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Abstract
Non-linear model optimization for predicting time series is a challenge problem. In Intelligent Transportation Systems
(ITS) application, the indispensable short-term traffic flow prediction with big data makes the problem worst. To improve the
prediction accuracy and ensure real-time performance in the big data environment,we propose a novel co-evolutionary artificial
bee colony (ABC) improved by differential evolution (DE) optimization algorithm combined with a traffic flow predicting
model trained by extreme learning machine (ELM) neural network. The proposed model can inherit the better generalization
performance and the less training time consumption of the standard ELM, and can achieve a more balanced search strategy
with the optimized weights and biases to overcome the random initialization deficiency of the typical ELM, and successfully
obtain higher prediction accuracy compared with state-of-the-art methods. To verify the efficiency of the proposed model, we
apply it to Lozi and Tent chaotic time series simulations and measured traffic flow time series experiments. Simulation and
experimental results demonstrate that the proposedmodel has superior performance and competitive computational efficiency.

Keywords Artificial bee colony · Differential evolution · Extreme learning machine · Traffic flow prediction

Introduction

An accurate and rapid short-term traffic flow prediction is
important to the performance of many advanced applications
of the intelligent transportation system (ITS). The forecast
results can help road users make better travel routes, reduce
traffic congestion and improve the capacity of the existing
road networks. The non-linearity and complexity of short-
term traffic flow prediction have attracted researchers to
propose many solutions to solve this challenging problem.
The traffic flow data are a typical time sequence signal in
which values are collected from traffic sensors based on an
uniform time interval and a fixed sampling rate. Meanwhile,
urban traffic flow data different with traditional time series
data can reflect the periodical similarity like morning and
night peak in big cities and the zonal relevancy like schools
or hospitals or edge zones. The unique temporal and spatial
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characteristics of traffic flow data make it very difficult to
accurately predict in real time. Therefore, the forecast results
often have anobvious deviation comparedwith realmeasured
traffic flow data. There are two major reasons. First, earlier
short-term traffic flow prediction methods mainly depend on
the limited historical detecting data because of lack of traf-
fic flow data collecting infrastructure. Second, it is hard to
build one predictive model that has better scalability and fit
all traffic situations. Luckily, we have entered the era of big
data transportation with the development of infrastructure
and new data transmission technology.

Nowadays there are various sensors to collect real-time
traffic flow data including radars, cameras, mobile Global
Position System (GPS), social media, etc. However, the big
data ITS also induce some new problems for short-term traf-
ficflowprediction.Therefore, considering the remarkable big
traffic flow data feature, how to efficiently use the tremen-
dous traffic flow data to improve the accuracy and timely
prediction result has grown into a hot spot [1,2]. Recently, a
deep-leaning-based traffic flow prediction method has been
successfully used to extract deep features for prediction,
which have achieved superior performance [1,3]. However,
the computational cost during both training and prediction
processes is expensive for all deep learningmodels [4]. Apart
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from deep learning models, the popular autoregressive inte-
gratedmoving average (ARIMA), Neural network (NN), and
Support Vector machine (SVM) are successfully used for
short-term traffic flow prediction. The NNmodels are widely
utilized in engineering applications of ITS because of the
good performance and the compact architecture.

A novel NN called extreme learning machine (ELM) can
obtain good generalization at fast speed, which is suitable
to predict short-term traffic flow in real time. However, the
random weights and biases of ELM could lead to the insta-
bility of ELM output even based on same training dataset.
To improve the stability of ELM and keep the predication
accuracy, the input weights and hidden bias in ELM can be
optimized by some search algorithms [19]. However, sin-
gle optimization mechanism has different emphasis on local
searching or global searching. Therefore, combining differ-
ent optimization algorithms to build hybrid strategy for ELM
predicting traffic flow is an effective and interesting research
thought, which is the main motivation of our work.

