
Complex & Intelligent Systems (2020) 6:401–409
https://doi.org/10.1007/s40747-020-00135-6

ORIG INAL ART ICLE

A study on compact structural soft sets and an application method

Mustafa Burç Kandemir1 · Damla Yılmaz2

Received: 18 September 2019 / Accepted: 25 February 2020 / Published online: 4 April 2020
© The Author(s) 2020

Abstract
Since the problems of daily life contain a lot of data and obscurity, it has become a necessity to construct new mathematical
methods to solve these problems. In this paper, we have established compact-structural soft sets and studied its basic structural
properties. Then, we have proposed an application method for decision-making problems using compact-structural soft sets.
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Introduction and preliminaries

Humanity uses science in the process of making sense of the
universe. Mathematics is the most powerful scientific tool in
this process. However, classical mathematical methods are
not always easily implemented in this process. Therefore,
human beings have developed new mathematical methods
and theories. The most important of these are probability
theory [1], fuzzy set theory [2], rough set theory [3], interval
mathematics [4], etc. Over time, scientists have found that
these theories have their own difficulties. In 1999,Molodtsov
[5] built the soft set theory which is a new mathematical tool
that overcomes these difficulties and models uncertainties.
He described a soft set on a problem universe as a param-
eterization of some subsets of the problem universe. More
formally, letU be an initial universe which is called problem
universe, E be a set of parameters, P(U ) be the power set
of U , and A ⊆ E . Molodtsov [5] defined the soft set in the
following manner:

Definition 1 [5] A pair (F, A) is called a soft set over U
where F is a mapping given by F : A → P(U ).
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2 Department of Mathematics, Institute of Science, Mugla Sıtkı
Koçman University, 48000 Muğla, Turkey

All elements in the set F(a) are expressed as elements
that provide the a parameter, and F(a) ∈ P(U ) is called an
a-approximated set for each a ∈ A in the soft set (F, A). We
denote the family of all soft sets over the universe U via the
parameter universe E with S(U ; E)

In [6], to better understand a soft set on a problemuniverse,
it is symbolically illustrated as follows:

(F, A) = {a = F(a) | a ∈ A}.
Of course, the symbol a = F(a) expresses the a-
approximated set.

Molodtsov has shown in [5] that this theory can be applied
to many fields such as analysis, game theory, probability the-
ory, etc. This theory attracted the attention of many scientists
and began to study this theory. Set-theoretic operations such
as soft subset, soft union, and soft intersection were first
defined and studied by [6–8].

Let (F, A) and (G, B) be two soft sets over the initial
universe U where A, B ⊆ E . If A ⊂ B and F(a) ⊂ G(a)

for each a ∈ A, it is called that (F, A) is soft subset of
(G, B), and denoted by (F, A)⊂̃(G, B). If (F, A)⊂̃(G, B)

and (G, B)⊂̃(F, A), it is called that (F, A) is equal to
(G, B). Suppose that A∩ B �= ∅. Then, the soft intersection
of (F, A) and (G, B) is denoted by (F, A)˜∩(G, B), and is
defined as (F, A)˜∩(G, B) = (H ,C), where C = A ∩ B
and for all c ∈ C , H(c) = F(c) ∩ G(c). The soft union of
(F, A) and (G, B) overU is the soft set (H ,C), denoted by
(F, A)˜∪(G, B) = (H ,C), where C = A ∪ B, and ∀c ∈ C :

H(c) =
⎧

⎨

⎩

F(c), if c ∈ A − B
G(c), if c ∈ B − A
F(c) ∪ G(c), if c ∈ A ∩ B.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00135-6&domain=pdf
http://orcid.org/0000-0002-0159-5670


402 Complex & Intelligent Systems (2020) 6:401–409

If F(a) = ∅ for all a ∈ A. (F, A) is called a rel-
ative null soft set (with respect to the parameter set A),
and denoted by �A. If F(a) = U for all a ∈ A, then
(F, A) is called a relative whole soft set (with respect to
the parameter set A), and denoted by UA. From this point
of view, the relative whole soft set UE with respect to the
universe set of parameters E is called the absolute soft set
over U .

Some interesting operations which are called And and
Or operations and different from the known set-theoretic
operations were defined by Maji et al. [6]. Let (F, A)

and (G, B) be two soft sets over the common universe U .
Then, (F, A)And(G, B) is the soft set (H ,C) over U , such
that it is defined by (F, A)And(G, B) = (H ,C) where
H((a, b)) = F(a) ∩ G(b), for all (a, b) ∈ C = A × B.
Similarly, (F, A)Or(G, B) is a soft set (H ,C) over U ,
such that it is defined by (F, A)Or(G, B) = (H ,C) where
H((a, b)) = F(a) ∪ G(b), for all (a, b) ∈ C = A ×
B.

The soft complement of a soft set (F, A) is denoted by
(F, A)c and is defined by (F, A)c = (Fc, A), where Fc :
A → P(U ) is a mapping given by Fc(a) = U − F(a) for
all a ∈ A.

