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Abstract
Nowadays, Android applications play a major role in software industry. Therefore, having a system that can help companies
predict the success probability of such applications would be useful. Thus far, numerous research works have been conducted
to predict the success probability of desktop applications using a variety of machine learning techniques. However, since
features of desktop programs are different from those of mobile applications, they are not applicable to mobile applications.
To our knowledge, there has not been a repository or even a method to predict the success probability of Android applications
so far. In this research, we introduce a repository composed of 100 successful and 100 unsuccessful apps of Android operating
system in Google PlayStoreTM including 34 features per application. Then, we use the repository to a neural network and
other classification algorithms to predict the success probability. Finally, we compare the proposed method with the previous
approaches based on the accuracy criterion. Experimental results show that the best accuracy which we achieved is 99.99%,
which obtained when we usedMLP and PCA, while the best accuracy achieved by the previous work in desktop platforms was
96%. However, the time complexity of the proposed approach is higher than previous methods, since the time complexities
of NPR and MLP are O(n3) and O(nphkoi), respectively.

Keywords Repository · Success and failure · Successful application · Failed application · Data set · Android

Introduction

Today, Android has a great share of smart-phone operating
systems. Based on IDC statistics,1 Android holds 86.8% of
the market share in the early 2016Q3. Because of the large
share of this operating system, diverse applications in dif-

1 http://www.idc.com/promo/smartphone-market-share/os.
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ferent categories are available for it, most of which have
attracted users and succeeded, while some have failed to do
so.

Moreover, due to the development of many applications
in various areas such as mobile phones, personal computers,
and webpage development, their maintenance has become
particularly important. Since numerous people use these
applications and pages in different fields and applications and
web pages with similar features are found in all areas, there
is a great competition to attract users to each application.
The success or failure of an app is related to its maintenance
process. Therefore, developers must maintain the apps based
on users’ needs to prevent them from being discontinued or
decommissioned.

The success or failure prediction of an application would
not only compensate the damage, but also improve the main-
tenance process of the application and thus results in the
use of more brand new features in an application by the
developer to attract more users, adaptation of the app to the
new environment, change of the user interface of applica-
tion, improvement in the user’s experience of running the
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application, and generally improvement in their application
[1].

Software maintenance is a general process of changing a
systemafter it has been delivered, e.g., correcting code errors,
correcting design errors, and accommodating new require-
ments after release [2].

Thus far, usingmachine learning and artificial intelligence
techniques, someworks have been done on the failure or suc-
cess of desktop computer applications. However, since the
features that can be calculated for desktop computer applica-
tions are not calculable or available for mobile applications
and there is no repository of successful and failed applica-
tions of Android operating system, so far nothing has been
conducted on predicting the failure or success of mobile
applications.

Repositories are central storage files, in which a mass of
data is stored.2 They can be used, for instance, in version-
control systems3 and software component reuse [3].

A successful project is onewhich is completed on time and
on budget, with all features and functions originally speci-
fied. On the other hand, a failed project is a project which is
completed and operational, but is over-budget, over the time
estimate and with fewer features and functions than initially
specified, or a project which is canceled before completion
or not implemented at all [4].

A discontinued app is defined here as: a failed, retired, and
decommissioned app on Google Play, for which no update
has been released in 2 years or more, or has been removed
from the store for security, financial, personal, or other rea-
sons and the user encounters the “Not Found” error while
searching the name of its package on Google Play.

Application retirement is a disposal process which aims to
end the existence of the software. It includes the total removal
of the system or retaining a number of required parts [5].
Application decommissioning is the process of removing a
system, application, database, or platform from service while
keeping its important data [6].

Artificial intelligence (AI) is concerned with building
computer systems that solve the problem intelligently by
emulating the human brain [7].

Artificial neural networks, commonly referred to as “neu-
ral networks,” are massively parallel-distributed processors
made up of simple processing units (neurons), which perform
computations and store knowledge [7].

Since no research has been performed so far in predicting
the failure or success of applications of Android operating
system, in the present study, a repository of 100 success-
ful and 100 unsuccessful applications of Android operating
system on the Google Play Store with 34 features for each
application was built. Then, the data were given for training

2 http://searchoracle.techtarget.com/definition/repository.
3 https://techterms.com/definition/repository.

to neural networks of LVQ and MLP with different learning
functions and NPR. The accuracy of the above-mentioned
neural networks was examined by applying the PCA algo-
rithm and selecting the effective features and not applying the
PCA algorithm with 34 features provided in the prediction.

The main contribution of this paper is expressed as fol-
lows:

1. Others have done so much work about the success or
failure prediction of desktop applications, but nothing
has been done on the success and failure prediction of
the applications in Android operating system.

2. There exists no repository of successful and unsuccess-
ful applications in Android operating system. Due to the
need of such repository in prediction, a repository of 100
successful and 100 unsuccessful applications has been
made.

3. Many scholars have used the preexisting available
databases or those made by applications for the pur-
pose of prediction, but in this study, the made repository
of successful and unsuccessful applications (including:
discontinued, retired, and decommissioned applications
from the Google Play StoreTM) has been produced and
provided by the authors.

4. Due to the fact that the features used in the success and
failure prediction of desktop computers applications are
not available for the Android operating system appli-
cations or at best cannot be calculated, to predict, new
features will be extracted which can be calculated for all
applications of Android operating system.

5. For each app in the repository, 34 features have been
extracted through counselling with scholars and other
college students, using Questionnaires and ISO 25010
Standard of software quality.

