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Abstract
The material handling equipment (MHE) has a close connection with layout of machinery and plays the important role
in productivity of servicing or manufacturing systems. Since each of MHE has distinct characteristics than the others with
respect to conflicting criteria and design expertsmay state the different subjective judgmentswith respect to qualitative criteria,
the material handling equipment selection problem (MHESP) can be taken into account as a group multi-criteria decision-
making (GMCDM) problem. In this paper, a version of type-2 fuzzy sets (T2FSs), named Gaussian interval type-2 fuzzy
sets (GIT2FSs), is first used as an alternative to the traditional triangular membership functions (MFs) to weight criteria and
sub-criteria and also evaluate of alternatives with respect to sub-criteria. The synthetic valuemethod ofGIT2FSs is then carried
out to convert the assessments stated as GIT2FSs for each alternative with respect to each sub-criterion and also weights of
criteria (sub-criteria) into the single fuzzy rating and weight, respectively. Then, the fuzzy weighted average (FWA) approach
is adopted to integrate the single fuzzy ratings of each alternative with respect to sub-criteria and the single fuzzy weights of
sub-criteria under each criterion with the aggregated weighted ratings. In next stage, ELECTRE III (ELimination Et Choix
Traduisant la Realite´—elimination and choice translation reality) is generalized with GIT2FSs to select the optimal MHE
through a new ranking approach. Moreover, some arithmetic operations and properties are extended to GIT2FSs. In addition,
to demonstrate its potential applications, the proposed methodology is implemented in a real case study and an illustrative
example, and then, the ranking results are compared with those of the others in the literature. Finally, the sensitivity analysis
is carried out to show robustness and stability of the obtained results.
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Introduction

In the today competition world, one of the managers’ impor-
tant duties for gaining the greater share of productmarket is to
reduce costs. The considerable sectionof these costs is related
to the material handling. After the stages of production and
process design when setting up of the manufacturing or ser-
vicing system, the design of material handling equipment
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(MHE) (including the activities of selection, arrangement,
and establishment) should be carried out in stage of oper-
ation design. Obviously, the material handling equipment
selection problem (MHESP) changes the productivity index,
since it depends on the cost of goods manufactured directly.
MHE can encompass “30–75% of this cost and the selec-
tion of efficient MHE can be responsible for reducing the
plant’s operating costs by 15–30%” [1]. The choice of unsuit-
able MHE not only results in the rearranging costs but also
imposes reinvestment for purchasing new MHE. There are
different models of MHE for transporting goods or materi-
als. Each of themhas distinguished properties as compared to
the others, such that solution of the MHESP has transformed
with a complex and time-consuming process. Complexity
of MHESP has some reasons as follows. These properties
are usually categorized into two groups of criteria, namely
the quantitative criteria (such as measure of investment, cost
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of spare parts, capacity, etc.) and subjective or qualitative
criteria (such as attainability of spare parts, convenience,
maintainability, etc.). On the other hand, some criteria (along
with their corresponding sub-criteria) are of benefit type and
some criteria (along with their corresponding sub-criteria)
are of cost type. In addition, since each criterion consists
of several sub-criteria, it is difficult to apply several times
of the decision-making technique to each criterion and then
calculate the final score. Furthermore, an expert may apply
the different probability density functions such as Gaussian,
Beta, or etc. distribution instead of triangular or trapezoidal
membership functions (MFs). Hence, such a problem can
be considered as a multi-criteria decision-making (MCDM)
problem in which the qualitative criteria are expressed based
on verbal terms or linguistic variables. An MCDM problem
can be stated as the process of determining the best alternative
among all possible alternatives with respect to the different
criteria. One of the important advantages of MCDM prob-
lems is that they can take into account both quantitative and
qualitative criteria (including crisp and fuzzy data). There are
different techniques for solving theMCDMproblems accord-
ing to appraising style of criteria or alternatives. ELimination
Et Choix Traduisant la Realite´ (ELECTRE) that was first
presented by Roy [2] is one of the most popular techniques
of MCDM. The case that distinguishes this method than the
others is property of its non-compensatory. It means that bad
scores of criteria cannot be compensated by good scores of
other criteria. It compares different alternatives as pairwise
by considering various indices and determining indifference,
veto, and preference thresholds. In the classical ELECTRE
method, the measures of appraisals and weights of criteria
are determined with crisp values. However, the crisp data are
not suitable for managers’ subjective judgments when faced
with the real decision-making problems, because these are
often expressed as verbal terms. To express the uncertainty
in the real-world problems, fuzzy data instead of crisp data
have been adopted in many MCDM techniques including
ELECTRE. In ELECTRE III, the ratings and weights can
state by means of the fuzzy data. However, a decision-maker
may have doubt about the measure of MF. In other words, in
type-1 fuzzy sets, it is often difficult for an expert to express
his/her notions as a specified number at the interval [0, 1]
regarding MF. Hence, type-2 fuzzy sets (T2FSs) were pre-
sented by Zadeh [3] as a generalization of the concept of
type-1 fuzzy sets. T2FSs are depicted in three-dimensional
space including finite non-empty set X, secondary grade f x
(u), and the domain of secondaryMF Jx, whereMF is defined
by a fuzzy set at the interval [0, 1] [4]. Interval type-2 fuzzy
sets (IT2FSs) are a special case of T2FSs characterized by an
interval MF, such that decision-makers can have more flex-
ible to represent the ambiguity of MF [5]. In other words,
IT2FSs are suitable for situations in which decision-maker
not only has indecisive standpoints as compared to measure

of a variable on X but also he is uncertain regarding measure
of MF. IT2FSs have a greater ability as compared to type-1
fuzzy sets to handle uncertainty and imperfect information
coming from judgments of different experts and can moti-
vate more degrees of flexibility to show the vagueness in real
applications. Lack of freedom degree for selecting the inter-
valMFs is led to increase the number of experts, such that the
solving the MCDM problem will be complicated and time-
consuming. Accordingly, many studies have applied IT2FSs
to the management and industrial scopes as follows: Hagras
[6], Sepulveda et al. [7], Kumbasar and Hagras [8], Lynch
et al. [9], and Kumbasar [10] adopted T2FSs to optimize
and design intelligent controllers. Similarly, Castillo et al.
[11] presented a comparative study of type-2 fuzzy logic
systems with respect to interval type-2 and type-1 fuzzy
logic systems to show the efficiency and performance of a
generalized type-2 fuzzy logic controller. Ontiveros-Robles
et al. [12] proposed a comparison regarding the robustness
of interval type-2 and generalized type-2 fuzzy logic con-
trollers, to generate criteria to decidewhich type of controller
is better in specific applications. Auephanwiriyakul et al.
[13] and Liu and Mendel [14] used T2FSs to obtain data
from human sources (linguistic responses) in management
studies. Bouchachia and Mittermeir [15] described a fuzzy
neural approach for information retrieval where the fuzzy
representation was used to reflect the hierarchical nature
of texts. Wu and Mendel [16] extended antecedent con-
nector word models to the framework of Mamdani type-1
fuzzy logic system where the uncertainties originating from
descriptive words, connector words, and data were mod-
eled simultaneously. Castillo and Melin [17] and also Own
et al. [18] adopted type-2 fuzzy logic for achieving adap-
tive noise cancelation. Particularly, Melin et al. [19] used the
neural networks to analyze the sound signal of an unknown
speaker, and then, a set of type-2 fuzzy rules were applied to
decision-making. Moreover, they utilized genetic algorithms
to optimize the architecture of the neural networks. Sanchez
et al. [20] introduced the generalized type-2 fuzzy control
system for a mobile robot regarding three types of external
perturbations, namely band-limited white noise, pulse noise,
and uniform random number noise. Liang and Wang [21]
and also Shu and Liang [22] applied T2FSs to analyze the
lifetime of a wireless sensor network and forecast strength
of sensed signal in wireless sensors, respectively. Baguley
et al. [23] planned a T2FSs-based model to predict time to
market from performance measures, which is a potentially
valuable tool for decision-making and continuous improve-
ment. Gu and Zhang [24] suggested the web shopping expert
system based on the IT2FSs for online users. Rhee [25]
introduced interval type-2 clustering method by modifying
the prototype-updating and hard-partitioning procedures in
the type-1 fuzzy objective function-based clustering method.
Linda and Manic [26] extended interval type-2 fuzzy logic
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to the fuzzy voting scheme, which constitutes an essential
component of many fault tolerant systems. Cervantes and
Castillo [27] presented a new approach for complex con-
trol combining several simpler individual fuzzy controllers.
It is useful when the problem is a multivariable control sys-
tem. Castillo et al. [28] applied the granular approach for
intelligent control using generalized type-2 fuzzy logic in
which granularity was used to divide the design of the global
controller into several individual simpler controllers. In the
scope of MCDM, Rashid et al. [29] extended technique for
order preference by similarity to ideal solution (TOPSIS)
to generalized interval-valued trapezoidal fuzzy numbers
for the selection of a suitable robot. Keshavarz Ghorabaee
[30] presented a GMCDM for robot selection where vlsekri-
terijumska optimizacija i kompromisno resenje (VIKOR)
method with interval type-2 fuzzy numbers was handled.
Soner et al. [31] integrated analytic hierarchy process (AHP)
and VIKOR with IT2FSs for the hatch cover design selec-
tion problem, which has utmost importance in structure of
bulk carrier ships to prevent water ingress and protect cargo
form the external damages. Zhong and Yao [32] extended
the ELECTRE I method to interval type-2 fuzzy numbers
for electronic materials supplier selection problem. Abdul-
lah et al. [33] handled interval type-2 fuzzy simple additive
weighting (SAW) for ambulance location problem,which has
an important role for improving the emergency medical ser-
vices. Deveci et al. [34] developed weighted aggregated sum
product assessment (WASPAS)-based TOPSIS to IT2FSs for
the car sharing station selection problem.

There are the known versions for IT2FSs such as trape-
zoidal interval type-2 fuzzy sets (TraIT2FSs), triangular
interval type-2 fuzzy sets (TriIT2FSs), and Gaussian interval
type-2 fuzzy sets (GIT2FSs) in the literature. Triangular or
trapezoidalMFs are the simplestMFs formed using straight
lines.MFs of triangular and trapezoidal fuzzy numbers have
steep slopes in their reference points. In the real-life prob-
lems, however, the decision-maker may consider smoother
slope for theMFs in reference points. Hence, “GaussianMFs
are suitable for problems requiring continuously differen-
tiable curves, whereas the triangular and trapezoidalMFs do
not posses these abilities” [35]. In this paper, the performance
ratings with respect to sub-criteria and also weights of crite-
ria and sub-criteria are first expressed as linguistic variables
and Gaussian interval type-2 fuzzy numbers (GIT2FNs) are
then defined for them. GIT2FNs are better selection than the
others while the MFs are in the curved form.

The goal of this paper is to introduce a generalized hybrid
group decision-making methodology based on GIT2FSs for
MHESP. Application of fuzzy data as GIT2FNs is more suit-
able relative to type-1 fuzzy sets according to the reasons
described above. The following cases are the main contribu-
tions of the present paper:

• Because ofMHE’s selectionwhich is a group activity [36],
the synthetic value method is implemented in integrating
the interval type-2 fuzzy data of an alternative with respect
to sub-criteria, interval type-2 fuzzyweights of criteria and
sub-criteria, and interval type-2 fuzzy thresholds.

• SeveralMCDMtechniques based on IT2FSs are integrated
to solve the MHESP.

• Since each criterion contains a set of sub-criteria with dif-
ferent weights, the authors first utilized the interval type-2
fuzzy weighted average (FWA) technique as a suitable
integrating tool for aggregating the synthetic type-2 fuzzy
ratings of each alternative with respect to all sub-criteria
under each criterion and the synthetic type-2 fuzzyweights
of sub-criteria to the aggregated weighted ratings. This
approach makes it unnecessary to use several times of the
ELECTRE III technique for each criterion.

• The interval type-2 fuzzy ELECTRE III method based on
the aggregated weighted ratings is then applied to choose
optimal MHE.

• The new proposed methodology is usable to each type of
MF (both straight and curve lines). Moreover, it can be
applied to rank type-1 fuzzy sets and T2FSs.

• To incorporate GIT2FNs into the MCDM techniques,
some arithmetic operations of GIT2FNs are presented.

• In addition to the final orders of alternatives, the proposed
ranking methodology is applied to determine thresholds
and weight criteria and sub-criteria.

The rest of present paper is organized as follows: Sect. 2
presents the literature review regarding the MCDM tech-
niques, ELECTRE III, and MHESP. In Sect. 3, prelimi-
naries (including ELECTRE III and arithmetic operations
of IT2FSs) are reviewed. The suggested ranking approach
is introduced in Sect. 4. In Sect. 5, the proposed ranking
methodology is incorporated into the ELECTRE III frame-
work. Section 6 includes a real case study and two illustrative
examples in which our ranking methodology is extended to
the ELECTRE III method, and finally, conclusions and com-
parisons are studied in Sect. 7.

Literature review

Mardani et al. [37] listed the most famous methods for
solving the MCDM problems and then categorized the
applications of the MCDM problems into 15 fields. In a
more general categorization, the MCDM techniques can be
divided into two branches: multi-objective decision-making
(MODM) and multi-attribute decision-making (MADM).
An MADM problem includes small number of pre-specified
alternatives assessed with respect to a set of criteria. In
the classical MADM methods, evaluations and weights
are stated as precise and crisp, whereas in the real world,
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decision-making process accommodates with uncertain and
doubt. If it is integrated with fuzzy data to deal with the
uncertainty, it is named fuzzy MADM (FMADM). Hence,
the FMADM-based approaches are applied to resolve the
imprecision and vagueness. There are the different FMADM
methods [e.g., preference ranking organization method for
enrichment evaluations (PROMETHEE), TOPSIS, VIKOR,
etc.]. In another comprehensive study, Mardani et al. [38]
grouped the applications and methodologies of the fuzzy
MCDM (FMCDM) techniques into four main fields as
follows: engineering, management and business, science,
and technology. Among the classical MCDM methods
developed for solving the real-world decision problems, the
ELECTRE III method (based on the concept of outranking
relations) was introduced to relieve difficulties coming from
the existing decision-making solution methods [39, 40].

Lots of applications based on the ELECTRE III method
have been introduced in the literature. Roy and Bouyssou
[2] compared two decision-aid models for a nuclear power
plant sitting problem using ELECTRE III. Siskos and Hubert
[41] analyzed the energy alternatives from the social and
public health point of view. Karagiannidis and Moussiopou-
los [42] used ELECTRE III to decisions in the area of
municipal solid-waste management in Greece. Alomoush
[43] applied the ELECTRE III method to select the best
location of thyristor-controlled phase angle regulator in a
competitive energy market. Montazer et al. [44] designed a
new mixed expert decision-aid system where fuzzy ELEC-
TRE III method was applied to vendor selection. Rogers [45]
evaluated complex civil/structural engineering projects using
ELECTRE III. Tam et al. [46] implemented ELECTRE III in
evaluating performance of construction plants. Leyva Lopez
[47] solved the student selection problem using the ELEC-
TRE IIImethodology under fuzzy outranking relation. Li and
Wang [48] developed a new rankingmethod to theELECTRE
III method. Zak and Fierek [49] implemented ELECTRE
III/IV and AHP in evaluating the generated variants of urban
transportation system. Papadopoulos and Karagiannidis [50]
implemented ELECTRE III in the optimization of decen-
tralized energy systems. Radziszewska-Zielina [51] handled
the ELECTRE III to select the best partner construction
enterprise in terms of partnering relations. Giannoulis and
Ishizaka [52] adopted a web-based decision support system
with ELECTRE III for ranking British universities. Caval-
laro [53] used the ELECTRE III method to select production
processes of thin-film solar technology. Marzouk [54] for-
mulated ELECTRE III for value engineering applications.
Liu and Zhang [55] proposed the entropy weight and the
improved ELECTRE-III method for the supplier selection of
a supply chain. Cliville et al. [56] deployed the ELECTRE
III and MACBETH multi-criteria ranking methods for small
and medium enterprises tactical performance improvements.
Fancello et al. [57] planned a decision-aid system based on

ELECTRE III for safety analysis in a suburban road net-
work. Heracles et al. [58] compared the ELECTRE III and
PROMETHEE IImethods regarding the choice of alternative
investment scenarios for a geothermal field. Shafia et al. [59]
ranked scenarios based on fuzzy cognitive map through the
ELECTRE III where scenarios help to simulate future events
to analyze the outcomes of possible courses.

On the other hand, there are the several extensions of the
ELECTRE approach in the literature. Vahdani and Hadipour
[60] presented the interval-valued fuzzy ELECTRE method
for solving the MCDM problems where the weights of cri-
teria were determined using the concept of interval-valued
fuzzy sets. Hatami-Marbini and Tavana [61] developed the
ELECTRE I method to consider the uncertain and imprecise
assessments based on standpoints of a group of DMs.
Vahdani et al. [62] extended the group ELECTRE method to
intuitionistic fuzzy sets. Chen [63] first extended the interval-
valued intuitionistic fuzzy ELECTRE (IVIF-ELECTRE)
method. Next, the concordance and discordance indices
were obtained using an aggregated importance weight score
function and a generalized distance measurement between
weighted evaluative ratings, respectively. Finally, two
IVIF-ELECTRE ranking procedures were developed for the
partial and complete ranking of the alternatives based on the
concordance and discordance dominance matrices. Hashemi
et al. [64] proposed the extended version of ELECTRE III
under the interval-valued intuitionistic fuzzy environment.
Wang et al. [65], Juan et al. [66], and Na et al. [67] provided
the hesitant fuzzy environment on the different versions of
the ELECTRE method.

