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Abstract
A layered partial-consensus fuzzy collaborative forecasting approach is proposed in this study to forecast the unit cost of a
dynamic random access memory (DRAM) product. In the layered partial-consensus fuzzy collaborative forecasting approach,
the partial-consensus fuzzy intersection (PCFI) operator is applied instead of the prevalent fuzzy intersection (FI) operator
to aggregate the fuzzy forecasts by experts. In this way, some meaningful information, such as the suitable number of
experts, can be obtained through observing changes in the PCFI result when the number of experts varies. After applying the
layered partial-consensus fuzzy collaborative forecasting approach to a real case, the experimental results revealed that the
layered partial-consensus fuzzy collaborative forecasting approach outperformed three existing methods. Themost significant
advantage was up to 13%.

Keywords Fuzzy collaborative forecasting · Dynamic random access memory · Layered partial consensus

Introduction

Fuzzy collaborative forecasting is the combination of fuzzy
forecasting [28] and collaborative intelligence [18, 25]. In
a fuzzy collaborative forecasting approach, multiple experts
apply various fuzzy forecasting methods to forecast a tar-
get and collaborate by consulting each other’s forecast so as
to modify their fuzzy forecasting methods or forecasts [13].
Unlike conventional forecasting methods that are focused on
optimizing the forecasting accuracy, a fuzzy collaborative
forecasting approach attempts to optimize both the forecast-
ing precision and accuracy [12].

In this study, the unit cost of a dynamic random access
memory (DRAM) product is to be forecasted. The unit cost
of a DRAM product is a special time series [11]. For this
reason, some recent references on fuzzy time series fore-
casting are reviewed as follows. To forecast the weighted
stock index, Wong et al. [43] applied fuzzy inference rules.
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According to the forecasting accuracy, the input space was
redivided by adjusting the window size. Egrioglu et al. [21]
applied fuzzy c-means (FCM)and an artificial neural network
(ANN) jointly to forecast the enrollment result of University
of Alabama. First, FCM was applied to fuzzify historical
data. Subsequently, the fuzzification results became inputs
to an ANN that forecasted the enrollment result. Cai et al.
[4] established a fuzzy autoregression model to forecast the
weighted stock index. Ant colony optimization (ACO) was
applied to optimize the fuzzification of the antecedents of the
fuzzy autoregression model. Cheng et al. [19] constructed
a fuzzy inferencing system to forecast the weighted stock
index. They applied particle swarm optimization (PSO) to
optimize the division of the input space, and K-means to
determine the center of a fuzzy antecedent. Singh and Dhi-
man [34] proposed the geese movement-based optimization
algorithm (GMBOA) to optimize the fuzzification of inputs
to fuzzy inference rules applied to forecast the stock index.
However, thesemethods are not readily applicable to forecast
the unit cost of a DRAM product that improves according to
a learning process [11]. Soto et al. [37] applied the ensemble
of a fuzzy inference system (FIS) and an adaptive-network-
based fuzzy inference system (ANFIS) to forecast several
stock indexes. There are also fuzzy time series forecasting
methods based on other types of fuzzy sets, such as type II
fuzzy sets [29, 35, 36], hesitant fuzzy sets [3], and others.
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The proposed methodology is a fuzzy collaborative fore-
casting method. Therefore, some references on fuzzy collab-
orative forecasting are also reviewed. In Cheikhrouhou et al.
[6], an autoregressive integrated moving average (ARIMA)
model was built to forecast the demand for polyethylene
bags. Subsequently, experts made their judgments on the
effects of unexpected future events on demand. Such judg-
ments determined changes that were made to the forecasts
[2]. Fuzzy inference systems (FISs), such asMamdani’s FISs,
Sugeno’s FISs [24], and ANFISs [33], etc., apply multiple
fuzzy inference rules that cannot guarantee the inclusion
of actual values in the corresponding fuzzy forecasts [12].
Chen [7] proposed a fuzzy collaborative forecasting method
in which each expert fitted a fuzzy linear regression (FLR)
equation to predict the effective cost per die of aDRAMprod-
uct. The values of fuzzy parameters in the FLR equationwere
derived by solving nonlinear programming problems. In this
way, all actual values were contained in the corresponding
fuzzy forecasts, at least for the training data. Subsequently,
fuzzy intersection (FI), or the minimum T-norm, was applied
to aggregate the fuzzy forecasts by all experts, which opti-
mized the forecasting precision in terms of the average range
of fuzzy forecasts. After that, a back propagation network
(BPN) was constructed to defuzzify the aggregation result,
so as to optimize the forecasting accuracy measured with the
root mean squared error (RMSE). Similar fuzzy collabora-
tive forecasting methods have been proposed in subsequent
studies for forecasting the cycle time of a job [9], the unit cost
of a DRAM product [11], etc. Zarandi et al. [44] established
a four-layer fuzzy multiagent system (FMAS) to forecast the
next-day stock price based on the collaboration among soft-
ware agents. In the fuzzy collaborative forecasting methods
proposed byChen andWang [17] andChen andRomanowski
[15], software agents, instead of real experts, were also used
to expedite the collaboration process. However, when the val-
ues of fuzzy parameters in a fuzzy forecasting method need
to be adjusted, software agents usually follow pre-specified
rules, which may result in unrealistic fuzzy forecasts. Chen
[10] proposed a heterogeneous fuzzy collaborative forecast-
ing approach to predict the yield of a semiconductor product,
in which experts fitted the yield learning process of the prod-
uct with FLR equations by solving mathematical planning
problems or training an ANN. Lin and Chen [25] proposed
a fuzzy collaborative forecasting approach that was able to
deal with the original value, rather than the logarithmic or
log-sigmoid value, of a target that improved according to a
fuzzy learning process. In the view of Chen and Honda [12],
a fuzzy analytic hierarchy process problem can be considered
as an unsupervised fuzzy collaborative forecasting problem.
A major difference between fuzzy collaborative forecast-
ing methods and fuzzy time series forecasting methods is
that the former improves the forecasting accuracy by tuning
the fuzzification mechanism, while, the latter optimizes the