6. By calculating the correlation coefficient for all the
obtained features, it appears that all the extracted features
are needed for the prediction and none of them shows
dependence to each other and also all features are of the
equal significance in comparison with others.

7. The made repository is sent to different machine learning
techniques to train andmake amodel. Then, the accuracy
parameter of each technique will be calculated and the
comparison of all techniques with one another will be
followed.

This paper is structured as follows: in Sect. 1, we present
some fundamental definitions. In Sect. 2, some explanations
are provided about neural networks. In Sect. 3, we review
the studies on repository development and the works per-
formed about predicting the success or failure of applications.
Section 4 provides the research methodology followed dur-
ing this investigation. Section 5 specifies the experimental
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Fig. 1 Structure of neural networks [18]

results. Finally, in Sect. 6, conclusions and suggestions for
improving the repository and prediction are offered.

Background

A. Artificial neural networks
Artificial neural networks, commonly referred to as
“neural networks,” aremassively parallel-distributed pro-
cessors made up of simple processing units (neurons),
which perform computations and store knowledge [7].
Modelling a complex systemby artificial neural networks
(ANNs) gives the possibility to fully take nonlinearities
into account [8].
The use of neural networks in this study for prediction
has four underlying justifications: first, the neural net-
works are those which are data-driven and self-adaptive
and have a tendency to reduce errors and adapt them-
selves to the model; second, they can be generalized and
deduce the unobserved data (new) even with noise; third,
they are non-linear [9]; fourth, they can be learned with
small data size [10]; and finally, artificial neural networks
can be used in predicting software defects, quality, and
risks [11–14] estimating the expended efforts of an appli-
cation [15], estimating the level of Fault Injection in the
developmental process of an application [16], and esti-
mating the modules expenses [17] .

B. MLP (Multi-layer perceptron)
In Fig. 1, the structure of an MLP neural network is
shown. Consider a neural network with n inputs, k hid-
den units, and m outputs. As shown in Fig. 1, the weight
between input unit i and hidden unit j is w1

i j , and the

weight between hidden unit i and output unit j is w2
i j .

In the following figure, the weight between constant 1
and hidden unit j is shown by w1

(n+1, j), and the weight

between constant 1 and output unit j is w2
(n+1, j).

W1 is the weight matrix for side 1 (between the input
unit and middle unit) and W2 is the weight matrix for
side 2 (between the middle unit and output unit). In neu-
ral networks, the network compares the output value after
training in each step with the expected output, calculates
the error after computing the difference between the net-
work output and expected output, and makes the network
output approach the expected output as much as possible
by changing the weights [18].

C. LVQ (Learning vector quantization)
This neural network is developed for a group of algo-
rithms, which are widely used in the large-scale cate-
gories and data. The successful application of the LVQ
algorithm has been confirmed in difficult problems such
as medical data analysis, fault detection in technical sys-
tems, and satellite data spectrum categorization. This
algorithm is highly useful for researchers and people
working outside the machine learning field who are look-
ing for quick categorization methods. The categorization
in the LVQ algorithm is based on the calculation of dis-
tance, that is, the calculation of the Euclidean distance,
in which the similarity of received data to primary data
or classes is calculated [19].

D. NPR (Neural pattern recognition)
The term “pattern recognition” covers a wide range
of information processing problems including speech
recognition, handwritten letter categorization, and error
detection in machine and medical systems [10]. The
traditional pattern recognition methods need the cor-
rect position of the input pattern, but in practice, it is
shown that the input pattern is often displaced, rotated,
resized, or becomes incomprehensible for the network
due to noise. As a result, the traditional pattern recog-
nition methods might face difficulties in recognition in
such conditions. Today, pattern recognition methods are
introduced using neural networks with no sensitivity to
rotation, resizing, noises, or input pattern displacement
[20].

E. SVM (Support vector machine)
Support vectormachines represents a new statistical tech-
nique that has drawn much attention in recent years.
SVMarebasedon the structural riskminimization (SRM)
induction principle, which aims to restrict the generaliza-
tion error (rather than the mean square error) to certain
defined bounds [21]. SVM have recently been applied
to a range of problems that include pattern recognition,
bioinformatics, and text categorization [22].

F. kNN (K-nearest neighbors)
The kNN algorithm is one of the simplest and most com-
monly used machine learning methods. The method is an
important approach to nonparametric classification and is
quite easy and efficient. Its rule of classification assigns
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a class label for unknown samples by estimating its k-
nearest neighbors based on known samples [23].

G. Random forest
Random Forests is the unique learning machine that has
no need of an explicit test sample because of its use of
bootstrap sampling for every tree. This ensures that every
tree in the forest is built on about 63% of the available
data, leaving the remaining approximately 37% for test-
ing the OOB (out-of-bag) data [24].

H. Decision tree
Decision trees are sequential models, which logically
combine a sequence of simple tests; each test compares a
numeric attribute against a threshold value or a nominal
attribute against a set of possible values. The logical rules
followed by a decision tree are much easier to interpret
than the numeric weights of the connections between the
nodes in a neural network. The Decision Tree algorithm
attempts to generalize, or find patterns in, the data. It does
so by determining which tests (questions) best divide the
data into separate classes, forming a tree [25].

I. Principle component analysis (PCA)
Principal component analysis is a technique for linearly
mapping multidimensional data onto lower dimensions
with minimal loss of information. Principal component
analysis has been extensively applied in almost every
discipline, chemistry, biology, engineering, meteorology,
etc [26].

