Complex & Intelligent Systems (2020) 6:635-650
https://doi.org/10.1007/s40747-020-00159-y

ORIGINAL ARTICLE l‘)

Check for
updates

Multi-objective particle swarm optimization with random immigrants

Ali Nadi Unal'® - Giilgiin Kayakutlu?

Received: 25 November 2017 / Accepted: 23 May 2020 / Published online: 12 June 2020
© The Author(s) 2020

Abstract

Complex problems of the current business world need new approaches and new computational algorithms for solution.
Majority of the issues need analysis from different angles, and hence, multi-objective solutions are more widely used. One
of the recently well-accepted computational algorithms is Multi-objective Particle Swarm Optimization (MOPSO). This is
an easily implemented and high time performance nature-inspired approach; however, the best solutions are not found for
archiving, solution updating, and fast convergence problems faced in certain cases. This study investigates the previously
proposed solutions for creating diversity in using MOPSO and proposes using random immigrants approach. Application
of the proposed solution is tested in four different sets using Generational Distance, Spacing, Error Ratio, and Run Time
performance measures. The achieved results are statistically tested against mutation-based diversity for all four performance

metrics. Advantages of this new approach will support the metaheuristic researchers.

Keywords Metaheuristics - Multi-objective optimization - Particle swarm optimization - Random immigrants

Introduction

Nature-inspired optimization methods have been used effec-
tively to solve a wide variety of complex problems that
consist of both single and multiple objective search domains.
Among these methods, swarm intelligence is a promising
research area. Introduced to solve single objective problems,
Particle Swarm Optimization (PSO) [15] has attracted many
researchers in metaheuristic optimization area, and started to
gain prominence at solving multiple objective problems not
more than 5 years after its introduction (see [27] for the first
attempt on multi-objective optimization). This is because of
the relative simplicity and the success as a single-objective
optimizer, as well as high speed of convergence [4,22]. Fur-
thermore, due to its population based nature, it enables to
obtain a set of trade-off solutions in a single run, unlike the
traditional techniques which employ a series of separate runs
[36].

X Ali Nadi Unal
anunal @hho.edu.tr

Giilgiin Kayakutlu

kayakutlu@itu.edu.tr

Hezarfen Aeronautics and Space Technologies Institute,
National Defense University, Istanbul, Turkey

Energy Institute, Istanbul Technical University, Istanbul,
Turkey

However, there still exist three main issues to be con-
sidered in Multi-objective Particle Swarm Optimization
(MOPSO): (1) archive maintenance, (2) process to update
global best and individual best, and (3) solutions for local
optima and premature convergence problems [11,13].

Maintaining an external archive, which is used to keep
a historical record of non-dominated solutions in accor-
dance with a quality measure, serves the main purpose of
multi-objective optimization. Computational cost and mem-
ory size considerations cause keeping the size of external
archive fixed seems more efficient [13,29]. While maintain-
ing the external archive, to obtain a fairly distributed set
of non-dominated solutions, employing a density measure
in objective space is a straightforward approach. Strategies
such as crowding distance [34,37], adaptive grid [5], clus-
tering [33], maximin fitness [21], parallel cell coordinate
system [13], and hypersurface contribution [35] can be used
for maintaining the archive.

Regarding the update issue, the movement of a particle in
MOPSO is affected by personal and global best selection (i.e.,
the selection of leaders). The selection of leaders is a crucial
issue [41], and this selection directly affects the convergence
and diversity attitudes, and effectiveness of the algorithm
[48]. In other words, the balance between exploitation and
exploration capabilities depends on the leader selection pro-
cess. The trade-off between exploration and exploitation

Dieliase cllodi ay .
bes Shens) Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00159-y&domain=pdf
http://orcid.org/0000-0002-6956-1514

636

Complex & Intelligent Systems (2020) 6:635-650

is critical to the performance of an evolutionary algorithm
[31,47].

Although the fast convergence is an advantage for PSO or
MOPSO, it becomes a drawback, if it is not controlled effec-
tively. Fast convergence (premature convergence), especially
for the earlier stages of the run, may cause particles to be
“trapped in a similar local topology” [9]. As a consequence,
it may not be possible to achieve a precise approximation to
the true Pareto front [26]. Perturbation operator (mutation,
disturbance) is a common practice to compensate for pre-
mature convergence, and maintaining diversity of the swarm
along the optimization process [9,13].

This paper contributes to the literature by proposing the
use of “random immigrants” approach, an effective method to
promote diversity for MOPSO. Random immigrant approach
has been developed to address maintaining diversity for
genetic algorithms and proved to be beneficial [25,43]. It
is based on a simple philosophy of replacing the worst or
randomly selected particles from the swarm with randomly
created particles. To the best of authors’ knowledge, ours
is the first study to use random immigrants approach for
MOPSO.

Literature review

This section aims to give basic concepts and definitions on
multi-objective optimization, and a short survey related to
the fast convergence problem mentioned above.

Multi-objective optimization

Multiple objective optimization problems deal with at least
two objective functions to be optimized. These objective
functions are non-commensurable and competing. It means
that they may be represented in different units, and they may
have same level of importance comparatively. Assuming all
the objective functions to be minimized, a multi-objective
optimization problem can be defined as in [36]:

Minimize f(x) := [f1(x), 2(X), ..., fk(X)] ey
Subject to
gix)<0 i=12,...,m, 2)

hjx)=0 j=1,2,...,p, 3)
where X = [x1, X2, ..., x,]T represents decision variables
vector, f; : R" — R,i = 1,2,...,k gives objective
functions, and g;,h; : R" — R,i = 1,2,...,m,j =
1,2,..., p represents inequality and equality constraints,
respectively. The desired solution is in the form of “trade-off”
solutions between objective functions [34]. In other words, an

Dieliase ¢llodi ay .
bes Shenas Q) Springer

improvement in one of the objective functions causes wors-
ening for at least one of the others.

The most common two approaches to a multi-objective
optimization problem are: (1) transforming the problem into
a single objective one; (2) obtaining a set of trade-off solu-
tions (preserving the problem as is) [17]. For the first case,
simple additive weighting can be used, or all but one objective
function can be moved to the constraint set. However, with
the weighting method, not all Pareto-optimal solutions can
be found for the problems that have non-convex objective or
search spaces [3]. Additionally, many different weights may
result the same single solution [3], and it can be very diffi-
cult to precisely and accurately select the weights [17]. When
moving objective functions to the constraint set, it may be dif-
ficult to set right-hand side values for objective functions as
constraints.

The main goal of a multi-objective optimization algorithm
is to identify solutions in Pareto-optimal set [17,19]. Yet, all
the elements of a Pareto optimal set may not be desirable or
achievable [6,36], and the Pareto-optimal set can be infinite,
while we have some space and time limitations. Therefore,
it is desirable to obtain a set of solutions that represents the
Pareto-optimal set as well as possible [17].