TheCartesian product of (F, A) and (G, B) is denoted by
(F, A)˜×(G, B) = (H , A×B) and definedwith themapping
H : A× B → P(U ×U ), such that H(a, b) = F(a)×G(b)
for each (a, b) ∈ A × B [9].

In [10], Min has introduced the concept of similarity
between soft sets and investigated someproperties. It is called
that (F, A) is similar to (G, B) (simply (F, A) ∼= (G, B))
if there exists a bijection function φ : A → B, such that
F(x) = (G ◦ φ)(x) for every x ∈ A, where (G ◦ φ)(x) =
G(φ(x)).

Kharal and Ahmad [11], defined the notion of a map-
ping on soft classes and studied several properties of
images and inverse images of soft sets supported by exam-
ples and counterexamples. They defined that image and
inverse image of a soft set under a soft functions as fol-
lows:

Definition 2 [11] Let ϕ : U1 → U2 and ψ : E1 → E2

be functions. Then, the pair (ϕ, ψ) is called a soft func-
tion from S(U1; E1) to S(U2; E2). The image of each
(F, A) ∈ S(U1; E1) under the soft function (ϕ, ψ) denoted
by (ϕ, ψ)(F, A) = (ϕF, ψ(A)) and defined as, for each
β ∈ ψ(A):

(ϕF)(β) =
{

ϕ
(

⋃

α∈ψ−1(β)∩A F(α)
)

, ψ−1(β) ∩ A �= ∅

∅, otherwise.

Similarly, the inverse image of each (G, B) ∈ S(U2; E2)

defined as, for each α ∈ ψ−1(B):

(ϕ−1G)(α) =
{

ϕ−1(G(ψ(α))), ψ(α) ∈ B
∅, otherwise,

and denoted by (ϕ, ψ)−1(G, B) = (ϕ−1G, ψ−1(B)).

We know that topology which defined as a family of some
subsets of a set that satisfy certain conditions is the most
important sub-branch of mathematics. More formally, let
U be a non-empty set and P(U ) be the power set of U .
T ⊆ P(U ) is called a topology onU if the arbitrary union of
the elements of T , the finite intersections of the elements of
T are also in T and ∅,U ∈ T . The pair (U , T ) is called a
topological space if T is a topology onU . Each element of T
is called an open set in this space. If the complement of any
subset of U is open, then it is called closed set. Therewithal,
the concept of compactness is very useful and important top-
ics in topology. The concept of compactness in a topological
space can be considered as a generalization of the concept of
boundedness and closedness defined on real numbers. The
concept of compactness is characterized by the concept of
cover. Let (U , T ) be a topological space, C be a family of
some subsets of U . If

⋃

C = U , then C is called a cover of
U . If C is finite and C is a cover ofU , then C is called a finite
cover. If C and C′ are covers ofU and C ⊆ C′, then C is called
a sub-cover of C′. If all member of C is open and C is a cover
of U , then it is called open cover of U . From this point of
view, a topological space (U , T ) is called a compact space
if it has a finite sub-cover of all open covers. Let X ⊆ U and
(U , T ) be a topological space. X is called a compact sub-
set in (U , T ) if the sub-space (X , TX ) is a compact space.
We recommend a review of [12] sources for all the topolog-
ical terms and theorems mentioned here, but not defined and
expressed.

In a daily life problem about the future, facts depend
on decisions and decisions depend on preferences of the
decision-maker. To overcome such problems, decision-
making theory, which is a sub-branch of social sciences and
many other sciences, is constructed. Decision-making the-
ory provides a rational methodology for making decisions in
uncertainties. According to this theory, preferences depend
on the tastes of the decision-maker; that is, decisions can vary
and are relative. In daily life problems, there are parameters
that affect our preferences and so our decisions. For exam-
ple, in a real-estate problem, when the person choosing a
house, there are parameters such as the environment in which
the house is located, its cheapness, its cost, the number of
rooms, etc., which will affect his or her decision. According
to the decision-making theory, the personwho buys the house
should choose the house that is the most useful and suitable
for him or her, and that provides all the parameters he or she
cares about at the same time. Many mathematical methods
are used in decision-making theory to make decisions more
precise. Of course, soft set theory has recently become a fre-
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quently used mathematical tool in decision-making theory.
Some studies, but not limited to, where soft sets are applied
to decision-making problems are given in [13–16]. In addi-
tion, Pei and Miao [7] have shown that each soft set is an
information system.

Although, theoretically, there is an infinite universe struc-
ture, the problems of daily life are solved on a finite universe,
especially in science such as engineering, economy, and
industry. Therefore, we want to solve our problems in a
bounded and closed area. This is directly related to the fact
that the problem universe is compact, or a subset of it is
compact. Therefore, it is inevitable to express the problems
encountered with general topological concepts.

On the basis of all this, in this paper, we establish compact
structural soft sets in any topological space and study its
properties. We then propose a method for solving decision-
making problems using the concept of compact structural
soft set. As a result, we will obtain a daily life application of
general topological concepts.

