspond-
ing to the parameter groups in the grid is greatly low, 
only the parameter groups in the smaller interval have 
higher classification performance. Therefore, it is quite 
time-consuming to train all the points in the grid to find 
the best hyperparameters. Compared with manual search 
method and grid search algorithm, Bayesian hyperparam-
eter optimization have fewer iterations, faster speed [51]. 
In recent year, many researchers use intelligent algorithm 
such as genetic algorithm (GA), particle swarm optimi-
zation (PSO) for hyperparameter optimization to further 
improve the performance of the model [9, 27]. Compared 
with PSO, GA can search for the final hyperparameters 
faster and improve the accuracy [45]. Many research-
ers used genetic algorithms to study the hyperparameter 
optimization of RF [1], support vector machine [9, 45] 
and artificial neural network [2], respectively, and the 
experimental results show that the performance of the 
proposed methods are better than traditional machine 
learning methods. However, XGBoost, as an advanced 
machine learning method, has rarely been studied on its 
hyperparameter optimization.

• For the selection of features, the commonly used fea-
ture selection methods are filter, embedded and wrapper 
methods [37]. Filtering methods are generally used as 
a preprocessing step, which is a part of statistics that is 
independent of machine learning, and selects features by 
means of scores on statistical experiments and correla-
tion indicators. Embedded methods allow algorithms to 
decide which features to use, that is, feature selection 
and algorithm training are carried out simultaneously. 
Wrapper methods use the final classifier as the evaluation 
function of the feature selection, and select the optimal 
feature subset through the classification results. How-
ever, wrapper methods train the model repeatedly, which 
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leads to expensive computational cost and high overfit-
ting risk [49]. Meanwhile, in these three feature selection 
methods, the number of features is commonly determined 
subjectively by the researchers in many research [31, 56], 
leading to low accuracy and poor performance of the 
model.

Compared with the aforementioned studies, the main con-
tributions of this paper are as follows.

First, we propose an XGBoost-based casualty prediction 
algorithm RP-GA-XGBoost based on data mining and opti-
mization algorithms to study whether terrorist organization’s 
behaviors will cause innocent casualties. With the powerful 
ability to control the complexity of the model, XGBoost-
related methods have been extensive applied in various 
fields, such as financial transaction [34], physical fitness 
evaluation [15], medical prediction [26] and so on. What is 
more, 17 of the 29 award-winning solutions were obtained 
by using XGBoost in the 2015 machine Learning Kaggle 
Competition [56]. However, XGBoost has not been applied 
in the research of terrorist attacks. Motivated by this, we use 
XGBoost incorporating with some enhancement strategies 
to predict whether terrorist attacks will cause the casualties 
of innocent civilians.

Second, we apply a hybrid feature selection method for 
selecting features, which incorporate the RF and PCA to 
makes up for the shortcomings of feature selection in ref-
erences [31, 56], and it can effectively reduce the compu-
tational cost. In this method, the important scores of each 
feature are obtained through RF, and the number of features 
is determined by mean of the cumulative explained variance 
contribution rate curve. Finally, feature subset is obtained 
according to the rank of feature important scores and the 
number of features.

Third, we apply intelligent optimization algorithm to tune 
the hyperparameters of XGBoost. Due to XGBoost has a 
large number of hyperparameters, and thus the selection of 
the most appropriate hyperparameters can effectively the 
accuracy of casualty prediction for terrorist attacks we for-
mulate. Based on above observation [1, 2, 9, 41], the paper 
chooses genetic algorithms to tune the hyperparameters of 
XGBoost.

Casualty prediction method for terrorist 
attacks

In this paper, we develop XGBoost-based casualty predic-
tion algorithm, namely RP-GA-XGBoost, to predict whether 
the terrorist organization’s attack will lead to casualties of 
innocent people. Figure 1 shows the construction process of 
the prediction method. First, we deal with missing values, 
features and labels in the initial dataset, and divide the whole 

experimental dataset into training set and test set. Second, 
we use a new hybrid feature selection method RF-PCA to 
select the experimental features. After that, the hyperparam-
eters of XGBoost classifier are tuned using a genetic algo-
rithm (GA-XGBoost). Finally, we use evaluation indicators 
to evaluate the trained model on the test set. The details of 
the main steps are described in the following sections.

Data preprocessing

For data mining and machine learning, data preprocessing 
often accounts for about 70% of the workload, and the qual-
ity of the data set determines the success of the experiment 
[32]. Before constructing the model, plenty of time and 
efforts are spent in processing the data to ensure the validity 
of the results.

The data used in this paper is derived from the Global 
Terrorism Database (GTD), established by the University 
of Maryland and the US Department of Homeland Security, 
and maintained by the National Terrorism and Counter-Ter-
rorism Research Alliance (START) (https ://www.start .umd.
edu/gtd). The Global Terrorism Database (GTD) is an open 
database; all the information in the data comes entirely from 
public open source materials, including news, books, exist-
ing data sets, and legal documents. This data includes infor-
mation on global terrorism events from 1970 to 2017. The 
GTD contains 135 features and more than 100,000 samples, 
but not all of the data is used directly in this paper.

Since we focus only on whether the behavior of terrorist 
organization will lead to innocent casualties, the casualties 
caused by non-terrorist attacks are beyond the scope of this 
paper. Only data that meets the following three criteria is 
included: (1) The attack is conducted on the basis of politi-
cal, socioeconomic or religious motives; (2) The incident 
is based on coercion, intimidation or intent to publicize to 
wider audiences, and (3) The attack exceed the scope of 
international humanitarian law. At the same time, in order 
to eliminate some suspicious events such as guerrilla war-
fare, internal conflicts and mass murder, we only consider 
the data collected since 1998. It is important to note that the 
casualties considered here do not include the casualties of 
terrorists, but only the casualties of innocent civilians.

Missing value and feature processing

It is worth noting that the selected data based on the above 
criteria is not complete, which has a great impact on the 
training of the model. For this, we first remove the records 
that have null values or abnormal values, and then remove 
redundant features and the nominal features that have mul-
titudinous values or missing values. For example, for the 
attributes “location”, “alternative”, “attacktype2”, “attack-
type3”, “targsubtype2”, and “natlty2”, 70% samples contain 

https://www.start.umd.edu/gtd
https://www.start.umd.edu/gtd
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missing values. After preprocessing, we obtain 87,773 sam-
ples and 32 features, summarized in Table 12.

For the chosen samples, we denote by “nkill” the number 
of deaths, and “nwound” the number of injured. We define 
“ncasualty” as a binary label equal to 1 if and only if the sum 
of the deaths toll and the number of injuries is greater than 0, 
indicating that terrorist attacks can lead to innocent casual-
ties. Among the 87,773 samples, there are 58,261 samples 
that cause innocent casualties, and 29,512 samples that do 
not cause innocent casualties. Based on reference [23], we 
divide the dataset into two parts, in which 70% of the data 

is used for the training set and other 30% is used for the 
testing set.