Many attempts have been carried out for solving the
MHESP during the last 3 decades. In a general classifi-
cation, these studies can be categorized into the following
four classes: (1) decision support systems (expert system
for the design of repetitive manual materials handling tasks
[68], the material handling expert system [69], the proto-
type expert system for the selection of industrial truck type,
an expert consultant for in-plant transportation equipment
[70], and a knowledge-based system for the choice of con-
veyor equipment [71]); (2) hybrid methods (an intelligent
knowledge-based expert system, named intelligent consul-
tant system, for selection and evaluation of material handling
equipment, which has been composed of the following four
models: equipment and their attributes, a rule-based database
for selecting type of equipment, anMCDM technique (AHP)
for selection of optimal equipment, and simulators to evaluate
the performance of the equipmentmodel [72], a decision sup-
port system based on axiomatic design principles [73], and
a hybrid fuzzy knowledge-based expert system and genetic
algorithm for the selection and assignment of themost appro-
priate MHE [74]); (3) optimization formulations (an integer
programming model for minimizing material handling costs
in manufacturing systems or warehousing facilities [75],
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a hybrid methodology including the integer programming
formulation for designing layout and material handling sys-
tem simultaneously [76], a 0–1 integer programming model
to determine operation allocation and selection of mate-
rial handling system in an flexible manufacturing systems
simultaneously [77], a mathematical model to implement
problem modeled by radio-frequency identification tech-
nology [78], and a multi-objective optimization model for
selection of material handling system for large ship [79]);
(4) the MCDM problems (fuzzy axiomatic design principles
for selecting automated guided vehicles [80], fuzzy AHP
(FAHP), and decision-making trial and evaluation labora-
tory (DEMATEL)-ANPwith geographic information system
for the selection of the best space for leisure in a blighted
urban site [81], FAHP and fuzzy additive ratio assessment for
selection of conveyor [82], the fuzzy complex proportional
assessment (COPRAS) method for evaluating performance
measures of equipment in total productive maintenance
[83], the AHP and TOPSIS methods for selecting the most
appropriate tomography equipment [84], COPRAS, simple
additive weighting, and TOPSIS for analyzing and prioritiz-
ing Rotor systems [85], FAHP, fuzzy entropy, fuzzy TOPSIS
(FTOPSIS), and multi-objective mixed integer linear pro-
gramming for the choice of MHE in warehouse [86], FAHP
for bulk material handling equipment [87], and compar-
ing the four MCDM methods: combinative distance based
assessment, evaluation based on distance from average solu-
tion method, weighted aggregated sum product assessment
method, andmulti-objective optimization on the basis of ratio
analysis for selection of automated guided vehicles [88]).
Recently, Hadi-Vencheh and Mohamadghasemi [89] intro-
duced an integrated MCDM model for the MHESP. Despite
all its advantages, it has some shortcomings as follows:
it applies the voting approach to weight criteria and sub-
criteria. Unfortunately, the votingmethod is of compensatory
model type, i.e., the value of a significantly weak assessment
grade with respect to one criterion could be directly compen-
sated by the measures of other good assessment grades. In
addition, note that it uses the linguistic variables as assess-
ment grades, such that it does not consider the shape of their
MFs. On the other hand, the application of type-1 fuzzy sets
is other limitation of the proposed approach based on the
same reasons described in Sect. 1. Lack of more flexibility to
choose the interval MFs is caused that cost and time of data
collection increase. This methodology adopts the triangular
fuzzy numbers with usual arithmetic operations to weight
and evaluate. However, other versions such as GIT2FNs are
the more suitable than the others as argued in Sect. 1. In
addition, the authors obtained a set of compromise solutions.
Nevertheless, one may select a unique solution as optimal
MHE. Accordingly, the proposed methodology of present
paper eliminates all weaknesses stated above.

This paper focuses on the last class where a model
among the different commercial models is evaluated based
on IT2FSs with respect to a set of criteria and sub-criteria.
The constructed MCDM approaches for the MHESP have
some shortcomings. Some studies expressed above adopt the
traditional AHPwith crisp data; theMHESP is solved by one
design expert; and/or the equalweights are considered for cri-
teria. On the other hand, type-1 fuzzy sets use a specifiedMF
at interval [0, 1]. However, there are many situations in the
real-world decision-makings, which due to further ambigu-
ity, it is better to choose an interval forMF. Thus, to eliminate
the difficulties reviewed in the studies mentioned above, this
paper structures a new ranking technique for GIT2FNs. Due
to the use of GIT2FNs in the ELECTRE III method, this
paper is the first work in scope of the MHESPs.

Preliminaries

Basic principles of the ELECTRE III method

The ELECTRE method was first introduced by Benayoun
et al. [90]. Later, this method was generalized in its differ-
ent versions such as ELECTRE I [91], ELECTRE II [92],
ELECTRE III [93], ELECTRE IV [94], ELECTRE IS [95],
ELECTRE TRI [96], ELECTREGKMS [97], ELECTRE
TRI-C [98], and ELECTRE TRI-NC [99]. Among them, the
ELECTRE III method has been widely used to solveMCDM
problems. ELECTRE III was adopted to relieve drawbacks
of ELECTRE II. It can take into account uncertain data.

The following steps are a summary of the ELECTRE III
methodology:

Step 1 Construct the crisp decision matrix D � [xi j ]m×n for
theMCDMproblemwhere there arem alternatives Ai (i � 1,
. . . , m) under n criteria C j ( j � 1, . . . , n) and xi j represents
the assessment measure of equipment iwith respect to crite-
rion j. Moreover, let [w j ]1×n be the weights of criteria. The
above MCDM problem can also be showed in matrix format
as follows:

w1
C1

w2
C2

w3
C3 . . .

wn
Cn

D �

A1

A2

A3
...
Am

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n
x31 x32 x33 · · · x3n
...

...
... · · · ...

xm1 xm2 xm3 · · · xmn

⎤
⎥⎥⎥⎥⎥⎦
,

(1)

Step 2 Obtain the outranking relations using the following
three thresholds:

• Indifference threshold (q j ): If difference of performance
measures between alternatives Ar and Ak under criterion
j, namely xr jpreferred to the alternative.
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• and xk j , is less than or equal q j (i.e. xr j − xk j ≤
q j and xk j − xr j ≤ q j ), it is said that alternative Ar and
alternative Ak under criterion j are indifference.

• Veto threshold (v j ): If difference of performancemeasures
between alternatives Ak and Ar with respect to criterion j,
i.e., xk j and xr j , is more than or equal v j (or xk j − xr j ≥
v j ), it is said that the alternative Ar is not better than the
alternative Ak .

• Preference threshold (p j ): If difference of performance
measures between alternatives Ar and Ak under criterion j,
i.e., xr j and xk j , is more than or equal p j (or equivalently,
xr j − xk j ≥ p j ), the alternative Ar is preferred to the
alternative Ak . If xk j +q j < xr j ≤ xk j + p j , the alternative
Ar is weakly preferred to the alternative Ak .

Based on the above descriptions, the following three
relations are introduced for determining the level of the
decision-makers’ preferences:

ArP j Ak xr j is strictly preferred
to xk j under criterion j

↔ xr j − xk j ≥ p j

AkQ j Ar xr j is weakly preferred
to xk j under criterion j

↔ xk j +q j < xr j ≤ xk j + p j

Ak I j Ar xr j is indifferent to xk j
under criterion j; and

xk j is indifferent to xr j
under criterion j

↔ ∣∣xr j − xk j
∣∣ ≤ q j

The thresholds q j , p j , and v j for each criterion are usually
determined based on experts’ views, nature of decision-
making problem, or (maximum measure − minimum mea-
sure) * certain coefficient. By using these thresholds, an
outranking relation S as Ar S Ak are constructed for com-
paring pairs of alternatives Ar and Ak . It means that “Ar is
at least as good as Ak” OR “Ar is not worse than Ak” [100].

In order to examine expression Ar S Ak , the following
two principles should be taken account into:

• The concordance principle: it includes a majority of cri-
teria such that agree with expression Ar S Ak , that is the
majority principle.

• The non-discordance principle: it includes a minority of
criteria such that do not satisfy expression Ar S Ak , which
is the minority principle.

The final goal is to rank the alternatives based on the out-
ranking relations and the principles described above. For a
certain criterion,more concordance and less non-discordance
indices indicate stronger superiority.

Step 3 Calculate the concordance index of alternative Ar

relative to alternative Ak (C (Ar , Ak)) as follows:

C(Ar , Ak ) �
∑n

j�1 w j ∗ c j (Ar , Ak )∑n
j�1 w j

, r , k � 1, . . . ,m; r �� k,

(2)

where w j and c j (Ar , Ak) are weight of criterion j and
the superior level of alternative Ar versus alternative
AkCalculate the discordance index of alternative, respec-
tively. For benefit (B) and cost (C) criteria, c j (Ar , Ak) is
calculated, respectively, by the following relations:

c j (Ar , Ak ) �

⎧⎪⎨
⎪⎩

0 xk j − xr j ≥ p j ,
xr j−xk j+p j

p j−q j
q j < xk j − xr j ≤ p j , j � 1, . . . , n,

1 xk j − xr j ≤ q j ,

(3)

and

c j (Ar , Ak ) �

⎧⎪⎨
⎪⎩

0 xr j − xk j ≥ p j ,
xk j−xr j+p j

p j−q j
otherwise, j � 1, . . . , n.

1 xr j − xk j ≤ q j ,

(4)

Step 4 Calculate the discordance index of alternative Ar ver-
sus alternative Ak for criterion j (d j (Ar ,Ak)). It shows lack of
superiority an alternative versus other alternativewith respect
to other criteria. The following two expressions show the dis-
cordance indices of alternative Ar versus alternative Ak for
B and Ccriteria, respectively:

d j (Ar , Ak ) �

⎧⎪⎨
⎪⎩

0 xk j − xr j ≤ p j ,
xk j−xr j−p j

v j−p j
p j < xk j − xr j ≤ v j , j � 1, . . . , n,

1 xk j − xr j ≥ v j ,

(5)

and

d j (Ar , Ak ) �

⎧⎪⎨
⎪⎩

0 xr j − xk j ≤ v j ,
xr j−xk j−p j

v j−p j
otherwise, j � 1, . . . , n.

1 xr j − xk j ≥ v j ,

(6)

Step 5Determine outranking relation by the following credit
degree index:

S(Ar , Ak )

�

⎧⎪⎨
⎪⎩
C(Ar , Ak ), i f d j (Ar , Ak ) ≤ C(Ar , Ak ), ∀ j ,

C(Ar , Ak ).
∏

j∈J :d j (Ar ,Ak )>C(Ar ,Ak )

1−d j (Ar ,Ak )
1−C(Ar ,Ak )

otherwise,

(7)

where S(Ar , Ak) and J are the degree of outranking Ar rela-
tive to alternative Ak and the set of criteria for which d j (Ar ,
Ak) > C(Ar , Ak), respectively.

Step 6 Calculate the final score and rank alternatives.
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There are several approaches to rank alternatives in the
ELECTRE III technique. (1) Min max method: in this
method, the optimal alternative is the alternative that the
largest measure in its corresponding column in credit degree
matrix is less than the same measure for other alternatives.
(2) Double ranking method: in this method, two distillation
procedures are utilized. The first type is descending distil-
lation in which ranking order is from the best to the worst
alternatives. In the second type, named ascending distillation,
alternatives are prioritized from the worst to the best alterna-
tive. The results of above two procedures are then combined
to determine the final ranking.

T2FSs and their arithmetic operations

Definition 3.2.1 Let ˜̃A be the T2FS in the universe of dis-
course X as follows [101]:

˜̃A �
{(

(x , u),μ ˜̃A(x , u)
)

| ∀ x ∈ X ,

∀ u ∈ Jx ⊆ [0, 1], 0 ≤ μ ˜̃A(x , u) ≤ 1
}
, (8)

where X denotes the domain of ˜̃A, μ ˜̃A refers to the MF (sec-

ondary MF) of ˜̃A, and Jx is an sub-interval at [0, 1] and

denotes the primary MF. ˜̃A can also be expressed as follows:

˜̃A �
∫
x∈X

∫
u∈JX

μ ˜̃A(x , u)/(x , u), (9)

where Jx ⊆ [0, 1] and
∫ ∫

denotes the overall admissible
union of x and u.

Definition 3.2.2 For the T2FS ˜̃A, if all μ ˜̃A(x , u) � 1, ˜̃A is

named IT2FS. An IT2FS ˜̃A can be regarded as a special case
of a T2FS as follows [101]:

˜̃A �
∫
x∈X

∫
u∈JX

1/(x , u), (10)

where Jx ⊆ [0, 1]. It is obvious that the upper and the lower
MFs of an IT2FS are both type-1 MFs.

Definition 3.2.3 Footprint of uncertainty (FOU) is derived
from the union of all primary memberships:

FOU( ˜̃A) �
∫
x∈X

JX . (11)

The FOU can also be represented by the lower and upper
MFs [102]:

FOU( ˜̃A) �
∫
x∈X

[
μ ˜̃A(x), μ̄ ˜̃A(x)

]
, (12)

Fig. 1 Subnormal TraIT2FN

where μ ˜̃A(x) and μ̄ ˜̃A(x) are the lower and upper MFs of

a T2FS. An IT2FS ˜̃A, is said to be normal if μ ˜̃A(x) �
μ̄ ˜̃A(x) � 1. An IT2FS ˜̃A, is said to be subnormal ifμ ˜̃A(x) <

1 and μ̄ ˜̃A(x) � 1.

Definition 3.2.4. Let ˜̃XL
and ˜̃XU

(L and U are equal to the
lower andupperMFs) be twonon-negative trapezoidal type-1
fuzzy numbers [101]. In addition, let HL

˜̃A
and HU

˜̃A
denote the

heights of ˜̃XL
and ˜̃XU

, respectively. Let x L1 , x L2 , x L3 , x L4 ,
xU1 , xU2 , xU3 , and xU4 be non-negative real values. Trape-
zoidal type-t fuzzy numbers (TraIT2FNs) can be represented
by (see Fig. 1):

˜̃X � [ ˜̃XL
, ˜̃XU

]

�
[(

x L1 , x
L
2 , x

L
3 , x

L
4 ; H

L
˜̃X

)
,
(
xU1 , xU2 , xU3 , xU4 ; HU

˜̃X

)]
.

(13)

Definition 3.2.5. Let ˜̃X1 and ˜̃X2 be two non-negative

TraIT2FNs, where ˜̃X1 � [ ˜̃XL

1 ,
˜̃XU

1 ] �
[(

x L11, x L12, x L13,

x L14; H
L
˜̃X1

)
,
(
xU11, xU12, xU13, x

U
14; H

U
˜̃X1

)]
and ˜̃X2 � [ ˜̃XL

2 ,

˜̃XU

2 ] �
[(

x L21, x L22, x L23, x L24; H
L
˜̃X2

)
,
(
xU21, xU22, xU23,

xU24; H
U
˜̃X2

)]
. Arithmetic operations between ˜̃X1 and ˜̃X2are

defined as follows:

Addition operation:
˜̃X1 ⊕ ˜̃X2 �

[(
x L11 + x L21, x

L
12 + x L22, x

L
13 + x L23, x

L
14 + x L24;

min

{
HL

˜̃X1
, HL

˜̃X2

}
,

)]
,

[(
xU11 + xU21, x

U
12 + xU22, x

U
13 + xU23, x

U
14 + xU24;

min

{
HU

˜̃X1
, HU

˜̃X2

})]
. (14)

Subtraction operation:

˜̃X1Θ
˜̃X2 �

[(
x L11 − x L24, x

L
12 − x L23, x

L
13 − x L22, x

L
14 − x L21;
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min

{
HL

˜̃X1
, HL

˜̃X2

})
,

]
,

[(
xU11 − xU24, x

U
12 − xU23, x

U
13 − xU22, x

U
14 − xU21;

min

{
HU

˜̃X1
, HU

˜̃X2

})]
. (15)

Multiplication operation:

˜̃X1 ⊗ ˜̃X2 �

⎡
⎢⎢⎣

(
x L11.x

L
21, x

L
12.x

L
22, x

L
13.x

L
23, x

L
14.x

L
24; min

{
HL

˜̃X1
, HL

˜̃X2

})
,

(
xU11.x

U
21, x

U
12.x

U
22, x

U
13.x

U
23, x

U
14.x

U
24; min

{
HU

˜̃X1
, HU

˜̃X2

})

⎤
⎥⎥⎦.

(16)

Division operation:

˜̃X1ϕ
˜̃X2 �

⎡
⎢⎢⎢⎢⎣

(
x L11
x L24

,
x L12
x L23

,
x L13
x L22

,
x L14
x L21

; min

{
HL

˜̃X1
, HL

˜̃X2

})
,

(
xU11
xU24

,
xU12
xU23

,
xU13
xU22

,
xU14
xU21

; min

{
HU

˜̃X1
, HU

˜̃X2

})

⎤
⎥⎥⎥⎥⎦

.