Previous research

Numerous studies have been conducted on the development
of different repositories, the most important of which are:
Providing a source code repository for competitive program-
ming between students [27]; Designing and implementing
an open-source software repository known as OpenCom in
Shanghai Component Library to describe, store, retrieve, col-
lect, and develop open-source software and assist program-
mers in component-based programming [28]; introducing
a reusable component repository in embedded systems, in
which components data are stored in XML documents [29];
proposing a new source code repository for dynamic storage,
browsing, and retrieval of source codes, in which software
is divided into software units including application >mod-
ule >class >function >sub-function [30]; and introducing
a repository of Android open-source applications including
4416 versions of 1179 applications through the mining of an
Android open-source repository called F-Droid and sharing
it on a personal website [31].

All these studies are summarized in Table 1. Accordingly,
numerous repositories of reusable components and open-
source software in the domain of desktop-computer software,
Android, and software source codes have been developed

so far. Nevertheless, no repository of successful and failed
Android apps is available.

Many studies have been conducted in predicting the fail-
ure or success of desktop computer applications and ERP
(enterprise resource planning) software and webpages, the
most important of which include: dynamic prediction of
project success with completed design percentage param-
eters, cost of the owner, cost of the project contractor’s
obligations, cost of project owner’s obligations, hours of
efforts of the project owner, exact working period, cost of
order change, amount of order change and non-working days
due to bad weather using genetic algorithms, fuzzy logic,
and neural network by Chien-Ho Ko et al. (2007) [7]; pre-
diction of project success using a combination of support
vector machine algorithms with the fmGA genetic algorithm
by the completed design percentage parameters, cost of the
owner, cost of factor construction, hours of effort considered
by the designer, material form and tools, cost of construction,
cost of the project owner’s obligations, and incidence rate
measured by Min-Yuan Cheng et al. (2008) [22]; prediction
of the success of application using dependency rules learn-
ing using the risk-taking parameters of the project, including
shortage of personnel, unrealistic planning and scheduling,
development of wrong functions and properties, develop-
ment of wrong user interface, bad project management, etc.
by Xiaohong Shan et al. [4] (2009); prediction of software
shortcomings using the RFC, LOC, CBO, WMC, LCOM,
DIT, NOC, LOCQ, and NOD parameters using Bayesian
Networks by Ahmet Okutan et al. (2014) [32]; and pre-
diction of project failure factors and use of these factors in
predicting failure and success using unrealistic expectation
parameters of the project, lack of a board of directors and
leader for the project, inadequate obligations of stakeholders,
inadequate project management and control, requirements
changes, unclear requirements, etc., by Logistic Regression
Method by Guillamue et al. (2015) [33].

In Table 2, all the works done in predicting the failure
and success of applications in all the fields are mentioned.
Accordingly, nothing has been done in predicting the failure
and success of the applications of Android operating system.

Researchmethodology

As mentioned before, the necessity of a repository of suc-
cessful and unsuccessful Android applications is due to two
reasons. First, there is no such repository, and second, no
work has been carried out to predict the failure and success
of Android applications so far.

In repositories which have been used by others in the
success or failure prediction, software defects, and effec-
tive factors in the failure of the desktop apps, Procaccino
et al. could obtained 42 projects through using questionnaire
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Table 1 Things done in the
development of Repository

Years Authors Description of the study Repository holding

2003 Lee et al. Designing and developing a
repository of reusable
components [34]

N/A

2005 Dorta et al. Developing a source code
repository called OpenScr
to assist the OpenMP
community by being used
in shared memory
multiprocessor platforms
[35]

A repository containing
software source codes in
all languages

2007 Burgio Designing and
implementing a reusable
repository and explaining
the required features for
its development [3]

Totally, 423 classes are
divided into 83 packages,
including 19367 line of
codes

2008 Punitha et al. Introducing a source-code
repository for competitive
programming and
evaluating the skills of
students [27]

Source codes in different
languages to be used in
competitive programming
by students

2009 Hong Min et al. An open-source software
repository called
OpenCom in Shanghai
Component Library to
promote the use of
open-source software in
China

A RAS-based repository of
open-source software

2009 Bajracharya et al. Proposing an infrastructure
for accessing , showing
and analyzing large
open-source codes called
Sourcerer [36]

A large number of
open-source codes stored
using a meta-model

2011 Chang et al. Introducing a repository of
reusable components in
embedded systems which
store components data in
XML documents [29]

A repository of reusable
components with features
such as editing, searching,
and retrieving the
components, as well as
providing solutions to
remove useless
components

2013 Chakraborty et al. Proposing a source code
repository for dynamic
storage, browsing, and
retrieval of source codes
[30]

A source code repository, in
which each software is
divided from the smallest
to the largest software unit

2015 Krutz Introducing repository of
open-source apps through
mining the open-source
Android app called
F-Droid [31]

A repository of open-source
apps including 4416
versions of 1179 apps

[23]. Wohlin et al. have used 46 projects in the prediction,
which were obtained through using NASA-SEL database
[24]. Chien-Ho Ko et al. have used 54 existing projects in
CAPP database and have chosen 15 projects for evaluation
[7]. Min-Yuan Cheng et al. have used 46 projects available
in CAPP database [22]. Xiaohong Shan et al. have used the