Compact structural soft sets

Let (U , T ) be a topological space. From now on, we will
call the topological space (U , T ) as the topological universe
U . Now, we can define compact structural soft set over a
topological universe as the follows.

Definition 3 Let U be a topological universe and (F, A) be
a soft set overU . (F, A) is called compact structural soft set
(simply cs-softset) if F(e) is a compact subset of U for all
e ∈ A.

Example 1 Let R be the usual topological space and N be the
parameters set. Define the mapping F : N → P(R), such
that F(n) = [n − 1, n + 1]. Then, (F, N) is a cs-softset over
R.

Note that, if the universal setU is a finite set, it is a compact
set with respect to each topology defined on it. Moreover,
every subset of U is compact. Therefore, a soft set (F, A)

defined on a finite topological universe U is a cs-softset.
Now, we discuss the obtained results.
Obviously, if the topological universe U is compact, then

the absolute soft set UA is cs-softset, and the null soft set �A

is cs-softset over U where A ⊆ E .

Theorem 1 Let (F, A) be a cs-softset and (G, B)⊂̃(F, A) be
a soft set over the topological universe U. If G(b) is closed
set of U for all b ∈ B, then (G, B) is a cs-softset over U.

Proof From definition of soft subset and Theorem 26.2 in
[12] (i.e., every closed sub-space of a compact space is com-
pact), for each b ∈ B ⊂ A, we haveG(b) ⊆ F(b). It follows
that G(b) is a compact set. Hence, (G, B) is a cs-softset over
U . �

Theorem 2 Let (F, A) and (G, B) be two cs-softsets overU.
Then, (F, A)˜∪(G, B) is a cs-softset over U.

Proof Since (F, A) and (G, B) are cs-softsets, then F(a)

and G(b) are compact for all a ∈ A and b ∈ B, respectively.
Say that (H ,C) = (F, A)˜∪(G, B) where C = A ∪ B as in
definition of soft union of soft sets. There are three situations.
If c ∈ A − B, then H(c) = F(c) and F(c) is compact. If
c ∈ B − A, then H(c) = G(c) and G(c) is compact. If
c ∈ A∩ B, then H(c) = F(c)∪G(c). Now, let C be an open
cover of H(c) = F(c) ∪ G(c) for each c ∈ A ∩ B. Then, C
is an open cover of both F(c) and G(c). For each c ∈ A∩ B,
F(c) and G(c) are compact sets, so F(c) and G(c) have
finite sub-covers C1 and C2 of C, respectively. Their union of
C1 ∪ C2 is a sub-cover of C for F(c) ∪ G(c),∀c ∈ A ∩ B.
Since C1 ∪ C2 is finite, then F(c) ∪G(c) is compact for each
c ∈ A ∩ B. This proves our desire. �
Corollary 1 The finite union of cs-softsets is a cs-softset.

Proof It is clear. �
Arbitrary soft unions of cs-softsets may not be cs-softset.

Let us see this with an example.

Example 2 Let R be a topological universe with usual topol-
ogy. Consider the soft sets (Fn, N) over R, such that Fn :
N → P(R) is a mapping for each n ∈ N which is defined
Fn(m) = [−(n + m), (n + m)] for each m ∈ N. Therefore,
we have soft sets over R as follows:

(F0, N) = {0 = {0}, 1 = [−1, 1], 2 = [−2, 2], . . .},
(F1, N) = {0 = [−1, 1], 1 = [−2, 2], 2 = [−3, 3] . . .},
(F2, N) = {0 = [−2, 2], 1 = [−3, 3], 2 = [−4, 4] . . .},

...

(Fn, N) = {0 = [−n, n], 1 = [−(n + 1), (n + 1)],
2 = [−(n + 2), (n + 2)] . . .},

...

From here, since
⋃

Fn(m) = R for each m, n ∈ N, we
obtain that:

(F, N) = ˜

⋃

n∈N(Fn, N) = {0 = R, 1 = R, 2 = R, . . . }.

(F, N) is not cs-softset over R because R is not compact.
Hence, arbitrary soft union of cs-softsets may not be cs-
softset.

Let (F, A) and (G, B)be twocs-softsets over any topolog-
ical universe U . The soft intersection of (F, A) and (G, B)

may not be cs-softset. For this, we can give the following
example.
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Example 3 Let U = R ∪ {α, β} be the universe and:

T = U ∪ {{α} ∪ R, {β} ∪ R, {α, β} ∪ R}

be a topology on U where U is a usual topology on R. Let
E = {a, b, c} be parameters set and A = {a, b} ⊂ E and
B = {b, c} ⊂ E . Let us consider the soft set (F, A) = {a =
∅, b = {α} ∪ R} with F : A → P(U ) and the soft set
(G, B) = {b = {β} ∪ R, c = ∅} with G : B → P(U ).
Because of from their definitions, (F, A) and (G, B) are
cs-softsets, respectively. For A ∩ B = {b}, we obtain that
(F, A)˜∩(G, B) = {b = R}. Since R is not a compact subset
of U , then (F, A)˜∩(G, B) is not cs-softset over U .