(17)

Multiplication by an ordinary number:

˜̃X1. r � r . ˜̃X1 �

⎧⎪⎪⎨
⎪⎪⎩

[(
r . x L11, r . x

L
12, r . x

L
13, r . x

L
14; H

L
˜̃X1

)
,

(
r . xU11, r . x

U
12, r . x

U
13, r . x

U
14; H

U
˜̃X1

)]
if r ≥ 0

[(
r . x L14, r . x

L
13, r . x

L
12, r . x

L
11; H

L
˜̃X1

)
,

(
r . xU14, r . x

U
13, r . x

U
12, r . x

U
11; H

U
˜̃X1

)]
if r ≤ 0

. (18)

Definition 3.2.6 Let ˜̃G be a normal GIT2FN as follows (see
also Fig. 2):

Fig. 2 Normal GIT2FN

˜̃G � [G̃L , G̃U ] �
[(

μL ; σ L ; HL
˜̃G

)
,
(
μU ; σU ; HU

˜̃G

)]
,

(19)

where μL ; σ L andμU ; σU are the mean and standard devia-
tion of the lower and upper GaussianMFs, respectively, such
that HL

˜̃G
� HU

˜̃G
, μL � μU and σ L〈 σU [103].

Definition 3.2.7 Aset of all GIT2FNs ˜̃Gi is said symmetric
if there is no intersection between beginning left reference
limits or final right reference limits (see Fig. 3).

Definition 3.2.8 Theα-cut of ˜̃A is presented as follows [104]:

Aα � {((x , u)| fx (u) ≥ α }. (20)

Definition 3.2.9 The α-cut of ˜̃A may be represented by the
α-cut of its FOU using the extension of α-cut of a type-1

fuzzy set ˜̃A [105] as follows:

Aα �
{
x
∣∣∣μ ˜̃A(x) ≥ α, μ̄ ˜̃A(x) ≥ α

}
, (21)

For a normal GIT2FN, α-cut may be presented as interval
as follows (see Fig. 3):

Normal:

Ĝiα �
[[
x̄ l1iα , x

l
2iα

]
,μi ,

[
xr1iα , x̄

r
2iα

]]
, (22)

where x̄ l1iα < xl2iα < μ < xr1iα < x̄r2iα , and l and r show

the left and right MFs of ˜̃G, respectively.

Definition 3.2.10 Let X � [x1, x2] and Y � [y1, y2] be
two positive interval numbers, such that x1 ≤ x ≤ x2 and
y1 ≤ y ≤ y2 (x1, y1 and x2, y2 are the infima and the
suprema, respectively). Interval arithmetic operations includ-
ing addition, subtraction, multiplication, and division are
defined, respectively, as follows [106]:

Addition operation:

X + Y � [x1 + y1, x2 + y2]. (23)

Subtraction operation:

X − Y � [x1 − y2, x2 − y1]. (24)
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Fig. 3 Set of symmetric
GIT2FNs (the left, right,
minimum, and maximum
reference limits)

Multiplication operation:

X .Y � [min (x1.y1, x1.y2, x2.y1, x2.y2),

max (x1.y1, x1.y2, x2.y1, x2.y2)]. (25)

Division operation:

X

Y
� [x1, x2].

(
1

[y1, y2]

)
,

where
1

[y1, y2]
�

[
1

y2
,
1

y1

]
if 0 /∈ [y1, y2]. (26)

Distance between X and Y :

�X−Y � 1

2
|(x1 − y2) + (x2 − y1)|. (27)

Some arithmetic operations of normal GIT2FNs

Let ˜̃G1 and ˜̃G2 be two non-negative normal GIT2FNs,

where ˜̃G1 � [G̃L
1 , G̃U

1 ] �
[(

μL
1 ; σ L

1 ; H
L
G̃1

)
,

(
μU
1 ; σU

1 ; HU
G̃1

)]
, ˜̃G2 � [ ˜̃GL

2 ,
˜̃GU

2 ] �
[(

μL
2 ; σ L

2 ; H
L
G̃2

)
,(

μU
2 ; σU

2 ; HU
G̃2

)]
, and HL

G̃1
� HL

G̃2
� HU

G̃1
� HU

G̃2
. The

arithmetic operations between ˜̃G1 and
˜̃G2 at level α(α � α1,

. . . , αN ; N is the number of alpha cuts) are calculated using
Definition 3.2.9 (Ĝiα � [[

x̄ l1iα , x
l
2iα

]
, μi ,

[
xr1iα , x̄

r
2iα

]]
)

and extensions of definitions stated by Chen and Lee [101]
as follows:

Addition operation:

Ĝ1α ⊕ Ĝ2α �
[(

xl21α + xl22α , μ1 + μ2, x
r
11α + xr12α;

min
{
HL
G̃1
, HL

G̃2

} )]
,

[(
x̄ l11α + x̄ l12α , μ1 + μ2, x̄

r
21α + x̄r22α;

min
{
HU
G̃1
, HU

G̃2

} )]
. (28)

Subtraction operation:

Ĝ1αΘĜ2α �
[(

xl21α − xr12α ,μ1 − μ2, x
r
11α − xl22α;

min
{
HL
G̃1
, HL

G̃2

} )]
,

[(
x̄ l11α − x̄r22α , μ1 − μ2, x̄

r
21α − x̄ l12α;

min
{
HU
G̃1
, HU

G̃2

})]
. (29)

Multiplication operation:

Ĝ1α ⊗ Ĝ2α �
[(

xl21α × xl22α , μ1 × μ2, x
r
11α × xr12α;

min
{
HL
G̃1
, HL

G̃2

} )]
,

[(
x̄ l11α × x̄ l12α , μ1 × μ2, x̄

r
21α × x̄r22α;

min
{
HU
G̃1
, HU

G̃2

})]
. (30)

Division operation:

Ĝ1α/Ĝ2α �
[(

xl21α
xr12α

,
μ1

μ2
,
xr11α
xl22α

; min
{
HL
G̃1
, HL

G̃2

})]
,

[(
x̄ l11α
x̄r22α

,
μ1

μ2
,
x̄r21α
x̄ l12α

; min
{
HU
G̃1
, HU

G̃2

})]
. (31)

Multiplication by an ordinary number:

Ĝ1α. r � r . Ĝ1α �

⎧⎪⎨
⎪⎩

[(
r . xl21α , r . μ1, r . x

r
11α; H

L
G̃1

)
,
(
r .x̄ l11α , r . μ1, r . x̄

r
21α; H

U
G̃1

)]
if r ≥ 0

[(
r . xr11α , r . μ1, r . x

l
21α; H

L
G̃1

)
,
(
r .x̄r21α , r . μ1, r .x̄

l
11α; H

U
G̃1

)]
if r ≤ 0

. (32)

Average operation:
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Let ˜̃G1, . . . , ˜̃GU be U non-negative normal

GIT2FNs, where ˜̃Gu � [G̃L
u , G̃

U
u ] �

[(
μL
u ; σ L

u ; H
L
G̃u

)
,(

μU
u ; σU

u ; HU
G̃u

)]
and HL

G̃u
� HU

G̃u
(u � 1, . . . , U ). The

average operations ¯̂Gα � ( ¯̄xl1α , x̄ l2α , μ̄α , x̄r1α , ¯̄xr2α) between˜̃G1, . . . , ˜̃GU at level α (α � α1, . . . , αN ) are calculated as
follows:

¯̄xl1α �
(

U∑
u�1

x̄ l1uα

)/
U , α � α1, . . . ,αN , (33)

x̄ l2α �
(

U∑
u�1

xl2uα

)/
U , α � α1, . . . ,αN , (34)

μ̄α �
(

U∑
u�1

μuα

)/
U , α � α1, . . . ,αN , (35)

x̄r1α �
(

U∑
u�1

xr1uα

)/
U , α � α1, . . . ,αN , (36)

¯̄xr2α �
(

U∑
u�1

x̄r2uα

)/
U , α � α1, . . . ,αN . (37)

Weighted average operation:

Let ˜̃Gi jα �
[[
x̄ l1i jα , x

l
2i jα

]
, μi j ,

[
xr1i jα , x̄

r
2i jα

]]
and

˜̃w jα �
[[

w̄l
1 jα , wl

2 jα

]
, μ j ,

[
wr

1 jα , w̄r
2 jα

]]
be the evalua-

tion of alternative i with respect to criterion j ( j � 1, . . . ,J )
and the weight of criterion j at level α, respectively, which
both of them are normal GIT2FNs. Moreover, let HL

G̃i j
�

HU
G̃i j

� 1 (for i � 1, . . . , I , j � 1, . . . , J ) and HL
˜̃w j

�
HU

˜̃w j
� 1 (for � j � 1, . . . , J ). The weighted average of

alternative i (W Âiα) at level α is obtained as follows:

W Âiα �
J∑

j�1
(ŵ jα × Ĝi jα)

/
J∑

j�1
ŵ jα , i � 1, . . . I ; α � α1, . . . ,αN ,

�
∑J

j�1

({[
w̄l
1 jα ,w

l
2 jα

]
,μ jα ,

[
wr
1 jα ,w̄

r
2 jα

]}
×
{[

x̄ l1i jα ,x
l
2i jα

]
,μi jα ,

[
xr1i jα ,x̄

r
2i jα

]} )

∑J
j�1

{[
w̄l
1 jα ,w

l
2 jα

]
,μ jα ,

[
wr
1 jα ,w̄

r
2 jα

]} ,

�
∑J

j�1

{[
wl
2 jα×xl2i jα ,μ jα×μi jα ,wr

1 jα×xr1i jα

]
,
[
w̄l
1 jα×x̄ l1i jα ,μ jα×μi jα ,w̄r

2 jα×x̄r2i jα

]}

∑J
j�1

{[
w̄l
1 jα ,w

l
2 jα

]
,μ jα ,

[
wr
1 jα ,w̄

r
2 jα

]} .

(38)

Property 1 Let ˜̃A1 and ˜̃A2 be two non-negative normal
TraIT2FNs or triangular interval type-2 fuzzy numbers
(TriIT2FNs). Then, all expressions in Sect. 3.3 hold true for
them, respectively.

Fig. 4 ˜̃A.B̃ is not a triangular fuzzy number

Proof Since α-cuts can easily be depicted for normal
TraIT2FNs or TriIT2FNs and reference points are generated
at each level α, one can calculate the expressions calculated
above for them.

A new approach for ranking GIT2FNs

The normal GIT2FNs case

Based on Kaufmann and Gupta [107], although ˜̃A and B̃

are triangular fuzzy numbers (as shown in Fig. 4), ˜̃A.B̃ is
not a triangular fuzzy number (the left and right MFs are
not straight lines). It can challenge the distances between
IT2FNs, while the curved MFs are applied to evaluations.
The proposed approach is able to calculate distances on the
different levels and rank GIT2FNs at interval [0, 1] concur-
rently. Generally, it considers the maximum and minimum
reference limits among allGIT2FNs as reference limits (ideal
solutions) and then calculates the limit distancemean (LDM)
by subtracting the right and left limits ofGIT2FNs from these
reference limits.

For this purpose, the left and right MFs of μ ˜̃G(x ,
u), for a GIT2FN, are partitioned into two MFs μl (x ,
u) (for x〈μ) andμr (x , u) for x〉μ, respectively (as shown in
Fig. 3).
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Moreover, assume that the minimum reference
limit μmin(x , u) and the maximum reference limit
μmax(x , u) are {min{μl i (x , u)} i ∈ all GIT2FNs } and
{max{μr i (x , u)}, i ∈ all GIT2FNs }, respectively, as
represented in Fig. 3.

Since the intersection of α-cut with a GIT2FN creates
the interval numbers, interval arithmetic operations can be
applied to them. As demonstrated in Fig. 3, suppose that
the α-cut of the minimum and maximum reference lim-
its μmin

α (x , u) and μmax
α (x , u) generates intervals [x̄min

1 ,

xmin
2 ]α and [xmax

1 , x̄max
2 ]α on X, respectively, where x̄min

1

and xmin
2 are related to the upper and lower MFs of μmin(x ,

u), respectively, and xmax
1 and x̄max

2 are equal to the lower
and upper MFs of μmax(x , u), respectively. In addition, let

α-cut of the left and right MFs of a GIT2FN such as ˜̃G2 cre-

ates the intervals [x̄ l1, x
l
2]α and [xr1, x̄

r
2]α , respectively, where

x̄ l1 and x
l
2 are related to the upper and lower MFs of μl (x , u)

and xr1 and x̄
r
2 are equal to the lower and upper MFs of μr (x ,

u). With these assumptions in mind, if the evaluation’s mea-

sure of desirable alternative has the shortest distance from
the positive ideal (PI) solution, the distance of μl (x , u) from
μmin(x , u) and the distance of μr (x , u) from μmax(x , u)
should have the shortest distance for C and benefit B crite-
ria, respectively. Hence, LDM can be calculated for the PI
solution with respect to C criteria as follows:

LDMP I ,C (
˜̃A) �

∑1
α�0.1 (μlα(x , u) − μmin

α (x , u))α∑1
α�0.1 (μlα(x , u) − μmin

α (x , u)) − ∑1
α�0.1 (μrα(x , u) − μmax

α (x , u))
, (39)

where α � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
and 0.9. Note that

∑1
α�0.1 (μlα(x , u) − μmin

α (x , u)) and∑1
α�0.1 (μrα(x , u) − μmax

α (x , u) ) are the positive and neg-
ative values. Thus, the negative sign was considered in the
denominator. To simplify the calculations, Eq. (39) can be
converted into the following equation using notation in Def-
inition 3.2.9:

LDMP I ,C ( ˜̃A) �
∑1

α�0.1 [x̄
l
1, x

l
2]α − [x̄min

1 , xmin
2 ]α∑1

α�0.1 [x̄
l
1, x

l
2]α − [x̄min

1 , xmin
2 ]α − ∑1

α�0.1 [x
r
1, x̄

r
2]α − [xmax

1 , x̄max
2 ]α

. (40)

Obviously, measures [x̄ l1, x
l
2]α −[xmax

1 , x̄max
2 ]α and [xr1,

x̄r2]α − [xmax
1 , x̄max

2 ]α equal to the negative measures when
(x̄ l1 < x̄max

2 ; xl2 < xmax
1 ) or (xr1 < x̄max

2 ; x̄r2 < xmax
1 ).

Instead, LDPI ,C can be calculated using Eq. (27) as follows:

LDMPI,C (
˜̃A) �

∑1
α�0.1

1
2

∣∣∣(x̄ l1 − xmin
2 )α + (xl2 − x̄min

1 )α
∣∣∣

∑1
α�0.1

1
2

∣∣∣(x̄ l1 − xmin
2 )α + (xl2 − x̄min

1 )α
∣∣∣ +∑1

α�0.1
1
2

∣∣(xr1 − x̄max
2 )α + (x̄r2 − xmax

1 )α
∣∣

×
∑1

α�0.1

∣∣∣(x̄ l1 − xmin
2 )α + (xl2 − x̄min

1 )α
∣∣∣

∑1
α�0.1

∣∣∣(x̄ l1 − xmin
2 )α + (xl2 − x̄min

1 )α
∣∣∣ +∑1

α�0.1

∣∣(xr1 − x̄max
2 )α + (x̄r2 − xmax

1 )α
∣∣ . (41)

Similarly, the PI solution for the set of B criteria and the
negative ideal (NI) solution for the set of C and B criteria are
given, respectively, as follows:

LDMPI,B(
˜̃A) �

∑1
α�0.1

∣∣(xr1 − x̄max
2 )α + (x̄r2 − xmax

1 )α
∣∣

∑1
α�0.1

∣∣(xr1 − x̄max2)α + (x̄r2 − xmax
1 )α

∣∣ +∑1
α�0.1

∣∣∣(x̄ l1 − xmin
2 )α + (xl2 − x̄min

1 )α
∣∣∣
, (42)

LDMNI,C (
˜̃A) �

∑1
α�0.1

∣∣(x̄ l1 − x̄max
2 )α + (xl2 − xmax

1 )α
∣∣

∑1
α�0.1

∣∣(x̄ l1 − x̄max
2 )α + (xl2 − xmax

1 )α
∣∣ +∑1

α�0.1

∣∣∣(xr1 − xmin
2 )α + (x̄r2 − x̄min

1 )α
∣∣∣
, (43)
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LDMNI,B(
˜̃A) �

∑1
α�0.1

∣∣∣(xr1 − xmin
2 )α + (x̄r2 − x̄min

1 )α
∣∣∣

∑1
α�0.1

∣∣∣(xr1 − xmin
2 )α + (x̄r2 − x̄min

1 )α
∣∣∣ +∑1

α�0.1

∣∣(x̄ l1 − x̄max
2 )α + (xl2 − xmax

1 )α
∣∣ . (44)

Obviously, the desirable alternative has the shortest dis-
tance from the PI solution and the longest distance from the
NI solution based on Eqs. (41)–(42) and (43)–(44), respec-
tively. In other words, in case of the NI solution, the distance
of μl (x , u) from μmax(x , u) and the distance of μr (x ,
u) from μmin(x , u) should have the longest distance with
respect to C and B criteria for a desirable alternative, respec-
tively. On the other hand, in the situation of PI solution, the
distance of μl (x , u) from μmin(x , u) and the distance of
μr (x , u) from μmax(x , u) should have the shortest distance
with respect to C and B criteria, respectively.

Moreover, measures (xr1 − x̄max
2 ) + (x̄r2 − xmax

1 ) and

(x̄ l1 − xmin
2 ) + (xl2 − x̄min

1 ) are equal to zero when [xr1,

x̄r2] and [x̄ l1, xl2] matches μmax(x , u) and μmin(x , u),

respectively. Hence, the measures
∑1

α�0.1

∣∣∣(x̄max
2 −xmax

1 )α
∣∣∣

α

and
∑1

α�0.1

∣∣∣(xmin
2 −x̄min

1 )α
∣∣∣

α
are used to calculate LDMs when

the distances of reference limitsμmax(x , u) andμmin(x , u)
are obtained from themselves, respectively.