100 projects made by the Project Data Generator applica-
tion [4]. Francisco Reyes et al. could extract 140 projects
for prediction through using questionnaire, whose database
contained 104 successful and 34 unsuccessful projects [37].
Ramaswamy et al. have used the 12 chosen projects for soft-
ware defect prediction of application [38]. Sumanv have used
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Table 2 Things done in predicting success or failure of applications

Authors Features Method Prediction case Platform

Procaccino et al. (2002) Requirements,
management, users
and customers,
estimation and
planning, project
manager, software
development process
etc. [23]

Logistic regression Success and failure of
project

Desktop computers

Claes Wohlin et al. (2005) Delivery in due time,
software quality and
proper maintenance
[24]

Analysis of key success
stimuli

Success or failure of
similar projects

IBM computers

Chien-Ho Ko et al. (2007) Percentage of completed
design, cost of owner,
cost of project
contractor’s
obligations, cost of
project owner’s
obligations etc. [6]

Combining genetic
algorithm, fuzzy logic
and neural network as
well as introducing a
new method, known as
EPSPM

Dynamic prediction of
project success

CAPP projects

Min-Yuan Cheng et al. (2008) Percentage of completed
design, cost of owner,
cost of factor
construction, hours
etc. [17]

Combining support
vector machine with
FmGA genetic
algorithm Providing a
new method, known as
ESIM

Project success CAPP projects

Xiaohong Shan et al. (2009) Project risk-taking
including shortage of
staff, unrealistic
planning and
scheduling,
development of wrong
methods and
properties,
development of wrong
user interface, bad
project management,
continuous flow of
change in
requirements, etc. [4]

Association rule mining Software success by
obtained rules

Desktop computers

Francisco Reyes et al. (2011) Project output [37] Genetic algorithm for
cost optimization

Cost of developing
different software
parts

Desktop computers

Ramaswamy et al. (2012) Software defects [38] K-Means clustering
algorithm with
random forest
classifier algorithm

Success of software ERP and web domain
applications

Suma et al. (2014) Software Defects [24] Random forest classifier
algorithm

Software Defects Desktop computers

Ahmet Okutan et al. (2014) RFC, LOC, CBO,
WMC, LCOM, DIT,
NOC, LOCQ and
NOD [32]

Bayesian networks Software Defects Open-source
applications in web
domain
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Table 2 continued

Authors Features Method Prediction case Platform

Guillamue et al. (2015) Factors affecting failure
including unrealistic
expectations of
project, lack of board
of directors and leader
for project, inadequate
obligations of
stakeholders,
inadequate project
management and
control etc. [33]

Logistic regression Project failure factors
and use of these
factors in predicting
failure and success

Large enterprise
applications including
tourism industry, tax
administration, airport
management

Guillamue et al. (2015) Factors affecting failure
and helping the
companies in big
decisions and adopting
policies when the
project is failing [39]

Logistic regression Project failure factors Projects of information
technology
management
companies in the field
of desktop computers

15 projects for the success and failure prediction of applica-
tions [24]. Ahmet Okutan et al. have used public databases
such as Ant, Tomcat, Jedit, Velocity, Synapse, Poi, Lucene,
Xalan, and Ivy, which velocity with 229 samples had the
lowest number of samples and Tomcat with 858 sample con-
taining open-source applications had the highest number of
samples [32], and 105 unsuccessful projects were extracted
by Guillamue et al. and were used to predict the success and
failure of the project [33,39].

According to the fact that in works done by others, the
numbers of projects in the prediction were different.

Moreover, in Table 2, used features by others are different
and there is no standard for the necessary number of projects
used in prediction and number of features. In this article, a
repository of 100 successful and 100 unsuccessful applica-
tions including 34 features from the applications of Google
Play Store was built. To do so, the successful applications
were extracted from the Top Free and Top New sections on
the Google Play Store, and unsuccessful applications includ-
ing retired, discontinued, and decommissioned applications,
were extracted from resources such as alternative.to, etc.,
such that there was at least one application for each category
on the Google Play Store. Then, the repository was given
to MLP and LVQ neural networks with different learning
functions and NPR for prediction, and the accuracy of the
above-mentionedneural networkswas examinedvia employ-
ing PCA algorithm and selecting effective features, without
applying the PCA algorithm with 34 features provided in the
prediction.

A. Features of Proposed Repository
The proposed repository included the successful and
failed apps on Google Play Store. The features for each

app in this repository were extracted based on the ISO
25010 software quality survey and standard.4 Each app in
this repository had the following features: (1) Name, (2)
Number of packages, (3) Number of classes, (4) Number
of Methods, (5) LOC for each app, (6) Developing coun-
try, (7)Apkfile size, (8)Having a top developer or not, (9)
In-app purchase option, (10)Having a sponsor, (11)Rela-
tion with the social media networks, (12) Google Play
category, (13) Being open-source, (14) In-app advertise-
ments, (15) Needing root access, (16) Being free, (17)
Having a name relevant to the operation, (18) Perfor-
mance efficiency, (19) Relation with system apps, (20)
Interoperability, (21) Usability, (22) Accessibility, (23)
Reliability, (24) Install accountability, (25) Having doc-
umentation, (26) Showing permissions while installing
the app, (27) Having support, (28) Having a database for
storing information, (29) Having cloud storage for stor-
ing information, (30) Having one or multiple developers,
(31) Having a forum or blog, (32) Having a help or FAQ
(frequently asked questions) menu, (33) Having a voting
option on the Google Play Store, (34) Having a donation
option, and (35) Success or failure of the app. In Table 3,
the extraction of each feature is explained.

