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Abstract
The transportation problem in real life is an uncertain problem with multi-objective decision-making. In particular, by 
considering the conflicting objectives/criteria such as transportation costs, transportation time, discount costs, labour costs, 
damage costs, decision maker searches for the best transportation set-up to find out the optimum shipment quantity subject 
to certain capacity restrictions on each route. In this paper, capacitated stochastic transportation problem is formulated as 
a multi-objective optimization model along with some capacitated restrictions on the route. In the formulated problem, we 
assume that parameters of the supply and demand constraints’ follow gamma distribution, which is handled by the chance 
constrained programming approach and the maximum likelihood estimation approach has been used to assess the probabilistic 
distributions of the unknown parameters with a specified probability level. Furthermore, some of the objective function’s 
coefficients are consider as ambiguous in nature. The ambiguity in the formulated problem has been presented by interval 
type 2 fuzzy parameter and converted into the deterministic form using an expected value function approach. A case study 
on transportation illustrates the computational procedure.

Keywords  Multi-objective optimization · Capacitated transportation problem · Stochastic programming · Interval type-2 
fuzzy number · Gamma distribution · Maximum likelihood estimation

Introduction

The problem of transportation is a very interesting method 
of management sciences, which can be conceived and solved 
as a problem of linear programming (LP). Transport prob-
lem (TP) is seen as a logistics issue where the primary aim is 
to determine how and when to transport goods from distinct 
sources to distinct destinations with a minimum price or 
maximum profit. Also, today’s decision maker (DM) seeks 
to reduce the shipping expenses but simultaneously seeks 
to reduce the distribution system’s transportation time. We 
have been able to observe in recent years that for many of the 
real-world situations, a classic mathematical programming 

model is insufficient. The nature of these problems requires, 
on the one hand, taking into account multiple goals and, on 
the other, different types of uncertainty. These uncertainties 
in the problem is represented by either with fuzziness or 
multi-choices or by probabilistic variables.

Stochastic programming (SP) discusses situations under 
which random variables define any or more of the param-
eters of a computational programming problem, rather than 
deterministic variables. Although deterministic problems 
are developed with set parameters, while the real-world 
problems concerned with the parameters that are almost 
definitely undefined at the moment a choice is to be taken. 
If the parameters are unknown but assumed to be in some 
range of possible values, a solution may be found which 
is feasible for all specific parameters which helps to opti-
mize a defined objective function. In the recent past, SP has 
been adhered to problems with various, contradictory and 
non-commensurable goals where there is usually no single 
solution capable of optimizing all goals, but there is a set 
of alternatives from which an “appropriate solution” also 
known as a “compromise solution” must be identified. In a 
decision-making problem with several criteria, though, the 
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decision-maker generally follows on requirements compli-
ance rather than optimizing of goals. However, when the 
parameters are stochastic and fuzzy, these problems become 
more complicated. It is easy to see from the literature for SP 
that much work has been done in an uncertain environment. 
However, in some scenarios, if the sample data are sufficient, 
we can estimate some parameters as random variables.

The basic concept of solving any SP problem is transition-
ing the problem into a similarly deterministic form (equal in 
the context that a solution to the corresponding deterministic 
problem is a solution to the SP). Many methods have been 
suggested in the past on SP to address the equivalent deter-
ministic form of the random variables. Some techniques are 
based on statistical and probabilistic concepts for dealing 
stochastically with the problem and then finding the cor-
responding deterministic form. Some prominent work, that 
can be useful for the present study include, Sinha et al. [1] 
used Joint Normal distribution; Sahoo and Biswal [2] used 
Cauchy and Extreme value distribution; Mahapatra et al. [3] 
used Log-Normal distribution; Barik et al. [4] used Pareto 
distribution; Roy and Mahapatra [5] used Log-Normal dis-
tribution with interval type parameters; Mahapatra et al. [6] 
used Extreme Value distribution with multi-choice param-
eters; Roy et al. [7] used Exponential distribution with multi-
choice parameters; Biswal and Samal [8] used Cauchy distri-
bution with multi-choice parameters; Samal and Biswal [9] 
used Exponential distribution; Javaid et al. [10] used Weibull 
distribution; Mahapatra et al. [11] used Weibull distribution 
with multi choice parameters; Roy [12] used Weibull distri-
bution with multi-choice parameters; Barik [13] used Pareto 
distribution; Roy [14] used Logistic distribution with multi-
choice parameters; Biswas and De [15] used Joint Extreme 
value distribution with fuzzy parameters; Barik and Biswal 
[16] used Normal distribution; Maity et al. [17] used Nor-
mal distribution; De et al. [18] used Cauchy and Extreme 
value distribution with fuzzy parameters; Acharya et al. [19] 
used three-parameter extreme value distribution for getting 
the equivalent deterministic form of the uncertain stochas-
tic parameter and also all of them formulated same type 
of linear TP distribution. Dufuaa and Sultan [20] formu-
lated the maintenance planning problem by considering the 
schedule reserves scenario with sufficient resources to meet 
emergency employment when preparing a schedule for on-
the-spot employment. Yang and Feng [21] formulated solid 
bicriteria TP with random parameters and developed three 
types of models, including the expected value model, the 
chance-constrained model and the goal programming model. 
Zhang et al. [22] proposed a fuzzy-robust stochastic model, 
which integrates LP and SP into a general multi-objective 
programming framework. The established framework was 
then implemented to a case study in which petroleum waste-
flow-allocation alternatives were planned and associated 
operations were managed under uncertainty in an integrated 

petroleum waste management scheme. Beraldi et al. [23] 
addressed the issue encountered by a number of electricity 
users in formative the optimum short-term procurement plan 
and formulated a two-stage problem to assess the optimal 
quantity of energy to be bought by contractual contracts 
and from the power market. Díaz-García and Bashiri [24] 
formulated the multi-response surface problem as multi-
objective stochastic optimization and suggested various 
alternatives to the problem. Mousavi et al. [25] considered 
multiple cross-docking centers (CDCs) and vehicle routing 
schedules for logistics companies to make strategic/tactical 
and operational decisions. They introduced two new meth-
ods, i.e., deterministic mixed-integer LP models and fuzzy 
possibilistic-SP model to integrate CDC place and schedul-
ing of car routing issue with various CDCs. Li et al. [26] 
considered spare parts for maintenance, repair and operation 
(MRO) which are vital for machine operations and proposed 
an improved SP model for MRO spare parts supply chain 
planning. Before formulating the problem of concern, we 
realized that under distinct situations, all previous work was 
formulated for the problem of production and transportation. 
Samanta et al. [27] formulated multi-objective and multi-
item TP with ambiguity, and also implemented the speed 
of various vehicles and traffic disruption factor for the time 
minimization for the first time owing to the road conditions 
on different roads. Kaushal et al. [28] developed a hierarchi-
cal design model of fixed charge fractional TP for a food 
chain business in which the organic cooking oil used for 
processing. By proposing a new computational method for 
solving the fuzzy Pythagorean TP, Kumar et al. [29] pre-
sented a modern way of treating the uncertainty in the crisp 
environment. Majumder et al. [30] proposed a profit and 
time optimization problem that acknowledges the nature of 
potential indeterminacy by constructing an unpredictable 
multi-objective solid TP with budget restriction for each 
destination. Roy and Midya [31] modeled a multi-objective 
robust TP with component mixing in an intuitionistic vague 
environment and found various Pareto-optimal solutions 
from the suggested method, with weight coefficients varying 
from objective functions. Samanta and Jana [32] developed 
a method for solving decision-making problems using multi-
criteria in order to rate the mode of transportation using the 
degree of possibility and then used fuzzy goal approach and 
convex combination method for solving the TP.

From Table 1, we saw that most authors in their formu-
lated models considered the problem of single and multi-
objective production and transportation whereas Sinha et al. 
[1], Biswas and De [15], Barik and Biswal [16] have consid-
ered the general formulation of LP. We have also noticed that 
almost every author hypothetically choose the value of the 
probabilistic parameter. However, here in the present work, 
we have used the maximum likelihood estimation (MLE) 
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approach for obtaining the value of the unknown parameter. 
All the related work has been summarized in Table 1.

Motivating from such research, we have formulated the 
multi-objective optimization model for capacitated transpor-
tation problem (TP) in a fuzzy and probabilistic environ-
ment. From the Table 1, we have found that none of the 
author has used MLE approach for getting the desired value 
of the parameters. This is considered to be as the major 
drawback that we have found in all the previous work. 
However, in real-world problems, it is often hard for DM 
to estimate the precise values of parameters to the best of 
our knowledge. To overcome this issue, we have used MLE 
approach for getting the desired shape and scale parameter 
of the considered probabilistic distribution. Following are 
the key points of this research:

1.	 Earlier, the practitioners regard TP only as a single, 
multi-objective problem, but we have expanded it to a 
capacitated problem with the need for time.

2.	 TP with multiple and conflicting objectives is studied 
for the first time along with interval type 2 parameters 
among the objective functions.