Some properties of the above LDMs:

Property 2 Neither of the denominators in Eqs. (41)–(44) is
zero.

Property 3 All distances obtained by LDMs in
Eqs. (41)–(44) include at interval [0, 1].

Property 4 Four LDMs in Eqs. (41)–(44) can be utilized for
the MCDM techniques where it is necessary to calculate the
PI and NI ideal solutions.

Property 5 Let ˜̃G1 and ˜̃G2 be two non-negative sym-
metric normal GIT2FNs in a set of non-negative sym-

metric normal GIT2FNs, where ˜̃G1 � [G̃L
1 , G̃U

1 ] �[(
μL
1 ; σ L

1 ; H
L
G̃1

)
,
(

μU
1 ; σU

1 ; HU
G̃1

)]
and ˜̃G2 � [ ˜̃GL

2 ,

˜̃GU

2 ] �
[(

μL
2 ; σ L

2 ; H
L
G̃2

)
,
(

μU
2 ; σU

2 ; HU
G̃2

)]
. In addition,

suppose that distance between ˜̃G1 and
˜̃G2 is showed as d(

˜̃G1,˜̃G2) � LDM( ˜̃G1) − LDM( ˜̃G2). Then,
∣∣∣d( ˜̃G1,

˜̃G2)
∣∣∣ �∣∣∣LDM( ˜̃G1) − LDM( ˜̃G2)

∣∣∣ ≥ 0 for all LDMs.

Property 6 Let ˜̃G1 and ˜̃G2 be two non-negative sym-

metric normal GIT2FNs where ˜̃G1 � [G̃L
1 , G̃U

1 ] �[(
μL
1 ; σ L

1 ; H
L
G̃1

)
,

(
μU
1 ; σU

1 ; HU
G̃1

)]
and ˜̃G2 � [ ˜̃GL

2 ,

˜̃GU

2 ] �
[(

μL
2 ; σ L

2 ; H
L
G̃2

)
,
(

μU
2 ; σU

2 ; HU
G̃2

)]
. Moreover,

suppose that distance between ˜̃G1 and
˜̃G2 is showed as d(

˜̃G1,˜̃G2). Then,
∣∣∣d( ˜̃G1,

˜̃G2)
∣∣∣ �

∣∣∣d( ˜̃G2,
˜̃G1)

∣∣∣.

Property 7 Let ˜̃G1,
˜̃G2, and ˜̃G3 be three non-negative

symmetric normal GIT2FNs in a set of non-negative sym-

metric normal GIT2FNs where ˜̃G1 � [G̃L
1 , G̃U

1 ] �[(
μL
1 ; σ L

1 ; H
L
G̃1

)
,
(

μU
1 ; σU

1 ; HU
G̃1

)]
, ˜̃G2 � [ ˜̃GL

2 ,
˜̃GU

2 ] �
[(

μL
2 ; σ L

2 ; H
L
G̃2

)
,
(

μU
2 ; σU

2 ; HU
G̃2

)]
, and ˜̃G3 � [ ˜̃GL

3 ,

˜̃GU

3 ] �
[(

μL
3 ; σ L

3 ; H
L
G̃3

)
,
(

μU
3 ; σU

3 ; HU
G̃3

)]
. Then,

d( ˜̃G3,
˜̃G2) + d( ˜̃G2,

˜̃G1) ≥ d( ˜̃G3,
˜̃G1).

The interested reader can easily implement this proof in
other LDMs in this section.

Property 8 LDMNI, B(
˜̃G ) � LDMW ( ˜̃G ) introduced in

Eq. (44) can be utilized to weight criteria and rank GIT2FNs.

• If LDMNI, B(
˜̃G2) > LDMNI, B(

˜̃G1), then
˜̃G2 is better than

˜̃G1.

• If LDMNI, B(
˜̃G2) < LDMNI, B(

˜̃G1), then
˜̃G1 is better than

˜̃G2.

• If LDMNI, B(
˜̃G2) � LDMNI, B(

˜̃G1), then
˜̃G1 and ˜̃G2 are

the same (indifferent).

IN order to demonstrate the effectiveness of
Eqs. (41)–(44), the following two examples are taken
into account:

Example 1 Consider the following two GIT2FNs as type-2
fuzzy weights for criteria C1 and C2, respectively:

˜̃G1 �
[
G̃L

1 , G̃
U
1

]
� [(6, 1.5, ; 1), (6, 2; 1)]

and ˜̃G2 �
[
G̃L

2 , G̃
U
2

]
� [(8, 1.5, ; 1), (8, 2; 1)].

As shown in the Fig. 5,C2 is larger thanC1. Table 1 repre-
sents levels of α-cuts for the above two GIT2FNs. According
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Fig. 5 GIT2FNs of Example 1

to Table 2, measures LDMW for criteria C1 and C2 are 0.405
and 0.594, respectively. It proves the graphical representa-
tion.

Example 2 Let two GIT2FNs are as depicted in Fig. 6. Obvi-
ously, the lower limits of two GIT2FNs are equal. Note that
C2 is larger than C1 due to its larger upper limit.

Fig. 6 GIT2FNs of Example 2

Table 3 represents levels of α-cuts for these twoGIT2FNs.
As shown in last row of Table 4, measures LDMW [Eq. (44)]
for criteria C1 and C2 are 0.411 and 0.500, respectively.

Property 9 Properties 2–8 also hold true for non-negative
symmetric normal TraIT2FNs and TriIT2FNs.

Table 1 Levels of α-cuts of two
GIT2FNs α-Cuts C1 C2

x̄ l11α xl21α xr11α x̄r21α x̄ l12α xl22α xr12α x̄r22α
μmin(x, u) μmax(x, u)

0.1 1.711 2.791 9.225 10.3 3.712 4.782 11.22 12.29

0.2 2.411 3.312 8.694 9.595 4.412 5.313 10.7 11.59

0.3 2.901 3.672 8.324 9.105 4.892 5.673 10.33 11.1

0.4 3.292 3.972 8.034 8.704 5.293 5.973 10.03 10.71

0.5 3.642 4.232 7.764 8.354 5.643 6.233 9.756 10.36

0.6 3.982 4.492 7.514 8.014 5.983 6.483 9.515 10.02

0.7 4.312 4.732 7.264 7.684 6.313 6.733 9.256 9.685

0.8 4.662 5.003 7.004 7.334 6.663 7.004 8.994 9.335

0.9 5.083 5.313 6.683 6.903 7.094 7.314 8.684 8.914

Table 2 Measures LDMW

α-Cuts C1 C2

∣∣∣(xr11 − xmin
2 )α + (x̄r21 − x̄min

1 )α
∣∣∣

∣∣∣(x̄ l11 − x̄max
2 )α +(xl21 − xmax

1 )α
∣∣∣

∣∣∣(xr12 − xmin
2 )α + (x̄r22 − x̄min

1 )α
∣∣∣

∣∣∣(x̄ l12 − x̄max
2 )α +(xl22 − xmax

1 )α
∣∣∣

0.1 15.023 19.008 19.008 15.016

0.2 12.566 16.567 16.567 12.565

0.3 10.856 14.857 14.857 10.865

0.4 9.474 13.476 13.476 9.474

0.5 8.244 12.242 12.242 8.24

0.6 7.054 11.061 11.061 7.069

0.7 5.904 9.897 9.897 5.895

0.8 4.673 8.664 8.664 4.662

0.9 3.19 7.202 7.202 3.19

LDMPI,C 0.016 0.983

LDMPI, B 0.983 0.016

LDMNI,C 0.594 0.405

LDMW 0.405 0.594
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Table 3 Levels of α-cuts of two
GIT2FNs α-Cuts C1 C2

x̄ l11α xl21α xr11α x̄r21α x̄ l12α xl22α xr12α x̄r22α
μmin(x, u) μmax(x, u)

0.1 1.7110 2.7910 9.2250 10.3000 1.7110 2.7910 12.4300 13.5000

0.2 2.4110 3.3120 8.6940 9.5950 2.4110 3.3120 11.3800 12.2800

0.3 2.9010 3.6720 8.3240 9.1050 2.9010 3.6720 10.6600 11.4300

0.4 3.2920 3.9720 8.0340 8.7040 3.2920 3.9720 10.0600 10.7400

0.5 3.6420 4.2320 7.7640 8.3540 3.6420 4.2320 9.5350 10.1200

0.6 3.9820 4.4920 7.5140 8.0140 3.9820 4.4920 9.0350 9.5350

0.7 4.3120 4.7320 7.2640 7.6840 4.3120 4.7320 8.5240 8.9540

0.8 4.6620 5.0030 7.0040 7.3340 4.6620 5.0030 8.0040 8.3340

0.9 5.0830 5.3130 6.6830 6.9030 5.0830 5.3130 7.3840 7.6040

Table 4 Measures LDMW

α-Cuts C1 C2

∣∣∣(xr11 − xmin
2 )α + (x̄r21 − x̄min

1 )α
∣∣∣ ∣∣(x̄ l11 − x̄max

2 )α + (xl21 − xmax
1 )α

∣∣ ∣∣∣(xr12 − xmin
2 )α + (x̄r22 − x̄min

1 )α
∣∣∣ ∣∣(x̄ l12 − x̄max

2 )α + (xl22 − xmax
1 )α

∣∣

0.1 15.023 21.428 21.428 21.428

0.2 12.566 17.937 17.937 17.937

0.3 10.856 15.517 15.517 15.517

0.4 9.474 13.536 13.536 13.536

0.5 8.244 11.781 11.781 11.781

0.6 7.054 10.096 10.096 10.096

0.7 5.904 8.434 8.434 8.434

0.8 4.673 6.673 6.673 6.673

0.9 3.19 4.592 4.592 4.592

LDMPI,C 0.018 0.501

LDMPI, B 0.981 0.498

LDMNI,C 0.588 0.500

LDMW 0.411 0.500

Application of the new rankingmethod
to FWA-ELECTRE III with GIT2FNs

Figure 7 shows the framework of the proposed methodol-
ogy. The first stage is to define criteria, sub-criteria, and
alternatives (different MHE) based on experts’ standpoints
or suggestions. In the second stage, the group multi-criteria
decision-making (GMCDM) matrix based on GIT2FSs is
constructed with GIT2FSs for the MHESP. The weights of
criteria and sub-criteria are determined based on GIT2FSs
selected by experts in the next stage. The FWA technique
based on alpha cuts is then implemented to obtain the aggre-
gated weighted ratings from the Gaussian interval type-2
fuzzy assessments of each alternative with respect to sub-
criteria and the Gaussian interval type-2 fuzzy weights of
sub-criteria, and finally, the most suitable MHE is chosen
using the ELECTRE III approach.

The following steps are the summary of the integrated
algorithm FWA- ELECTRE III based on GIT2FNs for rank-
ing MHE:

Step 1 Assume that I alternatives Ai (i � 1, . . . , I )
are to be evaluated by L experts with respect to J criteria
C j ( j � 1, . . . , J ). Moreover, let each criterionC j includes
k sub-criteria c jk (k � 1, 2, . . . , k j ).

Step 2 Determine two types of linguistic variables for
the MHESP. The first type is adopted to evaluate alternatives
with respect to sub-criteria (see Table 5) and the second one
is applied to weight criteria and sub-criteria (see Table 6).

Step 3Apply the data in Table 6 toweight criteria and sub-
criteria. There are the following two vectors of weights with
respect to criteria (W ) and their corresponding sub-criteria
(Wj ), respectively:

W � (w1,w2, . . . ,wJ ), (45)
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Determination of 
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Selection of optimal 
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Fig. 7 Framework of the proposed methodology

Wj � (w j1,w j2, . . . ,w jk j ), j � 1, . . . , J . (46)

Step 4 Construct the Gaussian interval type 2 fuzzy
MCDM (GIT2FMCDM) matrix (as represented in Table 7)
for the MHESP as follows:

where each criterion C j ( j � 1, . . . , J ) includes

k (k � 1, 2, . . . , k j ) sub-criteria (c j1, . . . , c jk j ) and
˜̃Xl

i jk
is a GIT2FN selected by lth expert assessing alternative i

(i � 1, . . . , I ) with respect to kth (k � 1, 2, . . . , k j )
sub-criterion (c jk) regarding criterion C j ( j � 1, . . . ,

J ). ˜̃Xl

i jk is a GIT2FN as
[(

μL ; σ L ; HL
˜̃G

)
,
(
μU ; σU ; HU

˜̃G

)]

(as explained in Definition 3.2.6).

Step 5 Integrate the type-2 fuzzy ratings ˜̃Xl

i jk (for all l �
1, . . . , L) for each sub-criterion (c jk) (for each i � 1, . . . ,
I , j � 1, . . . , J and k � 1, 2, . . . , k j ) with the synthetic

type-2 fuzzy rating ˜̃Xi jkusing the following equation:

˜̃Xi jk � (1
/
L) ⊗ ( ˜̃X1

i jk ⊕ ˜̃X2

i jk ⊕ . . . ⊕ ˜̃XL

i jk),

i � 1, . . . , I ; j � 1, . . . , J ; k � 1, . . . , k j .
(47)

Indeed, it is the average of the type-2 fuzzy ratings ˜̃Xl

i jk
(l � 1, . . . , L) selected by L experts. Similarly, integrate

the type-2 fuzzyweights ˜̃wl
j and ˜̃wl

jk (for all l � 1, . . . , L)
for each criterion and sub-criterion (c jk) (for each j � 1,
. . . , J and k � 1, 2, . . . , k j ) with the synthetic type-2 fuzzy
weight ˜̃w j and ˜̃w jk , respectively, as follows:

˜̃w j � (1
/
L) ⊗ ( ˜̃w1

j ⊕ ˜̃w2
j ⊕ . . . ⊕ ˜̃wL

j ), j � 1, . . . ,J ,

(48)

˜̃w jk � (1
/
L) ⊗ ( ˜̃w1

jk ⊕ ˜̃w2
jk ⊕ . . . ⊕ ˜̃wL

jk),

j � 1, . . . , J ; k � 1, . . . , k j . (49)

Table 5 Linguistic variables for
ratings Definitions of linguistic variables for the ratings

[(
μL , σ L ; HL

˜̃G

)
,
(

μU , σU ; HU
˜̃G

)]

Absolutely low (AL) [(3, 0.5; 1), (3, 1; 1)]

Very low (VL) [(5, 0.5; 1), (5, 1; 1)]

Low (l) [(7, 0.5; 1), (7, 1; 1)]

Medium (M) [(9, 0.5; 1), (9, 1; 1)]

High (H) [(11, 0.5; 1), (11, 1; 1)]

Very high (VH) [(13, 0.5; 1), (13, 1; 1)]

Absolutely high (AH) [(15, 0.5; 1), (15, 1; 1)]

Table 6 Linguistic variables for
weights Definitions of linguistic variables for weighting criteria and

sub-criteria

[(
μL , σ L ; HL

˜̃G

)
,
(

μU , σU ; HU
˜̃G

)]

Absolutely unimportant (AU) [(3, 0.5; 1), (3, 1; 1)]

Very unimportant (VU) [(5, 0.5; 1), (5, 1; 1)]

Unimportant (U) [(7, 0.5; 1), (7, 1; 1)]

Medium (M) [(9, 0.5; 1), (9, 1; 1)]

Important (I) [(11, 0.5; 1), (11, 1; 1)]

Very important (VI) [(13, 0.5; 1), (13, 1; 1)]

Absolutely important (AI) [(15, 0.5; 1), (15, 1; 1)]
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Table 7 GIT2FMCDM matrix for the MHESP

Using the notation described inDefinition 3.2.9, GIT2FNs
˜̃Xi jkα at level α (for each i � 1, . . . , I , j � 1, . . . , J
and k � 1, 2, . . . , k j ) can be represented as follows:

x̂i jkα � (x̄ l1i jkα
, xl2i jkα

,μi jkα , x
r
1i jkα

, x̄r2i jkα
),

i � 1, . . . , I ; j � 1, . . . ,J ; k � 1, . . . , k j , (50)

where μi jkα is the mean of GIT2FN when alternative i (i �
1, . . . , I ) is evaluated with respect to kth (k � 1, 2, . . . ,
k j ) sub-criterion (c jk) regarding criterion C j ( j � 1, . . . ,
J ) at level α.