Real-world multi-objective optimization problems may be
too complex to be solved by exact methods, such as lin-
ear programming and gradient search [50]. Population-based
metaheuristic algorithms are accepted as effective computa-
tional solvers for multi-objective optimization problems. Due
to their search capabilities through large spaces using popu-
lations, they are able to get some Pareto-optimal solutions in
a single optimization run. Additionally, they are not effected
by the shape of the Pareto-optimal front. Of these algorithms,
MOPSO is a competitive one. Interested reader should refer
[36] for a detailed explanation of a general MOPSO algo-
rithm. Our approach omits the mutation phase of general
MOPSO algorithm and adds random immigrants step after
updating the leaders in an external archive.

Related work

Fieldsend and Singh [10] introduced a multi-objective algo-
rithm based on the PSO and demonstrated the inclusion of
stochastic turbulence variable. Using this new variable in
MOPSO, they showed significant performance increases.

Mostaghim and Teich [28] proposed a method, called
Sigma method for selecting the best local guide for each par-
ticle. They added a turbulence factor to the updated position
of each particle in the swarm.

Xiao-hua et al. [42] proposed a modified PSO named
Intelligent Particle Swarm Optimization (IPSO). They used
a “clonal selection operator” to accelerate the approxima-
tion to optimum. One of the elements in this operator is

Complex & Intelligent Systems (2020) 6:635-650

637

called “clonal mutation”, which helps to produce a solution
set around Pareto optimal solutions.

Sierra and Coello [37] proposed a multi-objective parti-
cle swarm optimizer, which is based on Pareto dominance
and uses of a crowding factor. They used uniform and
non-uniform mutation schemes. In uniform mutation, the
variability range allowed for each decision variable is kept
constant over iterations, whilst in non-uniform mutation, this
variability decreases over time.

Raquel and Naval [34] proposed an MOPSO algorithm
which is called MOPSO-CD. They used crowding distance
mechanism and mutation operator to maintain diversity. They
performed mutation on the entire swarm initially and then
rapidly decreased its coverage over time.

Peng and Zhang [32] proposed a decomposition based
MOPSO. They applied the polynomia mutation on positions
after they are calculated.

Izui et al. [14] proposed a multi-objective optimization
method for structural problems based on MOPSO. They
applied a mutation operator. In this operator, the probability
of mutation decreases as the number of iterations increases,
while mutation rate is fixed.

Agrawal et al. [1] proposed an interactive particle swarm
metaheuristic for multi-objective optimization. They
employed a mutation operator which is defined “self-adaptive
mutation”. This operator has some variation in probability
according to the number of particles in the repository.

Padhye et al. [30] reviewed some proposals for guide
selection in MOPSO and compared them with each other
in terms of convergence, diversity, and computational times.
They made a proposal named “velocity trigger” as a substitute
for turbulence operator coupled with a boundary handling
method. They reported that the new proposals were found to
be effective for higher objective and higher parameter space
problems.

Yen and Leong [44] proposed an MOPSO algorithm with
dynamic multiple swarms. In the swarm growing strategy,
they use uniform mutation operator with the mutation rate
equal to one/number of dimensions in decision space.

Al Moubayed et al. [2] proposed an MOPSO algorithm
that employs decomposition. Instead of mutation, they used
an information exchange method that helps avoiding local
optima without a need for applying any genetic operator.

Yen and Leong [45] proposed a constraint MOPSO which
adopts a multi-objective constraint handling technique. They
applied uniform and Gaussian operators. Uniform muta-
tion encourage exploration and Gaussian mutation promotes
exploitation. The frequency of applying the mutation opera-
tors depends on the feasibility ratio of the particles’ personal
best.

Daneshyari and Yen [7] proposed a cultural MOPSO
which adapts the parameters of the MOPSO using the knowl-
edge stored in various parts of the belief space. They applied

a time-decaying mutation operator. The number of particles
that undergo mutation, the range of mutation for each mutated
particle, and the dimensions selected for mutation are regu-
lated accordingly.

Mahmoodabadi et al. [23] modified the MOPSO in
two stages. The first stage involves combining PSO with
convergence and divergence operators. The second stage
involves new leader selection method and adaptive elim-
ination method which aims to limit the number of non-
dominated solutions in the archive. They used the divergence
operator as a simple controlled mutation.

Hu and Yen [12] proposed a method for density estimation
for selecting leaders and maintaining the archive in MOPSO.
They used “Parallel Cell Distance” between a solution and all
other solutions in an archive after the archive is mapped from
Cartesian Coordinate System into Parallel Cell Coordinate
System. To perturb an article, they used Gaussian Mutation.

Leung et al. [20] presented a new algorithm that extends
PSO to deal with multi-objective problems. Their first con-
tribution is that the square root distance computation among
particles for local best selection, and second is the procedure
to update the archive members. They used mutation operator
to enhance the exploratory ability of the algorithm.

Fan, Chang, and Chuang [9] proposed a multi-objective
particle swarm optimizer which is constructed based on the
concept of Pareto dominance taking both the diversified
search and empirical movement strategies into account. They
used polynomial mutation to maintaining the diversity of the
particles along the optimization process.

Hu and Yen [13] proposed an integrated and adap-
tive MOPSO based on Parallel Cell Coordinate System
(pccsAMOPSO). Their proposal includes a leader group,
self-adaptive parameters, and perturbing operator for bal-
ancing convergence and diversity. They employed an elitism
learning strategy with a Gaussian mutation as the perturba-
tion operator.

Zhu et al. [49] presented a novel archive-guided MOPSO
algorithm (AgMOPSO) where the leaders for velocity update
are selected from an external archive. They also used an
immune-based evolutionary strategy to evolve the external
archive. They stated that this kind of updating scheme was
verified to promote the convergence speed and keep the diver-
sity.

Han et al. [11] proposed a variant of MOPSO, named
Adaptive Gradient Multi-objective Particle Swarm Opti-
mization (AGMOPSO). They used self-adaptive flight param-
eters mechanism to balance the convergence and diversity.
They claimed that the proposed algorithm can find better
spread solutions and has faster convergence to the true Pareto-
optimal front.

Xiangetal. [41] proposed a many objective PSO (MaPSO).
They suggested a new leader selection strategy. They kept
multiple historical solutions from which the leader is selected

Dieliase cllodi ay .
bes Shens) Springer

638

Complex & Intelligent Systems (2020) 6:635-650

for each particle. They also use linearly decreased parameter
which promotes convergence initially and diversity later. It
was shown that their proposed MaPSO is highly competitive
or significantly superior to other algorithms. In another study
on many objective PSO, Luo et al. [22] proposed an algo-
rithm called IDMOPSO. They used a selection strategy for
personal best to enhance the capability of local exploration.
They also developed a multi-global best selection mechanism
to balance convergence and diversity.

