
Complex & Intelligent Systems (2020) 6:635–650
https://doi.org/10.1007/s40747-020-00159-y

ORIG INAL ART ICLE

Multi-objective particle swarm optimization with random immigrants

Ali Nadi Ünal1 · Gülgün Kayakutlu2

Received: 25 November 2017 / Accepted: 23 May 2020 / Published online: 12 June 2020
© The Author(s) 2020

Abstract
Complex problems of the current business world need new approaches and new computational algorithms for solution.
Majority of the issues need analysis from different angles, and hence, multi-objective solutions are more widely used. One
of the recently well-accepted computational algorithms is Multi-objective Particle Swarm Optimization (MOPSO). This is
an easily implemented and high time performance nature-inspired approach; however, the best solutions are not found for
archiving, solution updating, and fast convergence problems faced in certain cases. This study investigates the previously
proposed solutions for creating diversity in using MOPSO and proposes using random immigrants approach. Application
of the proposed solution is tested in four different sets using Generational Distance, Spacing, Error Ratio, and Run Time
performance measures. The achieved results are statistically tested against mutation-based diversity for all four performance
metrics. Advantages of this new approach will support the metaheuristic researchers.

Keywords Metaheuristics · Multi-objective optimization · Particle swarm optimization · Random immigrants

Introduction

Nature-inspired optimization methods have been used effec-
tively to solve a wide variety of complex problems that
consist of both single and multiple objective search domains.
Among these methods, swarm intelligence is a promising
research area. Introduced to solve single objective problems,
Particle Swarm Optimization (PSO) [15] has attracted many
researchers in metaheuristic optimization area, and started to
gain prominence at solving multiple objective problems not
more than 5 years after its introduction (see [27] for the first
attempt on multi-objective optimization). This is because of
the relative simplicity and the success as a single-objective
optimizer, as well as high speed of convergence [4,22]. Fur-
thermore, due to its population based nature, it enables to
obtain a set of trade-off solutions in a single run, unlike the
traditional techniques which employ a series of separate runs
[36].

B Ali Nadi Ünal
anunal@hho.edu.tr

Gülgün Kayakutlu
kayakutlu@itu.edu.tr

1 Hezarfen Aeronautics and Space Technologies Institute,
National Defense University, Istanbul, Turkey

2 Energy Institute, Istanbul Technical University, Istanbul,
Turkey

However, there still exist three main issues to be con-
sidered in Multi-objective Particle Swarm Optimization
(MOPSO): (1) archive maintenance, (2) process to update
global best and individual best, and (3) solutions for local
optima and premature convergence problems [11,13].

Maintaining an external archive, which is used to keep
a historical record of non-dominated solutions in accor-
dance with a quality measure, serves the main purpose of
multi-objective optimization. Computational cost and mem-
ory size considerations cause keeping the size of external
archive fixed seems more efficient [13,29]. While maintain-
ing the external archive, to obtain a fairly distributed set
of non-dominated solutions, employing a density measure
in objective space is a straightforward approach. Strategies
such as crowding distance [34,37], adaptive grid [5], clus-
tering [33], maximin fitness [21], parallel cell coordinate
system [13], and hypersurface contribution [35] can be used
for maintaining the archive.

Regarding the update issue, the movement of a particle in
MOPSO is affected bypersonal andglobal best selection (i.e.,
the selection of leaders). The selection of leaders is a crucial
issue [41], and this selection directly affects the convergence
and diversity attitudes, and effectiveness of the algorithm
[48]. In other words, the balance between exploitation and
exploration capabilities depends on the leader selection pro-
cess. The trade-off between exploration and exploitation

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00159-y&domain=pdf
http://orcid.org/0000-0002-6956-1514

636 Complex & Intelligent Systems (2020) 6:635–650

is critical to the performance of an evolutionary algorithm
[31,47].

Although the fast convergence is an advantage for PSO or
MOPSO, it becomes a drawback, if it is not controlled effec-
tively. Fast convergence (premature convergence), especially
for the earlier stages of the run, may cause particles to be
“trapped in a similar local topology” [9]. As a consequence,
it may not be possible to achieve a precise approximation to
the true Pareto front [26]. Perturbation operator (mutation,
disturbance) is a common practice to compensate for pre-
mature convergence, and maintaining diversity of the swarm
along the optimization process [9,13].

This paper contributes to the literature by proposing the
use of “random immigrants” approach, an effectivemethod to
promote diversity forMOPSO. Random immigrant approach
has been developed to address maintaining diversity for
genetic algorithms and proved to be beneficial [25,43]. It
is based on a simple philosophy of replacing the worst or
randomly selected particles from the swarm with randomly
created particles. To the best of authors’ knowledge, ours
is the first study to use random immigrants approach for
MOPSO.

Literature review

This section aims to give basic concepts and definitions on
multi-objective optimization, and a short survey related to
the fast convergence problem mentioned above.

Multi-objective optimization

Multiple objective optimization problems deal with at least
two objective functions to be optimized. These objective
functions are non-commensurable and competing. It means
that they may be represented in different units, and they may
have same level of importance comparatively. Assuming all
the objective functions to be minimized, a multi-objective
optimization problem can be defined as in [36]:

Minimize f (x) := [f1(x), f2(x), . . . , fk(x)] (1)

Subject to

gi (x) ≤ 0 i = 1, 2, . . . ,m, (2)

h j (x) = 0 j = 1, 2, . . . , p, (3)

where x = [x1, x2, . . . , xn]T represents decision variables
vector, fi : R

n → R, i = 1, 2, . . . , k gives objective
functions, and gi , h j : R

n → R, i = 1, 2, . . . ,m, j =
1, 2, . . . , p represents inequality and equality constraints,
respectively. The desired solution is in the formof “trade-off”
solutions betweenobjective functions [34]. In otherwords, an

improvement in one of the objective functions causes wors-
ening for at least one of the others.

The most common two approaches to a multi-objective
optimization problem are: (1) transforming the problem into
a single objective one; (2) obtaining a set of trade-off solu-
tions (preserving the problem as is) [17]. For the first case,
simple additiveweighting can be used, or all but one objective
function can be moved to the constraint set. However, with
the weighting method, not all Pareto-optimal solutions can
be found for the problems that have non-convex objective or
search spaces [3]. Additionally, many different weights may
result the same single solution [3], and it can be very diffi-
cult to precisely and accurately select theweights [17].When
moving objective functions to the constraint set, itmay be dif-
ficult to set right-hand side values for objective functions as
constraints.

Themain goal of amulti-objective optimization algorithm
is to identify solutions in Pareto-optimal set [17,19]. Yet, all
the elements of a Pareto optimal set may not be desirable or
achievable [6,36], and the Pareto-optimal set can be infinite,
while we have some space and time limitations. Therefore,
it is desirable to obtain a set of solutions that represents the
Pareto-optimal set as well as possible [17].