3.	 SP technique is implemented to address the inequality 
relationships between different supply and demand con-
straints.

4.	 The probabilistic random variable for the proposed prob-
lem is studied in conjunction with the application of the 
MLE approach to model the uncertainty in demand and 
supply parameters.

In this article, we established a Multi-Objective Capaci-
tated Transportation Problem (MOSCTP) model in which 
the DM is clueless of shipping costs, delivery times, harm 
costs, labor costs, discounted costs, demand, and supply 
from a specific source to different destination due to cer-
tain inevitable factors. Such unexpected factors contribute 
to irregularities during the problem development, which are 
characterized by fuzziness and randomness, and transformed 
into the corresponding crisp form using the ranking func-
tion and SP approach respectively. Uncertainty in demand 
and supply parameters is assumed to follow the Gamma 
Distribution (GD), and the MLE approach has been used 
to determine the scale and location of probabilistic distri-
bution parameters. Finally, to achieve the ideal solution of 
MOSCTP model, the fuzzy goal-programming technique has 
been used. To explain the entire model solving procedure; 
a quantitative case study has been given. The next section, 
after illustration of the literature review, is related to the 
problem’s model formulation.

Table 1   Summary of related literature

S.No Author Distribution Estimation of parameters Case study

1 Sinha et al. [1] Joint normal distribution Direct value No case study
2 Sahoo and Biswal [2] Cauchy and extreme value distribution Direct value Multi-objective production problem
3 Mahapatra et al. [3] Log-normal distribution Direct value Multi-objective transportation problem
4 Barik et al. [4] Pareto distribution Direct value Multi-objective production problem
5 Roy and Mahapatra [5] Log-normal distribution Direct value Multi-objective transportation problem
7 Mahapatra et al. [6] Extreme value distribution Direct value Single-objective transportation problem
6 Roy et al. [7] Exponential distribution Direct value Single-objective transportation problem
8 Biswal and Samal [8] Cauchy distribution Direct value Multi-objective transportation problem
9 Samal and Biswal [9] Exponential distribution Direct value Multi-objective transportation problem
10 Javaid et al. [10] Weibull distribution Direct value No case study
11 Mahapatra et al. [11] Weibull distribution Direct value Single-objective transportation problem
12 Roy [12] Weibull distribution Direct value Single-objective transportation problem
13 Barik [13] Pareto distribution Direct value Multi-objective production problem
14 Roy [14] Logistic distribution Direct value Single-objective transportation problem
15 Biswas and De [15] Joint Extreme Value distribution Direct value No case study
16 Barik and Biswal [16] Normal distribution Direct value No case study
17 Maity et al. [17] Normal distribution Direct value Multi-objective transportation Problem
18 De et al. [18] Cauchy and extreme value distribution Direct value Multi-objective production problem
19 Acharya et al. [19] Extreme value distribution Direct value Multi-objective transportation problem
20 Present study Gamma distribution Maximum likelihood 

estimation approach
Multi-objective capacitated transportation 

problem
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Mathematical model

In this paper, we consider a mathematical model of capaci-
tated TP involving interval type 2 fuzzy number and GD, 
respectively. TP is considered to be a fundamental problem 
in networking. TP comprises of a scenario where a prod-
uct is to be transported from multiple sources (also known 
as source, supply point) to multiple sinks (also known as 
location, demand point) with the objective of optimal dis-
tribution to minimize transport costs. Today’s DM not only 
tries to minimize transportation costs but also searches for 
minimum transportation time at the same time. Sometimes, 
owing to some budget issue, road security, and consideration 
of storage, DM specified the cumulative capacity for each 
path; this provides rise to the growth of capacitated TP that 
was first researched by Wagner [33]. There was not enough 
literature available to solve capacitated TP, and a search 
revealed that there was no unique method available to find 
an optimal solution to the mixed constraints problem. Let 
us consider the quantity of the item available at m sources 
(origins) Oi (i = 1, 2, 3, ....,m) to be delivered to the n loca-
tion Dj (j = 1, 2, 3, ....., n) to meet the bj requirement. With 
this assumption, the three different mathematical model for 
the multi-objective capacitated TP with mixed constraints is 
formulated as follows [34, 35]:

Model (1)

where rij denote the maximum restriction on the amount of 
quantity to be shipped from ith source to jth  destination 
i.e.  xij ≤ rij.  The objective function (1) used to optimizes 
the damage cost of shipment the aggregate units; and the 
objective function (2) used to optimizes the labour cost for 
the aggregate units. Similarly, based on the above-defined 
assumption, the mathematical model for the multiobjec-
tive fractional capacitated TP with mixed constraints is as 
follows.

Min

(
F1 =

m∑
i=1

n∑
j=1

dij xij, F2 =

m∑
i=1

n∑
j=1

lij xij

)

Subject to

n∑
j=1

xij{≤ ∕ = ∕ ≥} ai, i = 1, 2, 3,… ,m

m∑
i=1

xij{≤ ∕ = ∕ ≥} bj, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij

Model (2)

A scenario can emerge in several logistical issues when 
we have to contend with both linear and fractional func-
tions in a single problem. The objective function (3) used 
to optimize the cumulative fractional transport time for the 
products to be transported. The objective function (4) used 
to optimizes cumulative fractional transport cost occurs dur-
ing product shipment. The objective function (5) used to 
optimizes the discount per unit provided on transport costs. 
We also consider the case of multi objective capacitated TP 
with linear and fractional objective functions with mixed 
constraints; which may be described as follows.

Notations

k	� index for objectives, for all k = 1, 2, 3, 4, 5,… ,K

xij	� is the variable that represents the unknown quantity 
transported from ith origin to jth destination

dij	� the cost of damage occur during the transport period
lij	� the cost of labour for transporting the xij > 0 units
ta
ij
	� the actual time for transporting xij > 0 units

ts
ij
	� the standard time for transporting xij > 0 units

ca
ij
	� the actual cost for transporting xij > 0 units

cs
ij
	� the standard cost of transporting xij > 0 units

ds
ij
	� the discount cost given during the transportation

rij	� maximum quantity of amount to be transported from ith 
source to jth destination

Min

⎛
⎜⎜⎜⎜⎝
F1 =

∑m

i=1

∑n

j=1
ta
ij
xij∑m

i=1

∑n

j=1
ts
ij
xij

,F2 =

∑m

i=1

n∑
j=1

ca
ij
xij

∑m

i=1

∑n

j=1
cs
ij
xij

⎞
⎟⎟⎟⎟⎠

Max F3 =

∑m

i=1

∑n

j=1
ds
ij
xij∑m

i=1

∑n

j=1
ca
ij
xij

Subject to

n�
j=1

xij{≤ ∕ = ∕ ≥} ai, i = 1, 2, 3,… ,m

m�
i=1

xij{≤ ∕ = ∕ ≥} bj, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij.
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Using all the above defined notations, the model has been 
formulated as

Model (3)

In the past few years, with the growth of economic glo-
balization, more and more companies and enterprises, par-
ticularly many multinational corporations, are focusing on 
goods TP. Thinking about the different multifaceted nature 
in real-world business, a few researchers acknowledge that 
it was typically improper to consider the unit cost of trans-
portation, the demand and supply as real numbers. For 
instance, the information related to transportation systems, 
for example, resources, cost, time, demands and supply may 
not be fixed continuously. Transportation costs depend on 
fuel price, labour charges, and government taxes, and from 
time to time, these variables differ. The main reason for the 
uncertainty in demand and supply is increased cost, and most 
commonly in the form of excess inventory, excess capac-
ity in production, or the use of faster and more expensive 
transportation of goods. In view of the possible scenarios 
discussed above, the fuzzy formulation of the problem by 
replacing all the deterministic parameters with fuzzy param-
eters is conventionally expressed as:

Model (1′)

Similarly,

Min

�
F1 =

m�
i=1

n�
j=1

dij xij , F2 =

m�
i=1

n�
j=1

lij xij

�

Min

�
F3 =

∑m

i=1

∑n

j=1
ta
ij
xij∑m

i=1

∑n

j=1
ts
ij
xij

, F4 =

∑m

i=1

∑n

j=1
ca
ij
xij∑m

i=1

∑n

j=1
cs
ij
xij

�

Max F5 =

∑m

i=1

∑n

j=1
ds
ij
xij∑m

i=1

∑n

j=1
ca
ij
xij

Subject to

n�
j=1

xij{≤ ∕ = ∕ ≥} ai, i = 1, 2, 3,… ,m

m�
i=1

xij{≤ ∕ = ∕ ≥} bj, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij.

Min

(
F̃1 =

m∑
i=1

n∑
j=1

d̃
ij
xij, F̃2 =

m∑
i=1

n∑
j=1

l̃
ij
xij

)

Subject to Pr

(
n∑
j=1

xij{≤ ∕ = ∕ ≥} ai

)
≥ 1 − 𝛾i, i = 1, 2, 3,… ,m

Pr

(
m∑
i=1

xij{≤ ∕ = ∕ ≥} bj

)
≥ 1 − 𝛿j, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij.