One‑hot code

XGBoost is only suitable for processing numeric vectors, it 
is necessary to convert other forms of data into numeric vec-
tors. For the considered problem, we need to convert the fea-
ture attributes into numerical values. To this end, we use the 
one-hot encoding method, which is a process by which feature 
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posed method Ini�al dataset

Handle missing values

Data normaliza�on

Feature analysis

Step.1 Data 
preprocessing

Training 
dataset

Test 
dataset

RF-PCA

Step.2 Feature 
selec�on

GA-XGBoost

Op�mized  classifier

Test model 

Calculate the value of 
each evalua�on 

indicator

XGBoost 
training

Trained 
XGBoost

Termina�on
 criteria

yes

no Propo�on 
selec�on

Singlepoint 
crossover

Muta�on

Update new 
popula�on

Gene�c 
Algorithm

Build decision 
treeTi

Shaking 
procedure

Calculate the value of 
SCOOOB

     i=n？

Output the importance 
of Xj

no
i=i+1

Cumula�ve explained 
variance contribu�on 

rate curve

Determine features
Step.3 
Model 

training

`

Step.4 
Model 
tes�ng

XGBoost-Based Causality
 Predic�on Algorithm

Fitness 
evalua�on

yes



726 Complex & Intelligent Systems (2020) 6:721–740

1 3

attributes are converted into a form suitable for machine learn-
ing algorithms to do a better job in prediction.

To be precise, suppose that there are n samples, each of 
which has a discrete feature with m attribute values. The one-
hot code uses the m-bit register to binary encode the state of 
m attribute values, and for each sample, only one bit is active 
at any time. By one-hot encoding each sample, this feature is 
transformed into a sparse n*m matrix. In this paper, we use the 
one-hot code to convert the data types of the five features, say 
“country_txt”, “attacktype1_txt”, “weapsubtype1_txt”, “targ-
type1_txt”, and “natlty1_txt”, into numeric data type. Tak-
ing “attacktype1_txt” as an example, the categories of attack 
types include assassination, hijacking, kidnapping, barricade 
incident, bombing/explosion, armed assault, unarmed assault, 
facility/infrastructure attack and unknown. Suppose that there 
are five samples now. The ways of attack are hijacking, bar-
ricade incident, armed assault, kidnapping, and facility/infra-
structure attack, respectively. In terms of the one-hot code, a 
sparse matrix depicted in Fig. 2 is obtained.

Data normalization

In machine learning practice, we commonly need to convert 
different specifications of data into uniform specifications, or 
to convert differently distributed data into specific distribution 
of requirements, i.e., the data needs to be dimensionless. In 
machine learning and data mining, although many algorithms 
(LR, DT) do not entail normalized data, Le et al. [25] point out 
that feature re-coding and data normalization not only enhance 
the performance of the classifier, but also speed up the solv-
ing speed and improve the quality of the model. Min–max 
standard is the most commonly used method in normaliza-
tion, which has been extensively applied to eliminate dimen-
sion effects [39, 57]. Therefore, we use the min–max standard 
method to normalize the data before building the model, which 
converts the data values into the range of [0,1] [57]. The con-
version formula is defined as follows:

where k and i represent the feature and the sample, respec-
tively, and xi(k) denotes the k-th feature of the i-th sample.

(1)x�
i
(k) =

xi(k) −minixi(k)

maxixi(k) −minixi(k)
,

XGBoost‑based casualty prediction algorithm

Feature selection method based on RF‑PCA

In machine learning, the results of feature selection are 
directly related to the performance of the model [16, 37]. 
Feature selection method reduces the computational cost and 
improves the model performance by reducing the feature 
dimension and data scale. Since not all features contribute 
to the construction of the model, the redundant features are 
removed [16, 37]. For feature selection method filtering, 
since the evaluation indicators of features the are independ-
ent of the specific learning algorithm in filtering algorithm, 
the selected feature subset does not perform well in the clas-
sification model. Given the flaws of the general feature selec-
tion methods and the uncertainty of the number of features, 
this paper proposes a hybrid feature selection method called 
RF-PCA to determine experiment features. RF-PCA meas-
ure the importance of features based on the OOB error rate, 
and uses cumulative explained variance indicator of PCA to 
determine the number of features. RF-PCA will be described 
in detail below.

Random forest (RF) is a typical bagging ensemble 
machine learning method proposed by Breidman in 2001 
[55]. Each classifier operates independently and in parallel 
with each other. There is no dependency between each clas-
sifier, and the results of all classifiers are finally summarized 
[6]. It uses bootstrap and node random splitting techniques 
to construct multiple decision trees. These decision trees are 
trained independently and each tree outputs its own results, 
and final result is a voting or averaging method that yields 
the final result [55]. RF is commonly used for classification 
analysis or regression analysis, but it also has good perfor-
mance in feature selection and is robust to noise data [19, 22, 
44, 47]. In RF, the feature importance is mainly measured 
by the Gini index method and the OOB error rate. When the 
types of variable are different in the data, the performance 
of the Gini index is worse than the OOB error, and the OOB 
error rate is more widely used than the Gini index in existing 
studies [22]; therefore we adopt the OOB error rate in this 
experiment. In what follows, we will introduce the OOB 
error rate in detail.

Since the generation process of decision tree in RF uses 
bootstrap, not all samples are used in the generation of a 
tree, which refer to the unused samples as out of bag. The 
OOB error rate is the difference between the classification 
accuracy of the data outside the bag before and after slight 
disturbance. To be precise, let Db be the training samples 
set, b ( b = 1, 2,… ,B ) random sampling times, and 
Xj(j = 1, 2,… ,N) the j-th feature. The variable importance 
measure based on the classification accuracy of feature Xj 
can be calculated as follows: Scorej =

1

B

∑B

b=1

�
Zoob
b

− Zoob
bj

�
 . 

Fig. 2  Sparse matrix of “attacktype1_txt”
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First, decision tree T1 is created on the training set, and the 
data out of the bag is denoted as Loob

1
 . Then, decision tree 

Tb ( b = 1, 2,… ,B ) classifies the data out of bag and the 
number of correct classifications is recorded as Zoob

b
 . After 

that, we randomly change the value of the feature 
Xj (j = 1, 2,… ,N) in  the Loob

b
 by noise,  that  is , 

Xj = Xj + noise (j = 1, 2,… ,N) , and denote by Loob
bj

 the data 
after permute. The new data Loob

bj
 is classified using Tb 

again, and the number of correct classifications is denoted 
as Zoob

bj
.