Real-worldmulti-objective optimization problemsmaybe
too complex to be solved by exact methods, such as lin-
ear programming and gradient search [50]. Population-based
metaheuristic algorithms are accepted as effective computa-
tional solvers formulti-objective optimization problems.Due
to their search capabilities through large spaces using popu-
lations, they are able to get some Pareto-optimal solutions in
a single optimization run. Additionally, they are not effected
by the shape of the Pareto-optimal front. Of these algorithms,
MOPSO is a competitive one. Interested reader should refer
[36] for a detailed explanation of a general MOPSO algo-
rithm. Our approach omits the mutation phase of general
MOPSO algorithm and adds random immigrants step after
updating the leaders in an external archive.

Related work

Fieldsend and Singh [10] introduced a multi-objective algo-
rithm based on the PSO and demonstrated the inclusion of
stochastic turbulence variable. Using this new variable in
MOPSO, they showed significant performance increases.

Mostaghim and Teich [28] proposed a method, called
Sigma method for selecting the best local guide for each par-
ticle. They added a turbulence factor to the updated position
of each particle in the swarm.

Xiao-hua et al. [42] proposed a modified PSO named
Intelligent Particle Swarm Optimization (IPSO). They used
a “clonal selection operator” to accelerate the approxima-
tion to optimum. One of the elements in this operator is

123

Complex & Intelligent Systems (2020) 6:635–650 637

called “clonal mutation”, which helps to produce a solution
set around Pareto optimal solutions.

Sierra and Coello [37] proposed a multi-objective parti-
cle swarm optimizer, which is based on Pareto dominance
and uses of a crowding factor. They used uniform and
non-uniform mutation schemes. In uniform mutation, the
variability range allowed for each decision variable is kept
constant over iterations, whilst in non-uniformmutation, this
variability decreases over time.

Raquel and Naval [34] proposed an MOPSO algorithm
which is called MOPSO-CD. They used crowding distance
mechanismandmutation operator tomaintain diversity. They
performed mutation on the entire swarm initially and then
rapidly decreased its coverage over time.

Peng and Zhang [32] proposed a decomposition based
MOPSO. They applied the polynomia mutation on positions
after they are calculated.

Izui et al. [14] proposed a multi-objective optimization
method for structural problems based on MOPSO. They
applied a mutation operator. In this operator, the probability
of mutation decreases as the number of iterations increases,
while mutation rate is fixed.

Agrawal et al. [1] proposed an interactive particle swarm
metaheuristic for multi-objective optimization. They
employed amutation operatorwhich is defined “self-adaptive
mutation”. This operator has some variation in probability
according to the number of particles in the repository.

Padhye et al. [30] reviewed some proposals for guide
selection in MOPSO and compared them with each other
in terms of convergence, diversity, and computational times.
Theymade aproposal named“velocity trigger” as a substitute
for turbulence operator coupled with a boundary handling
method. They reported that the new proposals were found to
be effective for higher objective and higher parameter space
problems.

Yen and Leong [44] proposed an MOPSO algorithm with
dynamic multiple swarms. In the swarm growing strategy,
they use uniform mutation operator with the mutation rate
equal to one/number of dimensions in decision space.

Al Moubayed et al. [2] proposed an MOPSO algorithm
that employs decomposition. Instead of mutation, they used
an information exchange method that helps avoiding local
optima without a need for applying any genetic operator.

Yen and Leong [45] proposed a constraint MOPSOwhich
adopts a multi-objective constraint handling technique. They
applied uniform and Gaussian operators. Uniform muta-
tion encourage exploration and Gaussian mutation promotes
exploitation. The frequency of applying the mutation opera-
tors depends on the feasibility ratio of the particles’ personal
best.

Daneshyari and Yen [7] proposed a cultural MOPSO
which adapts the parameters of theMOPSO using the knowl-
edge stored in various parts of the belief space. They applied

a time-decaying mutation operator. The number of particles
that undergomutation, the rangeofmutation for eachmutated
particle, and the dimensions selected for mutation are regu-
lated accordingly.

Mahmoodabadi et al. [23] modified the MOPSO in
two stages. The first stage involves combining PSO with
convergence and divergence operators. The second stage
involves new leader selection method and adaptive elim-
ination method which aims to limit the number of non-
dominated solutions in the archive. They used the divergence
operator as a simple controlled mutation.

Hu andYen [12] proposed amethod for density estimation
for selecting leaders and maintaining the archive inMOPSO.
They used “Parallel Cell Distance” between a solution and all
other solutions in an archive after the archive is mapped from
Cartesian Coordinate System into Parallel Cell Coordinate
System. To perturb an article, they used Gaussian Mutation.

Leung et al. [20] presented a new algorithm that extends
PSO to deal with multi-objective problems. Their first con-
tribution is that the square root distance computation among
particles for local best selection, and second is the procedure
to update the archive members. They used mutation operator
to enhance the exploratory ability of the algorithm.

Fan, Chang, and Chuang [9] proposed a multi-objective
particle swarm optimizer which is constructed based on the
concept of Pareto dominance taking both the diversified
search and empirical movement strategies into account. They
used polynomial mutation to maintaining the diversity of the
particles along the optimization process.

Hu and Yen [13] proposed an integrated and adap-
tive MOPSO based on Parallel Cell Coordinate System
(pccsAMOPSO). Their proposal includes a leader group,
self-adaptive parameters, and perturbing operator for bal-
ancing convergence and diversity. They employed an elitism
learning strategy with a Gaussian mutation as the perturba-
tion operator.

Zhu et al. [49] presented a novel archive-guided MOPSO
algorithm (AgMOPSO)where the leaders for velocity update
are selected from an external archive. They also used an
immune-based evolutionary strategy to evolve the external
archive. They stated that this kind of updating scheme was
verified to promote the convergence speed and keep the diver-
sity.

Han et al. [11] proposed a variant of MOPSO, named
Adaptive Gradient Multi-objective Particle Swarm Opti-
mization (AGMOPSO).Theyused self-adaptiveflight param-
eters mechanism to balance the convergence and diversity.
They claimed that the proposed algorithm can find better
spread solutions andhas faster convergence to the truePareto-
optimal front.

Xiang et al. [41] proposed amanyobjectivePSO(MaPSO).
They suggested a new leader selection strategy. They kept
multiple historical solutions fromwhich the leader is selected

123

638 Complex & Intelligent Systems (2020) 6:635–650

for each particle. They also use linearly decreased parameter
which promotes convergence initially and diversity later. It
was shown that their proposed MaPSO is highly competitive
or significantly superior to other algorithms. In another study
on many objective PSO, Luo et al. [22] proposed an algo-
rithm called IDMOPSO. They used a selection strategy for
personal best to enhance the capability of local exploration.
They also developed amulti-global best selectionmechanism
to balance convergence and diversity.