In this paper, our contributions are as follows. First, we
propose a novel hybrid NN model which combines a novel
co-evolutionary artificial bee colony (ABC) optimization
algorithm improved by differential evolution (DE) with a
traffic flow predictor trained by extreme learning machine
(ELM) algorithm. Second, we use the Lozi and Tent chaotic
mapping to verify the improved ABC–ELM model to out-
perform than several traditional models and standard ELM.
Finally, we collect real traffic flow sensors data to train and
test the improved ABC–ELMmodel compared with the stan-
dard ELMmodel to certify the competitive performance and
the computational cost in the real big data ITS environment.

The organization of this paper is as follows. The next sec-
tion reviews the popular short-term traffic flow prediction
solutions followed by which the detailed implementation
of the proposed hybrid prediction model is explained. The
results of simulation and experiment are shown in the subse-
quent section. The concluding remarks and future works are
given in the last section.

Related works

In addition to the works mentioned in “Introduction” sec-
tion, we further review works closely related to research and
theoretical analysis in this paper. Over the latest few years,
many data analysis models have been developed to solve the
short-term traffic forecast problem.

These approaches can be divided into two categories,
namely parametric methods and non-parametric methods.
Among the parametric methods, the ARIMA model and
many variants of ARIMA were widely used to predict short-
term freeway trafficflow [5]. Parametricmethods canobtain a
good performancewhen traffic flow shows regular variations,

but they cannot deal with the obvious chaotic characteristics
and nonlinear nature of traffic flow data. Therefore, many
researchers have focused on nonparametric methods, such as
K-nearest neighbor (KNN)model [6], back propagation (BP)
neural network model [7], radial basis function (RBF) neu-
ral network model [8], and support vector regression (SVR)
[9]. In these classical models, RBF neural networks have
not only more powerful approximation but also better auto-
adaptability. It becomes the researched focus ofmany experts
in traffic flow forecasting field [2].

Recently, a new RBF network called ELM has been veri-
fied in the benchmark regression and classification data sets
very well [10,11]. For non-linear chaotic time series predic-
tion problem, the ELMusing sigmoid activation function can
obtain high accuracy [12]. Recently, researchers proposed a
hybrid framework optimized ELM by self-adaptive differ-
ential harmony search for financial time series prediction
[13]. Extensive comparison experiments based on BP and
RBF with ELM improved by the global search optimization
approach could achieve the superior performance and not
easily get trapped in local minima. However, the traditional
optimization method in the proposed ELM model could not
handle uncertainties and outliers in the complex time series
data. More recently, time series prediction has become more
accurate because of the deep learning development. In [14],
ELM for wind speed time series forecasting optimized by
stacked auto-encoders (SAE) is compared with current deep
learning models like a deep belief network (DBN) and a
restrictedBoltzmannmachine (RBM). The evaluation results
indicated that the proposed ELMmodel could obtain average
accuracy of 93.73% on single datasets and 94.04% on com-
bined datasets. However, ELMwith SAE is time consuming.
To overcome these drawbacks and improve the stability of
ELM network, how to optimize the parameters of ELM for
time series prediction is still a challenging problem.