After generating the feature importance ranking, we 
obtain the importance score of each feature in all features. 
The next step of our method is to determine is to deter-
mine the number of features through PCA to achieve the 
optimal model. To achieve this, PCA is used to transform 
the feature space into new feature space to obtain the inter-
pretable variance contribution of features. Then, we draw 
the cumulative explained variance contribution rate curve 
to determine the number of feature selections. By plotting 
the cumulative explained variance contribution rate curve, 
where the abscissa is the number of features and the ordinate 
is the cumulative explained variance contribution rate, we 
can observe the relationship between the number of features 
and the cumulative explained variance contribution rate. As 
the number of features increases, the slope gradually slows 
down and the cumulative explained variance contribution 
rate approaches 1. Therefore, if the cumulative explained 
variance contribution rate curve tends to be stable when 
the number of features is T  , that is, with the increase in 
the number of features, the cumulative explained variance 
contribution curve has no obvious growth trend, then we set 
the value of the number of features as T  . Finally, the fea-
ture subset is obtained according to the order of the feature 
importance scores and the determined number of features 

selected. Table 1 illustrates the pseudo-code of our proposed 
feature selection method (RP) that combines RF and PCA.

Figure 3 displays the feature scores based on random for-
est OOB rate in descending order, where the abscissa rep-
resents the feature name and the ordinate denotes the score 
of the corresponding feature. From Fig. 3, we observe that 
the time variables (iyear, imonth, iday) dominate the oth-
ers. However, in the casualty prediction of future terrorist 
attacks, we attempt to ensure model that learns from the 
behavior and characteristics of terrorists to make predic-
tions, rather than model that relies on time variables (iyear, 
imonth, iday) to make predictions. Note that in some exist-
ing studies about prediction based on GTD [31, 38, 40], 
the researchers also does not consider time variables in 
the model construction process. Thus, this paper does not 

Table 1  Process of the RF-PCA feature selection mechanism

RF-PCA feature selection

Input: The training dataset D =
(
xi, yi

)
, (i = 1,2, 3,… ,m), xi ∈ RN , where N is the number of features, yi ∈ {0,1} , and the feature set is {

X1,X2,… ,XN

}
Output: The set of experiment features
1. For b = 1 to B do
2. Generate Db from D through bootstrap as training subset, and generate out of bag Loob

b
 as testing subset

3. Train decision tree Tb on the training subset Db

4. Use Tb to predict on the testing subset Loob
b

 , and calculate the number of correctly classified samples Zoob

b

5. For j = 1 to N do
6. Permute the values of Xj in Loob

b
 , and generate permutation dataset Loob

bj

7. Use Tb to predict on Loob
bj

 , and calculate the number of correctly classified samples Zoob

bj

8. End for
9. End for
10. Calculate the importance score Sj of the feature Xj , with Sj =

1

B

∑B

b=1
(Zoob

b
− Zoob

bj
)

11. Generate feature importance set S =
{
S1, S2,… , Sn

}
 , where the items are sequenced in a descending order

12. Plot explained cumulative variance, and determine the number of features T
13. Generate the set of experiment features 

{
S1, S2,… , ST

}

Fig. 3  Importance feature scores by random forest
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involves the time variables in the model construction pro-
cess. Figure 4 shows the relationship between the number 
of features and the cumulative explained variance, where 
the abscissa is the number of features and the ordinate is the 
cumulative explained variance contribution rate. Accord-
ing to the PCA analysis, we observe that when the number 
of features reaches nine, the cumulative explained variance 
curve has no obvious growth trend. Therefore, we select the 
first nine features i.e., “_txt”, “attacktype1_txt”, “longitude”, 
“latitude”, “weaptype1_txt”, “natlty1_txt”, “country_txt”, 
“region”, and “suicide”; these features will be used for 
model training and testing.

Due to learning independence, filtering methods gener-
ally have better generalization ability, and its computational 
cost is less than wrapper methods and embedded methods 
[36]. To assess the efficiency of RF-PCA, we compare it 
with Chi-square filtering, which is a commonly used method 
of feature selection for classification problems [23]. Figure 5 

shows the results of using Chi-square to filtering features. 
The first nine features are selected for this experiment. By 
comparing experiments using different features for model 
training, we demonstrate that RF-PCA has better perfor-
mance than Chi-square filtering when using the same num-
ber of features for model training and testing.

Hyperparameter tuning method based on GA‑XGBoost

The core of ensemble learning is to construct several dif-
ferent models and aggregate them to improve the perfor-
mance of the models. According to the integration strategy 
of different structures, the ensemble learning method can 
be divided into two categories: One is the parallel method, 
which is also called bootstrap aggregating (bagging), and the 
other is the sequential method [11]. XGBoost-based casualty 
prediction algorithm proposed in this paper belongs to the 
second category. Figure 6 shows the flow chart of sequential 

Fig. 4  Cumulative explained variance

Fig. 5  Importance feature chi-scores
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ensemble, which is a serial structure. In our proposed algo-
rithm, first, we assign the same weight wi(i = 1… n) to each 
sample point, and update the weight of each sample point 
by continuously training iterations of the training set. If the 
classification is wrong, the weight value of the sample point 
will increase, and conversely, it will decrease accordingly. In 
general, this makes up for the shortcomings of the previous 
classifier process by continuously using the current weak 
classifier, such that the final ensembled strong classifier 
achieves the target [14]. Adaboost is also a typical member 
of the boosting algorithm [17], and Adaboost is one of the 
contrast algorithms in our experiments.

Extreme gradient boosting (XGBoost) developed by Chen 
et al. is a machine learning system based on the improved 
gradient boosting decision tree (GBDT) [7]. XGBoost sup-
ports not only row sampling, but also column sampling (fea-
ture sampling), whereas GBDT only supports row sampling 
(sample sampling). In addition, XGBoost supports parallel 
computing, and allows the gradient tree to break through its 
limits, thus enabling fast, efficient, and greatly improved per-
formance. In what follows, we briefly introduce the frame-
work of the proposed algorithm GA-XGBoost, which is a 
part of RP-GA-XGBoost.