Pan et al. [31] proposed a diversity enhanced multi-
objective particle swarm optimization called DEMPSO. In
that study, analysis of particles’ velocities is developed to
assist variable clustering and elite selection. A diversity
enhancing process based on the velocity analysis is carried
out during the particles’ evolution.

Current study intents to make a slight extension to [5].
Coello et al. [5] presented an approach in which Pareto-
dominance is incorporated into standard PSO to handle
problems with several objective functions. In that study, the
movement of a particle is based on its own previous move-
ments (personal best) and the movements of particles in a
repository (i.e., leader is selected from an external archive
of non-dominated solutions), as well. If the current position
of a particle is better than the previous movements, current
position is located as personal best. On the other hand, leader
is selected randomly from the repository with respect to loca-
tions of non-dominated solutions from a hypercube. A more
crowded hypercube has less chance to be selected. External
archive and the positions of the solutions included in this
archive are updated regularly at each iteration. A dynamic
mutation operator is also employed in that study. Both the
numbers of the particles which are subject to be applied muta-
tion operator and the positions of a particle to be mutated
decrease through iterations.

In the current study, we applied the same procedures
like [5] except the mutation operator. Instead of mutation
operator, random immigrants method is used for diversity
preservation.

Random immigrants method

In the field of evolutionary algorithms, random immigrants
method is known as an effective tool for diversity, especially
for dynamic optimization [38,43]. This method is based on
replacing some of the individuals (particles) with new ones.
New individuals may be included in a complete random man-
ner, or inclusion may be based on a memory scheme. The
predecessors, or omitted individuals, can be selected ran-
domly, or they can be determined with respect to a quality
measure (e.g., fitness value or dominance relation).

Coello et al. [5] used mutation operator, such that the num-
ber of mutant individuals and the range of effect on decision

Dieliase ¢llodi ay .
bes Shenas Q) Springer

variables decrease in a nonlinear fashion. In other words, all
the particles are affected in the beginning with a high range.
As the iteration number gets closer to the end, the number
of mutants decreases to almost zero. Doing so, the algorithm
gains a highly explorative and leveled (between exploration
and exploitation) search capacity.

Algorithm 1 Random immigrants procedure

: currentGen < Current iteration number

: totGen <— The number of iterations

: decRate < Decay rate

: nPop < The number of population

imigProb < (1 — (currentGen — 1)/(totGen — 1))(1/decRate)

Immigration probability

. if rand < imig Prob then

7: numlmig < (mPop % (1 — (currentGen — 1)/(totGen —
1))(1/decRate))/1.618) The number of random immigrants for cur-
rent iteration

8: Determine numImig particles randomly

9: Create numimig random immigrants

10: Omit determined particles

11: Include random immigrants instead of omitted particles

12: end if

| S I S R

=)

In a previous study [46], Martinez and Coello employed
a re-initialization procedure to increase the diversity. In that
study, a particle increases its age when it does not improve
its personal position, and after exceeding a pre-defined age
threshold, the particle is re-initialized. Our approach is totally
different by means of re-initialization scheme.

Experimentation

Test problems

The first test problem was used by [8], and it is given in Eq.
4):

Minimize fi(x], x2) = x|

Minimize f3 (x|, x2) = gixlz)
Subject to
80 = 20— ¢ (T 080 CH
0.1 <xp,x =1 @

The second test problem was used by [16], and given in
Eq. (5):

Maximize fi(x1, x2) = —x12 +x2

1
Maximize f>(x1, x2) = le +x+1

Complex & Intelligent Systems (2020) 6:635-650

639

Subject to
1 n 13<0
Zx1 4 xy — —
P 275 =
15
it g =0
5
—4+x-30<0
X1
0<xp,xp<7 (5)

The third test problem was used by [18], and it is given in
Eq. (6):

2
_ 2,2
Minimize fi(x) = Z —10e 0'2m
i=1
3
Minimize f>(x) = Z (|xi 8 45 sin(x?))
i=1
—5<x;<5
i=1,2,3 (6)

Similar motivation is employed in the current study for
random immigrants method. Immigration probability and the
number of immigrants decrease with a nonlinear fashion.
Random immigrants procedure is shown in Algorithm 1.

The fourth test problem is called “portfolio optimization
problem” [24], and it is given in Eq. (7):

N N
Minimizeg E XiXjOij

i=1 j=1
N
Maximize Z Xi i
i=1
Subject to

Table 1 Values of parameters

Parameter Value
Number of iterations 100
Swarm size 100
Repository size 100
W Inertia weight 0.5
C Cognitive coefficient 1

C; Social coefficient 2
Number of grids 30
Mutation rate/decay rate 0.5
Number of runs 30

N
in =1,

i=1

0<x;<1,i=1,...,N. (7)

The data set for the first three test problems can be obtained
from [39], while for the fourth one, it is available in [40].

Performance metrics

In this study, inspired by the analysis described in [5], three
performance metrics are used for comparisons. These metrics
are generational distance , spacing, and error ratio, and they
are given in Egs. (8)—(10).

Vi 4
p=Y=" ®)

where n is the number of vectors in the set of nondomi-
nated solutions found so far, and d; is the Euclidean distance
between each of these and the nearest member of the Pareto
optimal set:

1 noo-
S = /n — 2, d—d)?, ©)

where d; = min; (| f{ (%) — f{ O+ /30— f3 X)), i, j =
1,...,n, i # j,d is the mean of all d;, and n is the number
of nondominated vectors so far:

Dy

E=&=i=1% (10)
n

where n is the number of vectors in the current set of nondom-
inated vectors available, ¢; = 0 if the vector i is a member
of the Pareto optimal set, and ¢; = 1, otherwise. In addition
to the above-mentioned metrics, run times are also evaluated
to compare the speed of the two competing algorithms.

Hypothesis testing and parameters

To test how effective the proposed approach is, we com-
pared two algorithms, namely MOPSO with mutation and
MOPSO with random immigrants. We run both algorithms
30 times for each of the four problems. We compared both
algorithms with respect to four performance metrics, both
statistically and graphically. Statistical hypothesis testing (z
test) is performed for comparison. The null hypothesis and
the alternative hypothesis are stated as:

Hy: w1 = o There is no significant difference between
two approaches with respect to the related performance met-
ric.

Lisllase cllal .
bes Shens) Springer

640

Complex & Intelligent Systems (2020) 6:635-650

Fig.1 Pareto-fronts for the first
test problem

Function 2

Known Pareto—front

O Mutation MOPSO

0 Il Il Il Il Il Il Il Il J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Function 1

8

Function 2

o Random Immigrants MOPSO

Known Pareto—front

Hi: py # po Thereis a significant difference between two
approaches with respect to the related performance metric.

Here, 111 represents a mean value of 30 runs for respective
performance metric for mutation MOPSO, and p, represents
a mean value of 30 runs for respective performance metric

Disllaie clloll auao
KACST3,061lg (ogll

@ Springer

0.2 0.3

Function 1

for random immigrants MOPSO. The parameters for both
approach are given in Table 1.