defuzzification mechanism to achieve the same purpose [4,
13].

A layered partial-consensus fuzzy collaborative forecast-
ing approach is proposed in this study to forecast the unit cost
of a DRAM product. The motives are explained as follows.

(1) In most existing fuzzy collaborative forecasting meth-
ods, FI is applied to aggregate the fuzzy forecasts by
experts. The FI result usually covers a very narrow
range. The possibility of missing an actual value is high
for test (unlearned) data.

(2) An existing fuzzy collaborative forecastingmethod con-
siders the fuzzy forecasts by all experts. As a result, the
aggregation result is subject to the forecast by a radical
expert.

(3) When the overall consensus among all experts does not
exist, the FI operator is not applicable.

To overcome these drawbacks, the consensus among some
experts, rather than all experts, can be sought for instead.
To this end, Chen [8] proposed the concept of a partial-
consensus FI (PCFI) operator. The PCFI result is not a null
set if some experts can achieve a (partial) consensus. As a
result, the PFCI result covers a wider range than FI does,
thereby decreasing the possibility of missing an actual value
for test data. In addition, through observing changes in the
PCFI result when the number of experts varies, some mean-
ingful information can be obtained. From this point of view,
the concept of the layeredPCFI (LPCFI) diagram is presented
in this study, based on which the layered partial-consensus
fuzzy collaborative forecasting approach is proposed.

The originality of the proposed methodology resides in
the following aspects:

(1) Unlike most existing fuzzy collaborative forecasting
methods, the proposed methodology seeks for the con-
sensus among some experts, rather than that among all
experts, so as to increase the possibility of reaching a
consensus.

(2) Chen [8] also sought for the partial consensus among
some of the experts. However, how to determine the
number of experts amongwhom the consensus is sought
for is an unsolved issue. The LPCFI diagram presented
in this study provides a viable means of determining
the suitable number of experts for a fuzzy collaborative
forecasting task.

The contribution of this study includes.

(1) The establishment of a systematic procedure for deter-
mining the suitable number of experts under a fuzzy
collaborative forecasting environment, and
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(2) The design of an effective mechanism for controlling
the range of a fuzzy forecast so that actual value can be
included in the fuzzy forecast.

The remainder of this paper is organized as follows. Sec-
tion 2 is a preliminary about the steps of a fuzzy collaborative
forecasting approach. Section 3 presents the concept of the
LPCFI diagram, and introduces the layered partial-consensus
fuzzy collaborative forecasting approach. Section 4 describes
the case of forecasting the unit cost of a DRAM product for
illustrating the applicability of the layered partial-consensus
fuzzy collaborative forecasting approach. Some existing
methods were also applied to the case for comparison. Sec-
tion 5 concludes this study and puts forth some topics for
future investigation.

Preliminary

Without loss of generality, all fuzzy parameters and variables
in this study are given in or approximated with triangular
fuzzy numbers (TFNs) [23].

According to Chen andHonda [13], the application proce-
dure of a fuzzy collaborative forecasting approach comprises
seven steps:

Step 1. (Each expert) Apply a fuzzy forecasting method
to make a fuzzy forecast of the same target.

Step 2. Aggregate the fuzzy forecasts by all experts.
Step 3. Defuzzify the aggregation result to arrive at a rep-

resentative/crisp value.
Step 4. Evaluate the forecasting performance, including

the forecasting precision and accuracy.
Step 5. If the forecasting performance is satisfactory, go

to Step 7; otherwise, go to Step 6.
Step 6. (Each expert) Modify the fuzzy forecast by con-

sulting others’ fuzzy forecasts. Return to Step 2.
Step 7. End.
The procedure is illustrated in Fig. 1. The steps are

described in the following.