GA-XGBoost is a tree ensemble model composed of mul-
tiple boosting trees [29]. Since a single tree is commonly not 
enough to obtain good results, multiple trees can be used. 
Eventually, the results of each tree are summed up to obtain 
better results. GA-XGBoost adds the best tree model to the 
current classification model in the next prediction. There-
fore, the prediction result can be computed as:

where fk(xi) is the best tree model in the k-th prediction, Yk
i
 

denotes the new prediction model, and Y (k−1)

i
 represents the 

current classification model. The core of the loss function is 
to measure the generalization ability of the model. In GA-
XGBoost, model complexity is introduced to measure the 

(2)Y
(k)

i
= Y

(k−1)

i
+ fk(xi),

efficiency of the model. Therefore, the objective function of 
GA-XGBoost can be written as traditional loss function plus 
model complexity; the objective function of GA-XGBoost 
can be described as:

The first term in Eq. (3) represents the traditional loss 
function, in which l(∗) measures the difference between the 
real label yi and the predicted value Yi. The second term 
in Eq. (3) denotes the complexity of the model, in which 
Ω
(
fk
)
 = �T +

1

2
�‖w‖2 is the regularization term and a pen-

alty for model complexity, and � denotes the penalty coeffi-
cient, T denotes the number of leaves, � is a fixed coefficient, 
and ‖w‖2 is the L2 norm of leaf scores. The more complex 
the model, the larger the value of the second item will be. 
The second item can be good at preventing overfitting of the 
model. The objective function expressed by Eq. (3) is dif-
ficult to be optimized in the function space directly. Based 
on Eqs. (2) and (3), the objective function of GA-XGBoost 
at the step k can be reformulated as:

The goal of GA-XGBoost is to minimize Objk to obtain 
the optimal Yk

i
 , which aims at minimizing the error between 

the prediction value and the actual value, as well as the com-
plexity of the model. GA-XGBoost uses Taylor expansion 
second-order gradient statistics. Let gi and hi be the first and 
second derivatives of Y (k−1)

i
 on the loss function l(yi, Y

(k−1)

i
) , 

respectively. By removing the constant term, a more concise 
target can be obtained as:

(3)Objk =

m∑
i=1

l
(
yi, Y

(k)

i

)
+

K∑
k=1

Ω(fk).

(4)Objk =

m∑
i=1

l
(
yi, Y

k−1
i

+ fk
(
xi
))

+ Ω(fk).

(5)

Obj ≅

m∑
i=1

[
l
(
yi, Y

k−1
i

)
+ g

i
fk
(
xi
)
+

1

2
hif

2
k
(xi)

]
+ Ω(fk) + constant.

Fig. 6  Boosting algorithm
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We denote by q(x) the corresponding leaf node (index) to 
which each sample is mapped, and by wq(x) the score of the 
sample, i.e., the model prediction value. Therefore, fk(xi) 
can be written as wq(x), q ∈ {1, 2, 3… , T} . The instance set 
of the leaf node is defined as Ij = i|q(xi

)
= j . As a conse-

quence, we can reformulate Eq. (5) as follows:

In order to reflect the direct relationship between the 
number of leaf nodes and the objective function value, the 
objective function will be transformed as:

where Ij represent the samples on the leaf j.
Let Gj =

∑
i∈Ij

gi , Hj =
∑

i∈Ij
hi . It is clear that the optimal 

solution of Eq. (6) is w∗
j
= −

Gj

Hj+�
 . The objective function of 

GA-XGBoost can be rewritten as:

The best tree structure fk has been achieved. The core 
problem of GA-XGBoost is to determine the optimal tree 
structure by looking for the best branch. A simple search 
algorithm is summarized as follows: Enumerate all possible 
tree structures, calculate scores according to Eq. (8), and 
then find the optimal tree structure. However, the enumera-
tion method is expensive in calculating the cost.

To determine the optimal tree structure and reduce the 
computational cost, GA-XGBoost uses a greedy search algo-
rithm. The strategy of the algorithm is that GA-XGBoost 
starts at the root node and iteratively decomposes these 

(6)

Obj ≅

m∑
i=1

[
l
(
yi, Y

k−1
i

)
+ g

i
fk
(
xi
)
+

1

2
hif

2
k
(xi)

]
+ �T +

1

2
�

T∑
j=1

w2
j
.

(7)Obj =

T�
j=1

⎡
⎢⎢⎣

⎛
⎜⎜⎝
�
i∈Ij

gi

⎞
⎟⎟⎠
wj +

1

2

⎛
⎜⎜⎝
�
i∈Ij

hi + �

⎞
⎟⎟⎠
w2
j

⎤
⎥⎥⎦
+ �T ,

(8)Obj = −
1

2

T∑
j=1

G2
j

Hj + �
+ �T .

features according to their ranking. This algorithm is also 
called “exact greedy algorithm for splitting finding” [7]. For 
each node on the tree, GA-XGBoost will try to add splits, 
then the gain after adding splits can be calculated by the fol-
lowing formula. That is, the change of the objective function 
value can be defined as follows:

where IL and IR represent the set of samples in the left and 
right nodes after branching, respectively, I is the union set of 
IL and IR , and the parameter � is a complexity control index 
that penalizes the complexity and additional splits of tree, 
� can effectively prevent overfitting. If Gobj > 0 , a further 
branch is needed, and Gobj will be reduced. This process is 
repeated until Gobj < 0.

XGBoost contains more than 25 hyperparameters. Dif-
ferent hyperparameters have different functions, making 
hyperparameter optimization of XGBoost an extremely 
complicated problem. Table 2 describes some of the impor-
tant hyperparameters in XGBoost. The genetic algorithm 
borrows the viewpoint of biogenetics, which is composed 
of a group of individuals called population. The chromo-
somes contain all the genetic information of the individual. 
The individual (chromosome) in the biological population 
reflects the strength (fitness) of the individual’s survival 
environment ability. The current genetic information is car-
ried to the next generation through selection, crossover and 
mutation, such that the low fitness solution is gradually elim-
inated by this continuous cycle. Genetic algorithm belongs 
to the adaptive probability search strategy, and its selection, 
crossover, mutation and other operations are performed in a 

(9)

Gobj =
1

2

⎡
⎢⎢⎢⎣

�∑
i∈IL

gi

�2

∑
i∈IL

hi + �
+

�∑
i∈IR

gi

�2

∑
i∈IR

hi + �
−

�∑
i∈I gi

�2
∑

i∈I hi + �

⎤
⎥⎥⎥⎦
− � ,

=
1

2

�
G2

L

HL + �
+

G2
R

HR + �
−

�
G2

L
+ G2

R

�2
HL+HR + �

�
− � ,

Table 2  XGBoost hyperparameters (part)

Hyperparameter Default Interval Explain

tree_num – [1,∞] Number of weak classifiers
learning_rate 0.1 [0,1] Weight of each step is adjusted to improve the robustness
max_depth 6 [0,∞] Larger the depth of the tree, the easier for the model to overfit
min_child_weight 1 [0,∞] Larger the value of min_child_weight, the model will be local optimum
Gamma 0 [0,∞] Minimum loss function degradation required for node splitting
subsample 1 (0,1] Subsample ratio of the training set
colsample_bytree 1 (0,1] Subsampling of columns, it can avoid overfitting
Lambda 1 – Penalty L2
Alpha 0 – Penalty L1
… … … …
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probabilistic manner, which increases the flexibility of the 
search process. Crossover and mutation greatly improve the 
search ability and diversity of genetic algorithm. Due to the 
excessive hyperparameters, XGBoost has the disadvantages 
of slow iterating and converges to a local minimum easily. 
Genetic algorithms that have better robustness and concise-
ness, compensate for these shortcomings of XGBoost, and 
can make the XGBoost more stable and better fitting.