Pan et al. [31] proposed a diversity enhanced multi-
objective particle swarm optimization called DEMPSO. In
that study, analysis of particles’ velocities is developed to
assist variable clustering and elite selection. A diversity
enhancing process based on the velocity analysis is carried
out during the particles’ evolution.

Current study intents to make a slight extension to [5].
Coello et al. [5] presented an approach in which Pareto-
dominance is incorporated into standard PSO to handle
problems with several objective functions. In that study, the
movement of a particle is based on its own previous move-
ments (personal best) and the movements of particles in a
repository (i.e., leader is selected from an external archive
of non-dominated solutions), as well. If the current position
of a particle is better than the previous movements, current
position is located as personal best. On the other hand, leader
is selected randomly from the repository with respect to loca-
tions of non-dominated solutions from a hypercube. A more
crowded hypercube has less chance to be selected. External
archive and the positions of the solutions included in this
archive are updated regularly at each iteration. A dynamic
mutation operator is also employed in that study. Both the
numbers of the particleswhich are subject to be appliedmuta-
tion operator and the positions of a particle to be mutated
decrease through iterations.

In the current study, we applied the same procedures
like [5] except the mutation operator. Instead of mutation
operator, random immigrants method is used for diversity
preservation.

Random immigrants method

In the field of evolutionary algorithms, random immigrants
method is known as an effective tool for diversity, especially
for dynamic optimization [38,43]. This method is based on
replacing some of the individuals (particles) with new ones.
New individualsmay be included in a complete randomman-
ner, or inclusion may be based on a memory scheme. The
predecessors, or omitted individuals, can be selected ran-
domly, or they can be determined with respect to a quality
measure (e.g., fitness value or dominance relation).

Coello et al. [5] usedmutation operator, such that the num-
ber of mutant individuals and the range of effect on decision

variables decrease in a nonlinear fashion. In other words, all
the particles are affected in the beginning with a high range.
As the iteration number gets closer to the end, the number
of mutants decreases to almost zero. Doing so, the algorithm
gains a highly explorative and leveled (between exploration
and exploitation) search capacity.

Algorithm 1 Random immigrants procedure
1: currentGen ← Current iteration number
2: totGen ← The number of iterations
3: decRate ← Decay rate
4: nPop ← The number of population
5: imigProb ← (1 − (currentGen − 1)/(totGen − 1))(1/decRate)

Immigration probability
6: if rand < imigProb then
7: numImig ← (nPop ∗ (1 − (currentGen − 1)/(totGen −

1))(1/decRate))/1.618) The number of random immigrants for cur-
rent iteration

8: Determine numImig particles randomly
9: Create numImig random immigrants
10: Omit determined particles
11: Include random immigrants instead of omitted particles
12: end if

In a previous study [46], Martinez and Coello employed
a re-initialization procedure to increase the diversity. In that
study, a particle increases its age when it does not improve
its personal position, and after exceeding a pre-defined age
threshold, the particle is re-initialized.Our approach is totally
different by means of re-initialization scheme.

Experimentation

Test problems

The first test problem was used by [8], and it is given in Eq.
(4):

Minimize f1(x1, x2) = x1

Minimize f2(x1, x2) = g(x2)

x1
Subject to

g(x2) = 2.0 − e−(
x2−0.2
0.004)2 − 0.8e−(

x2−0.6
0.4)2

0.1 ≤ x1, x2 ≤ 1. (4)

The second test problem was used by [16], and given in
Eq. (5):

Maximize f1(x1, x2) = −x21 + x2

Maximize f2(x1, x2) = 1

2
x1 + x2 + 1

123

Complex & Intelligent Systems (2020) 6:635–650 639

Subject to

1

6
x1 + x2 − 13

2
≤ 0

1

2
x1 + x2 − 15

2
≤ 0

5

x1
+ x2 − 30 ≤ 0

0 ≤ x1, x2 ≤ 7 (5)

The third test problem was used by [18], and it is given in
Eq. (6):

Minimize f1(x) =
2∑

i=1

−10e
−0.2

√
x2i +x2i+1

Minimize f2(x) =
3∑

i=1

(
|xi |0.8 + 5 sin(x3i)

)

− 5 ≤ xi ≤ 5

i = 1, 2, 3 (6)

Similar motivation is employed in the current study for
random immigrantsmethod. Immigration probability and the
number of immigrants decrease with a nonlinear fashion.
Random immigrants procedure is shown in Algorithm 1.

The fourth test problem is called “portfolio optimization
problem” [24], and it is given in Eq. (7):

Minimize
N∑

i=1

N∑

j=1

xi x jσi j

Maximize
N∑

i=1

xiμi

Subject to

Table 1 Values of parameters

Parameter Value

Number of iterations 100

Swarm size 100

Repository size 100

W Inertia weight 0.5

C1 Cognitive coefficient 1

C2 Social coefficient 2

Number of grids 30

Mutation rate/decay rate 0.5

Number of runs 30

N∑

i=1

xi = 1,

0 ≤ xi ≤ 1, i = 1, . . . , N . (7)

Thedata set for thefirst three test problems canbe obtained
from [39], while for the fourth one, it is available in [40].

Performancemetrics

In this study, inspired by the analysis described in [5], three
performancemetrics are used for comparisons. Thesemetrics
are generational distance , spacing, and error ratio, and they
are given in Eqs. (8)–(10).

D =
√∑n

i=1 d
2
i

n
, (8)

where n is the number of vectors in the set of nondomi-
nated solutions found so far, and di is the Euclidean distance
between each of these and the nearest member of the Pareto
optimal set:

S =
√

1

n − 1

∑n

i=1
(d̄ − di)2, (9)

where di = min j (| f i1 (x)− f j
1 (x)|+| f i2 (x)− f j

2 (x)|), i, j =
1, . . . , n, i �= j , d̄ is the mean of all di , and n is the number
of nondominated vectors so far:

E =
∑n

i=1 ei
n

, (10)

where n is the number of vectors in the current set of nondom-
inated vectors available, ei = 0 if the vector i is a member
of the Pareto optimal set, and ei = 1, otherwise. In addition
to the above-mentioned metrics, run times are also evaluated
to compare the speed of the two competing algorithms.

Hypothesis testing and parameters

To test how effective the proposed approach is, we com-
pared two algorithms, namely MOPSO with mutation and
MOPSO with random immigrants. We run both algorithms
30 times for each of the four problems. We compared both
algorithms with respect to four performance metrics, both
statistically and graphically. Statistical hypothesis testing (z
test) is performed for comparison. The null hypothesis and
the alternative hypothesis are stated as:

H0: μ1 = μ2 There is no significant difference between
two approaches with respect to the related performance met-
ric.