Complex & Intelligent Systems (2020) 6:635-650

641

Fig.2 Pareto-fronts for the 8.8~
second test problem

8.2

Function 2

7.81

7.6

7.4

Known Pareto—front
© Mutation MOPSO

8.8

8.6

8.2

Function 2

7.6

7.4

-2 0 2 4 6 8
Function 1

- Known Pareto—front
0 Random Immigrants MOPSO

Results

Graphical comparison for all four test problems is given in
Figs. 1,2,3 and 4. The results shown in these figures represent
the best solutions with respect to the D performance metric.
It can be seen that both mutation and random immigrants

Function 1

MOPSO produce a good approximation for the real Pareto-
front for given test problems.

For each test problem, results for each run with respect to
each performance metric are given in Tables 2, 4, 6, and 8,
respectively. Based on these results, z-fest is performed, and
z values are given in Tables 3, 5, 7, and 9.

Lisllase cllal .
bes Shens) Springer

642

Complex & Intelligent Systems (2020) 6:635-650

Fig.3 Pareto-fronts for the 2r
third test problem Known Pareto—front
o Mutation MOPSO
0 5]
Q%‘@.
%
%'%
72 [
%
?
P
o —4r ? Q%
o ®
2 ()
5 %30
=
=}
= —6f K
-8t X
%
ol b,
%,
?
g,
—_ 1 2 1 1 1 1 Il J
—20 -19 -18 -17 -16 -15 -14
Function 1
2 -
Known Pareto—front
o Random Immigrants MOPSO
0 2
-0,
%
-2+ 8
Q
%
%Qb
_4 -
B A
.2
: §,
= @,
= —6f @@D
@p.
-8t 0%
%%
-10+ ‘%
712 1 1 1 1 Il J
=20 -19 -18 -17 -16 =15 -14
Function 1

Results for the first test problem

According to the results given in Tables 2 and 3 for S perfor-
mance metric null hypothesis can be rejected. It means that
there is a significant difference between two approaches, with
respect to the mean values of S. It seems that the mutation

Lisllase cllad .
bes Shenas Q) Springer

MOPSO outperforms random immigrants MOPSO for this
performance metric.

Regarding the D and E performance metrics, there is not
enough evidence to reject null hypothesis. It means that there
is no significant difference between two approaches, with
respect to the mean values of D and E. For the time perfor-
mance metric, the null hypothesis can be rejected. It means

Complex & Intelligent Systems (2020) 6:635-650 643
Fig.4 Pareto-fronts for the
fourth test problem

3r - Known Pareto—front

o Mutation MOPSO
2 1 1 1 1 1 1 1 1 J
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Variance -3
x 10

Mean

Known Pareto—front
o Random Immigrants MOPSO
1 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3
Variance x 10

that there is a significant difference between the approaches, Results for the second test problem
with respect to the run times of the algorithms. Random
immigrants MOPSO seems to outperform mutation MOPSO According to the results given in Tables 4 and 5, for S, D, and

method.

E performance metrics, null hypothesis cannot be rejected.
In other words, there is no significant difference between
two approaches. Regarding the time performance metric, null

Dieliase cllodi ay .
bes Shens) Springer

644

Complex & Intelligent Systems (2020) 6:635-650

Table 2 Results for the first test

problem

Table 3 Statistical hypothesis
testing for the first test problem

Disllaie clloll auao
KACST3,061lg (ogll

@ Springer

Run/statistic

Performance metrics

S D E T

RI Mut. RI Mut. RI Mut. RI Mut.
1 0.0426 0.0435 0.0038 0.0039 0.0200 0.0300 42.7821 46.3837
2 0.0429 0.0365 0.0043 0.0040 0.0100 0.0400 43.7493 48.4386
3 0.0401 0.0423 0.0044 0.0048 0.0100 0.0400 44.2675 51.7774
4 0.0443 0.0326 0.0038 0.0043 0.0200 0.0300 43.7091 48.6544
5 0.0455 0.0358 0.0046 0.0040 0.0300 0.0300 43.2256 46.3498
6 0.0374 0.0366 0.0044 0.0048 0.0300 0.0300 43.3359 48.6472
7 0.0431 0.0384 0.0042 0.0051 0.0100 0.0200 43.6625 48.7798
8 0.0444 0.0376 0.0044 0.0043 0.0300 0.0100 44.6642 47.8639
9 0.0436 0.0423 0.0043 0.0040 0.0200 0.0100 43.0536 46.9575
10 0.0374 0.0404 0.0047 0.0043 0.0400 0.0200 45.1330 48.7515
11 0.0331 0.0345 0.0048 0.0051 0.0100 0.0300 44.7500 48.9877
12 0.0346 0.0349 0.0043 0.0040 0.0300 0.0200 44.1840 49.5633
13 0.0327 0.0391 0.0043 0.0045 0.0300 0.0400 42.6265 47.4781
14 0.0372 0.0315 0.0040 0.0038 0.0200 0.0200 45.2132 49.0925
15 0.0432 0.0389 0.0044 0.0042 0.0200 0.0200 44.3408 47.6364
16 0.0416 0.0363 0.0044 0.0041 0.0200 0.0100 45.2360 50.4313
17 0.0385 0.0362 0.0044 0.0045 0.0300 0.0400 42.2915 47.4614
18 0.0357 0.0352 0.0042 0.0044 0.0300 0.0300 44.3946 48.3598
19 0.0453 0.0431 0.0043 0.0041 0.0300 0.0100 45.7289 46.5018
20 0.0419 0.0386 0.0046 0.0043 0.0300 0.0200 44.4128 47.3061
21 0.0433 0.0366 0.0042 0.0046 0.0100 0.0400 42.8689 46.8911
22 0.0481 0.0331 0.0043 0.0046 0.0300 0.0200 43.5025 47.4834
23 0.0422 0.0435 0.0045 0.0045 0.0300 0.0000 43.0032 47.7383
24 0.0385 0.0313 0.0042 0.0041 0.0100 0.0200 46.0204 47.9371
25 0.0459 0.0396 0.0041 0.0049 0.0500 0.0100 43.5170 48.5421
26 0.0339 0.0290 0.0047 0.0044 0.0400 0.0300 44.2943 47.6873
27 0.0416 0.0323 0.0048 0.0043 0.0300 0.0300 44.0153 47.5622
28 0.0388 0.0409 0.0044 0.0040 0.0400 0.0100 42.5261 47.1278
29 0.0355 0.0283 0.0044 0.0049 0.0300 0.0100 45.7032 47.0328
30 0.0390 0.0425 0.0048 0.0052 0.0300 0.0500 44.3875 48.6581
Min. 0.0327 0.0283 0.0038 0.0038 0.0100 0.0000 42.2915 46.3498
Max. 0.0481 0.0435 0.0048 0.0052 0.0500 0.0500 46.0204 51.7774
Mean 0.0404 0.0370 0.0044 0.0044 0.0257 0.0240 44.0200 48.0694
Std. dev. 0.0041 0.0043 0.0003 0.0004 0.0104 0.0122 1.0076 1.1910
Performance metric z value Hy
S 3.08 Reject
D — 0.4496 Not enough evidence to reject
E 0.5694 Not enough evidence to reject
T — 14.2174 Reject
a < 0.05

Complex & Intelligent Systems (2020) 6:635-650 645
I:;:I;?Jbllzﬁfum for the second Run/statistic Performance metrics
S D E T
RI Mut. RI Mut. RI Mut. RI Mut.