In chromosome design of GA-XGBoost, we use binary 
strings to represent chromosomes, and XGBoost hyperpa-
rameters need to be optimized during model training. The 
first seven hyperparameters are selected for research and 

discussion. We use P = minP +

(||||
sub(maxP,minp)

2l−1

||||
)
× d to 

convert the genotype into a phenotype, where P is the phe-
notype of the binary string of the actual value of the hyper-
parameter, maxP and minp represent the maximum and mini-
mum values of the XGBoost hyperparameter, respectively. 
l denotes the length of bit string, and d is a binary string of 
decimal values. In terms of fitness function, this paper uses 
the model evaluation indicator as a fitness function. The 
pseudo of GA-XGBoost is shown in Table 3.

The performance of GA-XGBoost is evaluated by exper-
imenting with different evaluation indicators as fitness 
functions. In the process of crossover, genetic algorithm 
generally has three ways of crossing. Figure 7 illustrates 
these ways of crossover, which greatly improve the search 
ability of the genetic algorithm through crossover. In this 
experiment, a uniform crossover is applied. The parameter 
values of genetic algorithm and hyperparameter intervals 
of XGBoost are determined according to a large number 
of experiments, which are described as follows. The initial 
population size is 20, the number of iterations is 50, the 
crossover probability is 0.6, and the mutation probability 
is 0.01. The tuning range of each hyperparameter is shown 
in Table 4.

Model evaluation indicators

K‑fold cross validation

Cross validation is a method of evaluating the predictive 
performance of a model. In actual training, the model 
performs well in the training set, but the result of fitting 
is poor in the test set. K-fold cross validation can reduce 

Table 3  Process of the GA-XGBoost hyperparameters tuning mechanism

GA-XGBoost algorithm

Input: The training dataset D , the total number of iterations T ,the size of the population G , crossover probability X , mutation probability M
Output: The best hyperparameter value set of XGBoost
1. t ← 0

2. Random initialize population
3. While t < T  do
4. t ← t + 1

5. For g = 1 to G do
6. Obtain the hyperparameter value set of XGBoost from the gth individual
7. For l = 1 to 10 do
8. Divide D into 10 part, where 1 as a testing set CS, 9 as a training set XS
9. Training the XGBoost on the training set XS
10. Obtain the predicted value using trained XGBoost on the testing set CS
11. Calculate the values of true positive, true negative, false positive, false negative
12. End for
13. Calculate the fitness value of the gth individual according to the fitness function
14. End for
15. Choose two individuals by roulette wheel selection
16. Conduct uniform crossover of the selected individuals with crossover probability C
17. Conduct mutation of the new individuals with mutation probability M
18. Generate the new population
19. End while
20. Return the best hyperparameter value set of XGBoost

Fig. 7  The approach of crosso-
ver

0 1 1 0 0 1 1 0 0 1
1 1 0 1 0 0 1 1 0 0 

Father

Mother

0 1 1 0 0 0 1 1 0 0 Children

0 1 1 0 0 1 1 0 0 1
1 1 0 1 0 0 1 1 0 0 

Father

Mother

0 1 1 0 0 0 1 1 0 1Children

0 1 1 0 0 1 1 0 0 1
1 1 0 1 0 0 1 1 0 0 

Father

Mother

0 1 1 1 0 0 1 1 0 0Children

single-point 
crossover

mul�-point 
crossover

uniform crossover



732 Complex & Intelligent Systems (2020) 6:721–740

1 3

the overfitting of the model to some extent, which is one 
of the model performance evaluation methods and widely 
used in machine learning and statistics. K-fold cross vali-
dation divides the training set into k disjoint subsets, and 
then takes out k-1 subsets to train the model each time and 
test the remaining subset. Finally, the mean value of the 
indicator values obtained by k operations is taken as the 
estimation of the method. The optimal model determined 
by the onefold cross validation has contingency and insta-
bility [46], and the results of fivefold cross validation and 
tenfold cross validation are not significantly different [9]. 
Tenfold cross validation is more widely used than fivefold 
cross validation in studies, and this paper uses tenfold cross 
validation to conduct the experiments in order to make the 
model more stable. Figure 8 shows a schematic of tenfold 
cross validation.

Evaluation indicators of classification

In machine learning, a confusion matrix, also known as the 
likelihood table or the error matrix, is commonly used to 

evaluate classification performance [51]. It contains actual 
conditions and prediction, which reflects the classification 
result of the model. We use the confusion matrix to evalu-
ate the performance of RP-GA-XGBoost, which is shown 
in Fig. 9. Each column of the matrix represents a prediction 
category, and each row represents a true category. There are 
four indicators in the confusion matrix:

(1) True positive (TP): The actual value is positive and the 
predicted value is positive.

(2) False positive (FP): The actual value is negative and the 
predicted value is positive.

(3) True negative (TN): The actual value is negative and 
the predicted value is negative.

(4) False negative (FN): The actual value is positive and 
the predicted value is negative.

In the experiment, “positive” means that the terrorist 
attack will cause casualties, and “negative” denotes other-
wise. Accuracy is the correct classification ratio, which is 
defined as follows:

Table 4  Experimental 
hyperparameters tuning range

Hyperparameter name Interval Hyperparameter name Interval

The range of values for n_estimators [10, 1000] Range of values for subsample [0.1, 1]
The range of values for learning rate [0.01 ,1] Range of values for gammaValue [0.1, 1]
The range of values for max_depth [1, 15] Range of values for colSampleByTree [0.1, 1]
The range of values for minChildWeight [1, 10] – –

Training set

Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8 Subset 9Subset 1 Subset 10

1 2 3 4 5 6 7 8 1091st itera�on

Training folds Test fold

2ed itera�on 1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 10910th itera�on

.
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Fig. 8  Tenfold cross validation



733Complex & Intelligent Systems (2020) 6:721–740 

1 3

Sensitivity (recall) refers to the proportion of the samples 
that are correctly predicted in all actual “positive” samples. 
The “meaning” expressed in this experiment is that we can 
correctly predict the ability in the event of a casualty in a 
terrorist attack, which is described as follows:

Specificity represents the proportion of the samples that 
are correctly predicted in all actual “negative” samples. Its 
expression can be written as:

Precision represents the proportion of the samples that 
are correctly predicted in all predicted “positive” samples. 
Its expression can be written as:

In general, the sensitivity and precision are trading off and 
taking turns. When the sensitivity rises, the precision will 
decrease, i.e., the sensitivity has to pay for the increase in the 
precision. F-measure comprehensively considers the sensi-
tivity and precision [35]. Its expression can be described as:

By adjusting the parameter � , we can change the weights 
of the sensitivity and precision. When � = 1 , we calculate 
the harmonic mean of these two indicators, which is called 
the F1-score or the balanced F score. In addition to its aver-
age function, it gives higher scores to models with closer 

(10)

Accuracy =

∑
True positive +

∑
True negative∑

Total population

=
TP + TN

TP + TN + FP + FN
.