Making a fuzzy forecast

In a fuzzy collaborative forecasting approach, each expert
applies a fuzzy forecasting method to forecast a target y from
decision variables {xi}, e.g.,

ỹ j � ã0(+)
m∑

i�1

ãi x ji , (1)

where (+) denotes fuzzy addition.However, even if all experts
apply the same fuzzy forecasting method, the values of fuzzy
parameters in the fuzzy forecasting method are different. As

(Each expert) Make a fuzzy 
forecast

Defuzzify the aggregation 
result

Aggregate the fuzzy forecasts 
by all experts

End

Is it 
satisfactory?

No

Yes

Evaluate the forecasting 
performance

(Each expert) modify the 
fuzzy forecast

Fig. 1 The procedure of a fuzzy collaborative forecasting approach

a result, the fuzzy forecasts by experts are not the same and
need to be aggregated.

Some ways to derive the values of fuzzy parameters in
Eq. (1) are reviewed as follows. Tanaka and Watada [39]
proposed a linear programming (LP) method to minimize
the sum of the ranges (or spreads) of fuzzy forecasts, so as
to maximize the forecasting precision. Taheri and Kelkin-
nama [38] solved another LP problem to minimize the sum
of absolute errors. Peters [30] proposed a quadratic program-
ming (QP)method,whichmaximizes the average satisfaction
level to optimize the forecasting accuracy. Optimizing the
forecasting accuracy and precision at the same time has
been pursued by all researchers, but is a challenging task.
To address this, a compromise approach was proposed by
Donoso et al. [20] by minimizing the weighted sum of
two objective functions: the sum of the squared deviations
between the cores of fuzzy forecasts and actual values, and
the sum of the squared ranges.

Chen and Lin [14] incorporated an expert’s opinions into
the model of Tanaka andWatada [39] and that of Peters [30],
and proposed two nonlinear programming (NLP) models as.

(NLP Model I)

Min Z4 �
n∑

j�1

(y j3 − y j1)
o, (2)

subject to

y j ≥ y j1 + s(y j2 − y j1); j � 1 ∼n, (3)
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y j ≤ y j3 + s(y j2 − y j3); j � 1 ∼n, (4)

y j1 � a01 +
m∑

i�1

ai1x ji ; j � 1 ∼n, (5)

y j2 � a02 +
m∑

i�1

ai2x ji ; j � 1 ∼n, (6)

y j3 � a03 +
m∑

i�1

ai3x ji ; j � 1 ∼n, (7)

y j1 ≤ y j2 ≤ y j3; j � 1 ∼ n, (8)

ai1 ≤ ai2 ≤ ai3; i � 0 ∼ m. (9)

The objective function is tominimize the power sumof the
ranges (or spreads) of fuzzy forecasts. o ≥0. The value of o
reflects the sensitivity of an expert to the uncertainty in fuzzy
forecasts: from small (not sensitive) to large (very sensitive).
Constraints (3) and (4) ensure that the membership of an
actual value in the corresponding fuzzy forecast is equal to
or greater than a pre-specified threshold s. Equations (5–7)
make a fuzzy forecast. Constraints (8) and (9) define the
sequence of corners in a TFN parameter.

In Model NLP I, if o is a large value, it becomes difficult
to optimize the NLP problem. For this reason, Chen and
Wang [17] advised to choose the value of o from [0, 4].
When o is a positive integer, the model can be converted
into an equivalent QP model. Otherwise, Chen and Wang
[16] proposed a method to approximate the model with a QP
one. First, the value of yj is normalized into [0, 1]:

y j → N (y j ) � y j − mink yk
maxk yk − mink yk

. (10)

As a result,

N (y j3) − N (y j1) ∈ [0, 1], (11)

since y j3 ≥ y j1. Chen andWang’s method approximated the
objective function with a quadratic equation. For example,
when o � 1.5,

n∑

j�1

(N (y j3) − N (y j1))
1.5

∼�
n∑

j�1

(0.5027(N (y j3) − N (y j1))
2

+ 0.5308(N (y j3) − N (y j1)) − 0.0347). (12)

(NLP Model II)

Max Z5 �
∑n

j�1
smj , (13)

subject to

∑n

j�1
(y j3 − y j1)

o ≤ n · do, (14)

s̄ �
∑n

j�1 s j

n
, (15)

y j ≥ y j1 + s j (y j2 − y j1); j � 1 ∼n, (16)

y j ≤ y j3 + s j (y j2 − y j3); j � 1 ∼n, (17)

y j1 � a01 +
m∑

i�1

ai1x ji ; j � 1 ∼n, (18)

y j2 � a02 +
m∑

i�1

ai2x ji ; j � 1 ∼n, (19)

y j3 � a03 +
m∑

i�1

ai3x ji ; j � 1 ∼n, (20)

y j1 ≤ y j2 ≤ y j3; j � 1 ∼n, (21)

ai1 ≤ ai2 ≤ ai3; i � 0 ∼ m, (22)

0 ≤ s j ≤ 1; j � 1 ∼n. (23)

The objective function is to maximize the power sum of
the satisfaction levels. m ≥0. The value of m reflects the
sensitivity of an expert to the improvement in the satisfac-
tion level: from small (not sensitive) to large (very sensitive).
Constraint (14) restricts the generalized mean of the ranges.
When o and m are both positive integers, the model can be
converted into an equivalent QPmodel. Otherwise, Chen and
Wang’smethod can also be applied to approximate themodel
with a QP one in a similar way.