Similarly, GIT2FN ˜̃Xl

i jkα
selected by lth expert at level α

can be showed as follows:

x̂ li jkα
� (x̄ l l1i jkα

, xl l2i jkα
,μi jkα , x

r l
1i jkα

, x̄r l2i jkα
), i � 1, . . . , I ;

j � 1, . . . ,J ; k � 1, . . . , k j ; l � 1, . . . , L. (51)

The average (synthesis) of five reference points is obtained
for GIT2FNs chosen by L experts as ¯̂xi jkα � ( ¯̄xl1i jkα

, x̄ l2i jkα
,

μ̄i jkα , x̄r1i jkα
, ¯̄xr2i jkα

) at level α (α � α1, . . . , αN ; i � 1,
. . . , I ; j � 1, . . . ,J ; and k � 1, 2, . . . , k j ) using extension
of Eqs. (33)–(37) as follows:

¯̄xl1i jkα
�

(
L∑

l�1

x̄ l l1i jkα

)/
L , i � 1, . . . , I ; j � 1, . . . , J ;

k � 1, . . . , k j ;α � α1, . . . ,αN , (52)

x̄ l2i jkα
�

(
L∑

l�1

xl l2i jkα

)/
L , i � 1, . . . , I ;

j � 1, . . . , J ; k � 1, . . . , k j ;α � α1, . . . ,αN , (53)

μ̄i jkα �
(

L∑
l�1

μ l
i j pα

)/
L , i � 1, . . . , I ;

j � 1, . . . , J ; k � 1, . . . , k j ;α � α1, . . . ,αN , (54)

x̄r1i jkα
�

(
L∑

l�1

xr l1i jkα

)/
L , i � 1, . . . , I ;

j � 1, . . . , J ; k � 1, . . . , k j ;α � α1, . . . ,αN , (55)

¯̄xr2i jkα
�

(
L∑

l�1

x̄r l2i jkα

)/
L , i � 1, . . . , I ;

j � 1, . . . , J ; k � 1, . . . , k j ;α � α1, . . . ,αN . (56)

Similarly, the average of five reference points for weights
of criteria and sub-criteria ¯̂w jα � ( ¯̄wl

1 jα
, w̄l

2 jα
, μ̄ jα , w̄r

1 jα
,

¯̄wr
2 jα

) and ¯̂w jkα � ( ¯̄wl
1 jkα

, w̄l
2 jkα

, μ̄ jkα , w̄r
1 jkα

, ¯̄wr
2 jkα

) are
determined at level α, respectively, as follows:

¯̄wl
1 jα �

(
L∑

l�1

w̄ll
1 jα

)/
L , j � 1, . . . , J ;
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α � α1, . . . ,αN , (57)

w̄l
2 jα �

(
L∑

l�1

wll
2 jα

)/
L , j � 1, . . . ,J ;

α � α1, . . . ,αN , (58)

μ̄ jα �
(

L∑
l�1

μl
jα

)/
L , j � 1, . . . ,J ;

α � α1, . . . ,αN , (59)

w̄r
1 jα �

(
L∑

l�1

wrl
1 jα

)/
L , j � 1, . . . ,J ;

α � α1, . . . ,αN , (60)

¯̄wr
2 jα �

(
L∑

l�1

w̄rl
2 jα

)/
L , j � 1, . . . ,J ;

α � α1, . . . ,αN , (61)

and

¯̄wl
1 jkα

�
(

L∑
l�1

w̄ll
1 jkα

)/
L , j � 1, . . . ,J ;

k � 1, . . . , k j ;α � α1, . . . ,αN , (62)

w̄l
2 jkα

�
(

L∑
l�1

wll
2 jkα

)/
L , j � 1, . . . ,J ; k � 1, . . . , k j ;

α � α1, . . . ,αN , (63)

μ̄ jkα �
(

L∑
l�1

μ l
jkα

)/
L , j � 1, . . . ,J ; k � 1, 2, . . . , k j ;

α � α1, . . . ,αN , (64)

w̄r
1 jkα

�
(

L∑
l�1

wrl
1 jkα

)/
L , j � 1, . . . , J ; k � 1, 2, . . . , k j ;

α � α1, . . . ,αN , (65)

¯̄wr
2 jkα

�
(

L∑
l�1

w̄rl
2 jkα

)/
L , j � 1, . . . ,J ; k � 1, 2, . . . , k j ;

α � α1, . . . ,αN . (66)

Step 6 If number of sub-criteria under one criterion are
greater than or equal 2 (k ≥ 2), integrate the synthetic type-2
fuzzy ratings of each alternative with respect to all sub-
criteria under one criterion (calculated byEqs. (52)–(56)) and

the synthetic type-2 fuzzy weights of sub-criteria (obtained
by Eqs. (62)–(66)) with the aggregated weighted ratings âi jα
at levelα using the generalization of the FWAapproach intro-
duced in Eq. (38):

âi jα �
k j∑
k�1

(ŵ jkα × x̂i jkα)/

k j∑
k�1

ŵ jkα , i � 1, . . . , I ;

j � 1, . . . , J ;α � α1, . . . ,αN , (67)

where âi jα �
{[

āl1i jα , a
l
2i jα

]
,
[
ar1i jα , ā

r
2i jα

]}
.

Thus, the GIT2FMCDM matrix for the MHESP (as
presented inTable 7) is transformedwith the following aggre-
gated weighted MCDM matrix:

C1 · · ·CJ

ÂI×Jα �
A1
...
AI

⎡
⎢⎣
â11α · · · â1Jα

... · · · ...
âI1α · · · âI Jα

⎤
⎥⎦,

i � 1, ..., I ; j � 1, ..., J ;α � α1, ...,αN , (68)

where ¯̂w jα � ( ¯̄wl
1 jα

, w̄l
2 jα

, μ̄ jα , w̄r
1 jα

, ¯̄wr
2 jα

) is the average
of weights vector for α � α1, . . . , αN and j � 1, . . . ,J .

Step 7 Calculate three thresholds q j , p j , and v j .
First, the largest and the smallest of evaluations for the

quantitative criteria are obtained as follows:

A+
j �

{
max
i

(xi j )

}
, j � 1, . . . , n′, (69)

A−
j �

{
max
i

(xi j )

}
, j � 1, . . . , n′. (70)

Second,measures of thresholds for the quantitative criteria
are calculated as follows:

q j � (A+
j − A−

j ) ∗ β1 j , j � 1, . . . , n′, (71)

p j � (A+
j − A−

j ) ∗ β2 j , j � 1, . . . , n′, (72)

v j � (A+
j − A−

j ) ∗ β3 j , j � 1, . . . , n′, (73)

where β1, β2, and β3 are scalars that their measures are
determined by decision-makers.

On the other hand, ˜̃q j , ˜̃p j , and ˜̃v j are determined using
GIT2FNs and then their LDMs are calculated using Eq. (41).

Step 8 Calculate the concordance index of alternative Ar

relative to alternative Ak (C (Ar ,Ak)) by the following for-
mula:
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Ĉ(Ar , Ak) �
∑n′

j�1 LDMW ( ˜̃w j ) ∗ c j (Ar , Ak) +
∑n

j�n′+1 LDMW ( ˜̃w j ) ∗ ĉ j (Ar , Ak)∑n
j�1 LDMW ( ˜̃w j )

, r , k � 1, . . . ,m; r �� k, (74)

where LDMW ( ˜̃w j ), c j (Ar , Ak), and ĉ j (Ar , Ak)are weight
of criterion j( j � n′ + 1, . . . , n) by using Eq. (44), the
superior level of alternative Ar relative to alternative Ak for
quantitative criteria [Eqs. (3) and (4)], and the superior level
of alternative Ar relative to alternative Ak for qualitative cri-
teria, respectively. For B and C qualitative criteria, ĉ j (Ar ,
Ak)is calculated, respectively, by the following relation:

ĉ j (Ar , Ak ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 LDM′
PI,B (

˜̃Xkj ) − LDM′
PI,B (

˜̃Xr j ) ≥ LDM′
PI,B ( ˜̃p j ),

LDM′
PI,B (

˜̃
Xr j )−LDM′

PI,B (
˜̃
Xkj )+LDM′

PI,B (
˜̃p j )

LDM′
PI,B (

˜̃p j )−LDM′
PI,B (

˜̃q j )
LDM′

PI,B ( ˜̃q j ) < LDM′
PI,B (

˜̃Xkj ) − LDM′
PI,B (

˜̃Xr j )

≤ LDM′
PI,B ( ˜̃p j ),

1 LDM′
PI,B (

˜̃Xkj ) − LDM′
PI,B (

˜̃Xr j ) ≤ LDM′
PI,B ( ˜̃q j ),

(75)

and

ĉ j (Ar , Ak) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 LDMPI,C (
˜̃Xr j ) − LDMPI,C (

˜̃Xkj ) ≥ LDMPI,C ( ˜̃p j ),

LDMPI,C (
˜̃
Xkj )−LDMPI,C (

˜̃
Xr j )+LDMPI,C (

˜̃p j )

LDMPI,C (
˜̃p j )−LDMPI,C (

˜̃q j )
otherwise,

1 LDMPI,C (
˜̃Xr j ) − LDMPI,C (

˜̃Xkj ) ≤ LDMPI,C ( ˜̃q j ),

(76)

where LDM ′
P I , B � 1 − LDMPI , B and LDM ′

P I ,C � 1 −
LDMPI ,C .

Step 9 Calculate the discordance index of alternative Ar

versus alternative Ak (d̂ j (Ar , Ak)) for quantitative crite-
ria ( j � 1, . . . , n′) using Eqs. (5) and (6) and for B and
Cqualitative criteria ( j � n′ + 1, . . . , n) as:

d̂ j (Ar , Ak ) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 LDM′
PI,B (

˜̃Xkj ) − LDM′
PI,B (

˜̃Xr j ) ≤ LDM′
PI,B ( ˜̃p j ),

LDM′
PI,B (

˜̃
Xkj )−LDM′

PI,B (
˜̃
Xr j )−LDM′

PI,B (
˜̃p j )

LDM′
PI,B (

˜̃
v j )−LDM′

PI,B (
˜̃p j )

, LDM′
PI,B ( ˜̃p j )< LDM′

PI,B (
˜̃Xkj ) − LDM′

PI,B (
˜̃Xr j ) ≤ LDM′

PI,B ( ˜̃v j ),

1 LDM′
PI,B (

˜̃Xkj ) − LDM′
PI,B (

˜̃Xr j ) ≥ LDM′
PI,B ( ˜̃v j ),

(77)

and

d̂ j (Ar , Ak ) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 LDMPI,C (
˜̃Xr j ) − LDMPI,C (

˜̃Xkj ) ≤ LDMPI,C ( ˜̃p j ),

LDMPI,C (
˜̃
Xr j )−LDMPI,C (

˜̃
Xkj )−LDMPI,C (

˜̃p j )

LDMPI,C (
˜̃
v j )−LDMPI,C (

˜̃p j )
otherwise,

1 LDMPI,C (
˜̃Xr j ) − LDMPI,C (

˜̃Xkj ) ≥ LDMPI,C ( ˜̃v j ).

(78)

123



Complex & Intelligent Systems (2020) 6:355–389 373

Determination of the best 

conveyor

Operational StrategicMonetary

Spare parts cost

 ....

Criteria Technical

Maintainability

Safety

Risk

Repeatability

Convenience

Setting up and 

operational cost

Maintenance cost

Human costs

Move speed

Loud/unload 

speed

Capacity

Accuracy

Flexibility

Relationship with 

manufacture

Attainability of 

spare parts

Attainability of 

experts for 

education, 

maintenance, etc.

Guarantee and 

after service

 ....

Sub-criteria

Conveyor Conveyor 1 Conveyor i Conveyor 5
 ....

Volume and 

diversity of fuel

Purchasing cost

Goal

Fig. 8 Hierarchical structure of the GIT2FMCDM for the MHESP

Step 10 Determine credit degree index of alternative Ar

versus alternative Ak(Ŝ(Ar , Ak)) for quantitative criteria
( j � 1, . . . , n′) using Eq. (7) and for qualitative criteria
( j � n′ + 1, . . . , n) by the following formula:

Ŝ(Ar , Ak) �

⎧⎪⎨
⎪⎩

Ĉ(Ar , Ak), i f d̂ j (Ar , Ak) ≤ Ĉ(Ar , Ak) ∀ j ,

Ĉ(Ar , Ak).
∏

j∈J :d̂ j (Ar ,Ak )> Ĉ(Ar ,Ak )

1−d̂ j (Ar ,Ak )

1−Ĉ(Ar ,Ak )
otherwise, (79)

where Ŝ(Ar , Ak) and J are the degree of outranking alter-
native Ar relative to alternative Ak and the set of criteria for
which d̂ j (Ar , Ak)> Ĉ(Ar , Ak), respectively.

Step 11 Calculate the final scores and rank alternatives:
In addition to cases discussed in Sect. 3.1, in this paper, the

net credibility value method [108] is used to determine the
final scores. To acquire the net credibility value, the concor-
dance credibility value and the discordance credibility value
should be first calculated as follows:

I. The following concordance credibility value is deter-
mined for alternative r:

θcr �
m∑

k�1,k ��r

Ŝ(Ar , Ak), r � 1, . . . ,m. (80)

II. The discordance credibility value is determined for
alternative r using the following relation:

θdr �
m∑

k�1,k ��r

Ŝ(Ak , Ar ), r � 1, . . . ,m. (81)

III. The following net credibility value is obtained for alter-
native r:

θr � θcr − θdr , r � 1, . . . ,m, (82)

where θr represents the total score of alternative r (the
higher the score, the greater the preference level).
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Table 8 Determining the weights of criteria

Criteria Experts

1 2 3

Technical (C1) I M U

Monetary (C2) VI I M

Operational (C3) AI I VI

Strategic (C4) AU VU U

Table 9 Determining the weights of sub-criteria with respect to techni-
cal (C1)

Sub-criteria Experts

1 2 3

Convenience (c11) AI VI VI

Maintainability (c12) VI I M

Safety (c13) U VU U

Risk (c14) AU AU U

Repeatability (c15) VU I I

Application

Case study

To show the ability of the proposed approach to solve the
MHESP, a real case study is considered in this section where
five conveyers Ai (i � 1, 2, 3, 4, 5) [pneumatic conveyor
(alternative 1), chute conveyor (alternative 2), roller conveyor
(alternative 3), flat-belt conveyor (alternative 4), and wheel
conveyor (alternative 5)] are evaluated with respect to four
criteria C j ( j � 1, 2, 3, 4) (characterizations of technical,
monetary, operational, and strategic).

Design experts are three experts who select the most suit-
able conveyor among the different alternatives. Obviously,
each kind of MHE has different characterizations. Figure 8
shows the hierarchy structure of optimal MHE selection pro-
cess with respect to four criteria. Each criterion includes five
sub-criteria in the next level. In addition, five types of con-
veyors are in the lowest level.

First, linguistic variables with their GIT2FNs are applied
to weight criteria and sub-criteria in the table. Three experts
are then asked to select one of them for determining their
importance degree. Table 8 and also Tables 9, 10, 11 and
12 show these variables for criteria and sub-criteria, respec-
tively.

Assessments of alternatives with respect to sub-criteria
have been also presented in Tables 13 and 14 using the
data in Table 5. The linguistic variables located in rows and
columns are the preference level of experts when appraising
the alternatives with respect to sub-criteria. Then, the syn-
thetic type-2 fuzzy weights of criteria, sub-criteria, and the

Table 10 Determining the weights of sub-criteria with respect to mon-
etary (C2)

Sub-criteria Experts

1 2 3

Purchasing cost (c21) AI AI VI

Spare part cost (c22) M I M

Setting up and operational cost (c23) VI AI I

Maintenance cost (c24) VI I U

Human costs (c25) VU AU AU

Table 11 Determining the weights of sub-criteria with respect to oper-
ational (C3)

Sub-criteria Experts

1 2 3

Volume and diversity of fuel (c31) VU M M

Move speed (c32) U VU VU

Loud/unload speed (c33) AI AI VI

Capacity (c34) VI I VI

Accuracy (c35) U AU AU

Table 12 Determining the weights of sub-criteria with respect to strate-
gic (C4)

Sub-criteria Experts

1 2 3

Flexibility (c41) VI I VI

Relationship with manufacture (c42) U I M

Attainability to spare parts (c43) VI AI VI

Attainability to experts for education, maintenance,
etc. (c44)

I I M

Guarantee and after service (c45) U AU U

synthetic type-2 fuzzy ratings of alternatives with respect to
sub-criteria obtained using Eqs. (57)–(61), Eqs. (62)–(66),
and Eqs. (52)–(56) for α � 0.1, 0.2, 0.4, 0.6, 0.8, 0.9.

Now, the weights of criteria (LDMW ) are calculated for
α � 0.1, 0.2, 0.4, 0.6, 0.8, 0.9 using Eq. (44). Table 15
represents the weights of criteria, which are 0.5000, 0.6717,
0.8433, and 0.1569, respectively.

Aggregatedweighted ratings âi jα are also calculated using
Eq. (67) for α � 0.1, 0.2, 0.4, 0.6, 0.8, 0.9 (see Tables 16
and 17).

Table 18 demonstrates thresholds as the linguistic vari-
ables with respect to criteria. The linguistic variables are
specified based on the preferences of experts using the data
in Table 5.