(11)

Sensitivity = Recall =

∑
True positive∑
Actual positive

=
TP

TP + FN
.

(12)Specificity =

∑
True negative∑
Actual negative

=
TN

TN + FP
.

(13)Precision =

∑
True positive∑

Predicted positive
=

TP

TP + FP
.

(14)F�-measure = (1 + �2)
Precision × Sensitivity

�2 × Precision + Sensitivity
.

sensitivity and precision. If the model’s gap between sen-
sitivity and precision is too large, then it has no significant 
reference value.

G-mean is another indicator, that is the aggregate aver-
age of all class sensitivity rates. The higher the value of 
the G-mean, the better the classification performance. Its 
expression is as follows:

Receiver operating characteristic (ROC) curve and area 
under curve (AUC) are commonly used to evaluate the 
quality of classifiers. ROC curve is shown in Fig. 10. The 
horizontal axis of the ROC curve are false positive rate 
(FPR) 

(
FPR =

FP

(FP+TN)

)
 and the vertical coordinates are 

true positive rate (TPR) 
(
TPR =

TP

(TP+FN)

)
 . Each point on 

the ROC curve expresses FPR and TPR that correspond to 
a certain threshold. The closer the ROC curve is to the 
upper left corner, the better quality of the classification 
model will be. AUC is defined as the area under the ROC 
curve (area below the red line), which can better reflect the 
generalization ability of the classifier [28].

(15)

G-mean =
√
Recall × Specificity =

�
TP

TP + FN
×

TN

TN + FP
.

Fig. 9  The confusion matrix
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Suppose that the ROC is a curve formed by connecting 
points 

{(
x1, y1

)
,
(
x2, y2

)
,… ,

(
xm, ym

)}
 
(
x1 = 0, xm = 1

)
 , m+ 

and m− are positive and negative examples, respectively; 
M+ and M− represent the set of positive and negative 
examples, respectively. Then the calculation formula of 
AUC can be written as follows:

The value of AUC ranges from 0 to 1. The larger the AUC 
value, the better the effect of the classifier and the stronger 
the generalization performance of the classifier will be.

Experimental results

Model training

After the data preprocessing, the model is trained and 
tested using Python software and Python third-party librar-
ies (numpy, pandas, etc.). The experimental device is Intel 
CoreTM i7. Processor @2.40GHZ, window10, 16G operat-
ing system. We compare the proposed method with tradi-
tional machine learning methods, including decision tree, 
GBDT, logistic regression, XGBoost, random forest, Ada-
boost, SVM, and Naïve Bayes. In order to avoid overfitting 
of the model and better evaluate the generalization ability of 
the model, all the machine learning algorithms in this exper-
iment use tenfold cross validation, and the whole process is 
repeated 20 times to avoid contingency. The experimental 

(16)

AUC = 1 −
1

m+m−

∑
x+∈M+

∑
x−∈M−

((
f
(
x+
)
< f (x−)

)
+

1

2

(
f
(
x+
)
= f (x−)

))
.

results will be evaluated using the model evaluation indica-
tors introduced in “Model evaluation indicators” (accuracy, 
sensitivity, precision, F1-score, AUC, G-mean).

Comparison between different feature selection 
methods

We conduct a large number of experiments in this sub-
section to demonstrate the superiority of RF-PCA, and 
the performance of without feature selection (WFS), 
Chi-square filtering and RF-PCA in different algorithms 
are evaluated. The experimental results are summarized 
in Table 5, which leading us to draw the following con-
clusions: (i) results of Chi-square filtering are similar to 
those of WFS. WFS uses 21 features to train the model; 
however, Chi-square filtering uses only nine features. 
The fewer the number of features of model training, the 
higher the efficiency of the model. Therefore, Chi-square 
filtering is superior to the WFS. (ii) By comparing the 
results of Chi-square filtering and RF-PCA, we can see 
that both methods use nine features for training; however, 
the evaluation indicators of RF-PCA are much higher than 
Chi-square filtering. This indicates that the redundant fea-
tures not only reduce the training efficiency of the model, 
but also increase its complexity. RF-PCA eliminates the 
redundant features and can further improve the perfor-
mance of the model by finding the optimal feature subset. 
(iii) The optimal values of all the evaluation indicators 
appear in RF-PCA, indicating that the feature selection by 
RF-PCA can greatly improve the performance and gener-
alization ability of the model.

Table 5  Experimental results of different feature selection

The best result in term of each indictor is given in bold

Selection method Number of 
features

Training model Accuracy Sensitivity Precision F1-score AUC G-mean

Without feature selection 21 Decision tree 0.767 0.686 0.792 0.741 0.777 0.747
Random forest 0.810 0.761 0.829 0.776 0.783 0.798
XGBoost 0.817 0.778 0.825 0.781 0.840 0.804
Logistic regression 0.767 0.763 0.751 0.746 0.786 0.769
GA-XGBoost 0.760 0.791 0.752 0.762 0.759 0.797

Chi-square filtering 9 Decision tree 0.737 0.696 0.716 0.703 0.761 0.706
Random forest 0.717 0.712 0.678 0.691 0.763 0.695
XGBoost 0.757 0.743 0.727 0.720 0.796 0.735
Logistic regression 0.743 0.743 0.703 0.731 0.776 0.723
GA-XGBoost 0.701 0.702 0.731 0.717 0.707 0.716

RF-PCA 9 Decision tree 0.800 0.751 0.874 0.808 0.846 0.794
Random forest 0.840 0.797 0.867 0.831 0.839 0.825
XGBoost 0.860 0.850 0.860 0.855 0.855 0.861
Logistic regression 0.787 0.777 0.788 0.782 0.787 0.777
GA-XGBoost 0.863 0.872 0.854 0.863 0.870 0.861
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Comparison between training models with different 
fitness evaluations

After determining the optimal feature subset through RF-
PCA, fitness functions composed of different indicators are 
evaluated, and the optimal fitness function is brought into 
RP-GA-XGBoost as a prior knowledge. Table 6 provides 
various formulations of the fitness functions, and Table 7 
shows the performance of different fitness functions. We 
observe that the results of different fitness functions have 
some similarities. However, we will pay more attention to 
AUC and sensitivity among all the evaluation indicators, and 
the explanations are as follows.