123

640 Complex & Intelligent Systems (2020) 6:635–650

Fig. 1 Pareto-fronts for the first
test problem

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Function 1

Fu
nc

tio
n

2

Known Pareto−front
Mutation MOPSO

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Function 1

Fu
nc

tio
n

2

Random Immigrants MOPSO
Known Pareto−front

H1:μ1 �= μ2 There is a significant difference between two
approaches with respect to the related performance metric.

Here,μ1 represents a mean value of 30 runs for respective
performancemetric for mutationMOPSO, andμ2 represents
a mean value of 30 runs for respective performance metric

for random immigrants MOPSO. The parameters for both
approach are given in Table 1.

123

Complex & Intelligent Systems (2020) 6:635–650 641

Fig. 2 Pareto-fronts for the
second test problem

−4 −2 0 2 4 6 8
7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

Function 1

Fu
nc

tio
n

2

Known Pareto−front
Mutation MOPSO

−4 −2 0 2 4 6 8
7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

Function 1

Fu
nc

tio
n

2

Known Pareto−front
Random Immigrants MOPSO

Results

Graphical comparison for all four test problems is given in
Figs. 1, 2, 3 and4.The results shown in thesefigures represent
the best solutions with respect to the D performance metric.
It can be seen that both mutation and random immigrants

MOPSO produce a good approximation for the real Pareto-
front for given test problems.

For each test problem, results for each run with respect to
each performance metric are given in Tables 2, 4, 6, and 8,
respectively. Based on these results, z-test is performed, and
z values are given in Tables 3, 5, 7, and 9.

123

642 Complex & Intelligent Systems (2020) 6:635–650

Fig. 3 Pareto-fronts for the
third test problem

−20 −19 −18 −17 −16 −15 −14
−12

−10

−8

−6

−4

−2

0

2

Function 1

Fu
nc

tio
n

2

Known Pareto−front
Mutation MOPSO

−20 −19 −18 −17 −16 −15 −14
−12

−10

−8

−6

−4

−2

0

2

Function 1

Fu
nc

tio
n

2

Known Pareto−front
Random Immigrants MOPSO

Results for the first test problem

According to the results given in Tables 2 and 3 for S perfor-
mance metric null hypothesis can be rejected. It means that
there is a significant difference between two approaches,with
respect to the mean values of S. It seems that the mutation

MOPSO outperforms random immigrants MOPSO for this
performance metric.

Regarding the D and E performance metrics, there is not
enough evidence to reject null hypothesis. It means that there
is no significant difference between two approaches, with
respect to the mean values of D and E . For the time perfor-
mance metric, the null hypothesis can be rejected. It means

123

Complex & Intelligent Systems (2020) 6:635–650 643

Fig. 4 Pareto-fronts for the
fourth test problem

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10−3

2

3

4

5

6

7

8

9

10

11
x 10−3

Variance

M
ea

n

Known Pareto−front
Mutation MOPSO

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10−3

2

3

4

5

6

7

8

9

10

11
x 10−3

Variance

M
ea

n

Known Pareto−front
Random Immigrants MOPSO

that there is a significant difference between the approaches,
with respect to the run times of the algorithms. Random
immigrants MOPSO seems to outperformmutationMOPSO
method.

Results for the second test problem

According to the results given in Tables 4 and 5, for S, D, and
E performance metrics, null hypothesis cannot be rejected.
In other words, there is no significant difference between
two approaches. Regarding the time performancemetric, null

123

644 Complex & Intelligent Systems (2020) 6:635–650

Table 2 Results for the first test
problem

Run/statistic Performance metrics

S D E T

RI Mut. RI Mut. RI Mut. RI Mut.

1 0.0426 0.0435 0.0038 0.0039 0.0200 0.0300 42.7821 46.3837

2 0.0429 0.0365 0.0043 0.0040 0.0100 0.0400 43.7493 48.4386

3 0.0401 0.0423 0.0044 0.0048 0.0100 0.0400 44.2675 51.7774

4 0.0443 0.0326 0.0038 0.0043 0.0200 0.0300 43.7091 48.6544

5 0.0455 0.0358 0.0046 0.0040 0.0300 0.0300 43.2256 46.3498

6 0.0374 0.0366 0.0044 0.0048 0.0300 0.0300 43.3359 48.6472

7 0.0431 0.0384 0.0042 0.0051 0.0100 0.0200 43.6625 48.7798

8 0.0444 0.0376 0.0044 0.0043 0.0300 0.0100 44.6642 47.8639

9 0.0436 0.0423 0.0043 0.0040 0.0200 0.0100 43.0536 46.9575

10 0.0374 0.0404 0.0047 0.0043 0.0400 0.0200 45.1330 48.7515

11 0.0331 0.0345 0.0048 0.0051 0.0100 0.0300 44.7500 48.9877

12 0.0346 0.0349 0.0043 0.0040 0.0300 0.0200 44.1840 49.5633

13 0.0327 0.0391 0.0043 0.0045 0.0300 0.0400 42.6265 47.4781

14 0.0372 0.0315 0.0040 0.0038 0.0200 0.0200 45.2132 49.0925

15 0.0432 0.0389 0.0044 0.0042 0.0200 0.0200 44.3408 47.6364

16 0.0416 0.0363 0.0044 0.0041 0.0200 0.0100 45.2360 50.4313

17 0.0385 0.0362 0.0044 0.0045 0.0300 0.0400 42.2915 47.4614

18 0.0357 0.0352 0.0042 0.0044 0.0300 0.0300 44.3946 48.3598

19 0.0453 0.0431 0.0043 0.0041 0.0300 0.0100 45.7289 46.5018

20 0.0419 0.0386 0.0046 0.0043 0.0300 0.0200 44.4128 47.3061

21 0.0433 0.0366 0.0042 0.0046 0.0100 0.0400 42.8689 46.8911

22 0.0481 0.0331 0.0043 0.0046 0.0300 0.0200 43.5025 47.4834

23 0.0422 0.0435 0.0045 0.0045 0.0300 0.0000 43.0032 47.7383

24 0.0385 0.0313 0.0042 0.0041 0.0100 0.0200 46.0204 47.9371

25 0.0459 0.0396 0.0041 0.0049 0.0500 0.0100 43.5170 48.5421

26 0.0339 0.0290 0.0047 0.0044 0.0400 0.0300 44.2943 47.6873

27 0.0416 0.0323 0.0048 0.0043 0.0300 0.0300 44.0153 47.5622

28 0.0388 0.0409 0.0044 0.0040 0.0400 0.0100 42.5261 47.1278

29 0.0355 0.0283 0.0044 0.0049 0.0300 0.0100 45.7032 47.0328

30 0.0390 0.0425 0.0048 0.0052 0.0300 0.0500 44.3875 48.6581

Min. 0.0327 0.0283 0.0038 0.0038 0.0100 0.0000 42.2915 46.3498

Max. 0.0481 0.0435 0.0048 0.0052 0.0500 0.0500 46.0204 51.7774

Mean 0.0404 0.0370 0.0044 0.0044 0.0257 0.0240 44.0200 48.0694

Std. dev. 0.0041 0.0043 0.0003 0.0004 0.0104 0.0122 1.0076 1.1910

Table 3 Statistical hypothesis
testing for the first test problem

Performance metric z value H0

S 3.08 Reject

D − 0.4496 Not enough evidence to reject

E 0.5694 Not enough evidence to reject

T − 14.2174 Reject

α < 0.05

123

Complex & Intelligent Systems (2020) 6:635–650 645

Table 4 Results for the second
test problem

Run/statistic Performance metrics

S D E T

RI Mut. RI Mut. RI Mut. RI Mut.