Aggregating the fuzzy forecasts by experts

The FI operator is the most common method for aggregating
the fuzzy forecasts by all experts in existing fuzzy collabo-
rative forecasting approaches [12, 27, 41]:

F̃ I ({ỹ j (k)}) � ∩
k
ỹ j (k), (24)

which membership function can be derived byapplying the
minimum t-norm [14]:

μF̃ I (x) � min
k
(μỹ j (k)(x)). (25)

If the fuzzy forecast by each expert includes an actual
value, then the FI result also includes the actual value, at least
for the training (or learned) data.Otherwise, fuzzy union (i.e.,
themaximum t-conorm or s-norm) should be applied instead,
such as the treatment taken in existing FISs.
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yj

µ(yj)

0                               1

Fig. 2 The FI result

FI finds out values common to the fuzzy forecasts by all
experts. Therefore, the FI result can be used to represent the
overall consensus among experts. When the fuzzy forecast
by each expert is represented by a TFN, the FI result is a
polygonal fuzzy number (see Fig. 2, and its α cut can be
derived as

F̃ I (α) � [F̃ I
L
j (α), F̃ I

R
j (α)]

� [max
k

(ỹLj (k)(α)), min
k
(ỹ Rj (k)(α))], (26)

where [ỹLj (k)(α), ỹ Rj (k)(α)] is the α cut of ỹ j (k).
When the overall consensus among experts does not exist,

the FI result is a null set. In such a situation, the consensus
among some experts can be sought for instead. To this end,
Chen [8] proposed the concept of the PCFI operator.

Definition 1. The H/K PCFI result of the fuzzy forecasts by
K experts at period j, i.e., ỹ j (1) ~ ỹ j (K ), is indicated with

˜PCF I
H/K

({ỹ j (k)}) such that.

˜PCF I
H/K

({ỹ j (k)}) � ∪
g

∩
h
ỹ j (g(h)), (27)

where h � 1~H; H ≥2; g() � 1~K ; g(p)∩g(q) � ∅ ∀
p ��q. By applying the minimum t-norm and s-norm to deal
with the intersection and union operations, respectively,

μ
˜PCF I

H/K (x) � max
g

(min
h
(μỹ j (g(h))(x))).∀x . (28)

From the managerial point of view, in PCFI, fuzzy inter-
section and fuzzy union are applied for handling parts with
and without consensus, respectively.

For example, the 2/3 PCFI result of ỹi (1) ~ ỹi (K ) can be
derived as

wi

µ(wi)

0                                          1

Fig. 3 The PCFI result

μ
˜PCF I

2/3 (x) � max(min(μỹ j (1)(x), μỹ j (2)(x)),

min(μỹ j (1)(x), μỹ j (3)(x)),

min(μỹ j (2)(x), μỹ j (3)(x))),∀x, (29)

which is illustrated in Fig. 3.
A FI operator meets four requirements: boundary con-

ditions, monotonicity, commutativity, and associativity. A
fuzzy union operator also meets the same requirements.
However, the boundary conditions for a FI operator are con-
tradictory to those for a fuzzy union operator. Therefore, a
PCFI operator meets three requirements: monotonicity, com-
mutativity, and associativity.

Defuzzifying the aggregation result

In existing fuzzy forecasting methods, a BPN is usually con-
structed to defuzzify the aggregation resultwith the following
configuration, [13, 40]:

(1) Input: Inputs to the BPN are the value and membership
of each corner of the aggregation result.

(2) A single hidden layer: The number of nodes in the hid-
den layer is equal to that of inputs.

(3) Output: the forecast.
(4) The training algorithm: The gradient descent (GD) algo-

rithmand theLevenberg–Marquardt (LM) algorithmare
two prevalent training algorithms for this purpose [8,
40].

(5) Convergence criteria: The training process stops when
the sum of squared error (SSE) falls below a pre-
specified threshold,

SSE �
n∑

j�1

(y j − o j )
2, (30)

or a maximal number of epochs have been run.
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Fig. 4 Changes in the PCFI result as the number of experts varies

The proposedmethodology

A LPCFI diagram

The PCFI result changes when the number of experts varies,
as illustrated in Fig. 4.

Byobserving changes in thePCFI result, somemeaningful
information can be obtained. From this point of view, the
concept of the LPCFI diagram is presented as follows.

Definition 2. A LPCFI diagram is a systematic represen-
tation of changes in the partial consensus among multiple

experts (i.e., ˜PCF I
H/K

) when the number of experts (i.e.,
H) varies.