We can give the following theorem for the soft intersec-
tions of two cs-softsets to be cs-softset.

Theorem 3 Let (F, A) and (G, B) be two cs-softsets over
U. If the topological universe U is a Hausdorff space, then
(F, A)˜∩(G, B) is a cs-softset over U.

Proof Suppose that (F, A)˜∩(G, B) = (H ,C) where C =
A ∩ B �= ∅. From definition of soft intersection of soft sets,
we have that H(c) = F(c) ∩ G(c) for each c ∈ C . Since
(F, A) and (G, B) are cs-softsets over U , F(c) and G(c)
are compact set in U for each c ∈ C = A ∩ B. Since U
is Hausdorff universe, then all compact sets are closed from
Theorem 26.3 in, and intersection of closed sets is closed.
Thus, we have that F(c) ∩ G(c) is closed. Hence, it is com-
pact. Consequently, (H ,C) is a cs-softset. �

As a direct result of the above theorem:

Corollary 2 If U is a Hausdorff universe, then the arbitrary
intersection of cs-softsets is a cs-softset.

We obtain following theorem from definition of And and
Or operators and similar to Theorems 2 and 3. Their proofs
are similar to proof of Theorems 2 and 3.

Theorem 4 Let (F, A) and (G, B) be two cs-softsets overU.

(i) (F, A)Or(G, B) is a cs-softset.
(ii) If U is a Hausdorff universe, then (F, A)And(G, B) is

a cs-softset.

Theorem 5 Let (F, A) and (G, B) be two cs-softsets overU .

The Cartesian product (F, A)˜×(G, B) is a cs-softset.

Proof From definition of Cartesian product of soft sets, we
have (F, A)˜×(G, B) = (H , A × B), such that H(a, b) =
F(a) × G(b) for each (a, b) ∈ A × B. Since (F, A) and
(G, B) are cs-softsets, then F(a) is compact for each a ∈ A
and G(b) is compact for each b ∈ B. We have that F(a) ×
G(b) is compact set in the topological universe U for each
(a, b) ∈ A × B from Tychonoff Theorem in [12]. Hence,
obviously, (F, A)˜×(G, B) is a cs-softset. �

We know that Tychonoff Theorem say that “the product of
infinitely many compact sets is compact”. Therefore, we get
the following result which is more general than the above
theorem.

Corollary 3 The Cartesian product of arbitrary number of
cs-softets is a cs-softset.

We obtain the following result from Definition 2.

Theorem 6 Let U and V be topological universes, ϕ : U →
V be a continuous function ψ : E → E ′ be any function. If
(F, A) is a cs-softset over U and b ∈ ψ(A).

(i) If ψ−1(b) ∩ A = ∅, then (ϕ, ψ)(F, A) is a cs-softset
over V .

(ii) If ψ−1(b) ∩ A �= ∅ and A or U is finite, then
(ϕ, ψ)(F, A) is a cs-softset over V .

Proof (i) Say (ϕ, ψ)(F, A) = (ϕF, ψ(A)). We have two
cases fromDefinition 2. Suppose thatψ−1(b)∩ A = ∅, then
we have (ϕF)(b) = ∅ for each b ∈ ψ(A). Since, obviously,
∅ is compact in V , desired is provided.

(ii) Suppose thatU is finite and (F, A) is a cs-soft set over
U . Since ψ−1(b) ∩ A �= ∅, then we have:

(ϕF)(b) = ϕ

⎛

⎝

⋃

a∈ψ−1(b)∩A

F(a)

⎞

⎠

from Definition 2. Since ϕ is continuous and F(a)s are
compact and so their union

⋃

F(a) is compact, then we
obtain that (ϕF)(b) is compact for each b ∈ ψ(A). Hence,
(ϕF, ψ(A)) is a cs-softset over V .

On the other hand, suppose that U is arbitrary and A is
finite. Therefore, ψ(A) is finite. For each b ∈ ψ(A):

(ϕF)(b) = ϕ

⎛

⎝

⋃

a∈ψ−1(b)∩A

F(a)

⎞

⎠ .

Since a ∈ ψ−1(b)∩A is finite number, it is obtained finite
union:

⋃

a∈ψ−1(b)∩A

F(a).

Since each F(a) is compact and the union of a finite number
of compact subsets of a topological space is also compact,
we have (ϕF)(b) is compact for each b ∈ ψ(A). Thus,
(ϕ, ψ)(F, A) is a cs-softset over V . �

Inverse image of a cs-softset under a soft mapping may
not be a cs-softset. To see this, we can give the following
example.
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Example 4 Let R be usual topological universe and consider
the continuous function ϕ : R → R such that ϕ(x) = sin x .
Let the parameter sets E = E ′ = {a, b, c} define the function
ψ : E → E ′, such that ψ = {(a, a), (b, b), (c, c)} and
A = {a, b} ⊂ E ′. Given the soft set over R such as:

(F, A) = {a = [−1, 1], b = [3, 4]}.