1 0.0491 0.0374 0.0113 0.0139 0.1100 0.1200 38.6895 38.1807

2 0.0484 0.0515 0.0119 0.0344 0.1800 0.1500 39.3091 37.9143

3 0.0648 0.0480 0.0176 0.0267 0.1700 0.0900 36.5373 40.3929

4 0.0539 0.0771 0.0233 0.0142 0.1000 0.1300 37.6547 38.1014

5 0.1574 0.1580 0.0503 0.1526 0.0900 0.1200 38.1928 38.2802

6 1.5723 0.1409 0.1738 0.0905 0.1100 0.1100 36.6740 38.3075

7 0.0515 0.9726 0.0408 0.1995 0.1700 0.0600 37.7982 36.8344

8 0.2944 0.0542 0.0634 0.0246 0.1300 0.0700 38.4847 54.4839

9 0.0504 0.0576 0.0084 0.0159 0.1400 0.1900 39.9653 54.3228

10 0.1311 0.0652 0.1657 0.0404 0.1400 0.1700 34.6981 38.9263

11 0.0411 0.0811 0.0124 0.0227 0.1200 0.0900 37.0576 36.7245

12 0.1304 0.1706 0.0361 0.0255 0.1900 0.1500 36.5183 38.0513

13 0.1097 0.3508 0.0224 0.0768 0.2000 0.0900 37.5736 39.4193

14 0.9711 0.0460 0.1132 0.0679 0.1500 0.1100 37.4087 39.1830

15 0.0516 0.7488 0.0218 0.0924 0.1000 0.1300 39.1586 38.4872

16 0.4443 0.1697 0.1241 0.0271 0.1700 0.1600 37.9423 38.1918

17 0.0855 0.1534 0.0408 0.0239 0.1200 0.1500 38.7080 39.3768

18 0.0466 0.0505 0.0231 0.0074 0.1100 0.1100 38.2719 37.9889

19 0.5780 0.7758 0.0693 0.0940 0.0900 0.1100 37.0737 37.6973

20 0.7394 0.0577 0.2124 0.0581 0.1500 0.1400 36.2117 38.6942

21 0.0447 0.7446 0.0094 0.1712 0.1800 0.1800 37.2069 37.6676

22 0.0603 0.1034 0.0120 0.0245 0.1100 0.1300 37.2697 38.9032

23 0.0462 0.1047 0.0122 0.0794 0.1900 0.1300 37.3081 39.4277

24 0.2703 0.0457 0.0463 0.0145 0.1000 0.0900 38.5350 39.0234

25 0.0545 0.0439 0.0301 0.0166 0.1500 0.1200 37.1355 39.7306

26 0.0429 0.1315 0.0097 0.1110 0.1000 0.1600 39.3758 36.6069

27 0.0489 0.0920 0.0109 0.0276 0.1300 0.1700 38.8031 38.8613

28 0.0829 0.0541 0.0509 0.0087 0.1100 0.1800 38.0753 38.8249

29 0.2253 0.4364 0.0429 0.1417 0.1400 0.0900 38.9690 37.4339

30 0.0833 0.0465 0.0232 0.0153 0.1300 0.1200 38.9606 39.9278

Min. 0.0411 0.0374 0.0084 0.0074 0.0900 0.0600 34.6981 36.6069

Max. 1.5723 0.9726 0.2124 0.1995 0.2000 0.1900 39.9653 54.4839

Mean 0.2210 0.2023 0.0497 0.0573 0.1360 0.1273 37.8522 39.5322

Std. dev. 0.3408 0.2605 0.0540 0.0530 0.0329 0.0338 1.1341 4.1443

Table 5 Statistical hypothesis
testing for the second test
problem

Performance metric z value H0

S 0.2387 Not enough evidence to reject

D − 0.5539 Not enough evidence to reject

E 1.007 Not enough evidence to reject

T − 2.1514 Reject

α < 0.05

123

646 Complex & Intelligent Systems (2020) 6:635–650

Table 6 Results for the third
test problem

Run/statistic Performance metrics

S D E T

RI Mut. RI Mut. RI Mut. RI Mut.