B. Development stages of the proposed repository
Fig. 2 illustrates the general process of developing the
repository.
First, using the “discontinued apps” section on Alterna-
tive.to5 and other sources, all the discontinued, retired,
and decommissioned apps were identified and a list of
apps was prepared in separate folders. Then, the pres-

4 https://nl.wikipedia.org/wiki/ISO_25010.
5 http://alternativeto.net/tag/discontinued/?platform=android&
sort=likes.
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Table 3 Extraction of features Feature Extraction method

Number of packages In APK Consulting the supervisor

Number of classes In APK Consulting the supervisor

Number of all methods in APK consulting the supervisor

LOC Review articles

Country Application PlayStore page

APK size Application PlayStore page

Top developer Application PlayStore page

InApp purchases Application PlayStore page

Sponsored Consulting the supervisor

Relation with social networks Review articles

Category Application PlayStore page

Open source Review articles

Contain adds Program failure due to excessive advertising

Needs root Application PlayStore page

Free Application PlayStore page

Name relation with app operation Functional suitability in ISO 25010 standard

Performance efficiency Resource utilization a sub-section of performance
efficiency, a category of ISO 25010 standard

Relation with system apps interchangeability (compatibility) a category of
ISO 25010 Standard

Accessibility (install on different android
OS?)

Adaptability a sub-section of portability,
category of ISO 25010 standard

Install accountability (install newer version
on old version)

Replaceability a sub-section of portability, a
category of ISO 25010 standard

Having documentation From review articles

Show permissions when installing app Security from ISO 25010 standard

Support (having email for bug report) Quality in use from ISO 25010 standard

Programs has database? Consulting the student of another university

Have one developer or more? Application PlayStore page

App has a forum or blog Quality in use from ISO 25010 standard

App has help or FAQ? Quality in use from ISO 25010 standard

Has voting option (rate for APP) Quality in use from ISO 25010 standard

App has donate option Quality in use from ISO 25010 standard

Discontinued From alternative to and other sources

Accessibility (install on different android
OS?)

Adaptability a sub-section of portability, a
category of ISO 25010 standard

ence of capture for each app on Internet Archive6 was
checked; in case no capture was available, another app
would be selected. In the next step, in case capture was
available, each app’s page onGoogle Playwould be saved
and features 1, 6, 7, 8, 9, 12, 14, 15, 16, 25, 27, 30, and
31 would be extracted. To extract feature 12, we used
Table 4. Afterwards, the classes.dex file was extracted
from each app’s apk file. We employed the dex2jar tool
to convert the classes.dex file into a .jar file for analyzing
the app in Cyvis.

6 http://archive.org/web/.

Cyvis7 is the software used for analyzing the complexity
and viewing the classes, functions, etc. in .jar files. In the
next step, the number of methods and lines of code for
each app was counted using the dex-methods-count8 and
SwingLOCCounter tools, respectively.Afterwards, each
appwas installed on aHuaweiHonor 3CH30-U10 device
with Android 4.4.2 and H30-U10V100R001C900B310
build number, and features 11, 13, 14, 19, 20, 22, 24, 26,

7 http://cyvis.sourceforge.net/.
8 https://github.com/mihaip/dex-method-counts.
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Fig. 2 Steps of developing the repository and extracting the features

Table 4 Converting the app categorization into numbers

Number Category

1 Android Wear

2 Art and design

3 Auto and vehicles

4 Beauty

5 Books and reference

6 Business

7 Comics

8 Communication

9 Dating

10 Education

11 Entertainment

12 Events

13 Finance

14 Food and drink

15 Health and fitness

16 House and home

17 Libraries and demo

18 Life style

19 Maps and navigation

20 Medical

21 Music and audio

22 News and magazine

23 Parenting

24 Personalization

25 Photography

26 Productivity

27 Shopping

28 Social

29 Sports

30 Tools

31 Travel and local

32 Video players and editors

33 Weather

34 Games

28, 29, 32, 33, and 34 were extracted.
In the following step, the performance efficiency of the
apps (including RAM and CPU usage) was measured
using the Resource Monitor Mini9 tool and converted
into numerical data by Table 5. Then, we used the Mon-
key tool to perform stress tests five times on each app to
evaluate the reliability feature. Monkey10 enters a set of
random events including touch, rotation, silencing, tak-

9 https://play.google.com/store/apps/details?id=info.kfsoft.android.
memoryindicator.
10 https://www.utest.com/articles/how-to-stress-test-your-android-
app-with-monkey.

123

https://play.google.com/store/apps/details?id=info.kfsoft.android.memoryindicator
https://play.google.com/store/apps/details?id=info.kfsoft.android.memoryindicator
https://www.utest.com/articles/how-to-stress-test-your-android-app-with-monkey
https://www.utest.com/articles/how-to-stress-test-your-android-app-with-monkey


582 Complex & Intelligent Systems (2020) 6:573–590

Table 5 Parameters for artificial neural networks algorithms

Method Error Parameters Max fail Epochs

MLP with
trainlm
learning
function

MSE Three hidden
layers, first
layer including
5 neurons,
second layer
including 5
neurons, and
third layer
including 2
neurons

6 1000

MLP with
trainbr
learning
function

MSE Three hidden
layers, first
layer including
10 neurons,
second layer
including 5
neurons, and
third layer
including 2
neurons

6 1000

LVQ with
learnlv1
learning
function

MSE One hidden layer
including 10
neurons

6 50

LVQ with
learnlv2
learning
function

MSE One hidden layer
including 10
neurons

6 The
learning
process
will be
con-
ducted
two
times:
first
time 50
and the
second
time 100

NPR MSE One hidden layer
including 75
neurons

6 500

ing screenshots, playingmusic, and turningWi-Fi on/off,
as the input into the app.
We would enter 1 for the reliability feature if an app
successfully completed the test and 0 if we received the
“Force Close” message during the test. Finally, all the
apps were uninstalled from the Android device.
Since most features used in this repository were not
numerical data, we employed different criteria for con-
verting each feature. Table 6 presents these criteria and
the method for their conversion into analyzable numbers.