During the last decades, the biological population-based
optimization provides robust and simple solution for multi-
modal and multi-objective optimization problems. The clas-
sical biological optimization technique includes early genetic
algorithms (GA) based on Darwinian evolution theory of the
living beings. GA, as the most popular optimization method,
has the obvious advantageof the powerful local search ability.
Similar to GA including mutation, crossover and selection
operation, the advanced differential evolution (DE) over-
comes the drawback of GA easily falling into local optima
and performs well in many fields. Compared with GA and
DE, the particle swarm optimization (PSO) inspired by bird
behavior has obvious advantages of easy implementation and
less tuning parameters. For short-term traffic flow forecast-
ing, the latest work in [15] proposed PSO–ELM to improve
the accuracy and obtain a competitive performance by com-
paring with several state-of-the-art methods. However, the
drawbacks of PSO algorithm are it is easily trapped in local
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optima and premature convergence occurs. The latest arti-
ficial bee colony (ABC) algorithm is a novel optimization
which is good at global search and can be directly com-
binedwith a neural network [16]. However, the local research
ability of ABC is poorer than other biological optimization
algorithms. To improve the GA,the DE, the PSO and the
ABC performance, some various combination attempts have
been down in hybrid GA, DE, PSO and ABCmodel. In [17],
authors present the performance comparison of DE, PSO and
ABC based on benchmark test functions. The experimental
result shows that the DE algorithm can obtain a better solu-
tion thanABCandDE, and the computation time isminimum
for ABC and maximum for PSO based on same iterations.To
achieve the short-term traffic flow prediction goal, we pro-
pose a novel ABC–DE algorithm to optimize the ELMneural
network parameters.

The standardABC algorithm starts from random solutions
to search for better solutions through iteration according to
the fitness result, and it has slow convergence speed and is
easily prone to premature convergence [18]. Considering the
real-time and accurate traffic flow prediction requirement in
the big data ITS, we improve the local searching space with
new optimal searching strategy [19–21] of ABC based on
differential evolution (DE) [22] algorithm to optimize the
input weights and hidden biases of ELM [22]. To verify the
proposed model in the big data ITS, Lozi and Tent chaotic
functions [2,24,25] and real measured traffic flow data can be
applied to simulate and implement experiments. Compared
with ARIMA, KNN, BP, RBF, SVR and standard ELM, the
proposedmodel can obtain a better generalization and higher
accuracy and competitive time consumption in the big data
ITS.

Proposed network architecture for traffic
flow prediction

In this section, we propose a novel neural network architec-
ture for short-term traffic flow prediction in a big data envi-
ronment based on the ELM and improved ABC, including
the theoretical analysis, model confirmation and optimiza-
tion, respectively.

ELM neural network

ELM proposed by Guangbin Huang [10,16] was originally
inspired by biological learning and aimed to overcome
these limitation drawbacks faced by conventional machine
learning theories and techniques. From the neural network
architecture point of view, the output function with L hidden
nodes for a standard ELM [16] can be defined as follows:

yi =
L∑

j=1

β j f (ωi, j xi + b j ), (1)

where the activation function f (•) is a nonlinear piecewise
continuous function like sigmoid and radial basis. Where
ω is the random weights of the input layer which connects
the hidden node with ith input vector, and b is the random
biases of the hidden layer. For the given n training samples
(xi , ti ), where the input vector xi = [xi1, xi2, . . . , xim] ∈
Rm , where the target label ti = [ti1, ti2, . . . , tip] ∈ Rp ,
i = {1, 2, . . . , n} , the output value of ELM network can be
defined as yi = [yi1, yi2, . . . , yip] ∈ Rp.

In formula (1), the initial ω and b value can be randomly
assigned by the ELM theory, and the output weights β can
be calculated by the least squares solution. If the training of
ELM network aims to reach not only the smallest training
error, but also the smallest norm of output weights, which
means the ELM network should be trained to approximate
arbitrary samples with zero error [11], there exist β , ω and
b that make yi = ti hold true. Therefore, the compact vector
version of ELM function could be expressed as follows:

T = Hω,b,xβ, T =

⎡

⎢⎢⎢⎣

t1
t2
...

tn

⎤

⎥⎥⎥⎦ , β =

⎡

⎢⎢⎢⎣

β1

β2
...

βL

⎤

⎥⎥⎥⎦ (2)

Hω,b,x =

⎡

⎢⎢⎣

f (ω1,1 · x1 + b1) · · · f (ω1,L · x1 + bL)
...