1 0.1086 0.1080 0.0589 0.0558 0.0000 0.0000 30.7471 31.9891

2 0.0999 0.1021 0.0595 0.0579 0.0000 0.0000 32.7430 31.2913

3 0.0694 0.1115 0.0590 0.0579 0.0400 0.0000 31.3615 30.7032

4 0.0887 0.1043 0.0523 0.0549 0.0300 0.0000 31.4082 31.5288

5 0.1169 0.1165 0.0512 0.0591 0.0000 0.0000 31.2170 29.6907

6 0.0595 0.0651 0.0561 0.0602 0.0000 0.0000 31.2949 31.0227

7 0.0735 0.0953 0.0619 0.0519 0.0200 0.0000 31.8885 30.3834

8 0.0955 0.0577 0.0578 0.0604 0.0000 0.0300 30.8581 31.2546

9 0.1176 0.1085 0.0579 0.0584 0.0000 0.0100 30.4882 30.3319

10 0.1047 0.0590 0.0532 0.0563 0.0000 0.0200 31.8226 31.3167

11 0.1056 0.1011 0.0531 0.0602 0.0000 0.0000 30.8987 30.2592

12 0.1006 0.1155 0.0554 0.0542 0.0000 0.0000 30.8969 30.8225

13 0.1017 0.0573 0.0597 0.0570 0.0000 0.0300 30.6360 30.0280

14 0.1069 0.1062 0.0587 0.0595 0.0000 0.0000 32.1974 30.5088

15 0.0622 0.1063 0.0568 0.0599 0.0000 0.0000 31.1471 30.7564

16 0.0952 0.1072 0.0563 0.0528 0.0100 0.0000 31.4530 31.2568

17 0.1009 0.0987 0.0544 0.0581 0.0000 0.0100 31.6583 31.3700

18 0.0535 0.1076 0.0569 0.0547 0.0000 0.0000 31.9432 31.1027

19 0.0668 0.0657 0.0546 0.0583 0.0000 0.0000 30.9934 31.1797

20 0.0972 0.1110 0.0503 0.0632 0.0000 0.0000 31.4585 30.0472

21 0.1124 0.0644 0.0601 0.0545 0.0000 0.0000 31.6670 29.9122

22 0.1111 0.0725 0.0582 0.0598 0.0100 0.0200 31.1748 30.2498

23 0.0592 0.1118 0.0594 0.0567 0.0200 0.0000 31.5038 31.4885

24 0.0688 0.0562 0.0568 0.0595 0.0000 0.0100 31.5334 31.7842

25 0.1021 0.1056 0.0535 0.0558 0.0000 0.0000 31.7340 31.4312

26 0.1066 0.1073 0.0544 0.0544 0.0000 0.0000 31.5341 30.5024

27 0.0703 0.1016 0.0542 0.0601 0.0000 0.0100 31.6510 31.0848

28 0.0917 0.0611 0.0657 0.0593 0.0100 0.0300 31.8327 30.6619

29 0.1258 0.0951 0.0512 0.0585 0.0000 0.0000 30.8778 31.0640

30 0.1013 0.0598 0.0557 0.0573 0.0000 0.0000 31.4873 30.5123

Min. 0.0535 0.0562 0.0503 0.0519 0.0000 0.0000 30.4882 29.6907

Max. 0.1258 0.1165 0.0657 0.0632 0.0400 0.0300 32.7430 31.9891

Mean 0.0925 0.0913 0.0564 0.0575 0.0047 0.0057 31.4036 30.8512

Std. dev. 0.0202 0.0219 0.0034 0.0026 0.0101 0.0101 0.4895 0.5828

Table 7 Statistical hypothesis
testing for the third test problem

Performance metric z value H0

S 0.2069 Not enough evidence to reject

D 1.4085 Not enough evidence to reject

E − 0.3844 Not enough evidence to reject

T 3.9755 Reject

α < 0.05

123

Complex & Intelligent Systems (2020) 6:635–650 647

Table 8 Results for the fourth
test problem

Run/statistic Performance metrics

S D E T

RI Mut. RI Mut. RI Mut. RI Mut.

1 6.22E−05 4.72E−05 3.62E−05 3.77E−05 0.44 0.35 37.449 38.873

2 4.48E−05 4.23E−05 3.90E−05 3.7E−05 0.4 0.29 36.834 37.131

3 4.24E−05 4.48E−05 3.18E−05 3.13E−05 0.33 0.35 38.478 37.947

4 4.14E−05 4.37E−05 3.49E−05 3.63E−05 0.38 0.32 37.497 37.047

5 4.21E−05 4.41E−05 3.39E−05 3.84E−05 0.41 0.33 37.722 37.162

6 4.75E−05 4.51E−05 3.55E−05 4.13E−05 0.33 0.34 37.098 37.436

7 4.26E−05 4.06E−05 3.53E−05 2.69E−05 0.32 0.35 37.250 37.927

8 5.03E−05 5.47E−05 3.28E−05 4.5E−05 0.35 0.29 36.809 38.579

9 5.1E−05 4.34E−05 3.97E−05 4.3E−05 0.39 0.31 37.178 38.249

10 5.33E−05 4.21E−05 3.55E−05 3.37E−05 0.34 0.39 42.377 37.440

11 4.35E−05 4.96E−05 3.09E−05 2.84E−05 0.41 0.37 43.261 37.812

12 5.7E−05 4.71E−05 3.94E−05 3.31E−05 0.24 0.35 36.158 37.626

13 4.84E−05 3.51E−05 3.85E−05 2.79E−05 0.37 0.31 36.42133 37.189

14 4.53E−05 4.02E−05 3.48E−05 3.28E−05 0.31 0.34 37.196 37.956

15 5.41E−05 4.85E−05 3.36E−05 3.02E−05 0.36 0.36 36.787 37.476

16 4.18E−05 5.48E−05 3.61E−05 3.38E−05 0.41 0.34 37.164 37.412

17 4.86E−05 5.06E−05 3.26E−05 3.15E−05 0.35 0.32 37.164 36.968

18 4.14E−05 4.51E−05 3.94E−05 4.19E−05 0.35 0.29 37.159 37.190

19 4.38E−05 5.23E−05 3.41E−05 3.74E−05 0.36 0.38 36.597 37.207

20 4.6E−05 4.28E−05 4.30E−05 3.98E−05 0.37 0.35 37.350 36.977

21 4.22E−05 4.53E−05 3.87E−05 2.63E−05 0.37 0.31 37.392 38.036

22 4.21E−05 4.49E−05 3.07E−05 3.6E−05 0.41 0.38 39.429 37.074

23 4.6E−05 5.36E−05 3.75E−05 4.05E−05 0.34 0.31 37.151 37.769

24 4.46E−05 4.82E−05 3.89E−05 3.84E−05 0.32 0.28 36.943 37.436

25 4.11E−05 5.11E−05 3.80E−05 4.48E−05 0.37 0.34 37.255 38.352

26 4.69E−05 5.12E−05 3.36E−05 3.81E−05 0.33 0.42 39.896 37.806

27 4.93E−05 5.22E−05 3.63E−05 4.14E−05 0.37 0.32 38.376 37.567

28 5.93E−05 4.09E−05 3.53E−05 3.55E−05 0.33 0.27 37.505 37.400

29 3.91E−05 4.03E−05 3.29E−05 2.62E−05 0.32 0.36 37.812 38.072

30 7.45E−05 4.37E−05 3.66E−05 3.76E−05 0.31 0.3 36.186 37.293

Min. 3.91E−05 3.51E−05 3.08E−05 2.62E−05 0.24 0.27 36.158 36.968

Max. 7.45E−05 5.48E−05 4.30E−05 4.5E−05 0.44 0.42 43.261 38.874

Mean 4.77E−05 4.62E−05 3.59E−05 3.57E−05 0.35 0.33 37.730 37.614

Std. dev. 7.63E−06 4.9E−06 2.93E−06 5.45E−06 0.04 0.03 1.608 0.491

hypothesis can be rejected. There is a significant difference
between two approaches, and random immigrants MOPSO
outperforms mutation MOPSO algorithm.

Table 9 Statistical hypothesis testing for the fourth test problem

Performance metric z value H0

S 0.9411 Not enough evidence to reject

D 0.1451 Not enough evidence to reject

E 2.2727 Reject

T 0.3786 Not enough evidence to reject

α < 0.05

123

648 Complex & Intelligent Systems (2020) 6:635–650

Results for the third test problem

According to the results given in Tables 6 and 7, null hypoth-
esis cannot be rejected. It means that there is no significant
difference between two approaches with respect to these per-
formance metrics. Regarding the time performance metric,
null hypothesis can be rejected, and the mutation MOPSO
outperforms the random immigrants MOPSO.