Obviously, (F, A) is a cs-softset.
For each p ∈ ψ−1(A) = A ⊂ E , we obtain that:

(ϕ−1F)(a) = ϕ−1(F(ψ(a))) = ϕ−1(F(a))

= ϕ−1([−1, 1]) = R

and

(ϕ−1F)(b) = ϕ−1(F(ψ(b))) = ϕ−1(F(b))

= ϕ−1([3, 4]) = ∅.

Therefore, it is obtained that (ϕ, ψ)−1(F, A) = {a = R, b =
∅}. Thus, (ϕ, ψ)−1(F, A) is not a cs-softset over U .

From here, we have following result.

Theorem 7 Let U and V be two different topological uni-
verses, ϕ : U → V be a continuous function, and ψ : E →
E ′ bea function. IfU is compact universe, V isHausdorff uni-
verse and (F, A) is a cs-softset over V , then (ϕ, ψ)−1(F, A)

is a cs-softset over U .

Proof From Definition 2, we have (ϕ, ψ)−1(F, A) =
(ϕ−1F, ψ−1A) and:

(ϕ−1F)(a) =
{

ϕ−1(F(ψ(a))) , ψ(a) ∈ A
∅ , otherwise

for each a ∈ ψ−1(A). If ψ(a) /∈ A, then (ϕ−1F)(a) = ∅ ⊂
U is obviously compact. Suppose that ψ(a) ∈ A. Then, it
is obtained that (ϕ−1F)(a) = ϕ−1(F(ψ(a))) ⊂ U . Since
F(ψ(a)) ⊂ V is compact and V is Hausdorff, F(ψ(a)) is
closed in V from Theorem 26.3 in [12]. Since ϕ is continu-
ous, ϕ−1(F(ψ(a))) is closed inU . SinceU is compact, then
ϕ−1(F(ψ(a))) is compact in U from Theorem 26.2 in [12].
Hence, (ϕ, ψ)−1(F, A) is a cs-softset over U . �

In [10], Min gave the concept of similarity of soft sets.
Here, we can give the following theorem for the similarity of
cs-softset.

Theorem 8 Let (F, A) and (G, B) be two soft sets over the
topological universe U . If (F, A) is similar to (G, B) and
(F, A) is cs-softset, then (G, B) is also cs-softset.

Proof From definition of similarity, the proof of straightfor-
ward. �

We call that the topological space (U , T ) is locally com-
pact space if for all x ∈ X , there exist a compact set C and a
neighborhood X of x , such that x ∈ X ⊂ C . So, C is called
a compact neighborhood of x in U . Hence, the topological
universe is called locally compact if every element of it has
a compact neighborhood [12].

We can construct a cs-softset from the definition of locally
compactness, obviously. Let define the mapping F : U →
P(U ), such that F(x) is a compact neighborhood of x for
each x ∈ U . Obviously, (F, A) is a cs-softset over U . Such
cs-softset (F,U ) defined on a locally compact universe is
called a compact neighborhood soft set (briefly cn-softset).
Obviously, every cn-softset is a cs-softset.

In [17], Kandemir defined the generalized form of simi-
larity of soft sets as follows.

Definition 4 [17] Let E be a set of parameters, U and V be
two universes, and (F, A) and (G, B) be soft sets overU and
V respectively, where A, B ⊆ E . We called that (F, A) is
similar to (G, B) if there exist bijective functions ϕ : U →
V and ψ : A → B, such that (ϕ ◦ F)(a) = (G ◦ ψ)(a) for
every a ∈ A.

Now, let U and V be two topological universes and ϕ :
U → V be a function. Naturally, the function ϕ∗ : P(U ) →
P(V ), such that ϕ∗(X) = ϕ(X), i.e., ϕ∗(X) is a image of X
under ϕ. In this way, using this argument, generalized form
of similarity, and the concept of cn-softset, we obtain the
following diagram in Fig. 1.

Hereunder,

Theorem 9 Let U and V be two locally compact topological
universes; (F,U ) and (G, V ) be cn-softsets. If (F,U ) is
similar to (G, V ), then U is homeomorphic to V .

Proof Since (F,U ) is similar to (G, V ) and from Fig. 1,
there exist a bijection ϕ : U → V , such that ϕ∗ ◦ F = G ◦ϕ

where ϕ∗ : P(U ) → P(V ), such that φ∗(X) = φ(X) for
X ∈ P(U ). We need to show that φ is open. Because of the
cn-softset (F,U ), we have an open set O ⊆ U , such that
x ∈ O ⊂ F(x) where F(x) is compact. From here, it is
obtained that ϕ(x) ∈ ϕ(O) ⊂ ϕ(F(x)). From similarity of
(F,U ) and (G, V ), we have:

ϕ(x) ∈ ϕ[O] ⊂ ϕ[F(x)] = ϕ∗(F(x)) = (ϕ∗ ◦ F)(x)

= (G ◦ ϕ)(x) = G(ϕ(x)).

Since (G, V ) is a cn-softset, we obtained that ϕ(O) is open
in V . Hence, ϕ is an open function.