...

f (ωn,1 · xn + b1) · · · f (ωn,L · xn + bL)

⎤

⎥⎥⎦

(3)

where Hω,b,x is named as the hidden layer output matrix, the
output weights β can easily be calculated by the least square
solution as follows:

β = pinv(Hω,b,x ) · T , (4)

where function pinv(·) means to compute the Moore–
Penrose pseudo-inverse of the hidden layer output matrix
Hω,b,x . It is easy for programming, so the output weights β

can be successfully calculated by this function.
However, the convergence of the standard ELM is gen-

erally slow, because the training of a standard ELM needs
a large number of hidden nodes to approach an appropri-
ate result. To overcome this issue, the kernel-based ELM
(KELM) is suggested by the authors [16]. To KELM net-
work, the hidden layer output matrix can be presented as
follows:
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Hμ,σ,x =

⎡

⎢⎢⎣

k(μ1, σ1, x1) · · · k(μL , σL , x1)
...

...

k(μ1, σ1, xn) · · · k(μL , σL , xn)

⎤

⎥⎥⎦ , (5)

where the function k(•) is the ELM activation kernel func-
tion which can be but are not limited linear, polynomial,
sigmoid, Fourier, hard limit or radial basis function (RBF).

Generally, the RBF kernel k(μi , σi , x j ) = exp(−‖x j−μi‖2

σ 2
i

)

can be chosen to achieve a competitive regression model
and good generalization performance. Therefore, with the
optimum condition of the Karush–Kuhn–Tucker, the out-
put weights matrix β of KELM can be expressed as
follows:

β = HT
μ,σ,x

(
I

ε
+ HT

μ,σ,x · Hμ,σ,x

)−1

T , (6)

where ε is defined as penalty coefficient, the μ ,σ and ε

parameters of KELM are similar to the input layer weights
and the hidden layer biases of ELM and can be randomly
initialized to train the KELM network. The random initial-
ization of parameters can lead to the obvious unstable output
of KELM or ELM network, which will reduce the advan-
tage of the ELM or KELM generalization ability. To solve
this problem, the self-adaptive optimization algorithm can
be introduced to optimize the above parameters of ELM or
KELM neural network.

ABC algorithm

An ABC optimization algorithm that imitates the foraging
behaviors of honey bee colony is a new intelligent optimiza-
tion algorithm. InABCalgorithm, there are three types of bee
including employed, onlooker and scout bees searching for
the best food source. The employed and onlooker bees per-
form the local search, and the scout bees control the global
search [18]. The main steps of the ABC algorithm can be
given as follows:

Step 1: Initialization stage

– Initialize the boundary of positions value including
[Min, Max].

– Randomly initialize each searching position Xi on the
boundary, the initialization function can be defined as
follows:

xi j = Min + Ri j ∗ (Max − Min), (7)

where Xi = (xi1, xi2, . . . , xiD), and where i =
1, 2, . . . , SN , and where D means the number of opti-

mization parameters, and where Ri j is a random number
in the range of [−1, 1].

– Initialize the start searching position for the employed
bees using the greedy policy to find the best solution in
the initialization position matrix XSN∗D .
Step 2: Employed bee phase

– Employed bees generate new solutions using the follow-
ing expression:

vi j = xi j + φi j ∗ (xi j − xk j ). (8)

In the above equation, vi j is the candidate solution, where
i, k ∈ {1, 2, . . . , SN } and j ∈ {1, 2, . . . , D} are ran-
domly selected indexes, but k �= j . And φi j is a random
number between [−1, 1].

– Select the best one between the new candidate solution
vi j and the last original solution xi j using the greedy
policy.

– Calculate the fitness values and the selection probability
using the equation as follows:

f i ti =
{

1
1+ fi

i f fi ≥ 0

1 + abs( fi ) i f fi < 0
, (9)

where f i ti is the fitness value of the ith solution Xi , and
the fi is the cost value of the ith solution Xi .
Step 3: Onlooker bee phase

– Select a new solution in all the employed bee solutions
using the selection probability pi as follows:

pi = f i ti∑SN
k=1 f i tk

. (10)

In the standard ABC algorithm, it is difficult to balance
the global search and the local search which will result in
the slow convergence speed or the earlier local optimal
solution. Therefore, accelerating convergence speed and
avoiding local optima are two main research directions
for the improved ABC algorithm.