Results for the fourth test problem

According to the results given in Tables 8 and 9, for S and
D performance metrics, null hypothesis cannot be rejected.
It means that there is no significant difference between two
approaches with respect to these performance metrics. Nev-
ertheless, for E performance metric, null hypothesis can
be rejected. It means that there is a significant difference
between two approaches with respect to E performance
metric, and mutation MOPSO approach outperforms ran-
dom immigrants MOPSO approach. Regarding the time
performance metric, null hypothesis cannot be rejected. In
other words, there is no significant difference between two
approaches with respect to the running times.

Conclusion

Computational Intelligence is developed to create solutions
for the real-life complex problems for which linear, non-
linear, or stochastic models could not propose a remedy.
Nature-inspired metaheuristic algorithms take an improving
importance in computational intelligence. The most impor-
tant issue in metaheuristics is to balance the exploitation and
the exploration depending on the problem studied. When the
problem has a single objective, the hybridized algorithms
provide solutions, but it is more difficult when a multi objec-
tive analysis is made.

This paper is original to develop MOPSO using Random
Immigrants, which has enlarged the diversity of solutions
remarkably. Application of the proposed algorithm on four
well-accepted data sets has shown the benefits of the solution
for four performancemeasures, process timing, Generational
Distance, Spacing, and Error Ratio. Statistical experiments
are constructed to compare the Mutation Approach (that
gives better than other existing solutions) and the Random
Immigrants approach for diversity. Results show that Ran-
dom Immigrants approach is faster in providing the solution
in most of the cases and as good as mutation approach in the
others.

Implementing the proposed algorithm in a real-life case
and to compare the results (for both real-life cases and test
suits) with the state-of-the-art variants of the MOPSO will
be the extension of this study. Archive maintenance and local
optima problems faced in using MOPSO worth new studies,
which will be further analysis in our team. Having observed
the timing performances of MOPSO with Random Immi-
grants, we would also like to recommend the application of
this method in Big Data handling.

This paper will open a new dimension for the MOPSO
researchers and provide a new tool for computational intel-
ligence application.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Agrawal S, Dashora Y, Tiwari MK, Son YJ (2008) Interactive
particle swarm: a pareto-adaptive metaheuristic to multiobjective
optimization. IEEE Trans Syst Man Cybern Part A Syst Hum
38(2):258–277

2. Al Moubayed N, Petrovski A, McCall J (2010) A novel smart
multi-objective particle swarm optimisation using decomposition.
Springer, Berlin Heidelberg, pp 1–10

3. Baltar AM, Fontane DG (2006) A generalizedmultiobjective parti-
cle swarm optimization solver for spreadsheet models: application
to water quality. Hydrol Days 1–12

4. Coello CAC, Lechuga MS (2002) Mopso: a proposal for multiple
objective particle swarm optimization. In: Proceedings of the 2002
congress on evolutionary computation, 2002. CEC ’02, vol 2, pp
1051–1056

5. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multi-
ple objectives with particle swarm optimization. IEEE Trans Evol
Comput 8(3):256–279

6. Coello Coello CA, González Brambila S, Figueroa Gamboa J,
Castillo TapiaMG, Hernández Gómez R (2019) Evolutionary mul-
tiobjective optimization: open research areas and some challenges
lying ahead. Complex Intell Syst. https://doi.org/10.1007/s40747-
019-0113-4

7. Daneshyari M, Yen GG (2011) Cultural-based multiobjective par-
ticle swarm optimization. IEEE Trans Syst Man Cybern Part B
(Cybernetics) 41(2):553–567

8. DebK (1999)Multi-objective genetic algorithms:problem difficul-
ties and construction of test problems. Evol Comput 7:205–230

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s40747-019-0113-4
https://doi.org/10.1007/s40747-019-0113-4

Complex & Intelligent Systems (2020) 6:635–650 649

9. Fan SKS, Chang JM, Chuang YC (2015) A new multi-objective
particle swarmoptimizer using empiricalmovement and diversified
search strategies. Eng Optim 47(6):750–770

10. Fieldsend JE, Singh S (2002) A multi-objective algorithm based
upon particle swarm optimisation, an efficient data structure and
turbulence. In: 2002 UK workshop on computational intelligence,
Birmingham, UK, 2–4 September 2002, pp. 37–44

11. Han H, Lu W, Zhang L, Qiao J (2018) Adaptive gradient
multiobjective particle swarm optimization. IEEE Trans Cybern
48(11):3067–3079. https://doi.org/10.1109/TCYB.2017.2756874

12. HuW, Yen GG (2013) Density estimation for selecting leaders and
mantaining archive in mopso. In: 2013 IEEE congress on evolu-
tionary computation, pp 181–188

13. Hu W, Yen GG (2015) Adaptive multiobjective particle swarm
optimization based on parallel cell coordinate system. IEEE Trans
Evol Comput 19(1):1–18

14. Izui K, Nishiwaki S, Yoshimura M, Nakamura M, Renaud JE
(2008) Enhanced multiobjective particle swarm optimization in
combinationwith adaptiveweighted gradient-based searching. Eng
Optim 40(9):789–804

15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
IEEE international conference on neural networks, 1995. Proceed-
ings, vol 4, pp 1942–1948

16. Kita H, Yabumoto Y, Mori N, Nishikawa Y (1996) Multi-objective
optimization by means of the thermodynamical genetic algorithm.
In: Proceedings of the 4th international conference on parallel prob-
lem solving from nature, PPSN IV. Springer, London, pp 504–512

17. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization
using genetic algorithms: a tutorial. ReliabEngSyst Saf 91(9):992–
1007. Special Issue—Genetic Algorithms and ReliabilitySpecial
Issue—Genetic Algorithms and Reliability

18. Kursawe F (1991) A variant of evolution strategies for vector opti-
mization. In: Proceedings of the 1st workshop on parallel problem
solving from nature, PPSN I. Springer, London, pp 193–197

19. Lalwani S, Singhal S, Kumar R, Gupta N (2013) A comprehensive
survey: applications ofmulti-objective particle swarmoptimization
(mopso) algorithm. Trans Combin 2(1):39–101

20. Leung MF, Ng SC, Cheung CC, Lui AK (2014) A new strategy
for finding good local guides in mopso. In: 2014 IEEE congress on
evolutionary computation (CEC), pp 1990–1997

21. Li X (2004) Better spread and convergence: particle swarm
multiobjective optimization using the maximin fitness function.
Springer, Berlin Heidelberg, pp 117–128

22. Luo J, Huang X, Li X, Gao K (2019) A novel particle swarm
optimizer formany-objective optimization. In: 2019 IEEEcongress
on evolutionary computation (CEC), pp 958–965. https://doi.org/
10.1109/CEC.2019.8790343

23. MahmoodabadiMJ,BagheriA,Nariman-zadehN, JamaliA (2012)
A new optimization algorithm based on a combination of par-
ticle swarm optimization, convergence and divergence operators
for single-objective and multi-objective problems. Eng Optim
44(10):1167–1186