Model (2′)

Model (3′)

In the above-formulated models, input parameters of the 
objective functions have been represented with vagueness. 
We have considered d̃

ij
 , l̃

ij
 , t̃a

ij
 , t̃s

ij
 , c̃a

ij
 , c̃s

ij
 , d̃s

ij
 , and c̃a

ij
 as interval 

type-2 trapezoidal fuzzy numbers. The key advantage of 
type-2 fuzzy sets is their potential to handle the uncertainty 
more effectively than those of type-1 fuzzy sets. It is so as 
for type-2 fuzzy sets, a greater number of factors and greater 
degrees of independence are accessible. More importantly, 
“A type-1 fuzzy set is characterized by a two-dimensional 
membership function, whereas a type-2 fuzzy set is charac-
terized by a three-dimensional membership function”. 
Through type-2 fuzzy set we can interpret the uncertainty 
more precisely as compared to type-1 fuzzy set. Some essen-
tial definitions of these fuzzy parameters are given below:

Definition 1  (Sinha et al. [36]). Let d̃
ij
 be a type-2 fuzzy set, 

then d̃
ij
 can be expressed as d̃

ij
 = 
{(

(x, u),𝜇d̃
ij

(x, u)
)
|∀x ∈ X

∀u ∈ Jx ⊆ [0, 1], 0 ≤ 𝜇d̃
ij

(x, u) ≤ 1

}
, where X is the universe 

of discourse and 𝜇d̃
ij

 denotes the membership function of d̃
ij
 . 

Min

�
F̃1 =

∑m

i=1

∑n

j=1
t̃a
ij
xij∑m

i=1

∑n

j=1
t̃s
ij
xij

, F̃2 =

∑m

i=1

∑n

j=1
c̃a
ij
xij∑m

i=1

∑n

j=1
c̃s
ij
xij

�

Max F̃3 =

∑m

i=1

∑n

j=1
d̃s
ij
xij∑m

i=1

∑n

j=1
c̃a
ij
xij

Subject to Pr

�
n�
j=1

xij{≤ ∕ = ∕ ≥} ai

�
≥ 1 − 𝛾i, i = 1, 2, 3,… ,m

Pr

�
m�
i=1

xij{≤ ∕ = ∕ ≥} bj

�
≥ 1 − 𝛿j, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij.

Min

�
F̃1 =

m�
i=1

n�
j=1

d̃
ij
xij, F̃2 =

m�
i=1

n�
j=1

l̃
ij
xij

�

Min

�
F̃3 =

∑m

i=1

∑n

j=1
t̃a
ij
xij∑m

i=1

∑n

j=1
t̃s
ij
xij

, F̃4 =

∑m

i=1

∑n

j=1
c̃a
ij
xij∑m

i=1

∑n

j=1
c̃s
ij
xij

�

Max F̃5 =

∑m

i=1

∑n

j=1
d̃s
ij
xij∑m

i=1

∑n

j=1
c̃a
ij
xij

Subject to Pr

�
n�
j=1

xij{≤ ∕ = ∕ ≥} ai

�
≥ 1 − 𝛾i, i = 1, 2, 3,… ,m

Pr

�
m�
i=1

xij{≤ ∕ = ∕ ≥} bj

�
≥ 1 − 𝛿j, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij.
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Then, d̃
ij
 it can be expressed as d̃

ij
=∫

x∈X
∫
u∈Jx

𝜇d̃
ij

(x, u)∕(x, u)

,u ∈ Jx ⊆ [0, 1].[0, 1].

Definition 2  (Sinha et al. [36]). For a type-2 fuzzy set d̃
ij
 , if 

all 𝜇d̃
ij

(x, u) = 1, then d̃
ij
 is called an interval type-2 fuzzy set, 

i.e., d̃
ij
∫
x∈X

∫
u∈Jx

1∕(x, u)∕(x, u)u ∈ Jx ⊆ [0, 1].

Definition 3  (Sinha et al. [36]). Uncertainty in the primary 
memberships of a type-2 fuzzy set, d̃

ij
 consists of a bounded 

region that we call the footprints of uncertainty (FOU). It is 
t h e  u n i o n  o f  a l l  p r i m a r y  m e m b e r s h i p s , 
i.e.,FOU(d̃

ij
) = Ux∈XJx.

FOU is characterized by the upper membership functions 
(UMF) and the lower membership function (LMF), and are 
denoted by 𝜇d̃

ij

 and 𝜇
d̃
ij

.

Definition 4  (Sinha et al. [36]). An interval type-2 fuzzy 
number is called interval type-2 trapezoidal fuzzy number 
where the UMF and LMF are both trapezoidal fuzzy num-
bers, i.e.,

(1)

d̃
ij
=

(
dU
ij
, dL

ij

)

=

(((
dU
ij

)
1

,

(
dU
ij

)
2

,

(
dU
ij

)
3

,

(
dU
ij

)
4

)
;H

1

(dU
ij
),H

2

(dU
ij
)

)
,

(((
dL
ij

)
1

,

(
dL
ij

)
2

,

(
dL
ij

)
3

,

(
dL
ij

)
4

)
;H

1

(dL
ij
),H

2

(dL
ij
)

)
,

 where Hr(d
L
ij
) and Hr(d

U
ij
) , (r = 1, 2) denote membership 

values of the corresponding elements 
(
dL
ij

)
r+1

 and 
(
dU
ij

)
r+1

 
respectively.

Definition 5  (Sinha et al. [36]) Defuzzification of Interval 
Type-2 Trapezoidal Fuzzy Number. Let us consider an inter-
val type-2 trapezoidal fuzzy number d̃

ij
 , given by Eq. (1). 

The expected value of interval type-2 trapezoidal fuzzy 
number d̃

ij
 is defined as follows:

Similarly, the same definition holds for other fuzzy 
parameters l̃

ij
 , t̃a

ij
 , t̃s

ij
 , c̃a

ij
 , c̃s

ij
 , d̃s

ij
 , and c̃a

ij
  respectively. After 

formulating the model with uncertainty, the next section is 
related to the crisp transformation of uncertain parameters.

Methodology

Using the above-defined definitions as defined in Sect. 2, the 
crisp transformation of the fuzzy parameters of objective 
functions can be presented as:

(2)

E(d̃
ij
) =

1

2

(
1

4

(
4∑

r=1

((
dL
ij

)
r
+
(
dU
ij

))
r

))

×
1

4

(
2∑

r=1

(
Hr(d

L
ij
) + Hr(d

U
ij
)
))