DE strategies

ManyDEmutation strategies havebeenwidely described like
DE/rand/1, DE/best/1,DE/current-to-best/1, and DE/rand/2.
These strategies can be defined as follows:

DE/rand/1: Vi = Xr1 + F(Xr2 − Xr3),
DE/best/1: Vi = Xbest + F(Xr1 − Xr2),
DE/current-to-best/1: Vi = Xi + F(Xbest − Xi ) +
F(Xr1 − Xr2),
DE/rand/2: Vi = Xr1+F(Xr2 − Xr3)+F(Xr4 − Xr5),
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where Vi is the perturbed vector, F is the control param-
eter, Xbest is the global best solution found so far, and
Xr1, Xr2, Xr3, Xr4, and Xr5 are randomly selected from
the target solution Xi . All mutation strategies have different
searching ability. The DE/rand/1 strategy is good at a popu-
lation diversity but is difficult to obtain an optimal solution.
The DE/best/1 strategy can implement a fastest convergence
but usually obtain a local optimum. The DE/rand/2 strat-
egy involving two difference vectors may result in better
perturbation than other strategies but easily lead to a prema-
ture convergence. Considering both a good quality solution
and inferior solution, the DE/current-to-best/1 strategy is
effective to solve multi-objective optimization problem and
can achieve the convergence more quickly. According to
the experimental results based on 26 standard benchmark
numerical optimization functions for four conventional DE
strategies in [19], we directly select the DE/current-to-best/1
strategy to enhance the local searching ability of the original
ABC algorithm in the mutation operator phase.

Improved ABC algorithm by novel DE strategy

Comparing with popular evolutionary algorithms such as
Genetic algorithm (GA), Particle swarm optimization (PSO),
Differential Evolution (DE) and Ant colony optimization
(ACO), the classical ABC can outperform to solve somemul-
tidimensional optimization problems. However, it also has
some obvious drawbacks [20], which the search strategy of
classicalABCcan only update one element in a vector at each
time, which will be good at global exploration and poor at
local exploitation. Specifically, the update strategy of original
ABC is different from the other representative population-
based algorithms, which will result in ABC hardly taking the
advantage of the best solution. However, the best solution
information and the convergence performance are so impor-
tant in solving some real engineering problems. Inspired by
the searching strategy of the DE algorithm, we propose an
improvedABCalgorithm,whichmodifies the local searching
mechanism of ABC in the onlooker bee phase, which is ben-
eficial to exploitation by introducing the best-so-far solution.
The novel co-evolutionary algorithm can combine ABC and
DE strategies during the search process, so as to improve the
search efficiency. For clarity, the main steps of the improved
ABC by novel DE strategy function are described in Algo-
rithm 1.

In the classical ABC algorithm, the onlooker behavior
should be calculated by a same equationwith employed bees.
However, in the improved ABC algorithm, a new equation is
proposed by the basicDE/current-to-best/2mutation strategy
which can easily achieve good convergence speed and obtain
a better local optimum solution. Therefore, the improved
ABC algorithm can also maintain the global search ability of

Algorithm 1 Improved ABC algorithm
Input: SN(population size), MCN(maximum iterations),

LM(maximum searching limit), Triali (memory trial numbers),
Min(lower boundary), Max(upper boundary)

Output: BT(best solution)
Initialisation :

1: Initialize Triali is zero
2: Generate Xi initial solutions by Eq.(7)

Repeat
Employed bees phase:

3: Generate a new candidate solution Vi by Eq.(8)
4: Select a greedy best one between Xi and Vi
5: Compute the fitness Fiti of each solution by Eq.(9)
6: Calculate the probability Pi of each solution by Eq.(10)