– The usability feature is a subjective criterion. Therefore,
for its conversion into numbers, we turned to 7 individ-
uals who had most frequently visited Android software

Table 6 Parameters for kNN, SVM, RF, and DT algorithms

Method Error Parameters

kNN MSE 10 Fold cross
validation and
100 neighbors

SVM MSE 10 Fold cross
validation

Random forest MSE 10 Weak
Learners

Decision tree MSE 100 Fold cross
validation

service centers. All the 200 applications were given to 7
individuals. They were asked to assign 1 in case of sat-
isfaction with user interface and 0 otherwise. The total
votes were rounded up.

– A few categories were added to Google Play after 2015
and, thus, did not include any failed apps.

– In the proposed repository, there is at least one app for
each Google Play category.

C. Data analysis and sharing
The resulting repository was shared on GitHub11 website
to be used in data analyses and prediction of the success
or failure of Android apps. For example, by inspecting
the “DevelopingCountry” column,we concluded that the
success or failure of apps did not correlate with the devel-
oping country. By checking the “Reliability” column,
almost all successful apps were found to pass the stress
test successfully, while most of the failed apps encoun-
tered problems during the test.
The proposed repository consisted of 200 (100 success-
ful and 100 failed) apps. The Clash of Clans game and
VOA Farsi had the largest (66 mb) and smallest (1.1 mb)
apk file sizes, respectively, among the successful apps.
Moreover, Advanced English Vocab and Foxifi Addon
had the largest (25 mb) and smallest (0.0.2 mb) apk file
sizes among the failed apps, respectively. In addition,
39% of the failed apps did not complete the Stress test,
while only 4% of the successful ones failed.
In statistics, the frequency (or absolute frequency) of an
event i is the number ni of times that the event occurs in
an experiment or study.12

Figures 3 and 4 illustrate the absolute frequency of suc-
cessful and failed apps in Google Play categories.
Based on Fig. 3, we concluded for instance that the repos-
itory held 6 successful apps belonging to Google Play

11 https://github.com/mehrdadr68/Android-Successful-Failed-Apps-
Repository.
12 https://en.wikipedia.org/wiki/Frequency_(statistics).
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Fig. 3 Absolute frequency of
successful apps in each category

Fig. 4 Absolute frequency of failed apps in each category

category 8.Also,we concluded fromFig. 4 that the repos-
itory had 9 failed apps belonging toGoogle Play category
21.

Figure 5 demonstrates the percentage of failed apps for
each category in the form of a pie chart. Based on this
chart, the most failed apps belonged to category 8, i.e.,
“Communication”.
The reason is that many developers have been producing
apps to attract users, but have failed, because they could
not compete with other apps in the Communication cat-
egory.
Figure 6 depicts the percentage of successful apps for
each category in the pie chart. Based on the above chart,
most apps belonged to Google Play categories 25 and 26,
i.e., Photography and Productivity, respectively.
Based on the “Donation Option” column, we concluded
that almost none of the successful apps had this option in
any menu, while the failed apps included it, because old
apps did not have advertisements. However, nowadays,
developers include them to regain the development costs.
To examine the dependence or lack of dependence of each
of the features obtained in the repository, Chi-squared test
or the correlation coefficient can be used.

Chi-squared test: It is used in two cases: a. lack of depen-
dence between two variables in a table to evaluate the
level of input dependency and brand quality, family pop-
ulation, TV size, educational background, occupation,
etc., b: goodness-of-fit test to measure the difference
between the frequency distribution of observed variable
with expected frequency distribution. Since there is no
expected frequency distribution for the features men-
tioned in the repository, Chi-squared test cannot be used
to measure the dependency of the features [40].

Correlation coefficient: In statistical terms, correlation is
the evaluation of a linear two-way relationship between
two continuous variables. According to statistics, the cor-
relation coefficient is a number between -1 and 0, which
means that the negative relationship between two vari-
ables or might be a number between 0 and 1, which
indicates the positive relationship between two variables.
The correlation in statistics is expressed and calculated
with the correlation coefficient. The correlation coeffi-
cient is calculated in two ways:
A: Pearson’s correlation coefficient: is usedwhen the two
variables have a normal distribution; B: Spearman’s cor-
relation coefficient: is used which the two variables have
an unbalanced distribution or ordinal data [41].
To calculate the correlation coefficient among the fea-
tures mentioned for each program in the repository,
MATLAB software was used. Since this software auto-
matically performs the normalization of data to calculate
the correlation coefficient, Pearson’s correlation coeffi-
cient was employed.
To obtain the effective features in the prediction, the PCA
algorithm was used to reduce features. After applying
the PCA algorithm on 35 obtained features, 16 features
were selected for prediction. Then, to find whether these
features depended on each other and whether or not a
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Fig. 5 Pie chat of percentages of failed apps in each Google Play category

feature could be calculated using another, Pearson’s cor-
relation coefficient was calculated for the remaining 16
features. The minimum correlation coefficient was equal
to−0.2098 and themaximumwas0.5050. Since thehigh-
est and lowest correlation coefficients were not −1 and
1, it can be concluded that all 16 selected features were
required in the prediction, and none of them can be calcu-
lated from another with no direct or indirect dependence.