An example is provided in Fig. 5.
In the LPCFI diagram,

0
0.1
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0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
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µ (
y j)

yj

PCFI4/4
PCFI3/4
PCFI2/4
yj(1)
yj(2)
yj(3)
yj(4)

Fig. 5 A LPCFI diagram
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µ(
y j

)

yj

PCFI4/4
PCFI3/4
PCFI2/4
yj(1)
yj(2)
yj(3)
yj(4)

Fig. 6 An example of determining the suitable number of experts

(1) Obviously, ˜PCF I
2/4 ⊃ ˜PCF I

3/4 ⊃ ˜PCF I
4/4

.
(2) If the consensus among more experts is sought for, the

aggregation result is a narower range. A narrower range
means a higher forecasting precision for the training
data, but may increase the possibility of missing an
actual value for test data.

(3) By contrast, it is easier to seek for the conensus among
fewer experts. The aggregation result covers a wider
range.

In existing fuzzy collaborative forecasting methods, the
narrowest aggregation result is usually sought for to maxi-
mize the forecasting precision. However, the future situation
may be quite different from that in the past, adopting the nar-
rowest aggregation result is risky. As an alternative, a wider
aggregation result can be adopted.

The LPCFI diagram can be consulted to determine the
suitable number of experts that reach a consensus. Taking
the LPCFI diagram in Fig. 6 as an example. The consensus
among four experts does not exist, while that between three
experts exists but the aggregation result is too narrow. If the
future condition may be much different from the past, then
seeking for the partial consensus between two experts is less
risky. Therefore, the suitable number of experts may be two.
Namely, four experts are gathered to collect diversified fuzzy
forecasts, but it is acceptable if only two of them reach a
consensus.
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Fig. 7 Another example of determining the suitable number of experts

It is always better to seek for the consensus among more
experts, if which is not risky. Another example is given in

Fig. 7. It can be seen that ˜PCF I
3/4 ≈ ˜PCF I

4/4
, implying

that seeking for the consensus among only three experts is
not less risky than that among four experts. In this case, the
suitable number of experts is four.

A BPN for defuzzifying the aggregation result

The BPN for defuzzifying the aggregation result in terms

of ˜PCF I
H/K

is denoted with BPNH/K . Undoubtedly, the
BPN defuzzifiers for different PCFI results are not the same.
Namely, BPNH1/K �� BPNH2/K if H1 �� H2. The configu-
ration of the BPN defuzzifier is as follows:

(1) Input: Accordng to Fig. 7, it is obvious that a lower value
ofH results in a polygonal fuzzy number withmore cor-
ners, which means more inputs to the BPN defuzzifier.
As a consequence, the corners of the PCFI result may
be numerous. To address this issue, only the values and
memberships of some representative corners of thePCFI
result are chosen as inputs to the BPN. Such representa-
tive corners include the leftmost and rightmost corners
and the corners with the highest memberships. Taking
Fig. 8 as an example. The five representative corners
are marked with circles in this figure. As a result, the
number of inputs to the BPN is ten.

(2) A single hidden layer: The number of nodes in the hid-
den layer is equal to that of inputs.

(3) Output: o j , to be compared with y j .
(4) The training algorithm: the GD algorithm to prevent

overfitting [40].
(5) Convergence criteria: The training process stops when

SSE falls below 10–4 or a maximal number of 1000
epochs have been run.
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0.000 2.000 4.000 6.000 8.000 10.000

µ (
y j

)

yj

(Consensus among three experts)

PCFI

yj(1)

yj(2)

yj(3)

yj(4)

Fig. 8 Choosing inputs to the BPN

Application—Forecasting the unit cost
of a DRAM product

Background

The proposed methodology has been applied to forecast the
unit cost of a DRAM product [7], for which the unit cost was
forecasted by fitting a FLR equation in various ways. Four
experts applied Chen and Lin’s NLP methods to derive the
values of fuzzy parameters in the FLR equation:

Expert #1: NLP Model I; o � 1; s � 0.5
Expert #2: NLP Model I; o � 3; s � 0.35.
Expert #3: NLP Model II; o � 2; m � 2; d � 1.73.
Expert #4: NLP Model II; o � 1; m � 3; d � 1.82.
Lingo 16.0×64 was applied to build the NLP models and

implement a branch-and-bound algorithm to solve the NLP
problems on a PCwith Intel Core i7-7700CPU3.60GHz and
8 GB RAM. These NLP models were coded and optimized
using Lingo. The NLP model of Expert #3 is illustrated in
Fig. 9.

The unit cost data were split into two parts: the data of the
first six periods for building the models, and the remaining
data for testing. The forecasting results by experts are shown
in Fig. 10.

The fuzzy forecasts by experts were defuzzified using the
center-of-gravity (COG) method. Then, the forecasting per-
formance without collaboration was evaluated in terms of
mean absolute error (MAE), mean absolute percentage error
(MAPE), and RMSE. The results are summarized in Table 1.