Minimize F̃1 =

m�
i=1

n�
j=1

d̃
ij
xij

=

m�
i=1

n�
j=1

�
dU
ij
, dL

ij

�
xij

=

m�
i=1

n�
j=1

⎛⎜⎜⎜⎝

���
dU
ij

�
1
,
�
dU
ij

�
2
,
�
dU
ij

�
3
,
�
dU
ij

�
4

�
;H1(d

U
ij
),H2(d

U
ij
)
�
,

���
dL
ij

�
1
,
�
dL
ij

�
2
,
�
dL
ij

�
3
,
�
dL
ij

�
4

�
;H1(d

L
ij
),H2(d

L
ij
)
�

⎞⎟⎟⎟⎠
xij

=

m�
i=1

n�
j=1

�
1

2

�
1

4

�
4�

r=1

��
dL
ij

�
r
+
�
dU
ij

��
r

��
×
1

4

�
2�

r=1

�
Hr(d

L
ij
) + Hr(d

U
ij
)
���

xij,
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Minimize F̃2 =

m�
i=1

n�
j=1

l̃
ij
xij

=

m�
i=1

n�
j=1

�
lU
ij
, lL
ij

�
xij

=

m�
i=1

n�
j=1

⎛⎜⎜⎜⎝

���
lU
ij

�
1
,
�
lU
ij

�
2
,
�
lU
ij

�
3
,
�
lU
ij

�
4

�
;H1(l

U
ij
),H2(l

U
ij
)
�
,

���
lL
ij

�
1
,
�
lL
ij

�
2
,
�
lL
ij

�
3
,
�
lL
ij

�
4

�
;H1(l

L
ij
),H2(l

L
ij
)
�
⎞⎟⎟⎟⎠
xij

=

m�
i=1

n�
j=1

�
1

2

�
1

4

�
4�

r=1

��
lL
ij

�
r
+
�
lU
ij

��
r

��
×
1

4

�
2�

r=1

�
Hr(l

L
ij
) + Hr(l

U
ij
)
���

xij,

Minimize F̃3 =

∑m

i=1

∑n

j=1
t̃a
ij
xij∑m

i=1

∑n

j=1
t̃s
ij
xij

=

∑m

i=1

∑n

j=1

�
taU
ij
, taL

ij

�
xij

∑m

i=1

∑n

j=1

�
tsU
ij
, tsL

ij

�
xij

=

∑m

i=1

∑n

j=1

⎛⎜⎜⎜⎝

���
taU
ij

�
1
,
�
taU
ij

�
2
,
�
taU
ij

�
3
,
�
taU
ij

�
4

�
;H1(t

aU

ij
),H2(t

aU

ij
)
�
,

���
taL
ij

�
1
,
�
taL
ij

�
2
,
�
taL
ij

�
3
,
�
taL
ij

�
4

�
;H1(t

aL

ij
),H2(t

aL

ij
)
�

⎞⎟⎟⎟⎠
xij

∑m

i=1

∑n

j=1

⎛⎜⎜⎜⎝

���
tsU
ij

�
1
,
�
tsU
ij

�
2
,
�
tsU
ij

�
3
,
�
tsU
ij

�
4

�
;H1(t

sU

ij
),H2(t

sU

ij
)
�
,

���
tsL
ij

�
1
,
�
tsL
ij

�
2
,
�
tsL
ij

�
3
,
�
tsL
ij

�
4

�
;H1(t

sL

ij
),H2(t

sL

ij
)
�

⎞⎟⎟⎟⎠
xij

=

∑m

i=1

∑n

j=1

�
1

2

�
1

4

∑4

r=1

��
taL
ij

�
r
+
�
taU
ij

��
r

�
×

1

4

�∑2

r=1

�
Hr(t

aL

ij
) + Hr(t

aU

ij
)
���

xij

∑m

i=1

∑n

j=1

�
1

2

�
1

4

∑4

r=1

��
tsL
ij

�
r
+
�
tsU
ij

��
r

�
×

1

4

�∑2

r=1

�
Hr(t

sL

ij
) + Hr(t

sU

ij
)
���

xij

,

Minimize F̃4 =

∑m

i=1

∑n

j=1
c̃a
ij
xij∑m

i=1

∑n

j=1
c̃s
ij
xij

=

∑m

i=1

∑n

j=1

�
caU
ij
, caL

ij

�
xij

∑m

i=1

∑n

j=1

�
csU
ij
, csL

ij

�
xij

=

∑m

i=1

∑n

j=1

⎛⎜⎜⎜⎝

���
caU
ij

�
1
,
�
caU
ij

�
2
,
�
caU
ij

�
3
,
�
caU
ij

�
4

�
;H1(c

aU

ij
),H2(c

aU

ij
)
�
,

���
caL
ij

�
1
,
�
caL
ij

�
2
,
�
caL
ij

�
3
,
�
caL
ij

�
4

�
;H1(c

aL

ij
),H2(c

aL

ij
)
�

⎞⎟⎟⎟⎠
xij

∑m

i=1

∑n

j=1

⎛
⎜⎜⎜⎝

���
csU
ij

�
1
,
�
csU
ij

�
2
,
�
csU
ij

�
3
,
�
csU
ij

�
4

�
;H1(c

sU

ij
),H2(c

sU

ij
)
�
,

���
csL
ij

�
1
,
�
csL
ij

�
2
,
�
csL
ij

�
3
,
�
csL
ij

�
4

�
;H1(c

sL

ij
),H2(c

sL

ij
)
�

⎞
⎟⎟⎟⎠
xij

=

∑m

i=1

∑n

j=1

�
1

2

�
1

4

∑4

r=1

��
caL
ij

�
r
+
�
caU
ij

��
r

�
×

1

4

�∑2

r=1

�
Hr(c

aL

ij
) + Hr(c

aU

ij
)
���

xij

∑m

i=1

∑n

j=1

�
1

2

�
1

4

∑4

r=1

��
csL
ij

�
r
+
�
csU
ij

��
r

�
×

1

4

�∑2

r=1

�
Hr(c

sL

ij
) + Hr(c

sU

ij
)
���

xij

,
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and lastly,

Also, we consider a situation in which demand and sup-
ply parameter is random in nature and follows a GD Like 
most other distributions of probabilities, in many fields 
GD significance has been found. The GD represents a two-
parameter family of continuous probability distributions. 
The distribution of gamma has been used to model the 
aggregated volume size of the real world problems. GD has 
been widely used in many applications such as insurance 
claims, rainfall prediction, wireless communication, oncol-
ogy, neuroscience, bacterial gene expression, genomics, and 
may more. Several authors have worked on this distribution 
that includes, Harter et al. [37] consider the problem of esti-
mation of parameters for gamma and Weibull populations 
when samples are complete and censored. Choi and Wette 
[38] obtained the estimation of parameters with their bias for 
GD Coit and Jin [39] estimated the parameters of reliability 
data with missing failure times using GD Zaigraev and Kara-
kulska [40] discussed the estimation of shape parameters 
when a GD follows samples. The probability density func-
tion of GD with shape � and scale �  parameter is given by:

Since we have considered the problem of MOCSTP with 
mixed constraint, two different cases happen to be occur for (
ai, i = 1, 2, ...,m

)
 when it follows GD and can be presented 

as:
Case I: When Pr

�∑n

j=1
xij ≤ ai

� ≥ 1 − �i,i = 1, 2, ...,m

The probability density function of ai (i = 1, 2, ...,m) is 
given by

Maximize F̃5 =

∑m

i=1

∑n

j=1
d̃s
ij
xij

∑m

i=1

∑n

j=1

�
caU
ij
, caL

ij

�
xij

=

∑m

i=1

∑n

j=1

�
dsU
ij
, dsL

ij

�
xij

∑m

i=1

∑n

j=1

�
caU
ij
, caL

ij

�
xij

=

∑m

i=1

∑n

j=1

⎛⎜⎜⎜⎝

���
dsU
ij

�
1
,
�
dsU
ij

�
2
,
�
dsU
ij

�
3
,
�
dsU
ij

�
4

�
;H1(d

sU
ij
),H2(d

sU
ij
)
�
,

���
dsL
ij

�
1
,
�
dsL
ij

�
2
,
�
dsL
ij

�
3
,
�
dsL
ij

�
4

�
;H1(d

sL
ij
),H2(d

sL
ij
)
�

⎞⎟⎟⎟⎠
xij

∑m

i=1

∑n

j=1

⎛
⎜⎜⎜⎝

���
caU
ij

�
1
,
�
caU
ij

�
2
,
�
caU
ij

�
3
,
�
caU
ij

�
4

�
;H1(c

aU

ij
),H2(c

aU

ij
)
�
,

���
caL
ij

�
1
,
�
caL
ij

�
2
,
�
caL
ij

�
3
,
�
caL
ij

�
4

�
;H1(c

aL

ij
),H2(c

aL

ij
)
�

⎞
⎟⎟⎟⎠
xij

=

=
∑m

i=1

∑n

j=1

�
1

2

�
1

4

∑4

r=1

��
dsL
ij

�
r
+
�
dsU
ij

��
r

�
×

1

4

�∑2

r=1

�
Hr(d

sL
ij
) + Hr(d

sU
ij
)
���

xij

∑m

i=1

∑n

j=1

�
1

2

�
1

4

∑4

r=1

��
caL
ij

�
r
+
�
caU
ij

��
r

�
×

1

4

�∑2

r=1

�
Hr(c

aL

ij
) + Hr(c

aU

ij
)
���

xij

.

f (x) =
1

𝜃𝛼Γ𝛼
x𝛼−1e

−
x

𝜃 , x ≥ 0, 𝛼 > 0, 𝜃 > 0.

Hence, the probabilistic constraint can be presented as:

Equation (4) can be expressed in the integral form as:

Let,

Using Eq. (6), the integral can be further presented as:

On rearranging, we obtain

(3)

f (ai, 𝜃i, 𝛼i) =
1

𝜃
𝛼i
i
Γ𝛼i

a
𝛼i−1

i
e
−

ai

𝜃i , ai ≥ 0, 𝛼i > 0, 𝜃i > 0.

(4)

∞

�
n∑
j=1

xij

f (ai, �i, �i) d(ai) ≥ 1 − �i, i = 1, 2,…m.

(5)

∞

�
n∑
j=1

xij

1

�
�i
i
Γ�i

a
�i−1

i
e
−

ai

�i d(ai) ≥ 1 − �i, i = 1, 2,…m.

(6)
ai

�i
= y ⇒ dai = �idy.

(7)

∞

�
n∑
j=1

xij

�
�i

1

�
�i
i
Γ�i

(�iy)
�i−1e−y�i dy ≥ 1 − �i, i = 1, 2,…m.
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where Γa(x) = ∫ ∞

x
ta−1e−tdt an upper incomplete Gamma 

function.
After simplification, we get

After rearranging, we get

Thus finally, the probabilistic constraint can be trans-
formed into a deterministic linear constraint as:

where Γ−1
w
(u) =

{
x ∶ u = Γw(x)

}
 is an inverse gamma func-

tion solved by using R software.
Case II: When Pr

�∑n

j=1
xij ≥ ai

� ≥ 1 − �i, i = 1, 2, ...,m  

or, Pr
�∑n

j=1
xij ≤ ai

� ≤ �i,  i = 1, 2, ...,m.
The probability density function of ai (i = 1, 2, ...,m) is 

given by

Hence, the probabilistic constraint can be presented as:

Equation (12) can be expressed in the integral form as:

Let,

Using Eq. (14), the integral can be further presented as:

(8)
1

Γ�i

∞

�
n∑
j=1

xij

�
�i

y�i−1e−ydy ≥ 1 − �i, i = 1, 2,…m,

1

Γ�i
Γ�i

�∑n

j=1
xij

�i

�
≥ 1 − �i, i = 1, 2,…m.