As depicted in Fig. 7, in Phase 1, (1) first, the input
comprising 34 features (33 features for prediction and
1 including the label of the class the software belongs
to) is given by MATLAB as the input to the neural net-
work of a categorization algorithm; (2) Then, the data
are divided by the categorization algorithm, and 70% of
the data are selected for training, 15% for validation, and
15% for testing. (4) For each algorithm, ten iterations of
tests (training, validation, and testing) are performed, and
in each iteration, the level of accuracy of the algorithms
is calculated. (5) Finally, the output of this phase is given
to Phase 3.
In Fig. 8, in Phase 2, (1) First, the input containing 34
features is given by MATLAB as the input to the PCA

algorithm; (2) Then, the output of the PCA algorithm
which is a dataset with 16 features is given to the catego-
rization algorithm; (3) next, the data are divided by the
categorization algorithm, and 70% are selected for train-
ing, 15% for validation, and 15% for testing. (4) For each
algorithm, ten iterations of tests (training, validation, and
testing) are performed, and in each iteration, the level of
accuracy of the algorithms is calculated. (5) Finally, the
output of this phase is given to Phase 3.
In Fig. 9, it is clear that the output of Phases 1 and 2,
including accuracy in all 10 iterations of implementing
the selected categorization algorithm, is given to Phase
3, so that the best algorithms for categorization of suc-
cessful and unsuccessful programs are identifiedwith and
without applying the PCA algorithm.
Moreover, due to the fact that in other work conducted
on predicting success or failure of applications by others,
none of the features used by them has priority over the
others. Therefore, none of the features used in this study
and also in the conducted experiments through the use
of made repository takes priority over the other and all
features are of equal priority in the prediction.
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Fig. 6 Pie chat of percentages of successful apps in each Google Play category

Fig. 7 Phase 1—steps to
perform experiments using the
created repository without
applying PCA
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Fig. 8 Phase 2—steps to perform experiments using the created repository with applying PCA

Fig. 9 Phase 3—the output of
Phases 1 and 2 are given to
Phase 3 to measure accuracy
and select best algorithm for
classification

Experiment results

A. Parameter tuning
In Tables 5 and 6, all details of used neural networks in
prediction such as MLP LVQ NPR neural networks and
other sorting algorithm like KNN SVM Random Forest
and Decision Tree have been mentioned.

B. Experiments environment
All testswere performedon anAMDA45300Bcomputer
with 8Gb CPU and runningWindows 7, usingMATLAB
version R2017b.

C. Experiments
After building the desired repository, it was given to five
neural networks: MLP with trainlm learning function;
MLP with trainbr learning function; LVQ with leranlv1
learning function; LVQ with lerarnlv2 learning function;
and NPR and also the desired repository was given to
kNN, SVM, random forest, and decision tree algorithms.
The accuracy parameter for neural networks and kNN,
SVM, Random forest, and decision tree algorithms was
calculated separately for each algorithm using the PCA
algorithm to reduce the features and obtain the effective

features and without PCA algorithm. For each algorithm,
the training process was implemented ten times and the
results of the highest accuracy for each algorithm were
measured and shown in Table 7. To train the neural net-
work and test whether the neural network maintained the
pattern or not, 70% of the data were selected for training,
15% for validation, and the remaining 15% for testing.
Moreover, the runtime for each of the five neural net-
worked with/without the PCA algorithm has been cal-
culated in seconds. Each neural network and learning
algorithm was run ten times, and mean runtime for each
is given in Table 8.
And in Table 9, the time complexities of the proposed
algorithm are compared with the previous ones found in
the literature. The use of the PCA algorithm for reducing
the number of features in many cases will increase the
precision. As it can be seen in Figs. 10 and 11, for exam-
ple in MLP algorithm, the train, test, and validation error
have been reduced after using PCA in comparison with
no PCA algorithm used on features.

The criterion of comparing ourworkwith others in differ-
ent platforms is the accuracy in prediction. As mentioned
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Table 7 Best accuracy for each
algorithm