Onlooker bees phase:
7: Using probability Pi to select a solution Xi
8: Search the best solutions xbest

i j
among the random neighbours xr1, j

and xr2, j of xi, j including itself
9: UsingDE/current-to-best/2mutation equation to generate a newcan-

didate solution vi, j by

vi j = xi j + φi j ∗ (xbest
i j

− xi j + xr1, j − xr2, j ) (11)

10: Select a greedy best one between Xi and Vi
Scout bees phase:

11: if (traili > LM) then
12: replace Xi using new solution by Eq.(7)
13: else
14: traili = traili + 1
15: end if
16: Memorize the BT(best solution) detected so far

Repeat Until(cycle=MCN)
17: return BT

ABC and absorb the local optima of DE to perform higher
accuracy.

Optimizing ELM neural network by improved ABC
algorithm

The training of ELM is extremely fast and suitable for big
data. For classical ELM, the output weights are calculated by
analytical solution instead of the traditional gradient descent
algorithm, and this change can obviously improve the speed
and generalization ability of the ELM network [10]. The
training goal of ELM is to find the optimal of the input
weight matrix and hidden bias vector to make the network
obtain the minimum error between the observed values and
predicted values. Therefore, the input weights and biases
and their amount dramatically affect the performance and
accuracy of ELM. In the ELM model, the input weights and
hidden biases are randomly assigned and unchanged during
the training process. Therefore, the random parameters may
be a set of non-optimal or unnecessary values, which make
ELM network require a large number of hidden nodes to
approach appropriate result and response slowly into test-
ing data. Therefore, selecting the optimal input weights and
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hiddenbiases canprovidemore compactELMnetwork archi-
tecture and better generalization performance.

Applying the ABC algorithm to train ELM is relatively
straightforward. The main steps of the ABC–ELM model
are described as follows:

Step 1, the parameters of ABC algorithm are initialized
according to the initialization stage of Algorithm 1.

Step 2, the encoded input weights and hidden biases of
ELMas the colony population ofABC algorithm is randomly
created as follows:

Xi = (wi
11, w

i
12, . . . , w

i
1L ,

wi
21, w

i
22, . . . , w

i
2L ,

. . . ,

wi
n1, w

i
n1, . . . , w

i
nL ,

bi1, b
i
2, . . . , b

i
L),

(12)

where the input weight w and the hidden biases b are ran-
domly assigned in the range [−1, 1], and where L is the
number of ELM hidden nodes, i = (1, 2, . . . , SN ).

Step 3, the employed bee phase, the onlooker bee phase
and the scout bee phase are executed in sequence according
to Algorithm 1. Then the best solution of the ABC algorithm
can be obtained after the iterations are met.

Step 4, the ELM network can be trained and tested with
the best input weight and hidden bias solution obtained in
Step 3.

Metrics for forecasting error

Three criteria are commonly used to evaluate the perfor-
mance of the traffic flow forecast model. They are the root
mean square error (RMSE), the mean absolute error (MAE)
and themean relative error (MRE) and are defined as follows,
respectively:

RMSE =
(
1

n

n∑

s=1

∣∣ŷs − ys
∣∣2

)1/2

(13)

MAE =
(
1

n

n∑

s=1

∣∣ŷs − ys
∣∣
)

(14)

MRE = 1

n

n∑

s=1

∣∣∣∣
ŷs − ys

ys

∣∣∣∣ . (15)

Experiment results

To verify the validity of the optimized ELM by the improved
ABC algorithm, Lozi and tent chaotic time series and mea-
sured traffic flow time series are applied into the experiments.

-1.5 -1 -0.5 0 0.5 1 1.5
X

-0.5

0

0.5

Y

Fig. 1 Testing Lozi chaotic sequence generating function mapping

Fig. 2 Testing tent chaotic sequence generating function mapping

All the experiments are running on the computer equipped
with a systemwith Intel (R)Xeon (R)CPUE3-1230V2 (3.30
GHz), 16 GB DDR4.