Fig. 1 Diagram of similarity
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Now, let us see thatϕ is continuous. Since (F, A) is similar
to (G, V ) and from Fig. 1, we have the inverse function of ϕ,
ϕ−1 : V → U , such that (F ◦ ϕ−1)(y) = ((ϕ−1)∗ ◦ G)(y).
Suppose that O ′ is an open set in V . Since (G, V ) is a cn-
softset, then there is a y ∈ V , such that y ∈ O ′ ⊆ G(y).
Therefore, we have ϕ−1(y) ∈ ϕ−1(O ′) ⊆ ϕ−1(G(y)). From
similarity of (F,U ) and (G, V ), we have that:

ϕ−1(G(y)) = (ϕ−1)∗(G(y)) = ((ϕ−1)∗ ◦ G)(y)

= (F ◦ ϕ−1)(y) = F(ϕ−1(y)).

Since (F,U ) is a cn-softset, F(ϕ−1(y)) is a compact neigh-
borhood of ϕ−1(y). Therefore, ϕ−1(O) is an open subset of
U . Hence, ϕ is continuous.

Consequently, ϕ is a homeomorphism from U to V . �
cn-softset derived from two topological universe that are

homeomorphic may not be similar. We can see this with the
example below.

Example 5 Let U = {a, b, c, d, e} be topological universe
with its discrete topology P(U ), and V = {1, 2, 3, 4, 5}
be other topological universe with its discrete topology
P(V ). Define the function ϕ : U → V such as ϕ =
{(a, 1), (b, 2), (c, 3), (d, 4), (c, 5)}. Obviously, U is home-
omorphic to V .

Now, consider cn-softsets:

(F,U ) = {a = {a, b, c}, b = {a, b, c},
c = {a, b, c}, d = {d, e}, e = {d, e}}

over U and

(G, V ) = {1 = {1, 2, 3}, 2 = {2, 3},
3 = {3}, 4 = {1, 4}, 5 = V }

over V . For b ∈ U , we have that (ϕ∗ ◦ F)(b) = ϕ∗(F(b)) =
ϕ∗({a, b, c}) = {1, 2, 3} and (G ◦ ϕ)(b) = G(ϕ(b)) =
G(2) = {2, 3}. Since (ϕ∗ ◦ F)(x) �= (G ◦ ϕ)(x) for each
x ∈ U , (F,U ) is not similar to (G, B).

For a local compact and Hausdorff topological universe
U , we can construct a soft set design similar to a cn-
softset. Therefore, we can define the set-valued mapping
F∗ : U → P(U ), such that F∗(x) is the intersection of
compact neighborhoods of x for each x ∈ U , i.e., suppose
that (Kx )i is an arbitrary compact neighborhood of x , then
F∗(x) = ⋂

i∈I (Kx )i . Obviously, the soft set (F∗,U ) is a
cs-softset, and it is called a minimal compact neighborhood
soft set over U (briefly mini-cn-softset).

From this definition,we cangive the following theorem for
topological universes which are locally compact and Haus-
dorff.

Theorem 10 Let U and V be locally compact and Hausdorff
topological universes and (F∗,U ) and (G∗, V ) be mini-cn-
softsets derived from these universes. If U is homomorphic
to V , then (F∗,U ) is similar to (G∗, V ).

Before we prove this theorem, let us give this following
lemma whose proof is obvious.

Lemma 11 If Kx is a compact neighborhood of x, then the
homeomorphic image of Kx is a compact neighborhood of
image of x under the homeomorphism.

Now, we can prove Theorem 10.

Proof Since U is homeomorphic to V , then there exists a
homeomorphism ϕ : U → V . We know from classical the-
ory that the intersection of an arbitrary number compact set
is compact in a Hausdorff topological universe. Using this
argument and Lemma 11, we obtain that:

(ϕ∗ ◦ F∗)(x) = ϕ∗
(

⋂

i∈I
(Kx )i

)

= ϕ

[

⋂

i∈I
(Kx )i

]

=
⋂

i∈I
ϕ[(Kx )i ]

=
⋂

i∈I

(

Kϕ(x)
)

i

= (G∗ ◦ ϕ)(x).

Thus, From Diagram 1, we have that (F∗,U ) is similar to
(G∗, V ). �

In [18], the author discussed a new perspective on soft
topology adhering to Molodtsov’s notion. Formal definition
is as follows.

Definition 5 [18] LetU be a topological universe and (F, A)

be a soft set over U . (F, A) is called a soft topology over
U if F(a) is a sub-space of U for each a ∈ A. Moreover,
(F, A, T ) is called a soft topological space where T is a
topology on U .

Besides, the author gives the concept of compact soft topo-
logical space as follows.

Definition 6 [18] Let (F, A, T ) be a soft topological space.
It is called that (F, A, T ) is a compact soft topological space
if F(a) is a compact sub-space of U for each a ∈ A.

From Definition 6, we obviously obtain following result.