(9)
∑n

j=1
xij

�i
≥ Γ−1

�i

�
Γ�i

�
1 − �i

��
, i = 1, 2,…m.

(10)
n∑
j=1

xij ≥ �i Γ
−1
�i

(
Γ�i

(
1 − �i

))

(11)

f (ai, 𝜃
�
i
, 𝛼�

i
) =

1

𝜃�
i

𝛼�
jΓ𝛼�

i

b
𝛼�
i
−1

i
e
−

ai

𝜃�
i , ai ≥ 0, 𝛼�

i
> 0, 𝜃�

i
> 0.

(12)

∞

�
n∑
j=1

xij

f (ai, �
�
i
, ��

i
) d(bi) ≤ �i, i = 1, 2,…m.

(13)

∞

�
n∑
j=1

xij

1

��
i

��
jΓ��

i

a
��
i
−1

i
e
−

ai

��
i d(ai) ≤ �i, i = 1, 2,…m.

(14)
ai

��
i

= y� ⇒ dai = ��
i
dy

On rearranging, we obtain

After simplification, we get

After rearranging, we get

Thus finally, the probabilistic constraints can be trans-
formed into a deterministic linear constraint as:

where Γ−1
w
(u) =

{
x ∶ u = Γw(x)

}
 is an inverse gamma func-

tion solved by using R software. When  
(
bj, j = 1, 2, ..., n

)
 

follows GD, the deterministic form of 
(
bj, j = 1, 2, ..., n

)
 has 

been obtained as same we did for 
(
ai, i = 1, 2, ...,m

)
 . We 

have also used the likelihood estimation approach for getting 
the shape and scale parameter of GD The likelihood function 
of GD can be given as:

It can be further written as:

Differentiate Eq. (20) with respect to shape and scale 
parameters, respectively, to get the ML estimate value of 
parameters, we get the likelihood equations

and,

(15)

∞

�
n∑
j=1

xij∕�
�
i

1

��
i

��
iΓ��

i

(y���
i
)�

�
i
−1e−y

�

��
i
d(y�) ≤ �i, i = 1, 2,…m.

(16)
1

Γ��
i

∞

�
n∑
j=1

xij

�
��
i

(y�)�
�
i
−1e−y

�

d(y�) ≤ �i, i = 1, 2,…m.

1

Γ��
i

Γ�i

�∑n

j=1
xij

��
i

�
≤ �i, i = 1, 2,…m.

(17)

∑n

j=1
xij

��
i

≤ Γ−1
�i

��
Γ��

i
�i
��
, i = 1, 2,…m.

(18)
n∑
j=1

xij ≤ ��
i

(
Γ−1
�i

(
Γ��

i
�i
))

, i = 1, 2,…m,

(19)L(�, �) =

n∏
i=1

f (xi, �, �).

(20)

lnL(�, �) = (� − 1)

n�
i=1

ln(xi) −

∑n

i=1
xi

�
− n� ln(�) − n ln(Γ�).

(21)
∑n

i==1
xi

�2
−

n�

�
= 0,
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where, �(�) = d

d�
ln(Γ�) =

Γ�(�)

Γ(�)
.

The (21) and (22) likelihood equations cannot be solved 
analytically. Here, we use the iterative numerical procedure 
for each equation, to obtain values of MLEs of parameters. 
The formulated MOCSTP solution will obviously be the 
optimum quantity to be transported from source to destina-
tion. Since no algorithm is available to effectively solve a 
multi-objective programming problem, by using some com-
promise criterion, the problem is to be transformed into a 
single objective problem. The solution has been obtained by 
using fuzzy programming approach, which consists of the 
following steps:

Step 1: to obtain the MOCSTP solution, consider only 
one objective at a time and ignore the other objective func-
tion and obtain the optimum solution as the ideal solution 
for each objective function.

Step 2: determine the corresponding values for each 
objective function at each solution obtained from the result 
of step-1. Let x∗

ij
 be the ideal solution for the objective func-

tion f1, f2, ..., fk . So Uk = Max
{
F1(xij),F2(xij), ....,Fk(xij)

}
 and 

Lk = Min
{
F1(xij),F2(xij), ....,Fk(xij)

}
, k = 1, 2, ..., 5 , where, 

Uk and Lk be the upper and lower bounds of the kth objective 
function Fk(xij).

Step 3: the membership function for the given problem 
can be defined as:

We define the membership function for the kth objective 
function (Minimization type) as follows:

where Uk and Lk are the upper and lower tolerance limit. 
Membership function for the kth objective function (Maxi-
mize) is as follows:

where �k(Fk(xij)) is a strictly monotonic decreasing function 
with respect to Fk(xij) . Therefore, the general aggregation 
function can be defined as:

(22)
n∑
i=1

ln(xi) − n ln(�) − n�(�),

�k((Fk(xij)) =

⎧
⎪⎪⎨⎪⎪⎩

0, ifFk(xij) ≥ Uk

Uk(xij) − Fk(xij)

Uk(xij) − Lk(xij)
, ifLk ≤ FK(xij)

1, ifFk(xij) ≤ Lk

≤ Uk,

�k((Fk(xij)) =

⎧
⎪⎪⎨⎪⎪⎩

0, ifFk(xij) ≤ Lk

Fk(xij) − Uk(xij)

Uk(xij) − Lk(xij)
, ifLk ≤ FK(xij)

1, ifFk(xij) ≥ Uk

≤ Uk,

�A(xij) = �A

{
�1(F1(xij), �2F2(xij), … , �kFk(xij)

}

The fuzzy multi-objective formulation of the problem 
may be defined as

The problem is to identify the ideal value of x∗
ij
 based on 

addition operator (Tiwari et al. [41]) for this convex fuzzy 
decision. Therefore, the above problem is rewritten, accord-
ing to the max-addition operator, as

The above problem reduces to

The above problem will attain its maxima if the function 
Zk(xij) =

{
(Fk(xij))
Uk−Lk

}
 is to be minimum. Therefore the above 

problem reduces into the following primal problem given as:

After defining the transformation process of the uncer-
tain model and their solution procedure; the next section 
is related to the numerical illustration of the hypothetical 
case study.

Max �D(xij)

Subject to Pr

(
n∑
j=1

xij{≤ ∕ = ∕ ≥} ai

)
≥ 1 − �i, i = 1, 2, 3,… ,m

Pr

(
m∑
i=1

xij{≤ ∕ = ∕ ≥} bj

)
≥ 1 − �j, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij

Max �A(x
∗

ij
) =

K∑
k=1

�k

(
Fx(xij)

)
=

K∑
k=1

Uk −
(
Fk(xij)

)
Uk − Lk

Subject to Pr

(
n∑
j=1

xij{≤ ∕ = ∕ ≥} ai

)
≥ 1 − �i, i = 1, 2, 3,… ,m

Pr

(
m∑
i=1

xij{≤ ∕ = ∕ ≥} bj

)
≥ 1 − �j, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij

Max�A(x
∗

ij
) =

K∑
k=1

�k

(
Fx(xij)

)
=

K∑
k=1

{
Uk

Uk − Lk
−

(
Fk(xij)

)
Uk − Lk

}

Subject to Pr

(
n∑
j=1

xij{≤ ∕ = ∕ ≥} ai

)
≥ 1 − �i, i = 1, 2, 3,… ,m

Pr

(
m∑
i=1

xij{≤ ∕ = ∕ ≥} bj

)
≥ 1 − �j, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij

MinZ =

K∑
k=1

(
Zx(xij)

)

Subject to Pr

(
n∑
j=1

xij{≤ ∕ = ∕ ≥} ai

)
≥ 1 − �i, i = 1, 2, 3,… ,m

Pr

(
m∑
i=1

xij{≤ ∕ = ∕ ≥} bj

)
≥ 1 − �j, j = 1, 2, 3,… , n

0 ≤ xij ≤ rij
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Numerical Illustration

For illustrating the proposed work we considered two 
numerical examples, which are given below:

Example 1

The following data sets has been used to show case the impor-
tance of GD over other distributions. The data represents the 
exceedances of flood peaks (in m3/s) of the Wheaton River 
near Carcross in Yukon Territory, Canada. The information is 
rounded to one decimal point, comprising of 72 exceedances 
for the years 1958–1984; were 1.6, 2.3, 14.5, 1.2, 0.5, 21.6, 
4.2, 0.6, 1.6, 12.9, 11.8, 8.3, 1.2, 16.6, 7.5, 24.4, 12.4, 13.3, 
21.3, 1.3, 3.4, 13.3, 1.5, 35.3, 0.5, 2.4, 38.1, 0.4, 14.3, 10.1, 
6.3, 20.6, 1.4, 0.3, 0.9, 0.3, 8, 1.5, 6, 19.1, 0.3, 2.4, 12.3, 10.1, 
10.2, 10.5, 29, 4.5, 5.3, 29.8, 12.3, 3.2, 24.4, 3.9, 12.6, 22.4, 
25.7, 35.5, 3.8, 65, 1.4, 3.4, 37.5, 1.6, 24.3, 21.3, 17.6, 4.4, 
10.3, 24.4, 2.4, 31. This data were illustrated by Choulakian 
and Stephens [42] for testing a Goodness-of-Fit for gener-
alized Pareto distribution and recently analyzed by Merovci 
and Puka [43] for Transmuted Pareto distribution. Here, for 
comparison of model, we considered the most efficient criteria 
used for determining the efficiency of the distribution like 
AIC (Akaike Information Criterion), introduced by Akaike 
[44] and BIC (Bayesian information Criterion) introduced by 
Schwarz [45]. Here, we compared some well-known distri-
butions which is widely used in life scenarios like Weibull 
Distribution, Pareto Distribution, Generalized Pareto Distribu-
tion, Transmuted Pareto Distribution, and Normal Distribu-
tion, and the obtained result of the distributions has been com-
pared with the results of GD We obtained the estimate values 
of parameters as well as standard error of the distributions for 
the above defined real data set. The obtained result has been 
arranged according to its rank i.e. the distribution which has 
the lowest AIC and BIC value, considered as the best distribu-
tion among all used distributions. Table 2 show the efficiency 
of GD over other distributions and it is found better than other 
considered distributions for this real data set. The Comparison 
criteria are AIC = 2 k – 2LL and BIC = klog(n) – 2LL, where k 
is the number of parameters of model, n is sample size of the 
data set and LL is log likelihood of the model. The obtained 
results are summarized in Table 2.

The quantitative information mentioned in the numeri-
cal illustrations are not the real evidence; according to the 
developed concept, it is generated hypothetical.

Example 2

To demonstrate the practical use and the computational 
details of working out the suggested quantity to be shipped 
from different sources to a different destination, the follow-
ing numerical example is provided. Parts of the data are 

from Gupta et al. [34, 35] in which they considered three ori-
gins and three destinations with the objective of how much 
should they ship from origin to destination to minimize the 
cost of damage, cost of labouring, total transportation time, 
total transportation costs and also maximize the discount 
on shipping costs. The information simulated by DM are 
summarized below in the Tables 3, 4, 5, 6, 7, 8, 9, and 10.

Let us assume a situation when there is more than one 
nature state of availability at the origin and requirement at 
the destination, respectively. Every time distribution cent-
ers are confronted with the issue of assessing the company 
demand. If the requirements expected from distribution cent-
ers are lower than the requirements of his company, then his 
profit will suffer. On the other side, there will be a marginal 
loss due to excess demand. Due to the continual market 
breakdown, the DM intends to supply the distribution cent-
ers with more amounts. In the worse business scenario, the 
DM always wants to understand how much of a product he 
has to deliver to the distribution centers in order to get rid 
of his losses. The center does not understand in advance, 
under this conditional demand and supply risk, the number 
of lucrative demand units for its company each day. The data 
given in Table 11 does not tell the DM’s explicitly how many 
units they should store for tomorrow’s supply to meet the 
random demand to maximize their profit. The information 
provided in Table 12 does not tell the distribution centers 
explicitly how many units they would require each time to 
maximize their profit. Since there are more than one demand 
and supply point, and also DM’s have partial demand and 
supply pattern data, they can treat demand and supply as a 
random variable and fit it to calculate the expected value of 
demand and supply through different types of probability 
distributions.

Deterministic values of the RHS of constraints has been 
obtained by using the SP approach as defined in Sect. 3. 
Demand and supply parameters follows GD with speci-
fied probability level and MLE approach has been used for 
obtaining the shape parameters, and scale parameters and 
calculated values are given below in Table 13.

The method of solving a math problem involves a huge 
number of equations and thus a machine system is better 
to use. The software were going to use is named LINGO. 
LINGO is a powerful and flexible software created by 
LINDO Systems Inc. The solution is obtained by using 
LINGO 16.0 software. “LINGO is a comprehensive tool 
designed to make building and solving linear, nonlinear 
(convex and non-convex), quadratic, quadratically con-
strained, stochastic, multi-choice, integer and multi-criteria 
optimization models faster, easier and more efficiently”. It 
offers an altogether optimized package that can be used for 
an effective framework of optimization models for problem 
solving and more important it helps in getting the solution 
in minimum time. In short, LINGO’s main aim is to allow 
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a programmer to insert a model formulation easily, solve 
it, determine the validity or adequacy of the solution, and 
we can also make a slight adjustments to the formulation 
easily and repeat the cycle. The primary edition of LINGO 
includes a “graphical user interface”, but under some spe-
cific cases, e.g. operating under Linux (command line func-
tionality) can be used for finding the problem solution.

For Model 1′ which comprises of linear objective func-
tions, the value of membership is unity, which implies that 
the DM has achieved the full level of aspiration (satisfaction) 
from the set goal. The formulated mathematical program-
ming model is regarded as a non-LP problem solved by the 
Lingo 16.0 package. The optimal solution of the MOCSTP is 
obtained as: x11 = 2, x12 = 2, x13 = 0, x21 = 6, x22 = 3, x23 = 10, 
x31 = 3, x32 = 6, x33 = 9. From an origin 1, manufacturer can 
ship around 4 (‘000) units to different destinations; while 
from an origin 2, the manufacturer can ship around 19 (‘000) 
units to different destinations; and on the other hand from an 
origin 3, the manufacturer can ship around 18 (‘000) units to 
different destinations. The minimum damage cost and labour 
cost for transporting the optimal units of quantity is 661 and 
719 respectively.

For Model 2′ which comprises of fractional objec-
tive functions, the value of membership is 0.84, 0.60 and 

0.91, which implies that the DM has achieved a level of 
84, 60 and 91 percent aspiration (satisfaction) from the set 
goal. The formulated mathematical programming model 
is regarded as a non-LP problem solved by the Lingo 16.0 
package. The optimal solution of the MOCSTP is obtained 
as: x11 = 2, x12 = 6, x13 = 0, x21 = 6, x22 = 3, x23 = 10, x31 = 3, 
x32 = 2, x33 = 13. From an origin 1, manufacturer can ship 
around 8 (‘000) units to different destinations; while from 
an origin 2, the manufacturer can ship around 19 (‘000) units 
to different destinations; and on the other hand from an ori-
gin 3, the manufacturer can ship around 18 (‘000) units to 
different destinations. The minimum per unit transportation 
time, transportation cost and discount cost for transporting 
the optimal units of quantity is 1.202, 1.135, and 0.151, 
respectively.

For the final complicated Model 3′ which is the com-
bination of both linear and fractional objective functions, 
the value of membership is 0.60, 0.65, 0.84, 0.60 and 0.92 
which implies that the DM has achieved a level of 60, 65, 
84, 60 and 92 percent aspiration (satisfaction) from the set 
goal. The formulated mathematical programming model 
is regarded as a non-LP problem solved by the Lingo 16 
package. The optimal solution of the MOCSTP is obtained 
as: x11 = 2, x12 = 6, x13 = 0, x21 = 6, x22 = 3, x23 = 10, x31 = 3, 
x32 = 2, x33 = 13. From an origin 1, manufacturer can ship 
around 8 (‘000) units to different destinations; while from an 
origin 2, the manufacturer can ship around 19 (‘000) units to 
different destinations; and on the other hand from an origin 
3, the manufacturer can ship around 18 (‘000) units to dif-
ferent destinations. As compared to Origin 2 and 3, from 
origin 1 minimum number of quantities to be shipped to 
different destinations because of high transportation cost. 
The minimum damage cost and labour cost for transport-
ing the optimal units of quantity is 723.50 and 777.50, 
respectively. While the minimum per unit transportation 

Table 2   Comparison of Results Distribution Parameter estimates Standard error LL AIC BIC Rank

Gamma Shape = 0.8382 0.121 251.34 506.69 511.24 1
Rate = 0.0687 0.013

Weibull Shape = 0.901 0.086 251.50 507.00 511.55 2
Scale = 11.63 1.602

Generalized pareto Shape = 12.19 2.294 252.13 508.26 512.81 3
K =  − 0.932 × 10−3 0.146

Normal Mean = 12.20 1.44 282.34 568.68 573.23 4
σ = 12.21 1.018

Transmuted pareto Shape = 0.349 0.031 286.20 578.4 585.23 5
λ = − 0.952 0.047
X0(min) = 0.1