Based on the data in Tables 18, 19 represents the measures
of thresholds for quantitative criteria using Eqs. (71)–(73)
and for qualitative criteria using Eq. (41). Table 20 shows
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Table 13 Subjective evaluations of three experts for each alternative with respect to sub-criteria under C1 and C2

Alternatives Criteria

C1 C2

Sub-criteria Sub-criteria

A1 VL
AL
VL

L
AL
VL

AL
L
VL

VH
VH
AH

L
VL
VL

AL
L
AL

AH
VH
VH

M
H
VH

AH
VH
VH

AH
AH
VH

A2 AH
AH
VH

VH
VH
H

AH
VH
H

VH
VH
H

AH
VH
H

H
L
L

L
M
M

VL
M
M

L
M
M

L
L
VL

A3 AH
VH
AH

VH
VH
VH

AH
VH
VH

VH
H
M

VH
AH
VH

AL
L
AL

AH
VH
VH

M
H
VH

AH
VH
VH

AH
AH
VH

A4 VH
VH
H

M
VL
M

VL
VH
M

H
M
M

L
AL
VL

L
M
H

M
M
H

H
H
M

M
H
H

AH
H
L

A5 VH
AH
H

L
M
M

M
M
M

M
H
M

VL
L
AL

VL
AL
L

AH
VH
M

AL
L
M

VH
AH
L

VH
H
VH

Table 14 Subjective evaluations of three experts for each alternative with respect to sub-criteria under C3 and C4

Alternatives Criteria

C3 C4

Sub-criteria Sub-criteria

c35 c34 c33 c32 c31 c45 c44 c43 c42 c41

A1 AL
VL
VL

VL
M
M

AL
VL
AL

VL
L
AL

L
AL
L

H
VH
VH

AH
M
M

AH
AH
VH

VH
H
H

AL
VL
VL

A2 L
H
M

AH
H
M

H
VH
M

H
VH
L

M
AH
L

VL
H
M

M
VH
AH

M
AH
AH

VH
L
M

VL
L
M

A3 VH
H
M

H
AH
AH

VH
AH
AH

AH
M
AH

VH
AH
AH

VL
H
M

AH
L
M

AH
VH
VL

VL
VH
M

L
VL
AL

A4 M
VL
VL

VL
L
M

VH
M
M

VH
L
M

L
M
M

M
AH
AH

M
AH
M

AH
H
M

VL
VL
M

AL
L
M

A5 M
L
M

M
VH
AH

AL
VL
AL

H
M
M

AL
M
L

VL
L
M

M
AH
M

M
L
M

VL
L
M

AL
VL
AL

Table 15 Weights of criteria

Weight Weight Weight Weight

C1 0.5000 C2 0.6717 C3 0.8433 C4 0.1569

measures LDMs with respect to criteria based on Eqs. (41)
and (42).

Now, the concordance matrix (Table 21) is constructed
based on the comparison of the alternatives, according to
Eqs. (74)–(76).

After calculating the discordance matrices for each cri-
terion based on Eqs. (77) and (78) (for qualitative criteria),
the comparisons between the concordance and discordance
matrices are carried out, as shown in Table 22 based on
Eq. (79).
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Table 16 Aggregated weighted
ratings âi jα with respect to
criteria C1 and C2 for α � 0.1,
0.2, 0.4, 0.6, 0.8, 0.9

Alternatives αn Criteria

C1 C2

āl1r1α
al2r1α

ar1r1α
ār2r1α

āl1r2α
al2r2α

ar1r2α
ār2r2α

A1 0.1 3.2513 4.9527 10.6204 15.3271 6.9687 9.3703 16.6163 22.1178

0.2 3.7428 5.2847 10.0035 13.5994 7.6798 9.8253 15.8614 20.1429

0.3 4.1180 5.5298 9.5908 12.5164 8.2125 10.1587 15.3680 18.8817

0.4 4.4455 5.7385 9.2587 11.7023 8.6730 10.4392 14.9570 17.9171

0.5 4.7562 5.9240 8.9879 11.0162 9.0981 10.6901 14.6178 17.0916

0.6 5.0639 6.1070 8.7282 10.4019 9.5284 10.9297 14.2955 16.3531

0.7 5.3912 6.2934 8.4834 9.8226 9.9699 11.1710 13.9861 15.6434

0.8 5.7557 6.4990 8.2270 9.2389 10.4688 11.4418 13.6632 14.9265

0.9 6.2127 6.7470 7.9309 8.5872 11.0618 11.7728 13.2860 14.1121

0.1 8.1336 13.6438 12.3757 20.3467 3.5337 5.2769 10.7228 14.9616

0.2 8.8051 14.1749 11.9321 18.9384 4.04559 5.6090 10.1496 13.4301

0.3 9.3015 14.5636 11.6405 18.0111 4.4288 5.8542 9.7606 12.4514

0.4 9.7208 14.8923 11.3898 17.2955 4.7624 6.0604 9.4499 11.7237

A2 0.5 10.1054 15.1794 11.1881 16.6680 5.0787 6.2444 9.1943 11.0912

0.6 10.4859 15.4599 10.9850 16.1101 5.3934 6.4250 8.9506 10.5157

0.7 10.8771 15.7351 10.7957 15.5576 5.7145 6.6067 8.7188 9.9802

0.8 11.3137 16.0469 10.5940 14.9938 6.0761 6.8089 8.4740 9.4306

0.9 11.8235 16.4291 10.3559 14.3428 6.5279 7.0477 8.1920 8.8188

0.1 6.67810 9.4169 18.0259 24.9094 6.9687 9.3703 16.6163 22.1178

0.2 7.48341 9.9404 17.1073 22.4030 7.6798 9.8253 15.8615 20.1430

0.3 8.09065 10.3282 16.5032 20.8218 8.2125 10.1588 15.3680 18.8817

0.4 8.61594 10.6549 16.0049 19.6244 8.6730 10.4392 14.9570 17.9172

A3 0.5 9.10547 10.9428 15.6017 18.6068 9.0982 10.6902 14.6179 17.0917

0.6 9.59624 11.2255 15.2097 17.7067 9.5284 10.9298 14.2956 16.3531

0.7 10.1086 11.5078 14.8402 16.8402 9.9699 11.1710 13.9861 15.6434

0.8 10.6849 11.8235 14.4558 15.974 10.4689 11.4419 13.6633 14.9265

0.9 11.3810 12.2111 14.0059 14.9922 11.0619 11.7729 13.2860 14.1121

0.1 3.8248 5.7896 12.2002 17.4530 5.3649 7.4944 13.9904 18.9638

0.2 4.3980 6.1685 11.5053 15.5294 5.9961 7.8968 13.3094 17.1742

0.3 4.8310 6.4512 11.0405 14.3154 6.4670 8.1947 12.8559 16.0248

0.4 5.2079 6.6894 10.6685 13.4134 6.8741 8.4442 12.4904 15.1653

A4 0.5 5.5648 6.9009 10.3645 12.6425 7.2537 8.6678 12.1865 14.4197

0.6 5.9212 7.1090 10.0711 11.9513 7.6373 8.8822 11.8961 13.7485

0.7 6.2910 7.3187 9.7965 11.3026 8.0260 9.0981 11.6201 13.1120

0.8 6.7086 7.5521 9.5062 10.6443 8.4663 9.3403 11.3264 12.4603

0.9 7.2270 7.8343 9.1730 9.9131 9.0015 9.6335 10.9922 11.7348

0.1 3.9345 5.9399 12.4639 17.8019 5.3444 7.4179 13.7716 18.6461

0.2 4.5202 6.3268 11.7584 15.8481 5.9560 7.8121 13.1052 16.8913

0.3 4.9619 6.6147 11.2848 14.6135 6.4150 8.1024 12.6659 15.7713

0.4 5.3464 6.8574 10.9076 13.6998 6.8126 8.3461 12.3036 14.9219

A5 0.5 5.7108 7.0727 10.5977 12.9151 7.1829 8.5639 12.0070 14.1924

0.6 6.0750 7.2850 10.3002 12.2111 7.5552 8.7740 11.7226 13.5365

0.7 6.4508 7.4980 10.0201 11.5521 7.9376 8.9850 11.4520 12.9124

0.8 6.8757 7.7357 9.7237 10.8823 8.3699 9.2218 11.1688 12.2793

0.9 7.4049 8.0226 9.3857 10.1391 8.8911 9.5087 10.8371 11.5644
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Table 17 Aggregated weighted
ratings âi jα with respect to
criteria C3 and C4 for α � 0.1,
0.2, 0.4, 0.6, 0.8, 0.9

Alternatives αn Criteria

C3 C4

āl1r3α
al2r3α

ar1r3α
ār2r3α

āl1r4α
al2r4α

ar1r4α
ār2r4α

A1 0.1 1.9853 3.3796 8.1793 12.2422 5.4631 7.6627 14.3543 19.4654

0.2 2.3853 3.6564 7.6486 10.7452 6.1140 8.0797 13.6575 17.6278

0.3 2.6908 3.8587 7.2952 9.8090 6.6018 8.3867 13.1910 16.4520

0.4 2.9598 4.0321 7.0139 9.1110 7.0219 8.6456 12.8114 15.5614

0.5 3.2184 4.1892 6.7787 8.5223 7.4150 8.8728 12.5009 14.7962

0.6 3.4745 4.3413 6.5606 7.9852 7.8069 9.0965 12.2004 14.1080

0.7 3.7424 4.4980 6.3519 7.4964 8.2128 9.3188 11.9167 13.4519

0.8 4.0460 4.6713 6.1318 6.9946 8.6677 9.5669 11.6176 12.7852

0.9 4.4330 4.8785 5.8813 6.4419 9.2196 9.8704 11.2707 12.0356

0.1 5.3525 7.6655 15.0621 21.0484 5.3810 7.5097 14.0084 18.9850

0.2 6.0302 8.1092 14.2672 18.8639 6.0101 7.9133 13.3326 17.1950

0.3 6.5400 8.4385 13.7407 17.4852 6.4808 8.2117 12.8759 16.0488

0.4 6.9839 8.7159 13.3141 16.4540 6.8873 8.4626 12.5069 15.1870

A2 0.5 7.4002 8.9641 12.9622 15.5696 7.2690 8.6824 12.2050 14.4406

0.6 7.8209 9.2040 12.6274 14.7812 7.6508 8.9002 11.9135 13.7683

0.7 8.2517 9.4467 12.3077 14.0363 8.0425 9.1157 11.6377 13.1309

0.8 8.7398 9.717 11.9733 13.2842 8.4828 9.3565 11.3470 12.4825

0.9 9.3385 10.0454 11.5911 12.4403 9.0191 9.6487 11.0109 11.7542

0.1 7.1170 9.9177 18.6945 25.7108 4.3352 6.2400 12.1302 16.6804

0.2 7.9408 10.4551 17.7620 23.1594 4.8958 6.6028 11.5139 15.0401

0.3 8.5603 10.8464 17.1494 21.5515 5.3173 6.8702 11.0977 13.9929

0.4 9.0978 11.1792 16.6469 20.3307 5.6814 7.0960 10.7617 13.2028

A3 0.5 9.5978 11.4770 16.2263 19.2933 6.0244 7.2943 10.4875 12.5239

0.6 10.1023 11.7625 15.8344 18.3711 6.3646 7.4908 10.2223 11.9110

0.7 10.6234 12.0524 15.4516 17.4914 6.7187 7.6868 9.9722 11.3308

0.8 11.2091 12.3753 15.0546 16.6082 7.1141 7.9046 9.7087 10.7403

0.9 11.9225 12.7691 14.6021 15.6067 7.6004 8.1684 9.4029 10.0785

0.1 3.9889 5.9275 12.2635 17.4637 4.7391 6.7705 13.0029 17.7933

0.2 4.5530 6.3020 11.5787 15.5600 5.3394 7.1569 12.3533 16.0688

0.3 4.9779 6.5800 11.1195 14.3611 5.7881 7.4413 11.9132 14.9640

0.4 5.3503 6.8147 10.7515 13.4708 6.1760 7.6811 11.5605 14.1367

A4 0.5 5.7037 7.0253 10.4466 12.7059 6.5415 7.8917 11.2690 13.4198

0.6 6.0592 7.2300 10.1604 12.0162 6.9062 8.1000 10.9904 12.7701

0.7 6.4220 7.4382 9.8864 11.3773 7.2791 8.3066 10.7254 12.1601

0.8 6.8342 7.6694 9.5996 10.7276 7.6992 8.5373 10.4450 11.5355

0.9 7.3472 7.9444 9.2719 10.0030 8.2154 8.8167 10.1234 10.8381

0.1 3.3771 5.2208 11.2925 16.2964 3.2279 4.8774 10.0748 14.1394

0.2 3.9132 5.5800 10.6315 14.4627 3.7110 5.1940 9.5273 12.6699

0.3 4.3186 5.8439 10.1940 13.3099 4.0748 5.4275 9.1539 11.7322

0.4 4.6733 6.0681 9.8417 12.4492 4.3903 5.6246 8.8560 11.0328

A5 0.5 5.0096 6.2701 9.5482 11.7165 4.6906 5.7974 8.6143 10.4273

0.6 5.3458 6.4649 9.2738 11.0533 4.9869 5.9710 8.3793 9.8778

0.7 5.6927 6.6635 9.0111 10.4417 5.2939 6.1428 8.1585 9.3644

0.8 6.0874 6.8847 8.7351 9.8170 5.6377 6.3344 7.9253 8.8394

0.9 6.5786 7.1510 8.4192 9.1224 6.0685 6.5639 7.6549 8.2542
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Table 18 Linguistic variables of thresholds with respect to criteria

C1 C2 C3 C4

˜̃q j VL L AL L L VL L VL VL VL AL AL

˜̃p j M M L M M H H L H M M M

˜̃v j H VH H VH AH VH VH H VH VH AH H

Table 19 Thresholds with respect to different criteria

Criteria

C1 C2 C3 C4

q j 0.1667 0.2778 0.2223 0.0036

p j 0.4445 0.5556 0.5556 0.5000

v j 0.7222 0.8889 0.7778 0.8333

Table 20 Measures of LDMs of alternatives with respect to criteria

Alternatives Criteria

C1 C2 C3 C4

A1 0.0738 0.9653 0.0444 0.6955

A2 0.8087 0.0109 0.5575 0.8913

A3 0.7359 0.9653 0.7996 0.3942

A4 0.1352 0.4707 0.2973 0.5984

A5 0.1617 0.4421 0.2107 0.1159

Table 21 Concordance matrix

A1 A2 A3 A4 A5

A1 1.0000 0.4180 0.3815 0.9643 1.0000

A2 0.6907 1.0000 0.6676 0.7974 0.8292

A3 0.9600 0.9282 1.0000 0.9758 1.0000

A4 0.7519 0.6870 0.2022 1.0000 1.0000

A5 0.6545 0.6533 0.0721 0.9306 1.0000

Now, the results of credit degree (S(Ar , Ak)) between
alternatives are presented in Table 23 using Eq. (79) (for
qualitative criteria). Then, the net credibility matrix is made
using Eqs. (80)–(82), as demonstrated in Table 24. Based on
the data of this table, the ranking order is as A3 > A1 >

A4 > A5 > A2.

Table 23 Credit degree matrix

A1 A2 A3 A4 A5

A1 – 0.4180 0.0573 0.9643 1.0000

A2 0.0000 – 0.0000 0.7974 0.8292

A3 0.9600 0.9282 – 0.9758 1.0000

A4 0.7519 0.5610 0.3489 – 1.0000

A5 0.6545 0.3919 0.5262 0.9306 –

Table 24 Net credibility matrix

A1 A2 A3 A4 A5

θcr 2.4397 1.6267 3.8641 2.6619 2.5033

θdr 2.3665 2.2992 0.9326 3.6682 3.8292

θr 0.0731 – 2.2992 2.9315 – 1.0062 – 1.3259

Fig. 9 Sets of criteria weights

Sensitivity analysis

In the ELECTRE III approach, the criteria weights and
thresholds affect the stability of the obtained orders within
a decision-making process. To demonstrate the reliability of
the obtained rankings, it is necessary to analyze the sensi-
tivity analysis with respect to different values of the criteria
weights and thresholds measures. Accordingly, the authors
considered four sets of criteria weights and three sets of
thresholds measures to investigate the use of the different
weights and measures in the proposed method, respectively.
In each set of the criteria weights, there is one criterion
with the highest weight (as shown in Fig. 9). The proposed
method is then solved with respect to each set, separately.
Orders of each set of criteria are represented in Table 25.
To check the similarity of the ranking results for all sets of

Table 22 Comparison matrix

A1 A2 A3 A4 A5

A1 – c(1, 2) > d(1, 2) c(1, 3) < d1, 3(1, 3) c(1, 4) > d(1, 4) c(1, 5) > d(1, 5)

A2 c(2, 1) < d2(2, 1) – c(2, 3) < d2(2, 3) c(2, 4) > d(2, 4) c(2, 5) > d(2, 5)

A3 c(3, 1) > d1(3, 1) c(3, 2) > d(3, 2) – c(3, 4) > d(3, 4) c(3, 5) > d(3, 5)

A4 c(4, 1) > d(4, 1) c(4, 2) < d1(4, 2) c(4, 3) < d1(4, 3) – c(4, 5) > d(4, 5)

A5 c(5, 1) > d(5, 1) c(5, 2) < d1, 4(5, 2) c(5, 3) < d1, 3(5, 3) c(5, 4) > d(5, 4) –
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Table 25 Ranking results with
respect to the different sets of
the criteria weights

i Sets

1 2 3 4

1 2 2 2 2

2 4 5 4 4

3 1 1 1 1

4 3 3 3 3

5 5 4 5 5

Table 26 Correlation coefficients between the different sets of criteria
weights

Set 1 Set 2 Set 3 Set 4

Set 1 1.0 0.9 1.0 1.0

Set 2 – 1.0 0.9 0.9

Set 3 – – 1.0 1.0

Set 4 – – – 1.0

Fig. 10 Sets of thresholds

Table 27 Ranking results with
respect to different sets of
thresholds with respect to
criterion C1

i Sets

1 2 3

1 2 2 2

2 5 5 5

3 1 1 1

4 3 3 4

5 4 4 3

criteria, the authors utilized the Spearman correlation coeffi-
cient. Table 26 represents the correlation coefficients between
these sets. According to the data of this table, coefficients
are greater than 0.9 when calculating relations between sets.
It can be inferred that the proposed method has a fairly
good stability with respect to the different weights of cri-
teria. Figure 10 and Tables 27, 28, 29, 30 represent the sets
of thresholds and rankings of each set, respectively. In each
set of thresholds under a certain criterion, only these thresh-
olds change and the thresholds measures of other criteria
are fixed. Table 31 shows the correlation coefficients among
these sets for different criteria. As represented in this table,
the correlation coefficients are greater than 0.9 when calcu-
lating coefficients. It concludes that the obtained orders are
stable and reliable based on our proposed approach.