1 0.0491 0.0374 0.0113 0.0139 0.1100 0.1200 38.6895 38.1807
2 0.0484 0.0515 0.0119 0.0344 0.1800 0.1500 39.3091 37.9143
3 0.0648 0.0480 0.0176 0.0267 0.1700 0.0900 36.5373 40.3929
4 0.0539 0.0771 0.0233 0.0142 0.1000 0.1300 37.6547 38.1014
5 0.1574 0.1580 0.0503 0.1526 0.0900 0.1200 38.1928 38.2802
6 1.5723 0.1409 0.1738 0.0905 0.1100 0.1100 36.6740 38.3075
7 0.0515 0.9726 0.0408 0.1995 0.1700 0.0600 37.7982 36.8344
8 0.2944 0.0542 0.0634 0.0246 0.1300 0.0700 38.4847 54.4839
9 0.0504 0.0576 0.0084 0.0159 0.1400 0.1900 39.9653 54.3228
10 0.1311 0.0652 0.1657 0.0404 0.1400 0.1700 34.6981 38.9263
11 0.0411 0.0811 0.0124 0.0227 0.1200 0.0900 37.0576 36.7245
12 0.1304 0.1706 0.0361 0.0255 0.1900 0.1500 36.5183 38.0513
13 0.1097 0.3508 0.0224 0.0768 0.2000 0.0900 37.5736 39.4193
14 0.9711 0.0460 0.1132 0.0679 0.1500 0.1100 37.4087 39.1830
15 0.0516 0.7488 0.0218 0.0924 0.1000 0.1300 39.1586 38.4872
16 0.4443 0.1697 0.1241 0.0271 0.1700 0.1600 37.9423 38.1918
17 0.0855 0.1534 0.0408 0.0239 0.1200 0.1500 38.7080 39.3768
18 0.0466 0.0505 0.0231 0.0074 0.1100 0.1100 38.2719 37.9889
19 0.5780 0.7758 0.0693 0.0940 0.0900 0.1100 37.0737 37.6973
20 0.7394 0.0577 0.2124 0.0581 0.1500 0.1400 36.2117 38.6942
21 0.0447 0.7446 0.0094 0.1712 0.1800 0.1800 37.2069 37.6676
22 0.0603 0.1034 0.0120 0.0245 0.1100 0.1300 37.2697 38.9032
23 0.0462 0.1047 0.0122 0.0794 0.1900 0.1300 37.3081 39.4277
24 0.2703 0.0457 0.0463 0.0145 0.1000 0.0900 38.5350 39.0234
25 0.0545 0.0439 0.0301 0.0166 0.1500 0.1200 37.1355 39.7306
26 0.0429 0.1315 0.0097 0.1110 0.1000 0.1600 39.3758 36.6069
27 0.0489 0.0920 0.0109 0.0276 0.1300 0.1700 38.8031 38.8613
28 0.0829 0.0541 0.0509 0.0087 0.1100 0.1800 38.0753 38.8249
29 0.2253 0.4364 0.0429 0.1417 0.1400 0.0900 38.9690 37.4339
30 0.0833 0.0465 0.0232 0.0153 0.1300 0.1200 38.9606 39.9278
Min. 0.0411 0.0374 0.0084 0.0074 0.0900 0.0600 34.6981 36.6069
Max. 1.5723 0.9726 0.2124 0.1995 0.2000 0.1900 39.9653 54.4839
Mean 0.2210 0.2023 0.0497 0.0573 0.1360 0.1273 37.8522 39.5322
Std. dev. 0.3408 0.2605 0.0540 0.0530 0.0329 0.0338 1.1341 4.1443

Table 5 Statistical hypothesis
testing for the second test
problem

Performance metric z value Hy

S 0.2387 Not enough evidence to reject
D — 0.5539 Not enough evidence to reject
E 1.007 Not enough evidence to reject
T —2.1514 Reject

a < 0.05

Lislase cllol & .
bes Shens) Springer

646

Complex & Intelligent Systems (2020) 6:635-650

Table 6 Results for the third

test problem

Table 7 Statistical hypothesis
testing for the third test problem

Disllaie clloll auao
KACST3,061lg (ogll

@ Springer

Run/statistic

Performance metrics

S D E T

RI Mut. RI Mut. RI Mut. RI Mut.
1 0.1086 0.1080 0.0589 0.0558 0.0000 0.0000 30.7471 31.9891
2 0.0999 0.1021 0.0595 0.0579 0.0000 0.0000 32.7430 31.2913
3 0.0694 0.1115 0.0590 0.0579 0.0400 0.0000 31.3615 30.7032
4 0.0887 0.1043 0.0523 0.0549 0.0300 0.0000 31.4082 31.5288
5 0.1169 0.1165 0.0512 0.0591 0.0000 0.0000 31.2170 29.6907
6 0.0595 0.0651 0.0561 0.0602 0.0000 0.0000 31.2949 31.0227
7 0.0735 0.0953 0.0619 0.0519 0.0200 0.0000 31.8885 30.3834
8 0.0955 0.0577 0.0578 0.0604 0.0000 0.0300 30.8581 31.2546
9 0.1176 0.1085 0.0579 0.0584 0.0000 0.0100 30.4882 30.3319
10 0.1047 0.0590 0.0532 0.0563 0.0000 0.0200 31.8226 31.3167
11 0.1056 0.1011 0.0531 0.0602 0.0000 0.0000 30.8987 30.2592
12 0.1006 0.1155 0.0554 0.0542 0.0000 0.0000 30.8969 30.8225
13 0.1017 0.0573 0.0597 0.0570 0.0000 0.0300 30.6360 30.0280
14 0.1069 0.1062 0.0587 0.0595 0.0000 0.0000 32.1974 30.5088
15 0.0622 0.1063 0.0568 0.0599 0.0000 0.0000 31.1471 30.7564
16 0.0952 0.1072 0.0563 0.0528 0.0100 0.0000 31.4530 31.2568
17 0.1009 0.0987 0.0544 0.0581 0.0000 0.0100 31.6583 31.3700
18 0.0535 0.1076 0.0569 0.0547 0.0000 0.0000 31.9432 31.1027
19 0.0668 0.0657 0.0546 0.0583 0.0000 0.0000 30.9934 31.1797
20 0.0972 0.1110 0.0503 0.0632 0.0000 0.0000 31.4585 30.0472
21 0.1124 0.0644 0.0601 0.0545 0.0000 0.0000 31.6670 29.9122
22 0.1111 0.0725 0.0582 0.0598 0.0100 0.0200 31.1748 30.2498
23 0.0592 0.1118 0.0594 0.0567 0.0200 0.0000 31.5038 31.4885
24 0.0688 0.0562 0.0568 0.0595 0.0000 0.0100 31.5334 31.7842
25 0.1021 0.1056 0.0535 0.0558 0.0000 0.0000 31.7340 31.4312
26 0.1066 0.1073 0.0544 0.0544 0.0000 0.0000 31.5341 30.5024
27 0.0703 0.1016 0.0542 0.0601 0.0000 0.0100 31.6510 31.0848
28 0.0917 0.0611 0.0657 0.0593 0.0100 0.0300 31.8327 30.6619
29 0.1258 0.0951 0.0512 0.0585 0.0000 0.0000 30.8778 31.0640
30 0.1013 0.0598 0.0557 0.0573 0.0000 0.0000 31.4873 30.5123
Min. 0.0535 0.0562 0.0503 0.0519 0.0000 0.0000 30.4882 29.6907
Max. 0.1258 0.1165 0.0657 0.0632 0.0400 0.0300 32.7430 31.9891
Mean 0.0925 0.0913 0.0564 0.0575 0.0047 0.0057 31.4036 30.8512
Std. dev. 0.0202 0.0219 0.0034 0.0026 0.0101 0.0101 0.4895 0.5828
Performance metric z value Hy
S 0.2069 Not enough evidence to reject
D 1.4085 Not enough evidence to reject
E — 0.3844 Not enough evidence to reject
T 3.9755 Reject
a < 0.05