Pareto Shape = 0.2439 0.028 303.06 610.13 610.40 6
X0(min) = 0.1

Table 3   Fuzzy damage cost for the route i to j 

S. no Route: xij Damage cost (in rupees) {dij}

1 (1, 1): x
11

((8,10,12,14;0.90,0.91),(7,9,11,13;0.91,0.92))
2 (1, 2): x

12

((10,12,14,16;0.89,0.90),(9,11,13,15;0.90,0.91))
3 (1, 3): x

13

((11,13,15,17;0.88,0.89),(10,12,14,16;0.89,0.90))
4 (2, 1): x

21

((12,14,16,18;0.86,0.87),(11,13,15,17;0.87,0.88))
5 (2, 2): x

22

((13,15,17,19;0.87,0.88),(12,14,16,18;0.88,0.89))
6 (2, 3): x

23

((12,14,16,18;0.86,0.87),(11,13,15,17;0.87,0.88))
7 (3, 1): x

31

((10,12,14,16;0.89,0.90),(9,11,13,15;0.90,0.91))
8 (3, 2): x

32

((13,15,17,19;0.87,0.88),(12,14,16,18;0.88,0.89))
9 (3, 3): x

33

((15,17,19,21;0.91,0.92),(14,16,18,20;0.92,0.93))
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time, transportation cost and discount cost for transport-
ing the optimal units of quantity is 1.202, 1.135, and 0.151, 
respectively.

Using AIC and BIC, we used four widely applied con-
tinuous distributions on our six parameters of demand and 
supply to find the best fitting distribution. AIC measures the 
quality of statistical models for any specific data sets, and 
BIC is a model selection criterion for a finite set of models; 
the model with the lowest AIC and BIC is preferred. The 
obtained results are summarized in Tables 14 and  15.

The distribution that gives the least AIC and BIC value 
is considered to be the best fit distribution for the data set. 
Among all the used distributions such as Pareto, Weibull, 
Normal and Gamma, the least value of AIC and BIC has 
been correspond to the GD that shows the efficiency of our 
proposed work. The above defined capacitated TP with lin-
ear and fractional objective functions was first formulated 
by Gupta et al. [34] in which they considered the three 
different types of real life situations in their formulated 
model. They present the ambiguity in the paper with fuzzy 
numbers, multi-choices and randomness and used fuzzy 

Table 4   Fuzzy labour cost for the route i to j 

S. no Route: xij Labour cost (in rupees) {lij}

1 (1, 1): x
11

((13,15,17,19;0.87,0.88),(12,14,16,18;0.88,0.89))
2 (1, 2): x

12

((13,15,17,19;0.87,0.88),(12,14,16,18;0.88,0.89))
3 (1, 3): x

13

((13,15,17,19;0.87,0.88),(12,14,16,18;0.88,0.89))
4 (2, 1): x

21

((17,19,21,22;0.81,0.82),(16,18,20,22,0.82,0.83))
5 (2, 2): x

22

((17,19,21,22;0.81,0.82),(16,18,20,22,0.82,0.83))
6 (2, 3): x

23

((13,15,17,19;0.87,0.88),(12,14,16,18;0.88,0.89))
7 (3, 1): x

31

((17,19,21,22;0.81,0.82),(16,18,20,22,0.82,0.83))
8 (3, 2): x

32

((10,12,14,16;0.89,0.90),(9,11,13,15;0.90,0.91))
9 (3, 3): x

33

((13,15,17,19;0.87,0.88),(12,14,16,18;0.88,0.89))

Table 5   Fuzzy transportation time ( ta
ij
 ) for the route i to j 

S. no Route: xij Actual transportation time (in min) { ta
ij
}

1 (1, 1): x
11

((25,27,29,31;0.81,0.82),(24,26,28,30;0.82,0.83))
2 (1, 2): x

12

((30,32,34,36;0.83,0.84),(29,31,33,35;0.84,0.85))
3 (1, 3): x

13

((30,32,34,36;0.83,0.84),(29,31,33,35;0.84,0.85))
4 (2, 1): x

21

((32,34,36,38;0.84,0.85),(31,33,35,37;0.85,0.86))
5 (2, 2): x

22

((32,34,36,38;0.84,0.85),(31,33,35,37;0.85,0.86))
6 (2, 3): x

23

((17,19,21,22;0.81,0.82),(16,18,20,22,0.82,0.83))
7 (3, 1): x

31

((32,34,36,38;0.84,0.85),(31,33,35,37;0.85,0.86))
8 (3, 2): x

32

((17,19,21,22;0.81,0.82),(16,18,20,22,0.82,0.83))
9 (3, 3): x

33

((40,42,44,46;0.83,0.84),(39,41,43,45;0.84,0.85))

Table 6   Fuzzy transportation time ( ts
ij
 ) for the route i to j 

S. no Route: xij Standard transportation time (in min) { ts
ij
}

1 (1, 1): x
11

((17,19,21,22;0.81,0.82),(16,18,20,22,0.82,0.83))
2 (1, 2): x

12

((25,27,29,31;0.81,0.82),(24,26,28,30;0.82,0.83))
3 (1, 3): x

13

((25,27,29,31;0.81,0.82),(24,26,28,30;0.82,0.83))
4 (2, 1): x

21

((28,30,32,34;0.83,0.84),(27,29,31,33;0.83,0.84))
5 (2, 2): x

22

((30,32,34,36;0.86,0.87),(29,31,33,35;0.87,0.88))
6 (2, 3): x

23

((11,13,15,17;0.81,0.82),(10,12,14,16;0.82,0.83))
7 (3, 1): x

31

((25,27,29,31;0.81,0.82),(24,26,28,30;0.82,0.83))
8 (3, 2): x

32

((13,15,17,19;0.85,0.86),(12,14,16,18;0.86,0.87))
9 (3, 3): x

33

((40,42,44,46;0.83,0.84),(39,41,43,45;0.84,0.85))

Table 7   Fuzzy transportation cost ca
ij
 for the route i to j 

S. no Route: xij Actual transportation cost (in rupees) {ca
ij
}

1 (1, 1): x
11

((25,27,29,31;0.81,0.82),(24,26,28,30;0.82,0.83))
2 (1, 2): x

12

((25,27,29,31;0.81,0.82),(24,26,28,30;0.82,0.83))
3 (1, 3): x

13

((26,28,30,32;0.85,0.86),(25,27,29,31;0.86,0.87))
4 (2, 1): x

21

((32,34,36,38;0.84,0.85),(31,33,35,37;0.85,0.86))
5 (2, 2): x

22

((28,30,32,34;0.83,0.84),(27,29,31,33;0.83,0.84))
6 (2, 3): x

23

((32,34,36,38;0.84,0.85),(31,33,35,37;0.85,0.86))
7 (3, 1): x

31

((28,30,32,34;0.83,0.84),(27,29,31,33;0.83,0.84))
8 (3, 2): x

32

((28,30,32,34;0.83,0.84),(27,29,31,33;0.83,0.84))
9 (3, 3): x

33

((30,32,34,36;0.86,0.87),(29,31,33,35;0.87,0.88))

Table 8   Fuzzy transportation cost cs
ij
 for the route i to j 

S. no Route: xij Standard transportation cost (in rupees) { cs
ij
}

1 (1, 1): x
11

((22,24,26,28;0.91,0.92),(21,23,25,27;0.92,0.93))
2 (1, 2): x

12

((20,22,24,26;0.92,0.93),(19,21,23,25;0.93,0.94))
3 (1, 3): x

13

((22,24,26,28;0.95,0.96),(21,23,25,27;0.96,0.97))
4 (2, 1): x

21

((20,22,24,26;0.92,0.93),(19,21,23,25;0.93,0.94))
5 (2, 2): x

22

((22,24,26,28;0.95,0.96),(21,23,25,27;0.96,0.97))
6 (2, 3): x

23

((24,26,28,30;0.92,0.93),(23,25,27,29;0.93,0.94))
7 (3, 1): x

31

((27,29,31,33;0.94,0.95),(26,28,30,32;0.95,0.96))
8 (3, 2): x

32

((24,26,28,30;0.92,0.93),(23,25,27,29;0.93,0.94))
9 (3, 3): x

33

((28,30,32,34;0.83,0.84),(27,29,31,33;0.83,0.84))

Table 9   Fuzzy discount cost for the route i to j 

S. no Route: xij Discount cost (in rupees) { ds
ij
}

1 (1, 1): x
11

((5,7,9,11;0.80,0.81),(4,6,8,10;0.81,0.81))
2 (1, 2): x

12

((4,6,8,10;0.83,0.84),(3,5,7,9;0.84,0.85))
3 (1, 3): x

13

((5,7,9,11;0.80,0.81),(4,6,8,10;0.81,0.81))
4 (2, 1): x

21

((4,6,8,10;0.83,0.84),(3,5,7,9;0.84,0.85))
5 (2, 2): x

22

((3,5,7,9;0.85,0.86),(2,4,6,8;0.86,0.87))
6 (2, 3): x

23

((4,6,8,10;0.83,0.84),(3,5,7,9;0.84,0.85))
7 (3, 1): x

31

((3,5,7,9;0.85,0.86),(2,4,6,8;0.86,0.87))
8 (3, 2): x

32

((4,6,8,10;0.83,0.84),(3,5,7,9;0.84,0.85))
9 (3, 3): x

33

((5,7,9,11;0.80,0.81),(4,6,8,10;0.81,0.81))
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goal programming approach for getting the desired result. 
Later on, Gupta et al. [35] investigated the capacitated TP 
with multi-choices and LR- fuzzy number parameters, and 
solved the problem in three stages using goal programming 
approach. Further, Gupta et al. [46] used different kinds of 
probabilistic distribution for presenting the randomness in 
their formulated capacitated TP. Recently Gupta et al. [47] 
used the concept of linearization of fractional objective func-
tions in their formulated capacitated transportation problem 
along with �-cut approach which was used to present the 

uncertainty in the formulated model. The obtained results 
of these papers are listed in Table 16.