Theorem 12 Let U be a topological universe. (F, A) is cs-
softset if and only if (F, A, T ) is a compact soft topological
space.
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An applicationmethod of cs-softsets to
decision-making problems

Decision-making is usually defined as a process or sequence
of activities involving stages of problem recognition, search
for information, definition of alternatives, and the selection
of an actor of one from two or more alternatives consistent
with the ranked preferences. Decision-making theory is a
theory of how rational individuals should behave under risk
and uncertainty. Mathematical foundations of decision the-
ory have been studied by many scientists until today. We can
give [19] as an example.

Although we live in the infinite universe, we have a
tendency to solve our problems in finite or limited and
closed areas. Because the problems of daily life often do
not have an infinite universe perception. Decision-making in
a decision-making system is usually done by linear math-
ematical methods. Of course, there are other mathematical
constructs. In this study, we will develop a decision-making
method using cs-softset theory on a given topological uni-
verse; that is, we give a decision-making technique using
general topological concepts.

In developing this method, we need the following well-
known theorems that exist in classical theory.

Theorem 13 [max-min (The Extreme Value) Theorem] [12]
Let (U , T ) be a topological space, (R,U) be a usual topo-
logical space, and ϕ : U → R be a continuous function. If
(U , T ) is compact, then ϕ is bounded, and ϕ has a maximum
value and minimum value on U .

Theorem 14 [12] Let (U , T ) and (V , T ′) be topological
spaces, ϕ : U → V be a continuous function, and X be an
arbitrary subset of U . The restricted function ϕ|X : X → R

is continuous.

Now, suppose that (F, A) is a cs-softset over a topological
universe U and ϕ : U → R is a continuous function where
R is the usual topological universe. By Theorem 14, ϕ|F(a) :
F(a) → R is continuous for each a ∈ A, since F(a) ⊆ U
for each a ∈ A. Moreover, since F(a) is compact in U for
each a ∈ A, ϕ|F(a) has a maximum value and minimum
value by Theorem 13.

Therefore, let us give a decision-making method using the
cs-softsets and the arguments above.

As we mentioned before, soft set theory is by nature a
mathematical tool that can be easily applied to decision-
making problems. Let (F, A) be a soft set over U where
A ⊆ E . The function F represents the selector (or the
decision-maker), A ⊆ E represents a set of parameters or
properties of phenomenon which is selected by selector, and
U can be expressed as the universe of the problem that the
selector decides. In the theory of decision-making, of course,
as we have mentioned above, the universe that affects the

choice and the phenomena that we will choose or decide
on must be finite. For this reason, suppose that U is finite
topological universe, E is finite parameter set, and A ⊆ E
and ϕ : U → R is continuous where R is a usual topo-
logical universe. The arbitrary soft set (F, A) to be taken
over U is naturally a compact structural soft set. Since the
compact sets F(a) �= ∅ for each a ∈ A are finite num-
ber, then

⋂

a∈A F(a) is compact. This intersection set can
be expressed as a set of preferred elements that provides all
parameters of interest. By Theorems 13 and 14, the restricted
function ϕ|⋂

a∈A F(a) : ⋂

a∈A F(a) → R is continuous and
it has a maximum value and minimum value on

⋂

a∈A F(a).
Since

⋂

a∈A F(a) is a set of preferred elements that provides
all parameters in A, then the maximum value of ϕ|⋂

a∈A F(a)

in
⋂

a∈A F(a) is the element that will choose by decision-
maker. In addition to this, we know that the empty set ∅ is
a compact set. If F(a) = ∅ for any a ∈ A, then we have
that

⋂

a∈A F(a) = ∅. In this case, the restricted function
ϕ|⋂

a∈A F(a) is obtained as an empty function. Therefore, an
element to be selected cannot be obtained. At this stage, the
selection cannot be made.

Wecangive this decision-makingmethod in amore formal
form using the following algorithms.

Algorithms of decision-making

LetU be a finite topological universe as a problem universe,
E be a parameter set, A ⊆ E be a set of interested parameters,
and themappingϕ : U → R is continuouswhereR is a usual
topological universe. Under these conditions:

Algorithm 1Define the cs-softset (F, A) according to the
selector’s preferences.
Algorithm 2 For each a ∈ A, create the preferences set
⋂

a∈A F(a) which provides all parameters at the same
time.
Algorithm 3 Find the maximum value of ϕ|⋂

a∈A F(a) in
⋂

a∈A F(a).

If ϕ|⋂
a∈A F(a) reaches the maximum value for x ∈

⋂

a∈A F(a), then decision-maker (selector) will select x ;
therefore, when this occurs, it is called that selection is made
in the (F, A). The cs-softset (F, A) from which the selec-
tion is made is called selection system (or stable system).
Otherwise, the system is called unstable.