For the improved ABC algorithm, the colony size should
be set as 40 including the number of employed bees and
onlooker bees, and the maximum control limit should be
set as 100 ∗ 2, and the maximum iterations can be 6 times,
and the number of optimized parameters for simulations is
101∗15,000, and the number of the optimized parameters for
measurement is 101∗8000, which include input weights and
hidden biases. Moreover, the lower bound and upper bound
for parameters can be set as [−1, 1], and the search radius of
the onlooker bees can be set as r1 = 1, r2 = 3.

Time series prediction simulation

Lozi time series is a kind of discrete chaotic systemwhich has
randomness and ergodicity features [23]. The Lozi equation
is given as follows:

{
Xn+1 = 1 − a |Xn| + bYn
Yn+1 = Xn

. (16)
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Fig. 3 Traffic flow prediction
by improved ABC–ELM of
Freeway SR29-S-402863
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Fig. 4 Testing RMSE comparing ELM with improved ABC–ELM of
Freeway SR29-S-402863
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Fig. 5 Abs error of the improved ABC–ELM prediction for Freeway
SR29-S-402863

The parameters used are a = 1.7 and b = 0.5 as suggested
in [2] and the initial conditions are X0 = −0.1 and Y0 = 0.1.
Figure 1 shows the Lozi chaotic generator mapping.

Tent time series is a simple chaotic system which has
uniform probability and power spectral density feature [24].
Therefore, it suits to simulate the computational processing
of the big data.

Figure 2 shows the tent chaotic function mapping. The
tent mathematical model is defined as follows:

Xn+1 = a − (a + 1) |Xn| a ∈ [0, 1]. (17)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3
Improved ELM Relative Error 

Fig. 6 Relative error of the improved ABC–ELM prediction for Free-
way SR29-S-402863

In the experiment, the first 15000 samples of the time
series (75%) are selected as the training dataset and the
remaining 5000 samples (25%) are taken as the testing
dataset.

The SR29-S-402863 dataset is collected from the Caltrans
PerformanceMeasurement System (PeMS) database [26]. In
this paper, the traffic flow data collected on the weekdays of
the first 7 months of the year 2017 are used for the experi-
ments. The 8000 samples for the first 6 months are chosen as
the training set, and the remaining 1 month’s 1900 data are
selected as the testing dataset. Table 1 shows the prediction
errors and run time of four kinds ofmodels comparedwith the
Lozi system, the tent system, and theSR29-S-402863dataset.
According to the comparison, the parametric ARIMA and
KNN model can obtain highest accuracy, but their disad-
vantages are highest time cost which is not suitable for the
modern ITS. The traditional neural network model such as
the BP, RBF, and SVR present poor performance. Therefore,
the stable accuracy and lowest time consumption of the ELM
and improved ELMmodel should be more suitable for mod-
ern ITS big traffic flow real-time prediction problem.

Traffic flow prediction by improved ABC–ELM of
freeway SR29-S-402863

The proposed ELM neural network model trained by the
improved ABC algorithm is applied to the SR29-S-402863
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Table 1 Predictive errors and run time of Lozi system, tent system, and SR29-S-402863

Prediction model Dataset RMSE MAE MRE Runtimes(s)