These uncertainty scenarios in capacitated TP decision-
making were taken because demand and supply are innumer-
able factors. Because these models are not the same circum-
stances, assumptions and environment. Therefore, it was not 
fair to compare the results obtained from these models.

Conclusion

Transportation plays a major role in every supply chain, 
since goods are seldom manufactured and consumed at the 
very same place. The product manufactured at one origin 
has very little interest for the prospective users unless it is 
transported to the point of use. The effectiveness of every 
supply chain is directly correlated with the effective usage 
of transport. Every company makes use of different modes 
and routes of transportation for maximum profitability. A 
distribution department uses transportation to reduce the 

Table 10   Fixed capacitated restriction for the route i to j 

S.no 1 2 3 4 5 6 7 8 9

Route: xij (1, 1): x
11

(1, 2): x
12

(1, 3): x
13

(2, 1): x
21

(2, 2): x
22

(2, 3): x
23

(3, 1): x
31

(3, 2): x
32

(3, 3): x
33

rij 5 6 12 6 3 12 3 6 13

Table 11   Availability at plants 
(‘000 units) a

1

22,19,21,18,20,22,18,20,23,20,21,20,20,19,18,19,18,19,20,22, 21,18,20,19,22,18,21,21,19,20
a
2

14,16,15,14,16,15,16,15,14,17,16,15,17,12,16,16,17,14,15,16, 16,16,15,15,16,17,12,13,13,14
a
3

21,20,20,21,18,20,19,19,21,20,21,22,21,20,22,22,21,21,21,19, 20,20,18,21,18,20,20,21,21,21

Table 12   Requirement at distribution centers (‘000 units)

b
1

10,10,10,9,9,8,10,12,12,10,10,9,9,9,10,10,10,11,11,10,
10,9,11,10,10,10,10,9,10,10

b
2

13,12,11,10,15,15,12,14,13,14,12,12,12,9,15,11,12,15,
13,13,11,10,11,12,14,13,15,12,13,12

b
3

22,23,19,23,23,24,23,22,20,23,23,18,20,23,21,21,26,23,
20,21,23,23,23,23,22,22,22,24,20,23

Table 13   Estimated values 
of parameters with specified 
probability level

Parameter Shape [Standard error] Scale [Standard error] Specified prob-
ability level

Deterministic 
right hand side 
value

a1 2. 1918 [0.5285] 4.5029 [0.0593] 0.90 24
a2 3.3559 [0.8270] 03.126 [0.0850] 0.91 19
a3 2.1793 [0.5253] 4.0348 [0.0671] 0.93 18
b1 6.8914 [1.7378] 3.5713 [0.0720] 0.95 11
b2 14.553 [3.7152] 1.3548 [0.1917] 0.97 11
b3 18.099 [4.632] 2.8119 [0.0922] 0.99 27

Table 14   Akaike’s information 
criteria of data

Distribution a
1

a
2

a
3

b
1

b
2

b
3

Total

Pareto 126.89 110.67 108.12 108.69 151.26 154.61 760.24
Weibull 99.11 103.01 83.23 86.57 115.11 122.01 609.04
Normal 101.35 109.86 84.88 83.61 114.72 127.76 622.18
Gamma 98.23 101.42 80.21 77.33 113.17 113.29 583.65
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actual expense of the goods to be shipped, thus ensuring a 
reasonable degree of consumer accessibility.

The problem of capacitated transportation is an essential 
issue of network optimization and is used in various fields of 
application-telecommunications networks, production–dis-
tribution system, rail and urban road system, and scheduled 
automated cargo system. In this paper, combination of lin-
ear and fractional objective functions under uncertainty 
have been considered for formulating the capacitated TP. 
We have also considered a case of uncertainty in capaci-
tated TP in which the objective function’s coefficients are 
fuzzified, whereas the demand and supply parameter are 
random in nature. The fuzzy goal programming approach 
has been used to drive the MOCSTP model’s compromise 
solution. The research done in this paper may be useful to 
those researchers and industry practitioners who face the 
TP in such complicated circumstances. Transportation costs 
constitute a significant fraction of the overall cost of the sup-
ply chain, administrators need a detailed review to choose 
adequate means of transportation to minimize costs and 
control the amount of shipment. Supply chain executives 
ought to leverage the digital technologies at their fingertips 
to reduce logistics costs and improve performance in their 
distribution networks. Ambiguity of demand and transit 
supply will be taken into account when planning transport 
networks. If one avoids ambiguity in transportation, so the 

usage of inexpensive and stubborn forms of transportation 
will becomes greater. This method is very general and can 
be used in various fields such as supply chain management, 
portfolio management, inventory management, reliability 
maintenance, queuing theory etc.

In the future studies, we will extend the work to the dif-
ferent environment such as inventory model [48], stochastic 
model [49] etc., Apart from it, we will try to build a math-
ematical model related to (1) Direct distribution—includes 
the delivery of goods to all the retailers from the manufac-
turer; (2) Direct delivery of “Milk runs”—a “Milk run” is 
a path where a truck either sends a commodity to several 
retailers from a single manufacturer, or goes from multiple 
vendors to a specific distributor; (3) Deliveries through DC 
(distribution center)—vendors will not need to deliver prod-
ucts directly to the retailers in this form of transport design 
network. Distributions chains are split into specific regional 
areas and for each of those regions a centrally positioned 
DC is built. Vendors then deliver their supplies to the DC 
and then the DC passes the related orders to each vendor 
within its regional area; and (4) Shipping through DC uti-
lizing “Milk Runs”—“Milk runs” can be used from a DC 
when the lot sizes are low. Milk runs are the most significant 
as the aggregation of small volumes reduces the expense of 
freight transport.

Table 15   Bayesian information 
criteria of data

Distribution a
1

a
2

a
3

b
1

b
2

b
3

Total

Pareto 128.34 106.35 119.08 110.50 156.21 161.58 782.06
Weibull 103.26 102.87 87.01 88.81 124.63 126.46 633.04
Normal 102.21 106.82 84.78 83.48 117.56 123.67 618.52
Gamma 101.82 102.30 81.58 80.01 117.28 119.67 602.66

Table 16   Comparison of results Author’s Optimal shipment plan Optimal objective values

Gupta et al. [34] (0,5,0; 6,2,6; 4,7,9) 554, 629, 1.226, 1.149, 0.1343
(0,5,0; 6,2,7; 3,7,10) 610, 676, 1.2092, 1.1509, 0.1475
(1,4,0; 6,27; 4,7,9) 598, 666, 1.1663, 1.1368, 0.1511
(0,2,0; 5,2,1; 2,6,4) 298, 353, 1.1531, 1.1478, 0.1428

Gupta et al. [35] (3,4,0; 6,2,1; 0,7,14) 534, 606, 1.1112, 1.1557, 0.1511
(0,7,5; 6,2,7; 2,6,13) 567, 584, 1.1142, 1.1458, 0.1489
(0,6,5; 6,2,1; 1,0,14) 447, 486, 1.0941, 1.1478, 0.1549

Gupta et al. [46] (6,4,10; 0,0,13;10,13,1) 739, 870, 1.5269, 1.1260, 0.12358
Gupta et al. [47] (1,7,0; 7,0,12; 0,6,11) 605, 626, 0.9619, 0.8577, 0.2149

(2,7,0; 6,0,11; 0,6,12) 607, 636, 0.9915, 0.9061, 0.2044
(3,7,0; 6,0,9; 0,6,13) 611, 657, 1.0364, 0.9785, 0.1909
(1,7,0; 6,2,7; 2,4,11) 617, 674, 1.0781, 1.0492, 0.1785
(0,7,0; 6,2,7; 3,4,14) 628, 692, 1.1232, 1.0994, 0.1716

Present study (2,6,0;6,3,10;3,2,13) (723.50, 777.50, 1.202, 1.135, 0.151)
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