Application of the proposedmethodology

To improve the forecasting performance, the layered partial-
consensus fuzzy collaborative forecasting approach was
applied. First, taking the forecasts by experts at period 3 as
an example. The LPCFI diagram is shown in Fig. 11. The
following phenomena were observed:

(1) By adding one more expert, the aggregation result
among experts shrank very rapidly.
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Fig. 9 The NLP model of Expert
#3

max=Z2^0.5; 
Z2=s1^2+s2^2+s3^2+s4^2+s5^2+s6^2; 
(lnC13-lnC11)^2+(lnC23-lnC21)^2+(lnC33-lnC31)^2+(lnC43-lnC41)^2+(lnC53-
lnC51)^2+(lnC63-lnC61)^2<=2.94; 
0.9439>=lnC11+s1*(lnC12-lnC11); 
0.9439<=lnC13+s1*(lnC12-lnC13); 
0.4762>=lnC21+s2*(lnC22-lnC21); 
0.4762<=lnC23+s2*(lnC22-lnC23); 
0.5653>=lnC31+s3*(lnC32-lnC31); 
0.5653<=lnC33+s3*(lnC32-lnC33); 
0.2469>=lnC41+s4*(lnC42-lnC41); 
0.2469<=lnC43+s4*(lnC42-lnC43); 
0.4253>=lnC51+s5*(lnC52-lnC51); 
0.4253<=lnC53+s5*(lnC52-lnC53); 
0.1740>=lnC61+s6*(lnC62-lnC61); 
0.1740<=lnC63+s6*(lnC62-lnC63); 
lnC11=a1+b1/1; 
lnC12=a2+b2/1; 
lnC13=a3+b3/1; 
lnC21=a1+b1/2; 
lnC22=a2+b2/2; 
lnC23=a3+b3/2; 
lnC31=a1+b1/3; 
lnC32=a2+b2/3; 
lnC33=a3+b3/3; 
lnC41=a1+b1/4; 
lnC42=a2+b2/4; 
lnC43=a3+b3/4; 
lnC51=a1+b1/5; 
lnC52=a2+b2/5; 
lnC53=a3+b3/5; 
lnC61=a1+b1/6; 
lnC62=a2+b2/6; 
lnC63=a3+b3/6; 
a2>=a1; 
a3>=a2; 
b2>=b1; 
b3>=b2; 
s1<=1; 
s2<=1; 
s3<=1; 
s4<=1; 
s5<=1; 
s6<=1; 
@free(lnC11);@free(lnC12);@free(lnC13);@free(lnC21);@free(lnC22);@free(lnC
23);@free(lnC31);@free(lnC32);@free(lnC33);@free(lnC41);@free(lnC42);@free
(lnC43);@free(lnC51);@free(lnC52);@free(lnC53);@free(lnC61);@free(lnC62);@
free(lnC63);@free(a1);@free(a2);@free(a3);@free(b1);@free(b2);@free(b3); 

(2) The aggregation result among all experts fell within a
very narrow range.

The aggregation result by seeking for the consensus
between two experts was too wide, while that among four
experts was too narrow, as depicted in Table 2. A reasonable

choice was, therefore, to seek for the consensus among three
experts.

˜PCF I
3/4

was applied to aggregate the fuzzy forecasts
by experts. The aggregation results are shown in Fig. 12.
All actual values in test data fell within the corresponding
aggregation results, showing the effectiveness of the pro-
posed methodology.
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Fig. 10 The forecasting results by experts

Subsequently, the aggregation resultwas defuzzified using
a BPN. For this purpose, first, the five representative corners
of the aggregation result at each period were found out. The
results are summarized in Table 3. As a result, the number of
inputs to the BPN defuzzifier was ten. The number of nodes

Table 1 The forecasting performances of experts without collaboration

Expert # Hit rate (%) MAE MAPE (%) RMSE

1 100 0.104 7.02 0.135

2 75 0.098 6.30 0.164

3 100 0.120 8.40 0.131

4 100 0.123 8.64 0.133

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 1.0 1.5 2.0 2.5

µ (
y 3

)

y3

PCFI4/4
PCFI3/4
PCFI2/4
y3(1)
y3(2)
y3(3)
y3(4)

Fig. 11 The LPCFI diagram at period 3

Table 2 The width of the PCFI
result when the number of
experts varied

Number of experts Width

2 0.827

3 0.742

4 0.395
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Fig. 12 The aggregation results

in the hidden layer was set to ten as well. The BPN was
trained using the GD algorithm to prevent overfitting. The
convergence criteria were established as follows:

(1) SSE<10–4;
(2) 1000 epochs have been run.

The BPN defuzzifier was implemented using the neural
network toolbox of MATLAB 2017 on a PC with i7-7700
CPU 3.6 GHz and 8 GB RAM. The program codes are illus-
trated in Fig. 13. The execution time was less than 1 s. The
defuzzification results are shown in Fig. 14.
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Table 3 The representative corners of the aggregation result

j Corners

1 (2.23, 0), (2.7, 0.67), (2.76, 0.59), (2.98, 0.73), (3.26, 0)

2 (1.41, 0), (1.88, 0.72), (1.91, 0.72), (1.94, 0.74), (2.2, 0)

3 (1.22, 0), (1.61, 0.73), (1.66, 0.69), (1.74, 0.77), (1.96, 0)

4 (1.12, 0), (1.50, 0.73), (1.55, 0.68), (1.63, 0.77), (1.82, 0)