In the terrorist attacks incidents analysis, we will pay 
more attention to the performance of sensitivity, since we 
do not hope that in the actual situations, terrorist behaviors 
will bring casualties to innocent people, which, however, 
has not been predicted. Next, the generalization ability 
of the model is one of our key concerns, and we hope 
that the model can work in other locations. When sensitiv-
ity is used as the fitness function, the sensitivity reaches 
87.8% and the AUC reaches 83.4%. When AUC is used 
as the fitness function, the sensitivity reaches 83.1% and 
the AUC reaches 89.7%. However, when F1-score is used 
as the fitness function, the sensitivity reaches 87.2%, and 
it is only 0.6% lower than the highest value. The AUC 

reaches 87.0%, and RP-GA-XGBoost-F1 performs well on 
other indicators such as accuracy. That is why we finally 
choose F1-score as a fitness function. It has a slight little 
difference from the optimal values of RP-GA-XGBoost-
Sensitivity and RP-GA-XGBoost-AUC, and performs well 
on other evaluation indicators.

Comparison between different hyperparameter 
tuning methods

In this subsection, we analyze the effectiveness of the pro-
posed method for tuning hyperparameters in comparison 
with the commonly used hyperparameter tuning methods, 
including the grid search algorithm, manual hyperparameter 
tuning method and Bayesian hyperparameter optimization 
algorithm. Table 8 lists the results of grid search algorithm, 
manual hyperparameter tuning method, Bayesian hyperpa-
rameter optimization in different algorithms, and results of 
four different tuning methods applied to XGBoost.

By comparing the results of these four methods, we 
draw the following conclusions. First, the results of grid 
search algorithm and manual hyperparameter tuning 
method are roughly similar. However, the labor costs of 
manual hyperparameter tuning method are huge, so the 
grid search algorithm is superior to the manual hyperpa-
rameter tuning method. Second, the results of Bayesian 
hyperparameter optimization are on average 0.5–1% higher 
than manual hyperparameter tuning method and grid 
search algorithm. Therefore, Bayesian hyperparameter 
optimization is superior to grid search algorithm. Third, 
among the first three methods, the optimal values mainly 
appear in the two algorithms of XGBoost and GBDT. 
Compared with traditional machine learning algorithms, 
XGBoost and GBDT perform better than other algorithms 
in accuracy and AUC. Finally, for XGBoost, we compare 
the results of grid search algorithm, manual hyperparam-
eter tuning method, Bayesian hyperparameter optimization 
and RP-GA-XGBoost, and find that RP-GA-XGBoost in 
accuracy, sensitivity, F1-score, AUC is higher than other 
methods. This indicates that RP-GA-XGBoost is better 
than Bayesian hyperparameter optimization, and is a more 
effective method for tuning hyperparameters.

Table 6  Six types of fitness function

Fitness function name Function

Accuracy f =
1

10
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i

�

Sensitivity f =
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i
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i
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i
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10
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i
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Table 7  Experimental results of 
RP-GA-XGBoost with different 
fitness functions

The best result in term of each indictor is given in bold

Training model Accuracy Sensitivity Precision F1-score AUC G-mean

RP-GA-XGBoost-Accuracy 0.865 0.838 0.870 0.861 0.860 0.844
RP-GA-XGBoost-Sensitivity 0.833 0.878 0.802 0.822 0.834 0.853
RP-GA-XGBoost-F1 0.863 0.872 0.854 0.863 0.870 0.861
RP-GA-XGBoost-AUC 0.812 0.831 0.817 0.820 0.897 0.824
RP-GA-XGBoost-Precision 0.843 0.804 0.873 0.821 0.833 0.831
RP-GA-XGBoost-G-mean 0.857 0.865 0.863 0.857 0.857 0.864
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Comparison among RP‑GA‑XGBoost and other 
classification methods

The experimental results of decision tree, random forest, 
GBDT, XGBoost, logistic regression, SVM, Adaboost, Naïve 
Bayes and RP-GA-XGBoost-F1 are summarized in Table 9. To 
be fair, the data preprocessing and the feature selection methods 
are the same for all methods. We can see that RP-GA-XGBoost-
F1 is superior to other algorithms in accuracy (0.863), sensi-
tivity (0.872), F1-score (0.863) and AUC (0.870). Note that 
F1-score is selected as fitness function. RP-GA-XGBoost’s 
accuracy, sensitivity, and AUC are 0.3%, 2.2% and 1.5% higher 
than XGBoost, which demonstrates that the RP-GA-XGBoost 
has better generalization ability. Compared to XGBoost, 
GBDT’s performance is second. Meanwhile, we also found that 
SVM, Adaboost and random forest perform better than decision 

tree and logistic regression, where random forest and Adaboost 
are both ensemble learning methods, which also shows that 
ensemble learning methods are superior to single classifiers. In 
all algorithms, Naïve Bayes performs the worst, which is not 
good at resolving the problem of two classifications.

In order to calculate the predict value, RP-GA-XGBoost 
sums the scores of the leaf nodes on all CART trees. There-
fore, each tree itself is not a great predictor in RP-GA-
XGBoost, which is different from RF. Moreover, by summing 
up all the trees, RP-GA-XGBoost can perform well. By con-
sidering the importance of model interpretability, we visu-
alized the trees built in RP-GA-XGBoost. Figure 11 shows 
one of all CART trees in RP-GA-XGBoost. Prediction scores 
can be forecasted for each leaf node, which is also called leaf 
weight. In order to better understand the classification princi-
ple, we explore the individual prediction. Table 10 illustrates 

Table 8  Results of different hyperparameter tuning methods

The best result in term of each indictor is given in bold for each hyperparameter tuning method

Hyperparameter tuning method Training model Accuracy Sensitivity Precision F1-score AUC G-mean

Grid search algorithm Decision tree 0.791 0.747 0.753 0.813 0.844 0.777
Random forest 0.823 0.810 0.828 0.804 0.823 0.822
GBDT 0.841 0.838 0.844 0.833 0.843 0.840
XGBoost 0.843 0.837 0.838 0.838 0.843 0.839
Logistic regression 0.726 0.764 0.706 0.737 0.727 0.724

Manual hyperparameter tuning method Decision tree 0.785 0.770 0.812 0.791 0.833 0.805
Random forest 0.823 0.797 0.837 0.817 0.823 0.808
GBDT 0.839 0.837 0.840 0.838 0.840 0.838
XGBoost 0.843 0.837 0.844 0.840 0.843 0.840
Logistic regression 0.786 0.770 0.788 0.779 0.786 0.779

Bayesian hyperparameter optimization Decision tree 0.800 0.751 0.874 0.808 0.846 0.789
Random forest 0.840 0.797 0.867 0.831 0.839 0.825
GBDT 0.833 0.824 0.869 0.846 0.850 0.817
XGBoost 0.860 0.850 0.860 0.855 0.855 0.861
Logistic regression 0.787 0.777 0.788 0.782 0.787 0.774

Contrast XGBoost XGBoost-Grid 0.843 0.837 0.838 0.838 0.843 0.839
XGBoost-Manual 0.843 0.837 0.844 0.840 0.843 0.840
XGBoost-Bayesian 0.860 0.850 0.860 0.855 0.855 0.861
RP-GA-XGBoost 0.863 0.872 0.854 0.863 0.870 0.861