Algorithm Accuracy

With applying PCA Without applying PCA

MLP with trainlm Learning function 99.99% 89.47%

MLP with trainbr Learning function 99.99% 75.68%

LVQ with learnlv1 Learning function 76.5% 77.5%

LVQ with learnlv2 Learning function 76.5% 77%

NPR 87% 95.5%

kNN 76% 76%

SVM 85% 88.5%

Random forest 74.6% 76.85%

Decision tree 85.5% 86%

Table 8 Average runtime for
each algorithm

Algorithm Runtime

With applying PCA Without applying PCA

MLP with trainlm Learning Function 5.3 s 1.798s

MLP with trainbr Learning Function 2.392s 3.281s

LVQ with learnlv1 Learning Function 14.39 s 10.995s

LVQ with learnlv2 Learning Function 18.696s 18.654s

NPR 1.572 s 1.572 s

kNN 9.168 s 10.07 s

SVM 2.01 s 1.258 s

Random forest 1.986 s 2.138 s

Decision tree 19.081 s 17.766 s

in Sect. 4, we use the accuracy as our main comparison
criterion for all algorithms (with or without PCA). This is
because it has also been used by the previous approaches
for predicting success of applications in other platforms
[14,22,24,32,33,42].
In Table 7, the use of the PCA algorithm lowered the pre-
diction accuracy in some cases, which demonstrates that
the use of PCA algorithm is not always the appropriate
way to reduce features.
This is because not only PCA does not remove features
in some cases, but also it discovers and utilizes features’
relationships if possible. In other words, PCA may reach
a composite feature that leads to the accuracy decrement
in those circumstances. For example, we achieved the
accuracy of 95.5%by leveraging the soleNPR algorithm,
while applying PCA to it caused the accuracy to decrease
to 87%. Hence, it is not always appropriate to use PCA to
reduce the number of features. However, applying PCA
to MLP algorithm always performed well and achieved
99.99% accuracy in prediction.

The notations used in Table 9 are as follows: n represents
training samples, p stands for features, k is hidden layers
each ofwhich contains h neurons, and o represents output
neurons. In addition, i is the number of iterations, ntreesis

Table 9 Computational complexity of applied algorithms

Algorithm Computational complexity

Training Prediction

MLP [43] – O(nphkoi)

LVQ [44] – O(n2logn)

NPR [45] – O(n3)

kNN [46] – O(np)

SVM [46] O(n2 p + n3) O(nsv p)

Random forest [46] O(n2 pntrees) O(pntrees)

Decision tree [46] O(n2 p) O(p)

RNeural network [46] ? O(pnl1 + nl1nl2 + · · ·)
Naïve Bayes [46] O(np) O(p)

the number of trees (for methods based on various trees),
nsv is the number of support vectors, and nli stands for
the number of neurons at layer i in a neural network.
As shown in Table 9, Naïve Bayse and KNN algorithms
used in MLP training function have better time com-
plexities. However, they fail to show high accuracy in
prediction. Therefore, it can be concluded that an algo-
rithm with low computational complexity may not have
good prediction accuracy.
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Fig. 10 Mean-squared error for train, test, and validation inMLPbefore
applying PCA algorithm

Fig. 11 Mean-squared error for train, test, and validation in MLP after
applying PCA algorithm

It is also worth mentioning that since NPR and MLP
algorithms used in the proposed approach have time
complexities of O(n3) and O(nphkoi), respectively, the
computational complexity of our approach is high; and
hence, it is not a good practice to utilize it online.
In Table 10, the accuracies of previous success prediction
methods in desktop andweb platforms are comparedwith
the accuracy of the proposed approach.

As it can be seen in Table 10, the highest accuracy
obtained in the desktop platform is 96%, while the high-
est accuracy achieved in Android operating system is
99.99%, which pertains to the proposed approach. This

Table 10 Accuracy comparison of previous approaches with the pro-
posed method

Authors Prediction
case

Platform Accuracy

Cheng and
Wu [22]

Project
success

Desktop 45.3%

Reyes, Cerpa
et al. [42]

Cost of
developing
different
software
parts

Desktop 81.45%

Suma et al.
[24]

Success of
software

Desktop 86%

Fenton et al.
[14]

Software
defects

Desktop 93%

Okutan and
Yıldız [32]

Software
defects

Open-source
applications
in web
domain

95%

Guillaume-
Joseph and
Wasek [33]

Project
outcomes
and Success

Desktop 96%

Our case
study with
applying
PCA

Success or
failure of
android
applica-
tions

Mobile 99.99%

means that the accuracy achieved by us in the field
of Android applications is greater than the accuracy
achieved by others in the Desktop and Web platforms.

Conclusion and suggestions

As there has been no repository of successful and unsuccess-
ful applications in Android operating system, a repository of
successful and unsuccessful applications was built with 35
features.

Furthermore, this repository can help experiments and
assist programmers develop and maintain better and more
successful apps. The features included for each app in this
repository can be used for future analyses. We can determine
the importance of each feature in the analyses by examining
the features of successful and failed apps.

The repository was then given to various neural networks
& other classification algorithms for prediction to investigate
the accuracy of each algorithms in two cases of with and
without applying PCA algorithm. As in Sect. 5, the NPR
algorithm had prediction with the accuracy of 95.5%without
applying PCA, and MLP algorithm had prediction with the
accuracy of 99.99% with applying PCA. This means that
when there is a high number of repository features, the NPR
algorithm is more accurate. Also, in the case the effective
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features are extracted using the PCA algorithm, the MLP
algorithm is more accurate.

As mentioned in Sect. 5, we used accuracy as our com-
parison criterion as it had been by other approaches, as well.
Then, the proposed method was compared with the other
approaches in terms of performance, and it was clear that the
most accurate algorithm is not necessarily the most efficient
one.

Therefore, it is concluded that MLP in combination with
PCA should be leveraged if the accuracy is important, while
NaiveBayse orKNNmust be employed if the time is themain
concern. It was also mentioned in Sect. 5 that the accuracy
achieved by the proposed method is higher than those of
previous approaches in desktop and web platforms.

In the future, researchers can design a tool for examining
the usability feature so as to automatically check the num-
ber of menus, buttons, and other elements in apps and enter
appropriate values for this feature. Also, researchers can use
other tools such as Neoload to perform more accurate Stress
tests.

In the prediction phase, other techniques ofmachine learn-
ing can be used in prediction. The compiled repository is
shared on GitHub.13
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