Complex & Intelligent Systems (2020) 6:635-650 647
I:;:I;zbllzﬁfuns for the fourth Run/statistic ~ Performance metrics
S D E T
RI Mut. RI Mut. RI Mut. RI Mut.

1 6.22E—05 4.72E—05 3.62E—05 3.77E-05 044 0.35 37.449 38.873
2 448E—05 4.23E—-05 3.90E-05 3.7E-05 0.4 0.29 36.834 37.131
3 424E—-05 4.48E—05 3.18E-05 3.13E-05 0.33 0.35 38478 37.947
4 4.14E—05 4.37E—05 349E-05 3.63E-05 0.38 0.32 37.497 37.047
5 421E-05 441E—05 3.39E-05 3.84E-05 041 033 37.722 37.162
6 475E—-05 4.51E—05 3.55E-05 4.13E-05 0.33 0.34 37.098 37.436
7 426E—-05 4.06E—05 3.53E—05 2.69E—05 032 0.35 37.250 37.927
8 5.03E—05 547E—05 3.28E—05 4.5E—05 0.35 029 36.809 38.579
9 5.1E-05 4.34E-05 3.97E-05 4.3E-05 0.39 031 37.178 38.249
10 5.33E—05 4.21E—05 3.55E—05 3.37E-05 0.34 0.39 42377 37.440
11 435E—-05 4.96E-05 3.09E—05 2.84E—-05 041 0.37 43261 37.812
12 5.7E—05 471E-05 3.94E—05 3.31E-05 024 0.35 36.158 37.626
13 4.84E—05 3.51E—05 3.85E-05 2.79E-05 0.37 0.31 3642133 37.189
14 4.53E-05 4.02E—05 348E-05 3.28E-05 0.31 0.34 37.196 37.956
15 541E—-05 4.85E—05 3.36E—05 3.02E-05 0.36 0.36 36.787 37.476
16 4.18E—05 548E—05 3.61E—05 3.38E—05 041 0.34 37.164 37.412
17 4.86E—05 5.06E—05 3.26E—05 3.15E-05 0.35 0.32 37.164 36.968
18 4.14E—05 4.51E—05 3.94E-05 4.19E-05 0.35 0.29 37.159 37.190
19 438E—-05 5.23E—05 341E-05 3.74E-05 0.36 0.38 36.597 37.207
20 4.6E—05 428E—05 4.30E—05 3.98E-05 0.37 0.35 37350 36.977
21 422E-05 4.53E—05 3.87E-05 2.63E-05 0.37 0.31 37.392 38.036
22 421E—05 4.49E-05 3.07E-05 3.6E—05 041 038 39.429 37.074
23 4.6E—05 5.36E—-05 3.75E—05 4.05E—-05 034 031 37.151 37.769
24 446E—05 4.82E—05 3.89E—05 3.84E—-05 0.32 0.28 36.943 37.436
25 4.11E-05 5.11E—-05 3.80E—-05 448E-05 0.37 0.34 37.255 38.352
26 4.69E-05 5.12E—05 3.36E-05 3.81E-05 0.33 042 39.896 37.806
27 493E-05 5.22E—05 3.63E-05 4.14E-05 037 032 38.376 37.567
28 593E-05 4.09E—-05 3.53E-05 3.55E-05 0.33 0.27 37.505 37.400
29 391E-05 4.03E-05 3.29E-05 2.62E-05 0.32 0.36 37.812 38.072
30 745E—-05 4.37E—05 3.66E-05 3.76E-05 0.31 0.3 36.186 37.293
Min. 391E-05 3.51E-05 3.08E—05 2.62E-05 0.24 027 36.158 36.968
Max. 7T45E—05 5.48E—05 4.30E—05 4.5E—05 044 042 43.2061 38.874
Mean 477E-05 4.62E—05 3.59E-05 3.57E-05 035 033 37.730 37.614
Std. dev. 7.63E—-06 4.9E—06 293E-06 S545E-06 0.04 0.03 1.608 0.491

hypothesis can be rejected. There is a significant difference
between two approaches, and random immigrants MOPSO

outperforms mutation MOPSO algorithm.

Table 9 Statistical hypothesis testing for the fourth test problem

Performance metric z value Hy

S 0.9411 Not enough evidence to reject
D 0.1451 Not enough evidence to reject
E 2.2727 Reject

T 0.3786 Not enough evidence to reject
a < 0.05

,
Piedase cllollayao
KACST &.0141lg oglel)

@ Springer

648

Complex & Intelligent Systems (2020) 6:635-650

Results for the third test problem

According to the results given in Tables 6 and 7, null hypoth-
esis cannot be rejected. It means that there is no significant
difference between two approaches with respect to these per-
formance metrics. Regarding the time performance metric,
null hypothesis can be rejected, and the mutation MOPSO
outperforms the random immigrants MOPSO.