5 (1.09, 0), (1.43, 0.73), (1.48, 0.66), (1.55, 0.75), (1.74, 0)

6 (1.08, 0), (1.39, 0.72), (1.45, 0.65), (1.51, 0.74), (1.69, 0)

7 (1.06, 0), (1.36, 0.72), (1.42, 0.65), (1.48, 0.73), (1.65, 0)

8 (1.05, 0), (1.34, 0.71), (1.40, 0.64), (1.45, 0.72), (1.63, 0)

9 (1.05, 0), (1.33, 0.71), (1.38, 0.63), (1.43, 0.72), (1.61, 0)

10 (1.05, 0), (1.32, 0.71), (1.37, 0.63), (1.42, 0.71), (1.59, 0)

The forecasting accuracy using the layered partial-
consensus fuzzy collaborative forecasting approach was
evaluated as.

MAE � 0.076,
MAPE � 4.83%,
RMSE � 0.134.

Compared with existingmethods

For comparison, three existing methods were applied to the
case as well. The first method is the 6σ logistic regression
method that fitted the collected unit cost data with the fol-
lowing logistic regression model:

log y j � 0.147 +
0.794

t
, (31)
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Fig. 14 The defuzzification results

with σ � 0.126. The upper bound (or lower bound) on a
forecast was established by adding 3σ to (or subtracting 3σ
from) the forecast. The results are shown in Fig. 15. The
forecasting accuracy using the 6σ logistic regression method
was evaluated as.

MAE � 0.118,
MAPE � 7.75%,
RMSE � 0.177.
The forecasting performance was poorer than those by

some experts without collaboration, which revealed the supe-
riority of a fuzzy forecasting method.

Subsequently, the fuzzy collaborative forecasting method
proposed by Chen [7] was also applied, in which the overall
consensus among all experts was sought for. The aggregation
results are shown in Fig. 16. An actual value in test data was
missed. The forecasting accuracy using the fuzzy collabora-
tive forecasting method was evaluated as.

Fig. 13 The problem codes of
the BPN defuzzifier

stime=now; 
p=[2.233 1.41 1.216 1.123 1.092 1.077;0 0 0 0 0 0;2.7 1.875 1.612 1.498 1.425 
1.39;0.674 0.724 0.729 0.727 0.727 0.724;2.762 1.907 1.661 1.552 1.484 1.445;0.59 
0.717 0.691 0.675 0.657 0.649;2.98 1.939 1.735 1.627 1.553 1.51;0.727 0.742 0.77 
0.767 0.748 0.741;0.53 2.195 1.958 1.819 1.739 1.694;0 0 0 0 0 0]; 
q=[1.064 1.053 1.048 1.046;0 0 0 0;1.363 1.342 1.333 1.32;0.719 0.711 0.706 
0.706;1.416 1.401 1.384 1.37;0.646 0.64 0.634 0.634;1.478 1.452 1.434 1.416;0.732 
0.722 0.715 0.709;1.654 1.631 1.61 1.594;0 0 0 0]; 
t1=[2.57 1.61 1.76 1.28 1.53 1.19]; 
t2=[1.32 1.32 1.61 1.32]; 
net=feedforwardnet(10,'traingd'); 
net.dividefcn='dividetrain'; 
net.trainParam.epochs=1000; 
net.trainParam.goal=1E-6; 
net.trainParam.lr=0.1; 
net=train(net,p,t1); 
y1=net(p); 
y2=net(q); 
mean(abs(1-y1./t1)) 
mean(abs(1-y2./t2)) 
etime=now; 
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Fig. 15 The forecasting results using the 6σ logistic regression method
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Fig. 16 The forecasting results using the fuzzy collaborative forecasting
method proposed by Chen [7]

MAE � 0.088,
MAPE � 5.68%,
RMSE � 0.142,
which was poorer than that using the proposed methodol-

ogy.
The third existingmethod compared in the experimentwas

the direct-solving fuzzy collaborative forecasting method
proposed by Lin and Chen [25], in which the followng for-
mula was applied to approximate the exponential function
for building the fuzzy learning model of the unit cost:

(32)

ln x ∼� −1.9404 + 3.3364x − 1.9411x2

+ 0.6276x3 − 0.0810x4.

As a result, experts solved polynomial programming (PP)
problems instead to made fuzzy forecasts. Then, the FI oper-
ator and a BPNwere applied to aggregate the fuzzy forecasts
by experts and defuzzify the aggregation result, respectively.
The forecasting performance using the direct-solving fuzzy
collaborative forecasting method was evaluated as.

MAE � 0.085,
MAPE � 5.54%,
RMSE � 0.135.
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Fig. 17 A summary of the forecasting performances of various methods
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Table 4 The results of the paired
t tests 6σ logistic regression Chen [7] Lin and Chen [25] The proposed

methodology

Mean 0.118 0.088 0.085 0.076

Variation 0.023 0.017 0.020 0.016

Observations 4 4 4 4

Pearson correlation
coefficient

0.983 0.999 0.999

Degree of freedom 3 3 3

t statistic 2.377 7.167 1.199

P(T ≤ t) one tail 0.049 0.003 0.158

t Critical one tail 2.353 2.353 2.353

P(T ≤ t) two tail 0.098 0.006 0.317

t Critical two tail 3.182 3.182 3.182

A summary of the forecasting performances of various
methods is provided inFig. 17.According to the experimental
results,

(1) After experts’ collaboration, the forecasting perfor-
mance, especially the forecasting accuracy, was ele-
vated.