Note that, if there is more than one element x ∈
⋂

a∈A F(a) that ϕ|⋂
a∈A F(a) reaches the same maximum

value, the selector can select any of these elements.
Let us see how this decision-making method works with

the mythical simple real-estate problem that Molodtsov [5]
has given.
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Example 6 Let us define the soft set (F, E) as the attrac-
tiveness of the houses that Mr. X will buy. For this, let
U = {h1, h2, h3, h4} be a set of interested houses, E =
{e1, e2, e3, e4, e5, e6, e7, e8} be a set of parameters that char-
acterize houses and affect the decision of the decision-maker,
such that e1 represents the expensiveness of the house, e2 rep-
resents the beauty of the house, e3 represents the house made
of wood, e4 represents the cheapness of the house, e5 repre-
sents that the house is in the green environment, e6 represents
the modernity of the house, e7 represents that the house is
in good repaired, and e8 represents that the house is in bad
repaired. Let T = {∅,U , {a, c}, {b, d}} be a topology on
U , and define the continuous function ϕ : U → R such as
ϕ = {(h1, 3), (h2, 1), (h3, 3), (h4, 1)} where R is the usual
topological universe. The selection system based on Mr. X’s
preferences is given as:

(F, E) = {e1 = {h1, h2}, e2 = {h1, h2, h3},
e3 = U , e4 = {h1, h2, h4},
e5 = U , e6 = {h1, h2, h3},
e7 = {h1, h2}, e8 = {h1, h2, h3}}.

Since U is a finite topological universe, then (F, E) is obvi-
ously cs-softset. Hereunder, we have:

⋂

ei∈E
F(ei ) = F(e1) ∩ F(e2) ∩ · · · ∩ F(e8) = {h1, h2}.

Therefore, we obtained that ϕ|⋂ F(ei )(h1) = 1 and
ϕ|⋂ F(ei )(h2) = 3. Consequently, by algorithms of decision-
making, Mr. X will select the house h2.

In general, of course, the problem space to be decided does
not have to be finite. Therefore, we know that if any topolog-
ical universe is Hausdorff, then the intersection of arbitrary
number of compact set inU is compact. Using this argument,
we give following theorem for arbitrary topological universe.

Theorem 15 Let U be a topological universe and ϕ : U →
R, where R is the usual topological universe. Selection is
made in the selection system (F, A) defined on U if and only
if U is Hausdorff.

Proof It is obvious. �
In addition to all these, we can also define another partic-

ular soft set given on an arbitrary topological universe.

Definition 7 Let U be a topological universe and (F, A) be
a soft set overU . (F, A) is called a quasi-compact structural
soft set (briefly quasi-cs-softset) if there exists an a ∈ A,
such that F(a) is compact set in U .

Example 7 LetR be the usual topological universe and define
the soft set (F, E) = {a = {1}, b = (0, 1), c = [0, 1]} over

R where E = {a, b, c}. Since F(a) = {1} and F(c) = [0, 1]
are compact, and but not F(b) in R, so (F, E) is quasi-cs-
softset over R.

Clearly, every cs-softset over a topological universe is a
quasi-cs-softset.

If we have a quasi-cs-softset over a topological universe,
we can define some special parameters in the parameter set.

Definition 8 Let U be a topological universe and (F, A) be
a quasi-cs-softset overU . A parameter a ∈ A is called prime
parameter if F(a) is a compact subset of U .

FromDefinition 8, ifwe thrownon-prime parameters from
A, we obtain prime parameters set A0 ⊆ A. In this way, we
have a reduction of parameters. If we restrict F to A0, we
obtain the set-valued mapping F0 : A0 → P(U ). Therefore,
(F0, A0) is called reduced form of (F, A), and it is obviously
cs-softset over U .

Example 8 Consider the quasi-cs-softset (F, A) given in
Example 7. The set of prime parameter is A0 = {a, c} ⊂ E
and reduced form of (F, E) is obtained as:

(F0, A0) = {a = {1}, c = [0, 1]}.

Now, suppose that U be a Hausdorff topological uni-
verse and (F, A) is a quasi-cs-softset. Thus, by selecting
the prime parameters, the reduced form (F0, A0) of (F, A)

is obtained. Of course, by its definition, (F0, A0) is a cs-
softset over U . Since U is a Hausdorff topological universe,
then (F0, A0) becomes a selection system overU fromTheo-
rem 15. By applying the above decision-making algorithms,
respectively, it is decided in this system.

Conclusion

Decision-making problems are also frequently encountered
in the development of artificial intelligence and operation
research. The future and fate of a phenomenon depends on
the decisions made on that phenomenon. Mankind has to
develop new mathematical tools for solving daily life prob-
lems. In this study, we have built a mathematical tool that
can be used in decision-making problems, and proposed a
method of how to apply it. Of course, this is a very theoreti-
cal approach, because our fiction is about using a topological
space and general topological concepts. In this manner, We
have defined the concept of cs-softset with the notion of a
parameterization of compact subsets of a topological uni-
verse. Then, we examined some basic theoretical properties.
Finally, we proposed an application method for decision-
making problems. In this sense, we obtain an application of
a very pure field of mathematics to the problems of daily life.

123



Complex & Intelligent Systems (2020) 6:401–409 409

In the future as a continuation of this study, new special
soft sets can be identified and their applications explored
using extensions and other types of compactness such as
paracompactness, metacompactness, semi-compactness, etc.

The authors hope that this article is shed light on to work-
ing scientists in these areas.
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