Results for the fourth test problem

According to the results given in Tables 8 and 9, for S and
D performance metrics, null hypothesis cannot be rejected.
It means that there is no significant difference between two
approaches with respect to these performance metrics. Nev-
ertheless, for E performance metric, null hypothesis can
be rejected. It means that there is a significant difference
between two approaches with respect to E performance
metric, and mutation MOPSO approach outperforms ran-
dom immigrants MOPSO approach. Regarding the time
performance metric, null hypothesis cannot be rejected. In
other words, there is no significant difference between two
approaches with respect to the running times.

Conclusion

Computational Intelligence is developed to create solutions
for the real-life complex problems for which linear, non-
linear, or stochastic models could not propose a remedy.
Nature-inspired metaheuristic algorithms take an improving
importance in computational intelligence. The most impor-
tant issue in metaheuristics is to balance the exploitation and
the exploration depending on the problem studied. When the
problem has a single objective, the hybridized algorithms
provide solutions, but it is more difficult when a multi objec-
tive analysis is made.

This paper is original to develop MOPSO using Random
Immigrants, which has enlarged the diversity of solutions
remarkably. Application of the proposed algorithm on four
well-accepted data sets has shown the benefits of the solution
for four performance measures, process timing, Generational
Distance, Spacing, and Error Ratio. Statistical experiments
are constructed to compare the Mutation Approach (that
gives better than other existing solutions) and the Random
Immigrants approach for diversity. Results show that Ran-
dom Immigrants approach is faster in providing the solution
in most of the cases and as good as mutation approach in the
others.

Dieliase ¢llodi ay .
bes Shenas Q) Springer

Implementing the proposed algorithm in a real-life case
and to compare the results (for both real-life cases and test
suits) with the state-of-the-art variants of the MOPSO will
be the extension of this study. Archive maintenance and local
optima problems faced in using MOPSO worth new studies,
which will be further analysis in our team. Having observed
the timing performances of MOPSO with Random Immi-
grants, we would also like to recommend the application of
this method in Big Data handling.

This paper will open a new dimension for the MOPSO
researchers and provide a new tool for computational intel-
ligence application.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Agrawal S, Dashora Y, Tiwari MK, Son YJ (2008) Interactive
particle swarm: a pareto-adaptive metaheuristic to multiobjective
optimization. IEEE Trans Syst Man Cybern Part A Syst Hum
38(2):258-277

2. Al Moubayed N, Petrovski A, McCall J (2010) A novel smart
multi-objective particle swarm optimisation using decomposition.
Springer, Berlin Heidelberg, pp 1-10

3. Baltar AM, Fontane DG (2006) A generalized multiobjective parti-
cle swarm optimization solver for spreadsheet models: application
to water quality. Hydrol Days 1-12

4. Coello CAC, Lechuga MS (2002) Mopso: a proposal for multiple
objective particle swarm optimization. In: Proceedings of the 2002
congress on evolutionary computation, 2002. CEC ’02, vol 2, pp
1051-1056

5. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multi-
ple objectives with particle swarm optimization. IEEE Trans Evol
Comput 8(3):256-279

6. Coello Coello CA, Gonzalez Brambila S, Figueroa Gamboa J,
Castillo Tapia MG, Herndndez Gémez R (2019) Evolutionary mul-
tiobjective optimization: open research areas and some challenges
lying ahead. Complex Intell Syst. https://doi.org/10.1007/s40747-
019-0113-4

7. Daneshyari M, Yen GG (2011) Cultural-based multiobjective par-
ticle swarm optimization. IEEE Trans Syst Man Cybern Part B
(Cybernetics) 41(2):553-567

8. Deb K (1999) Multi-objective genetic algorithms:problem difficul-
ties and construction of test problems. Evol Comput 7:205-230

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s40747-019-0113-4
https://doi.org/10.1007/s40747-019-0113-4

Complex & Intelligent Systems (2020) 6:635-650

649

9.

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

217.

28.

Fan SKS, Chang JM, Chuang YC (2015) A new multi-objective
particle swarm optimizer using empirical movement and diversified
search strategies. Eng Optim 47(6):750-770

Fieldsend JE, Singh S (2002) A multi-objective algorithm based
upon particle swarm optimisation, an efficient data structure and
turbulence. In: 2002 UK workshop on computational intelligence,
Birmingham, UK, 2—4 September 2002, pp. 3744

Han H, Lu W, Zhang L, Qiao J (2018) Adaptive gradient
multiobjective particle swarm optimization. IEEE Trans Cybern
48(11):3067-3079. https://doi.org/10.1109/TCYB.2017.2756874
Hu W, Yen GG (2013) Density estimation for selecting leaders and
mantaining archive in mopso. In: 2013 IEEE congress on evolu-
tionary computation, pp 181-188

Hu W, Yen GG (2015) Adaptive multiobjective particle swarm
optimization based on parallel cell coordinate system. IEEE Trans
Evol Comput 19(1):1-18

Tzui K, Nishiwaki S, Yoshimura M, Nakamura M, Renaud JE
(2008) Enhanced multiobjective particle swarm optimization in
combination with adaptive weighted gradient-based searching. Eng
Optim 40(9):789-804

Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
IEEE international conference on neural networks, 1995. Proceed-
ings, vol 4, pp 1942-1948

Kita H, Yabumoto Y, Mori N, Nishikawa Y (1996) Multi-objective
optimization by means of the thermodynamical genetic algorithm.
In: Proceedings of the 4th international conference on parallel prob-
lem solving from nature, PPSN IV. Springer, London, pp 504-512
Konak A, Coit DW, Smith AE (2006) Multi-objective optimization
using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992—
1007. Special Issue—Genetic Algorithms and ReliabilitySpecial
Issue—Genetic Algorithms and Reliability

Kursawe F (1991) A variant of evolution strategies for vector opti-
mization. In: Proceedings of the 1st workshop on parallel problem
solving from nature, PPSN 1. Springer, London, pp 193-197
Lalwani S, Singhal S, Kumar R, Gupta N (2013) A comprehensive
survey: applications of multi-objective particle swarm optimization
(mopso) algorithm. Trans Combin 2(1):39-101

Leung MF, Ng SC, Cheung CC, Lui AK (2014) A new strategy
for finding good local guides in mopso. In: 2014 IEEE congress on
evolutionary computation (CEC), pp 1990-1997

Li X (2004) Better spread and convergence: particle swarm
multiobjective optimization using the maximin fitness function.
Springer, Berlin Heidelberg, pp 117-128

Luo J, Huang X, Li X, Gao K (2019) A novel particle swarm
optimizer for many-objective optimization. In: 2019 IEEE congress
on evolutionary computation (CEC), pp 958-965. https://doi.org/
10.1109/CEC.2019.8790343

Mahmoodabadi MJ, Bagheri A, Nariman-zadeh N, Jamali A (2012)
A new optimization algorithm based on a combination of par-
ticle swarm optimization, convergence and divergence operators
for single-objective and multi-objective problems. Eng Optim
44(10):1167-1186