(2) Obviously, the proposed layered partial-consensus
fuzzy collaborative forecasting approach surpassed all
existing methods compared in the experiment.

(3) The proposed methodology had the most significant
advantage over existing methods in reducing MAPE,
which was up to 13%.

(4) A paired t test was conducted to see whether the advan-
tage of the proposedmethodologyover existingmethods
was significant or not:

H0: When improving the forecasting accuracy in terms of
the absolute error, the performance of the proposed method-
ology is the same as that of the existing method.

H1: When improving the forecasting accuracy in terms of
the absolute error, the performance of the proposed method-
ology is more effective than that of the compared existing
method.

The results are summarized in Table 4. The forecasting
accuracyof the proposedmethodologywas statistically better
than those of 6σ logistic regression and Chen [7] when α �
0.05.

(5) To further elaborate the effectiveness of the proposed
methodology, it was applied to another case that con-
tained the unit cost data of another DRAM product
within 12 periods. The unit cost data within the first six
periodswere used to build themodels, while the remain-
ing data were reserved for evaluating the forecasting
performance. A group of three experts was formed to
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Fig. 18 The LPCFI result at period 6

forecast the unit cost of the DRAM product collabora-
tively. The models chosen by the experts were

Expert I: NLP Model II (o(1) � 1, m(1) � 3, d(1) �
0.72).

Expert II: NLP Model I (o(2) � 2, s(2) � 0.33).
Expert III: NLP Model II (o(1) � 3, m(1) � 2, d(1) �

0.64).
The LPCFI diagram at period 6 is presented in Fig 18.

Obviously, when the consensus between three experts was
sought for, the aggregation result covered a very narrow
range, which might be risky for responding to unexpected
future conditions. For this reason, the partial consensus
between two experts was sought for instead. The aggrega-
tion results at all periods are summarized in Fig. 19. After
defuzzifying the aggregation result using a BPN, the fore-
casting results are shown in Fig. 20. The forecasting accuracy
was evaluated as follows:

MAE � 0.039,
MAPE � 2.77%,
MAPE � 0.045.
which showed a very good fit that supported the effective-

ness of the proposed methodology.
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Fig. 20 The forecasting results

Conclusions

Fuzzy collaborative forecastingmethods have great potential
to enhance both the forecasting precision and accuracy. How-
ever, most existing fuzzy collaborative forecasting methods
apply the FI operator to aggregate the fuzzy forecasts by
experts, which is subjected to several drawbacks. To over-
come these drawbacks, the PCFI operator proposed by Chen
[8] is useful. In addition, somemeaningful information, such
as the suitable number of experts, can be obtained through
observing changes in the PCFI result when the number of
experts varies. From this point of view, the concept of the
LPCFI diagram is proposed in this study, based on which
the layered partial-consensus fuzzy collaborative forecasting
approach is proposed. The layered partial-consensus fuzzy
collaborative forecasting approach reduces the risk of miss-
ing an actual value when future conditions are considerably
different from those in the past.

The layered partial-consensus fuzzy collaborative fore-
casting approach and three existing methods have been
applied to forecast the unit cost of a DRAMproduct for com-
parison. According to the experimental results, the following
conclusions were drawn:

(1) The forecasting accuracy achieved using the lay-
ered partial-consensus fuzzy collaborative forecasting

approach, in terms of MAE, MAPE, or RMSE, was
superior to those of the three existing methods. The lay-
ered partial-consensus fuzzy collaborative forecasting
approach had the most significant advantage over exist-
ing methods when MAPE was minimized, which was
up to 13% on average.

(2) The forecasting accuracy improved after experts’ col-
laboration.

(3) By determining the suitable number of experts, the lay-
ered partial-consensus fuzzy collaborative forecasting
approach effectively reduced the risk of missing an
actual value. The hit rate for test data was up to 100%.

(4) In the three fuzzy collaborative forecasting methods,
only the layered partial-consensus fuzzy collaborative
forecasting approach achieved a hit rate of 100%, which
also contributed to its superiority in optimizing the fore-
casting accuracy since no actual value was missed.

In future studies, advanced algorithms can be applied to
solve the NLP problems [1, 5, 32]. In addition, the number
of experts may vary for different purposes, e.g., the partial
consensus between two experts for estimating the range of
the unit cost, while that among three experts for forecasting
the unit cost. Further, the layered partial-consensus fuzzy
collaborative forecasting approach is a general methodology
that can be applied to other forecasting tasks in various fields
[22, 26, 31, 42]. Furthermore, the situation in which experts
have unequal influences on the forecasting result needs to
be investigated. These constitute some directions for future
research.
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