24. Markowitz H (1952) Portfolio selection. J Fin 7(1):77–91
25. Mavrovouniotis M, Yang S (2013) Ant colony optimization with

immigrants schemes for the dynamic travelling salesman problem
with traffic factors. Appl Soft Comput 13(10):4023–4037

26. Meza J, Espitia H, Montenegro C, Giménez E, González-Crespo R
(2017) Movpso: Vortex multi-objective particle swarm optimiza-
tion. Appl Soft Comput 52:1042–1057. https://doi.org/10.1016/j.
asoc.2016.09.026

27. Moore J, Chapman R, Dozier G (2000) Multiobjective particle
swarm optimization. In: Proceedings of the 38th annual on south-
east regional conference, ACM-SE 38. ACM, NewYork, pp 56–57

28. Mostaghim S, Teich J (2003) Strategies for finding good local
guides in multi-objective particle swarm optimization (mopso). In:

Swarm intelligence symposium, 2003. SIS ’03. Proceedings of the
2003 IEEE, pp 26–33

29. Padhye N (2009) Comparison of archiving methods in multi-
objectiveparticle swarmoptimization (mopso): Empirical study. In:
Proceedings of the 11th annual conference on genetic and evolu-
tionary computation,GECCO’09.ACM,NewYork, pp 1755–1756

30. Padhye N, Branke J, Mostaghim S (2009) Empirical comparison
of mopso methods: guide selection and diversity preservation. In:
2009 IEEE congress on evolutionary computation, pp 2516–2523

31. Pan A, Wang L, Guo W, Wu Q (2018) A diversity enhanced multi-
objective particle swarm optimization. Inf Sci 436–437:441–465.
https://doi.org/10.1016/j.ins.2018.01.038

32. Peng W, Zhang Q (2008) A decomposition-based multi-objective
particle swarm optimization algorithm for continuous optimiza-
tion problems. In: 2008 IEEE international conference on granular
computing, pp 534–537

33. Pulido GT, Coello Coello CA (2004) Using clustering techniques
to improve the performance of a multi-objective particle swarm
optimizer. Springer, Berlin, pp 225–237

34. Raquel CR, Naval Jr PC (2005) An effective use of crowding
distance in multiobjective particle swarm optimization. In: Pro-
ceedings of the 7th annual conference on genetic and evolutionary
computation, GECCO ’05. ACM, New York, pp 257–264

35. Scheepers C, Engelbrecht AP (2017) Vector evaluated particle
swarm optimization: The archive’s influence on performance. In:
2017 IEEE congress on evolutionary computation (CEC), pp 565–
572. https://doi.org/10.1109/CEC.2017.7969361

36. Sierra MR, Coello CAC (2006) Multi-objective particle swarm
optimizers: a survey of the state-of-the-art. Int J Comput Intell
Res 2(3):287–308

37. Sierra MR, Coello Coello CA (2005) Improving pso-based multi-
objective optimization using crowding,mutation and ε-dominance.
In: Proceedings of the third international conference on evolu-
tionary multi-criterion optimization, EMO’05. Springer, Berlin,
Heidelberg, pp 505–519

38. Unal AN (2013) A Genetic Algorithm for the Multiple Knapsack
Problem inDynamicEnvironment. In:World congress on engineer-
ing and computer science, WCECS 2013, vol II, Lecture Notes in
Engineering and Computer Science, pp 1162–1167

39. Url-1: http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/
(2016). Accessed 26 July 2016

40. Url-2: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
(2016). Accessed 26 July 2016

41. XiangY,ZhouY,ChenZ,Zhang J (2018)Amany-objective particle
swarm optimizer with leaders selected from historical solutions by
using scalar projections. IEEE Trans Cybern 1–14. https://doi.org/
10.1109/TCYB.2018.2884083

42. Xiao-hua Z, Hong-yun M, Li-cheng J (2005) Intelligent particle
swarm optimization in multiobjective optimization. In: 2005 IEEE
congress on evolutionary computation, vol 1, pp 714–719

43. Yang S (2005) Memory-based immigrants for genetic algorithms
in dynamic environments. In: Proceedings of the 7th annual con-
ference on genetic and evolutionary computation, GECCO ’05, pp
1115–1122. ACM, New York, NY, USA

44. Yen GG, Leong WF (2009) Dynamic multiple swarms in multiob-
jective particle swarm optimization. IEEE Trans Syst Man Cybern
Part A Syst Hum 39(4):890–911

45. Yen GG (2010) Leong, W.F.: Constraint handling procedure for
multiobjective particle swarm optimization. In: IEEE congress on
evolutionary computation, pp 1–8

46. Zapotecas Martínez S, Coello Coello CA (2011) A multi-objective
particle swarm optimizer based on decomposition. In: Proceedings
of the 13th annual conference on genetic and evolutionary compu-
tation, GECCO ’11. ACM, New York, pp 69–76. DOI https://doi.
org/10.1145/2001576.2001587

123

https://doi.org/10.1109/TCYB.2017.2756874
https://doi.org/10.1109/CEC.2019.8790343
https://doi.org/10.1109/CEC.2019.8790343
https://doi.org/10.1016/j.asoc.2016.09.026
https://doi.org/10.1016/j.asoc.2016.09.026
https://doi.org/10.1016/j.ins.2018.01.038
https://doi.org/10.1109/CEC.2017.7969361
http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
https://doi.org/10.1109/TCYB.2018.2884083
https://doi.org/10.1109/TCYB.2018.2884083
https://doi.org/10.1145/2001576.2001587
https://doi.org/10.1145/2001576.2001587

650 Complex & Intelligent Systems (2020) 6:635–650

47. Zhang H, Sun J, Liu T, Zhang K, Zhang Q (2019) Balancing explo-
ration and exploitation inmultiobjective evolutionary optimization.
Inf Sci 497:129–148. https://doi.org/10.1016/j.ins.2019.05.046

48. Zhao SZ, Suganthan PN (2011) Two-lbests based multi-objective
particle swarm optimizer. Eng Optim 43(1):1–17

49. Zhu Q, Lin Q, Chen W, Wong K, Coello Coello CA, Li J, Chen J,
Zhang J (2017) An external archive-guided multiobjective particle
swarm optimization algorithm. IEEE Trans Cybern 47(9):2794–
2808. https://doi.org/10.1109/TCYB.2017.2710133

50. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective
evolutionary algorithms: empirical results. Evol Comput 8(2):173–
195

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.ins.2019.05.046
https://doi.org/10.1109/TCYB.2017.2710133

	Multi-objective particle swarm optimization with random immigrants
	Abstract
	Introduction
	Literature review
	Multi-objective optimization
	Related work

	Random immigrants method
	Experimentation
	Test problems
	Performance metrics
	Hypothesis testing and parameters

	Results
	Results for the first test problem
	Results for the second test problem
	Results for the third test problem
	Results for the fourth test problem

	Conclusion
	References