Table 9  Performance 
comparison of traditional 
classification methods and 
RP-GA-XGBoost

The best result in term of each indictor is given in bold

Training model Accuracy Sensitivity Precision F1-score AUC G-mean

Decision tree 0.800 0.751 0.874 0.808 0.846 0.789
Random forest 0.840 0.797 0.867 0.831 0.839 0.825
GBDT 0.841 0.838 0.844 0.841 0.843 0.840
XGBoost 0.860 0.850 0.860 0.855 0.855 0.861
Logistic regression 0.787 0.777 0.788 0.782 0.787 0.774
SVM 0.820 0.849 0.817 0.832 0.824 0.827
Adaboost 0.800 0.825 0.801 0.812 0.821 0.805
Naïve Bayes 0.603 0.871 0.563 0.684 0.609 0.672
RP-GA-XGBoost-F1 0.863 0.872 0.854 0.863 0.870 0.861
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the top five features that have the greatest impact on clas-
sification. Weights represent how much each feature value 
contributes to the final prediction of all the trees in that class.

Local terrorist attack classification results (China)

To further discuss the performance of RP-GA-XGBoost in 
domestic terrorist attacks, we also study terrorist attacks in 
China (including Taiwan and Hong Kong). The casualty pre-
diction method introduced in “Casualty prediction method for 
terrorist attacks” are applied to the terrorist attacks analysis in 
China. The total number of terrorist attacks in China is 297, 
among which 188 terrorist attacks have threatened innocent 
people’s lives. Table 11 illustrates the experimental results of 
RP-GA-XGBoost compared with traditional machine learn-
ing methods, and the optimal fitness function are determined 
according to the same experiment described in “Comparison 
between training models with different fitness evaluations”. 
Compared with the global terrorist attack experiment, accu-
racy, sensitivity, F1-score and AUC have been improved by 
8.1%, 6.8%, 9.7% and 7.2%, respectively. Furthermore, AUC 
achieves 94.9%, indicating again that RP-GA-XGBoost has 
stronger generalization ability. All these results demonstrate 
that RP-GA-XGBoost performs better in the domestic terrorist 
attack experiment, since the problem is targeted and specific. 
Figure 12 displays the ROC curve for each algorithm.

Suicide=0<-9.53674316e-
07

natlty_Afghanistan=0
<-9.53674316e-07
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9.53674316e-07
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Fig. 11  One of the CARTs in the proposed algorithm

Table 10  The contribution of attributes in each class (part)

Prediction result Weight 
contribu-
tion

Feature value

Death 0.300 Suicide = 1
0.226 Attacktype_Hostage Taking (Kid-

napping) = 0
0.109 Weaptyper_Incendiary = 0
0.077 Attacktype_Facility/Infrastructure 

Attack = 0
0.044 Targtyper_Educational Institu-

tion = 0
Alive 1.110 Suicide = 0

0.136 Targtype_Private Citizen = 0
0.102 Targtype_Police = 0
0.078 Natlty_Afghanistan = 0
0.053 Attacktype_Armed Assaults = 0

Table 11  Performance 
comparison of traditional 
classification methods and 
RP-GA-XGBoost

The best result in term of each indictor is given in bold

Training model Accuracy Sensitivity Precision F1-score AUC G-mean

Decision tree 0.887 0.920 0.920 0.920 0.865 0.883
Random forest 0.862 0.928 0.864 0.891 0.920 0.907
GBDT 0.915 0.940 0.940 0.940 0.898 0.910
XGBoost 0.917 0.940 0.940 0.940 0.898 0.913
Logistic regression 0.873 0.900 0.918 0.909 0.855 0.879
SVM 0.901 0.900 0.957 0.927 0.902 0.899
Adaboost 0.859 0.860 0.934 0.896 0.859 0.860
Naïve Bayes 0.507 0.320 0.941 0.478 0.636 0.543
RP-GA-XGBoost 0.944 0.940 0.979 0.960 0.949 0.942
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Conclusion

With the increase in terrorist attacks, governments have paid 
more and more attention to counter-terrorism. It is vital to 
quickly analyze whether or to what extent terrorist behaviors 
cause physical harm to innocent civilians, which can help deci-
sion makers develop emergency plans and strategies to quickly 
deal with terrorist attacks. To the best of our knowledge, there 
are few studies on terrorist casualty prediction using machine 
learning methods. This paper develops a XGBoost-based casu-
alty prediction algorithm, called RP-GA-XGBoost, to predict 
whether terrorist attacks will cause casualties of innocent civil-
ians. In the developed algorithm, a novel method incorporating 
RF and PCA is devised for selecting features, and the genetic 
algorithm is used to tune the hyperparameters of XGBoost. 
The developed method is evaluated on the public dataset and 
the terrorist attack dataset in China. The results demonstrate 
that the proposed method achieves the best performance com-
pared with some well-known machine learning methods.

For future works, we suggest three different avenues. First, it is 
interesting to further verify the validity of our proposed method 
when the terrorist attack database has been updated. Second, the 
current research on terrorist attacks focuses mainly on qualita-
tive analysis, and less on quantitative analysis. It is of interest to 
investigate the terrorist attacks combining qualitative and quanti-
tative analyses. Finally, future research may also devise advanced 
machine learning methods such as stacking model, deep learning 
other than improved ensemble classifiers to predict the behavior 
of terrorists, and develop better security decision tools.
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Appendix

See Table 12.

Fig. 12  ROC curve of different algorithms
Table 12  List of features (part) and their description in the initial 
dataset

Feature name Description

iyear Year
imonth Month
iday Day
crit1 Terrorism attack criterion 1
crit2 Terrorism attack criterion 2
crit3 Terrorism attack criterion 3
latitude Latitude of incident occurrence
longitude Longitude of incident occurrence
extended Whether the event duration more than 24 h
vicinity Whether the event occurred in the immediate vicinity
doubtter Doubt terrorism proper?
multiple Part of multiple incident
success Whether the incident was successful
suicide Whether the event was a suicide attack
claimed Claimed of responsibility?
property Whether the attack cause property damage
propextent Extent of property damage
propcommet Property damage comments
ishostkid Hostages or kidnapping victims
nkill Total number of deaths caused by the incident
nwound Total number of injuries caused by the incident
Specificity Geocoding Specificity
country_txt The country of a terrorist attack
region The region of a terrorist attack
attcktype1_txt The way of a terrorist attack
targtype1_txt The target of a terrorist attack
natlty1_txt Nationality of Target/Victim
weaptype1_txt Type of weapon used in the event
target1 The specific attack’s target
gname Perpetrator group name
summary A brief narrative summary of the incident
motive The motive of incident

http://creativecommons.org/licenses/by/4.0/
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