ARIMA (p = 1, d = 1, q = 1) Lozi 0.7668 0.6191 12.2854 248.1070

Tent 0.7272 0.5890 3.5280 242.0442

SR29-S-402863 14.7065 11.0178 NaN 182.5276

KNN (k = 3) Lozi 0.6640 0.5450 18.9258 125.1184

Tent 0.5802 0.4787 3.1493 124.8787

SR29-S-402863 14.0554 10.5488 NaN 23.2309

BP (h = 100, ep=800, lr=0.1) Lozi 1.0622 0.8540 10.1733 75.5460

Tent 1.3805 1.0955 11.0894 59.1258

SR29-S-402863 17.3484 13.1853 NaN 16.2755

RBF (dynamic h = 150) Lozi 0.8077 0.6530 5.6868 31.3488

Tent 0.6659 0.5461 5.8914 28.8251

SR29-S-402863 43.1306 35.7384 NaN 15.2628

SVR (bestc=3.0314, bestg=0.0118) Lozi 0.6168 0.5072 2.5302 84.8080

Tent 0.5204 0.4395 3.0946 126.6523

SR29-S-402863 17.9446 14.2106 NaN 29.4524

ELM (random w and b, h = 100, act=sig) Lozi 0.6133 0.5079 2.9344 0.2483

Tent 0.4925 0.4179 2.8410 0.2507

SR29-S-402863 17.4315 13.7944 NaN 0.1744

Table 2 Predictive errors of
optimization methods on
SR29-S-402863

Method RMSE MAE

PSO–ELM(p = 40, Inertia=0.3593, Pbest=0.7238, Sbest=2.0289) 17.1614 13.5223

DE–ELM(p = 40, CrossP=0.7122, DifferF=0.6301, r1=1, r2=3) 17.0611 13.5181

ABC–ELM(p = 40, AccelF=1) 16.9471 13.2742

Improved ABC–DE–ELM(p = 40, AccelF=1, r1=1, r2=3) 16.5220 13.1509

dataset. The hidden nodes of ELM can be set as 100. Figure 3
presents the output of the proposed improved ABC–ELM
model for the traffic flow prediction. The improved ABC–
ELM comparing ELM results can be recorded in Fig. 4. It
can be clearly seen the RMSE with the optimal results is
more stable and better than that with ELM. Figure 5 shows
the Abs error of the improved ABC–ELM predicting results,
and Fig. 6 shows the relative error of the improved ABC–
ELM predicting results.

Discussion of the results

The prediction error due to variance shows the variability of a
model prediction between the training dataset and the testing
dataset. In our experimental process, all models are iterated
multiple times to decrease the variance error. The predic-
tion error due to bias means the difference between the true
value which the models are trying to predict and the expected
value. After the successful iteration of all models, the testing
results on Lozi, tent and SR29-S-402863 dataset are recoded
in Table 1. Clearly, the RMSE and MAE of the improved

ABC–ELMmodel on Lozi, tent and SR29-S-402863 dataset
are better than other models. For the MRE, the NaN results
are derived the zero value in SR29-S-402863 testing dataset.
We also compare the proposed improved algorithm with the
ABC and DE to optimize ELM respectively. The predictive
errors on SR29-S-402863 dataset is shown in Table 2. RMSE
andMAE for the ABC–DE–ELMmodel indicate a good per-
formance. Thus, the proposed improved ABC–ELM model
can obtain higher accuracy than other comparing models.
Of course, the time cost of the improved ABC–ELM model
are higher than the standard ELM model and the standard
ABC–ELM model because of the global searching function.
However, the comparison results show that our proposed
improved ABC–ELM model can obtain an optimal balance
between high accuracy and low cost consumption, which are
suitable for the traffic flow prediction in the big data era.

Conclusion

In this paper, we propose a novel and effective predic-
tion model for traffic flow forecasting. This study adopts to
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improve theABCalgorithm to optimize the inputweights and
hidden biases of the ELM neural network and simulates the
prediction of two typical chaotic time series of big data com-
paring the accuracy with ARIMA model, KNN model, BP
model, RBF model, and SVRmodel. With the application of
this proposed model to predict real traffic flow measurement
systems, the experimental results indicate that the proposed
method has higher prediction accuracy and has more stabil-
ity results. Therefore, we believe that the improved model
can have good prospects in real time traffic flow prediction
for the big data environment. The future work will focus on
the optimal kernel parameters of KELM network to achieve
better prediction results.
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