Table 28 Ranking results with
respect to different sets of
thresholds with respect to
criterion C2

i Sets

1 2 3

1 2 2 2

2 5 5 5

3 1 1 1

4 3 3 3

5 4 4 4

Table 29 Ranking results with
respect to different sets of
thresholds with respect to
criterion C3

i Sets

1 2 3

1 2 2 2

2 4 4 5

3 1 1 1

4 3 3 3

5 5 5 4

Table 30 Ranking results with
respect to different sets of
thresholds with respect to
criterion C4

i Sets

1 2 3

1 2 2 2

2 5 5 5

3 1 1 1

4 3 4 4

5 4 3 3

Table 31 Correlation coefficients between the different sets of thresh-
olds with respect to the different criteria

Set 1 Set 2 Set 3

C1

Set 1 1.0 1.0 0.9

Set 2 – 1.0 0.9

Set 3 – – 1.0

C2

Set 1 1.0 1.0 1.0

Set 2 – 1.0 1.0

Set 3 – – 1.0

C3

Set 1 1.0 1.0 0.9

Set 2 – 1.0 0.9

Set 3 – – 1.0

C4

Set 1 1.0 0.9 0.9

Set 2 – 1.0 1.0

Set 3 – – 1.0

Comparison with other methods

To further illustrate the effectiveness of the proposedmethod-
ology, the results obtained by ELECTRE III based on
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Table 32 Comparison of ranking results by other techniques

Methods Ranking

The proposed approach A3 > A1 > A4 > A5 > A2

VIKOR with IT2FSs [30] A3 > A2 > A4 > A5 > A1

VIKOR with IT2FSs [31] A3 > A2 > A4 > A5 > A1

FVIKOR [89] (A3, A2) > A4 > A5 > A1

TOPSIS [109] with IT2FSs A3 > A2 > A4 > A5 > A1

SAW with IT2FSs [33] A3 > A2 > A1 > A5 > A4

WASPAS with IT2FSs [34] A3 > A2 > A4 > A1 > A5

Table 33 Ranking results by FVIKOR

Ranking

By DF(Q̃i ) A3 > A2 > A4 > A5 > A1

By DF(S̃r ) A3 > A2 > A1 > A4 > A5

By DF(R̃r ) A3 > A2 > A4 > A5 > A1

GIT2FSs are compared with some existing approaches in
the literature. Table 32 represents the ranking results based
on VIKOR with IT2FSs [30], VIKOR with IT2FSs [31],
TOPSIS with IT2FSs [109], SAW with IT2FSs [33], and
WASPASwith IT2FSs [34].As represented in this table, A3 is
the optimal alternative in all approaches. It verifies the effec-
tiveness and robustness of the proposedmethodwith the other
MCDM techniques introduced above when determining the
optimal alternative. But, the authors obtained the differ-
ent analysis when the use of the fuzzy VIKOR (FVIKOR)
method [89]. The ranking priorities obtained by indices

DF(Q̃r ), DF(S̃r ), and DF(R̃r ) have been shown in Table 33
according to descending order, inwhichDF(Q̃r ),DF(S̃r ), and
DF(R̃r ) show the measures of defuzzification Q̃r ,S̃r , and R̃r ,
respectively.

Illustrative example 1

In this section, to show the effectiveness of our ranking
methodwith, the illustrative example adopted byRashid et al.
[29] is taken into account where three robots R1, R2, and R3

are assessedwith respect to six criteriaC1,C2,C3,C4,C5, and
C6. The authors have decided to eliminate the effect of thresh-
olds using the thresholdless techniques such as TOPSIS and
VIKOR. In other words, the authors want to understand that
similar results can be achieved among different approaches
when thresholds are not used to them. Note that criteria 4
and 6 are of cost type and the other criteria are of benefit
type. Tables 34, 35, 36 represent the performance ratings,
weights, and normalized measures with respect to different
criteria, respectively.

Based on Tables 36, 37 shows the weighted normalized
matrix. In addition, Tables 38 and 39 represent PI and NI
solutions based on the existenceTOPSIS [29] and the interval
type-2 fuzzy TOPSIS methods using LDM, respectively.

According to Tables 39, 40 presents LDMPI , LDMNI ,
ideal separation (Ŝ+i ), anti-ideal separation (Ŝ

−
i ), and relative

closeness (RC). Finally, Table 41 shows the ranking results
of different approaches. Obviously, the most desirable alter-
native is robot 3 based on the different approaches and the
ranking results are as R3 > R2 > R1 for all of them. In fact,

Table 34 Performance ratings of
robots with respect to different
criteria

Criteria Robots The performance ratings

C1 R1 [(0.5292, 0.5733, 0.6533, 0.6808; 0.8),(0.4533, 0.5333, 0.6933, 0.7567; 1)]

R2 [(0.5292, 0.5733, 0.6533, 0.6808; 0.8),(0.4533, 0.5333, 0.6933, 0.7567; 1)]

R3 [(0.7108, 0.7508, 0.8050, 0.8225; 0.8),(0.6567, 0.7233, 0.8333, 0.8733; 1)]

C2 R1 [(0.5508, 0.5833, 0.6433, 0.6658; 0.8),(0.4933, 0.5533, 0.6733, 0.7233; 1)]

R2 [(0.8925, 0.9283, 0.9567, 0.9642; 0.8),(0.8600, 0.9133, 0.9733, 0.9900; 1)]

R3 [(0.7108, 0.7508, 0.8050, 0.8225; 0.8),(0.6567, 0.7233, 0.8333, 0.8733; 1)]

C3 R1 [(0.5292, 0.5733, 0.6533, 0.6808; 0.8),(0.4533, 0.5333, 0.6933, 0.7567; 1)]

R2 [(0.7108, 0.7508, 0.8050, 0.8225; 0.8),(0.6567, 0.7233, 0.8333, 0.8733; 1)]

R3 [(0.7825, 0.8150, 0.8850, 0.9075; 0.8),(0.7200, 0.7800, 0.9200, 0.9700; 1)]

C4 R1 [(72.25, 72.5, 72.7, 73; 0.8),(72, 72.25, 73.5, 74; 1)]

R2 [(69, 69.5, 70, 71; 0.8),(68.5, 68.8, 71.5, 72; 1)]

R3 [(67.5, 68, 69, 69.5; 0.8),(67, 67. 3, 70, 70. 3; 1)]

C5 R1 [(48.5, 49, 50, 50.5; 0.8),(48, 48.25, 51, 52; 1)]

R2 [(44, 44.5, 45, 45.5; 0.8),(43.5, 43.8, 46, 46.5; 1)]

R3 [(43.5, 44, 45, 45.5; 0.8),(43, 43.3, 47, 47.5; 1)]

C6 R1 [(0.115, 0.12, 0.13, 0.135; 0.8),(0.1, 0.11, 0.14, 0.142; 1)]

R2 [(0.15, 0.157, 0.165, 0.17; 0.8),(0.14, 0.145, 0.18, 0.185; 1)]

R3 [(0.162, 0.165, 0.17, 0.175; 0.8),(0.155, 0.16, 0.185, 0.19; 1)]
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Table 35 Weights of criteria
Criteria The weights of criteria

C1 [(0.8925, 0.9283, 0.9567, 0.9642; 0.8),(0.8600, 0.9133, 0.9733, 0.9900; 1)]

C2 [(0.8925, 0.9283, 0.9567, 0.9642; 0.8),(0.8600, 0.9133, 0.9733, 0.9900; 1)]

C3 [(0.2975, 0.3417, 0.4117, 0.4392; 0.8),(0.2267, 0.3067, 0.4467, 0.5100;1)]

C4 [(0.4025, 0.4525, 0.5375, 0.5675; 0.8),(0.3200, 0.4100, 0.5800, 0.6500; 1)]

C5 [(0.8925, 0.9283, 0.9567, 0.9642; 0.8),(0.8600, 0.9133, 0.9733, 0.9900; 1)]

C6 [(0.8375, 0.8717, 0.9208, 0.9358; 0.8),(0.7900, 0.8467, 0.9467, 0.9800; 1)]

Table 36 Normalized measures
Criteria Robots The normalized measures

C1 R1 [(0.6059, 0.6565, 0.7481, 0.7796; 0.8),(0.5191, 0.6107, 0.7939, 0.8664; 1)]

R2 [(0.6059, 0.6565, 0.7481, 0.7796; 0.8),(0.5191, 0.6107, 0.7939, 0.8664; 1)]

R3 [(0.8140, 0.8598, 0.9218, 0.9418; 0.8),(0.7519, 0.8283, 0.9542, 1.0000; 1)]

C2 R1 [(0.5564, 0.5892, 0.6498, 0.6726; 0.8),(0.4983, 0.5589, 0.6801, 0.7306; 1)]

R2 [(0.9015, 0.9377, 0.9663, 0.9739; 0.8),(0.8687, 0.9226, 0.9832, 1.0000; 1)]

R3 [(0.7180, 0.7584, 0.8131, 0.8308; 0.8),(0.6633, 0.7306, 0.8418, 0.8822; 1)]

C3 R1 [(0.6653, 0.6934, 0.7901, 0.8560; 0.8),(0.5986, 0.6533, 0.8494, 0.9993; 1)]

R2 [(0.5507, 0.5627, 0.6033, 0.6373; 0.8),(0.5187, 0.5436, 0.6262, 0.6898; 1)]

R3 [(0.4991, 0.5118, 0.5558, 0.5789; 0.8),(0.4670, 0.4923, 0.5807, 0.6291; 1)]

C4 R1 [(0.9178, 0.9215, 0.9241, 0.9273; 0.8),(0.9054, 0.9115, 0.9273, 0.9305; 1)]

R2 [(0.9436, 0.9571, 0.9640, 0.9710; 0.8),(0.9305, 0.9370, 0.9738, 0.9781; 1)]

R3 [(0.9640, 0.9710, 0.9852, 0.9925; 0.8),(0.9530, 0.9571, 0.9955, 1.0000; 1)]

C5 R1 [(0.8514, 0.8600, 0.8775, 0.8865; 0.8),(0.8269, 0.8431, 0.8911, 0.8958; 1)]

R2 [(0.9450, 0.9555, 0.9662, 0.9772; 0.8),(0.9247, 0.9347, 0.9817, 0.9885; 1)]

R3 [(0.9450, 0.9555, 0.9772, 0.9885; 0.8),(0.9052, 0.9148, 0.9930, 1.0000; 1)]

C6 R1 [(0.7407, 0.7692, 0.8333, 0.8695; 0.8),(0.7042, 0.7142, 0.9090, 1.0000; 1)]

R2 [(0.5882, 0.6060, 0.6369, 0.6666; 0.8),(0.5405, 0.5555, 0.6896, 0.7142; 1)]

R3 [(0.5714, 0.5882, 0.6060, 0.6172; 0.8),(0.5263, 0.5405, 0.6250, 0.6451; 1)]

the obtained results imply that the use of LDMs in the thresh-
oldless techniques can show the effectiveness and reliability
of the proposed ranking method.

Illustrative Example 2

In this section, a numerical example introduced by Zhong
and Yao [32] is presented to compare the ranking results of
extendedELECTRE IIImethodwith those of the others in the
literature. A high-technology company intends to evaluate
five qualified suppliers A1, A2,A3, A4, and A5 with respect
to seven criteria including company reputation (C1), tech-
nical performance (C2), date of delivery (C3), service (C4),
cost control (C5), management performance (C6), and qual-
ity (C7), which their weights arew1 � 0.0562,w2 � 0.1234,
w3 � 0.0452, w4 � 0.1245, w5 � 0.2325, w6 � 0.1380,
andw7 � 0.2801 based on the entropy method, respectively.
Note that the above criteria are of benefit type. Table 42
represents the evaluated decision matrix of alternatives with

respect to criteria. Based on Tables 42, 43 shows the PI and
NI solutions.

Table 44 presents the concordancematrix based on the dif-
ferent approaches. By calculating the discordance matrices
for each criterion based on Eqs. (77) and (78), the compar-
isons between the concordance and discordance matrices are
carried out based on Eq. (79), as shown in Table 45.

Now, the results of credit degree (S(Ar , Ak)) between
alternatives are presented in Table 46 using Eq. (79). In
the next step, the net credibility matrix is made using
Eqs. (80)–(82), as demonstrated in Table 47. In addition,
Table 48 presents the ranking results using the differentmeth-
ods. According to the data of this table, the ranking order of
alternatives is as A5 > A4 > A1 > A2 > A3 using the pro-
posed method. Thus, alternative 5 is selected as the optimal
alternative which is also the most important alternative based
on the last four approaches. On the other hand, the ranking
results obtained by the ELECTRE Imethod [32] are different
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Table 37 Weighted normalized
matrix Criteria Robots The weighted normalized measures

C1 R1 [(0.5408, 0.6094, 0.7157, 0.7516; 0.8),(0.4464, 0.5577, 0.7727, 0.8577; 1)]

R2 [(0.5408, 0.6094, 0.7157, 0.7516; 0.8),(0.4464, 0.5577, 0.7727, 0.8577; 1)]

R3 [(0.7264, 0.7981, 0.8818, 0.9080; 0.8),(0.6466, 0.7564, 0.9287, 0.9900; 1)]

C2 R1 [(0.4965, 0.5469, 0.6216, 0.6484; 0.8),(0.4285, 0.5104, 0.6619, 0.7233; 1)]

R2 [(0.8046, 0.8705, 0.9244, 0.9390; 0.8),(0.7470, 0.8426, 0.9569, 0.9900; 1)]

R3 [(0.6408, 0.7040, 0.7778, 0.8010; 0.8),(0.5704, 0.6673, 0.8193, 0.8733; 1)]

C3 R1 [(0.1979, 0.2369, 0.3253, 0.3759; 0.8),(0.1357, 0.2003, 0.3794, 0.5096; 1)]

R2 [(0.1638, 0.1922, 0.2484, 0.2799; 0.8),(0.1175, 0.1667, 0.2797, 0.3518; 1)]

R3 [(0.1485, 0.1749, 0.2288, 0.2542; 0.8),(0.1058, 0.1510, 0.2594, 0.3208; 1)]

C4 R1 [(0.3694, 0.4170, 0.4967, 0.5262; 0.8),(0.2897, 0.3737, 0.5378, 0.6048; 1)]

R2 [(0.3798,0 .4331, 0.5181, 0.5510; 0.8),(0.2977, 0.3841, 0.5648, 0.6357; 1)]

R3 [(0.3880, 0.4393, 0.5295, 0.5632; 0.8),(0.3049, 0.3942, 0.5774, 0.6500; 1)]

C5 R1 [(0.7599, 0.7983, 0.8395, 0.8548; 0.8),(0.7111, 0.7700, 0.8673, 0.8868; 1)]

R2 [(0.8434, 0.8870, 0.9244, 0.9422; 0.8),(0.7952, 0.8537, 0.9555, 0.9786; 1)]

R3 [(0.8434, 0.8870, 0.9349, 0.9531; 0.8),(0.7785, 0.8355, 0.9665, 0.9900; 1)]

C6 R1 [(0.6203, 0.6705, 0.7673, 0.8137; 0.8),(0.5563, 0.6047, 0.8606, 0.9800; 1)]

R2 [(0.4926, 0.5283, 0.5846, 0.6238; 0.8),(0.4270, 0.4703, 0.6528, 0.7000; 1 ]

R3 [(0.4785, 0.5127, 0.5580, 0.5776; 0.8),(0.4157, 0.4576, 0.5916, 0.6322; 1)]

Table 38 PI and NI solutions
(the existence TOPSIS method
[29])

Criteria Ideal solutions

C1 PI [(0.7264, 0.7980, 0.8818, 0.9081; 0.8),(0.6466, 0.7564, 0.9287, 0.9900; 1)]

NI [(0.5408, 0.6094, 0.7157, 0.7516; 0.8),(0.4464,0 .5577, 0.7727, 0.8577; 1)]

C2 PI [(0.8046, 0.8705, 0.9244, 0.9390; 0.8),(0.7470, 0.8426, 0.9569, 0.9900; 1)]

NI [(0.4965, 0.5469, 0.6216, 0.6484; 0.8),(0.4285, 0.5104, 0.6619, 0.7233; 1)]

C3 PI [(0.2399, 0.2870, 0.3755, 0.4108; 0.8),(0.1682, 0.2465, 0.4236, 0.5100; 1)]

NI [(0.1622, 0.2019, 0.2772, 0.3082; 0.8),(0.1059, 0.1686, 0.3192, 0.3978; 1)]

C4 PI [(0.3694, 0.4170, 0.4967, 0.5262; 0.8),(0.2897, 0.3737, 0.5378, 0.6048; 1)]

NI [(0.3880, 0.4393, 0.5295, 0.5632; 0.8),(0.3049, 0.3924, 0.5774, 0.6500; 1)]

C5 PI [(0.8324, 0.8747, 0.9198, 0.9363; 0.8),(0.7938, 0.8474, 0.9546, 0.9900; 1)]

NI [(0.7466, 0.7855, 0.8278, 0.8436; 0.8),(0.7111, 0.7605, 0.8610, 0.8852; 1)]

C6 PI [(0.4785, 0.5127, 0.5580, 0.5776; 0.8),(0.4157, 0.4576, 0.5916, 0.6322; 1)]

NI [(0.6203, 0.6705, 0.7673, 0.8137; 0.8),(0.5563,0 .6047, 0.8606, 0.9800; 1)]

from those of the others. It implies that the recent approach
cannot be the suitable method for ranking alternatives.