Markowitz H (1952) Portfolio selection. J Fin 7(1):77-91
Mavrovouniotis M, Yang S (2013) Ant colony optimization with
immigrants schemes for the dynamic travelling salesman problem
with traffic factors. Appl Soft Comput 13(10):4023-4037

Meza J, Espitia H, Montenegro C, Giménez E, Gonzalez-Crespo R
(2017) Movpso: Vortex multi-objective particle swarm optimiza-
tion. Appl Soft Comput 52:1042—1057. https://doi.org/10.1016/j.
as0c.2016.09.026

Moore J, Chapman R, Dozier G (2000) Multiobjective particle
swarm optimization. In: Proceedings of the 38th annual on south-
east regional conference, ACM-SE 38. ACM, New York, pp 56-57
Mostaghim S, Teich J (2003) Strategies for finding good local
guides in multi-objective particle swarm optimization (mopso). In:

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Swarm intelligence symposium, 2003. SIS "03. Proceedings of the
2003 IEEE, pp 26-33

Padhye N (2009) Comparison of archiving methods in multi-
objectiveparticle swarm optimization (mopso): Empirical study. In:
Proceedings of the 11th annual conference on genetic and evolu-
tionary computation, GECCO ’09. ACM, New York, pp 1755-1756
Padhye N, Branke J, Mostaghim S (2009) Empirical comparison
of mopso methods: guide selection and diversity preservation. In:
2009 IEEE congress on evolutionary computation, pp 2516-2523
Pan A, Wang L, Guo W, Wu Q (2018) A diversity enhanced multi-
objective particle swarm optimization. Inf Sci 436-437:441-465.
https://doi.org/10.1016/.ins.2018.01.038

Peng W, Zhang Q (2008) A decomposition-based multi-objective
particle swarm optimization algorithm for continuous optimiza-
tion problems. In: 2008 IEEE international conference on granular
computing, pp 534-537

Pulido GT, Coello Coello CA (2004) Using clustering techniques
to improve the performance of a multi-objective particle swarm
optimizer. Springer, Berlin, pp 225-237

Raquel CR, Naval Jr PC (2005) An effective use of crowding
distance in multiobjective particle swarm optimization. In: Pro-
ceedings of the 7th annual conference on genetic and evolutionary
computation, GECCO ’05. ACM, New York, pp 257-264
Scheepers C, Engelbrecht AP (2017) Vector evaluated particle
swarm optimization: The archive’s influence on performance. In:
2017 IEEE congress on evolutionary computation (CEC), pp 565—
572. https://doi.org/10.1109/CEC.2017.7969361

Sierra MR, Coello CAC (2006) Multi-objective particle swarm
optimizers: a survey of the state-of-the-art. Int J Comput Intell
Res 2(3):287-308

Sierra MR, Coello Coello CA (2005) Improving pso-based multi-
objective optimization using crowding, mutation and e-dominance.
In: Proceedings of the third international conference on evolu-
tionary multi-criterion optimization, EMO’05. Springer, Berlin,
Heidelberg, pp 505-519

Unal AN (2013) A Genetic Algorithm for the Multiple Knapsack
Problem in Dynamic Environment. In: World congress on engineer-
ing and computer science, WCECS 2013, vol II, Lecture Notes in
Engineering and Computer Science, pp 1162-1167

Url-1: http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/
(2016). Accessed 26 July 2016

Url-2: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
(2016). Accessed 26 July 2016

Xiang Y, Zhou Y, Chen Z, Zhang J (2018) A many-objective particle
swarm optimizer with leaders selected from historical solutions by
using scalar projections. IEEE Trans Cybern 1-14. https://doi.org/
10.1109/TCYB.2018.2884083

Xiao-hua Z, Hong-yun M, Li-cheng J (2005) Intelligent particle
swarm optimization in multiobjective optimization. In: 2005 IEEE
congress on evolutionary computation, vol 1, pp 714-719

Yang S (2005) Memory-based immigrants for genetic algorithms
in dynamic environments. In: Proceedings of the 7th annual con-
ference on genetic and evolutionary computation, GECCO 05, pp
1115-1122. ACM, New York, NY, USA

Yen GG, Leong WF (2009) Dynamic multiple swarms in multiob-
jective particle swarm optimization. IEEE Trans Syst Man Cybern
Part A Syst Hum 39(4):890-911

Yen GG (2010) Leong, W.E.: Constraint handling procedure for
multiobjective particle swarm optimization. In: IEEE congress on
evolutionary computation, pp 1-8

Zapotecas Martinez S, Coello Coello CA (2011) A multi-objective
particle swarm optimizer based on decomposition. In: Proceedings
of the 13th annual conference on genetic and evolutionary compu-
tation, GECCO ’11. ACM, New York, pp 69-76. DOI https://doi.
org/10.1145/2001576.2001587

Lisllase cllal .
bes Shens) Springer

https://doi.org/10.1109/TCYB.2017.2756874
https://doi.org/10.1109/CEC.2019.8790343
https://doi.org/10.1109/CEC.2019.8790343
https://doi.org/10.1016/j.asoc.2016.09.026
https://doi.org/10.1016/j.asoc.2016.09.026
https://doi.org/10.1016/j.ins.2018.01.038
https://doi.org/10.1109/CEC.2017.7969361
http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
https://doi.org/10.1109/TCYB.2018.2884083
https://doi.org/10.1109/TCYB.2018.2884083
https://doi.org/10.1145/2001576.2001587
https://doi.org/10.1145/2001576.2001587

650

Complex & Intelligent Systems (2020) 6:635-650

47. Zhang H, SunJ, Liu T, Zhang K, Zhang Q (2019) Balancing explo-
ration and exploitation in multiobjective evolutionary optimization.
Inf Sci 497:129-148. https://doi.org/10.1016/j.ins.2019.05.046

48. Zhao SZ, Suganthan PN (2011) Two-lbests based multi-objective
particle swarm optimizer. Eng Optim 43(1):1-17

49. Zhu Q, Lin Q, Chen W, Wong K, Coello Coello CA, Li J, Chen J,
Zhang J (2017) An external archive-guided multiobjective particle
swarm optimization algorithm. IEEE Trans Cybern 47(9):2794—
2808. https://doi.org/10.1109/TCYB.2017.2710133

Lisllase cllad .
bes Shenas Q) Springer

50. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective
evolutionary algorithms: empirical results. Evol Comput 8(2):173—
195

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.ins.2019.05.046
https://doi.org/10.1109/TCYB.2017.2710133

	Multi-objective particle swarm optimization with random immigrants
	Abstract
	Introduction
	Literature review
	Multi-objective optimization
	Related work

	Random immigrants method
	Experimentation
	Test problems
	Performance metrics
	Hypothesis testing and parameters

	Results
	Results for the first test problem
	Results for the second test problem
	Results for the third test problem
	Results for the fourth test problem

	Conclusion
	References