Conclusion and discussion

In the real world, the selection of the best alternative with
respect to conflicting criteria is a difficult and complex work
when data are vague and inexact. Although type-1 fuzzy sets
could greatly resolve ambiguities in decision problems, it
takes into account only a specified measure for MF. Thus,
T2FSs are applied to consider an interval at [0, 1] for MF

when decision-maker is uncertain about the value of MF.
The MFs of a T2FS can take the different versions such as
triangular, trapezoidal, and Gaussian. Since GIT2FNs have
the smoother MF, the authors adopted them for evaluating
alternatives with respect to qualitative criteria. This paper
presents a new approach for prioritizing GIT2FNs. The pro-
posed method first depicts alpha cuts and then calculates the
distances from reference limits. It generates the distances
or ranking measures automatically at interval [0, 1]. It is
also able to rank TriIT2FNs, TraIT2FNs, and other curved
forms. This approach can be applied to the MCDM tech-
niques such as ELECTRE III needing to rank weights of
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Table 39 PI and NI solutions (interval type-2 fuzzy TOPSIS using LDM)

Criteria Robots α � 0 α � 0.2 α � 0.4 α � 0.6 α � 0.8 α � 1

C1 P I (0.9080, 0.9900) (0.9025, 0.9775) (0.8974, 0.9650) (0.8919, 0.9530) (0.8869, 0.9405) 0.9287

N I (0.4464, 0.5408) (0.4687, 0.5548) (0.4917, 0.5683) (0.5133, 0.5823) (0.5358, 0.5958) 0.5573

C2 P I (0.9390, 0.9900) (0.936, 0.983) (0.9330, 0.9765) (0.9300, 0.9700) (0.9275, 0.9635) 0.9569

N I (0.4285, 0.4965) (0.4452, 0.5068) (0.4617, 0.5168) (0.4777, 0.5268) (0.4942, 0.5373) 0.5104

C3 P I (0.4108, 0.5100) (0.4037, 0.4922) (0.3962, 0.4747) (0.3897, 0.4577) (0.3822, 0.4407) 0.4236

N I (0.1059, 0.1622) (0.1186, 0.1701) (0.1311, 0.1781) (0.1441, 0.1861) (0.1566, 0.1941) 0.1686

C4 P I (0.2897, 0.3694) (0.3067, 0.3792) (0.3237, 0.3887) (0.3402, 0.3982) (0.3577, 0.4077) 0.3747

N I (0.5632, 0.6500) (0.5563, 0.6353) (0.5498, 0.6208) (0.5428, 0.6063) (0.5363, 0.5918) 0.5774

C5 P I (0.9363, 0.9900) (0.933, 0.9830) (0.9300, 0.9760) (0.9265, 0.9685) (0.9230, 0.9615) 0.9545

N I (0.7111, 0.7466) (0.7214, 0.7544) (0.7309, 0.7624) (0.7409, 0.7699) (0.7509, 0.7779) 0.7605

C6 P I (0.4157, 0.4785) (0.4242, 0.4852) (0.4327, 0.4922) (0.4412, 0.4992) (0.4492, 0.5058) 0.4576

N I (0.8137, 0.9800) (0.8044, 0.9555) (0.7949,0.9315) (0.7854, 0.9080) (0.7764, 0.8844) 0.8606

Table 40 Measures LDMPI ,
LDMNI , Ŝ+i ,Ŝ

−
i , and RC based

on interval type-2 fuzzy TOPSIS
using LDM

Robots C1 C2 C3 C4 C5 C6 RC

R1

LDMPI 0.9628 0.9856 0.9672 0.1114 0.0390 0.9336 Ŝ+i � 3.9997 0.3904

LDMNI 0.3828 0.2754 0.3842 0.4979 0.6324 0.3887 Ŝ−
i � 2.5616

R2

LDMPI 0.9628 0.0101 0.4254 0.4556 0.9175 0.0575 Ŝ+i � 2.8291 0.5269

LDMNI 0.3828 0.7637 0.5095 0.5041 0.3565 0.6346 Ŝ−
i � 3.1514

R3

LDMPI 0.0258 0.4720 0.0735 0.7721 0.9738 0.0154 Ŝ+i � 2.3329 0.5849

LDMNI 0.6605 0.5122 0.5177 0.4807 0.3630 0.7542 Ŝ−
i � 3.2885

Table 41 Ranking results of
different approaches Robots Interval type-2

fuzzy TOPSIS
using LDM

The existence
TOPSIS method
[29]

WASPAS with
IT2FSs [34]

VIKOR with
IT2FSs
[30]

SAW with
IT2FSs [33]

R1 3 3 3 3 3

R2 2 2 2 2 2

R3 1 1 1 1 1

criteria or determine distances of type-2 fuzzy numbers from
ideal solutions. To show the effectiveness of the proposed
methodology, it was also implemented in a real case study.
The authors proposed an integrated GMCDM approach to
solve the MHESP where the judgments of experts were rep-
resented by GIT2FNs. In real, the experts ranked a kind of
equipment named conveyor with respect to a set of criteria
and their corresponding sub-criteria where all criteria and
sub-criteria weights were expressed as GIT2FNs. In our sug-
gested methodology, the type-2 fuzzy weights of criteria and
sub-criteria and also type-2 fuzzy ratings of alternatives with
respect to sub-criteria were first integrated with the synthetic
type-2 fuzzy weights and ratings, respectively. The FWA
method was then adopted by the authors for incorporating

the synthetic ratings of each alternative with respect to all
sub-criteria under one criterion and the synthetic weights of
sub-criteria to the aggregated weighted ratings and finally,
the alternatives were ranked by ELECTRE III. According
to the obtained results, the authors have concluded that the
alternative 3 is the optimal MHE for all approaches (see
Table 32). However, there are a few differences in ranking
the other alternatives due to the different nature of compared
approaches. In the following, we state them in detailed. As
shown in Table 32, there are the similar ranking results as
A3 > A2 > A4 > A5 > A1 between VIKOR with IT2FSs
[30], VIKOR with IT2FSs [31], FVIKOR [89], and TOPSIS
[109] with IT2FSs approaches, since all of them are based on
the closeness toPI solution and the avoidance ofNI solution.
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Table 42 Evaluated decision
matrix of alternatives with
respect to criteria

A1 C1 [(0.3100, 0.5000, 0.5800, 0.7000; 1,1),(0.4000, 0.4500, 0.5000, 0.6000; 0.95, 0.95)]

C2 [(0.8600, 0.9800, 0.9900, 1.0000; 1,1),(0.9200, 0.9700, 0.9800, 0.9900; 0.95, 0.95)]

C3 [(0.5400, 0.7200, 0.7700, 0.8800;1, 1),(0.6300, 0.6800, 0.7200, 0.8000; 0.95, 0.95)]

C4 [(0.5800, 0.7800, 0.8400, 0.9200; 1,1),(0.6800, 0.7300, 0.7800, 0.8500; 0.95, 0.95)]

C5 [(0.5400, 0.7200, 0.7800, 0.8600; 1,1),(0.6300, 0.6800, 0.7200, 0.7900; 0.95, 0.95)]

C6 [(0.8600, 0.9800, 0.9900, 1.0000; 1,1),(0.9200, 0.9700, 0.9800, 0.9900; 0.95, 0.95)]

C7 [(0.2100, 0.3800, 0.4500, 0.5800; 1,1),(0.2800, 0.3300, 0.3800, 0.4800; 0.95, 0.95)]

A2 C1 [(0.4200, 0.6200, 0.7000, 0.8000; 1,1),(0.5200, 0.5700, 0.6200, 0.7100; 0.95, 0.95)]

C2 [(0.6200, 0.8200, 0.8700, 0.9600; 1,1),(0.7200, 0.7700, 0.8200, 0.8900; 0.95, 0.95)]

C3 [(0.3800, 0.5800, 0.6600, 0.7800; 1,1),(0.4800, 0.5300, 0.5800, 0.6800; 0.95, 0.95)]

C4 [(0.6600, 0.8400, 0.8900, 0.9400; 1,1),(0.7500, 0.8000, 0.8400, 0.8900; 0.95,0.95)]

C5 [(0.1800, 0.3400, 0.4000, 0.5400; 1,1),(0.2400, 0.2900, 0.3400, 0.4400; 0.95, 0.95)]

C6 [(0.6200, 0.8200, 0.8700, 0.9600; 1,1),(0.7200, 0.7700, 0.8200, 0.8900; 0.95, 0.95)]

C7 [(0.0600, 0.1800, 0.2300, 0.3800; 1,1),(0.1100, 0.1600, 0.1800, 0.2800; 0.95, 0.95)]

A3 C1 [(0.3000,0.5000, 0.6000, 0.7000; 1,1),(0.4000, 0.4500, 0.5000, 0.6000; 0.95, 0.95)]

C2 [(0.6200, 0.8200, 0.8700, 0.9600; 1,1),(0.7200, 0.7700, 0.8200, 0.8900; 0.95, 0.95)]

C3 [(0.4600, 0.6600, 0.7200, 0.8600; 1,1),(0.5600, 0.6100, 0.6600, 0.7600; 0.95, 0.95)]

C4 [(0.8200, 0.9600, 0.9800, 1.0000; 1,1),(0.8900, 0.9400, 0.9600, 0.9800; 0.95, 0.95)]

C5 [(0.3500, 0.5400, 0.6200, 0.7200; 1,1),(0.4400, 0.4900, 0.5400, 0.6300; 0.95, 0.95)]

C6 [(0.7800, 0.9000, 0.9200, 0.9400; 1,1),(0.8400, 0.8900, 0.9000, 0.9200; 0.95, 0.95)]

C7 [(0.2700, 0.4600, 0.5500, 0.6600; 1,1),(0.3600, 0.4100, 0.4600, 0.5600; 0.95, 0.95)]

A4 C1 [(0.5100, 0.7000, 0.7500, 0.8600; 1,1),(0.6000, 0.6500, 0.7000, 0.7800; 0.95, 0.95)]

C2 [(0.7800, 0.9400, 0.9700, 1.0000; 1,1),(0.8600, 0.9100, 0.9400, 0.9700; 0.95, 0.95)]

C3 [(0.5000, 0.6800, 0.7400, 0.8400; 1,1),(0.5900, 0.6400, 0.6800, 0.7600; 0.95, 0.95)]

C4 [(0.6200, 0.8000, 0.8500, 0.9200; 1,1),(0.7100, 0.7600, 0.8000, 0.8600; 0.95, 0.95)]

C5 [(0.0900, 0.2200, 0.2800, 0.4200; 1,1),(0.1500, 0.2000, 0.2200, 0.3200; 0.95, 0.95)]

C6 [(0.9000, 1.0000, 1.0000, 1.0000; 1,1),(0.9500, 1.0000, 1.0000, 1.0000; 0.95, 0.95)]

C7 [(0.2500, 0.4200, 0.4800, 0.6200; 1,1),(0.3200, 0.3700, 0.4200, 0.5200; 0.95, 0.95)]

A5 C1 [(0.5100, 0.7000, 0.7500, 0.8600; 1,1),(0.6000, 0.6500, 0.7000, 0.7800; 0.95, 0.95)]

C2 [(0.7400, 0.9200, 0.9600, 1.0000; 1,1),(0.8300, 0.8800, 0.9200, 0.9600; 0.95, 0.95)]

C3 [(0.3800, 0.5800, 0.6700, 0.7600; 1,1),(0.4800, 0.5300, 0.5800, 0.6700; 0.95, 0.95)]

C4 [(0.9000, 1.0000, 1.0000, 1.0000; 1,1),(0.9500, 1.0000, 1.0000, 1.0000; 0.95, 0.95)]

C5 [(0.4300, 0.6200, 0.6800, 0.8000; 1,1),(0.5200, 0.5700, 0.6200, 0.7100; 0.95, 0.95)]

C6 [(0.6300, 0.8000, 0.8400, 0.9000; 1,1),(0.7100, 0.7600, 0.8000, 0.8500; 0.95, 0.95)]

C7 [(0.2700, 0.4600, 0.5500, 0.6600; 1,1),(0.3600, 0.4100, 0.4600, 0.5600; 0.95, 0.95)]

Although, in the approaches of VIKORwith IT2FSs [30, 31],
both conditions C1 and C2 were satisfied and only one alter-
native was chosen as the best MHE. However, the authors
obtained a set of the compromise solutions when FVIKOR
[89] was applied. Hence, the conditions C1 andC2 should be
analyzed for obtaining the final ranking results. Since alter-
native three has the lowest value regarding the above indices,
so alternative three has acceptable stability. In addition, con-
dition C1 (i.e., DF(Q̃2) − DF(Q̃3) � 0.155 < 0.25) is
not satisfied. Hence, alternative 4 that has third situation in
the ranking list by DF(Q̃r ) should be considered for satis-
fying the condition C1. Since the obtained expression (i.e.,
DF(Q̃4)−DF(Q̃3) � 0.583 > 0.25) holds true, alternatives
2 and 3 are proposed as a set of compromise solutions. More-

over, because of the SAW [33] and WASPAS [34] methods
which have the similar ranking programs, the ranking results
are almost similar. Note that two last methods have the differ-
ent ranking structure as compared to the others. As a result,
there are the partial ranking differences between them due
to the use of weighted product model (WPM) in the WAS-
PAS method. However, they also determined alternative 3
as the most desirable alternative. On the other hand, con-
veyors 1 and 2 have ranks 2 and 5 based on our proposed
method (ELECTRE III with IT2FSs), respectively. In real,
lower measure of threshold p1 as compared to other crite-
ria and also lower measures of thresholds v j with respect
to criteria 1 and 3 as compared to criteria 2 and 4 are the
principal reasons of this ranking change. In real-world prob-
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Table 43 PI and NI solutions
PI C1 [(0.0333, 0.0457, 0.0490, 0.0562; 1,1),(0.0392, 0.0424, 0.0457, 0.0509; 0.95, 0.95)]

C2 [(0.1061, 0.1209, 0.1222, 0.1234; 1,1),(0.1135, 0.1196, 0.1209, 0.1222; 0.95, 0.95)]

C3 [(0.0277, 0.0369, 0.0395, 0.0452; 1,1),(0.0323, 0.0349, 0.0369, 0.0410; 0.95, 0.95)]

C4 [(0.0277, 0.0369, 0.0395, 0.0452; 1,1),(0.1182, 0.1245, 0.1245, 0.1245; 0.95, 0.95)]

C5 [(0.1459, 0.1946, 0.2108, 0.2325; 1,1),(0.1703, 0.1838, 0.1946, 0.2135; 0.95, 0.95)]

C6 [(0.1242, 0.1380, 0.1380, 0.1380; 1,1),(0.1311, 0.1380, 0.1380, 0.1380; 0.95, 0.95)]

C7 [(0.1145, 0.1952, 0.2334, 0.2801; 1,1),(0.1527, 0.1740, 0.1952, 0.2376; 0.95, 0.95)]

NI C1 [(0.0196, 0.0326, 0.0379, 0.0457; 1,1),(0.0264, 0.0294, 0.0326, 0.0392; 0.95, 0.95)]

C2 [(0.0756, 0.1012, 0.1074, 0.1185; 1,1),(0.0888, 0.0950, 0.1012, 0.1098; 0.95, 0.95)]

C3 [(0.0195, 0.0297, 0.0399, 0.0390; 1,1),(0.0246, 0.0272, 0.0297, 0.0344; 0.95, 0.95)]

C4 [(0.0722, 0.0971, 0.1045, 0.1145; 1,1),(0.0846, 0.0908, 0.0971, 0.1058; 0.95, 0.95)]

C5 [(0.0243, 0.0594, 0.0756, 0.1135; 1,1),(0.0405, 0.0540, 0.0594, 0.0865; 0.95, 0.95)]

C6 [(0.0855, 0.1104, 0.1159, 0.1242; 1,1),(0.0979, 0.1048, 0.1104, 0.1173; 0.95, 0.95)]

C7 [(0.0254, 0.0763, 0.0976, 0.1612; 1,1),(0.0466, 0.0679, 0.0763, 0.1188; 0.95, 0.95)]

Table 44 Concordance matrix
A1 A2 A3 A4 A5

A1 1.0000 0.7697 0.8475 0.7478 0.6719

A2 0.4563 1.0000 0.4494 0.7607 0.2607

A3 0.7853 0.7404 1.0000 0.5460 0.6380

A4 0.6618 0.8376 0.5001 1.0000 0.4540

A5 0.7054 0.7853 0.8324 0.6276 1.0000

Table 45 Comparison matrix

A1 A2 A3 A4 A5

A1 – c(1, 2) < d1 (1, 2) c (1, 3)> d (1, 3) c(1, 4) < d1(1, 4) c (1, 5)> d (1, 5)

A2 c(2, 1) > d (2, 1) – c(2, 3)> d (2, 3) c(2, 4)> d(2, 4) c(2, 5)> d(2, 5)

A3 c(3, 1)> d (3, 1) c(3, 2) < d1(3, 2) – c(3, 4) < d1(3, 4) c(3, 5) < d1(3, 5)

A4 c(4, 1)> d(4, 1) c(4, 2)> d(4, 2) c(4, 3)> d(4, 3) – c(4, 5)> d(4, 5)

A5 c(5, 1)> d(5, 1) c(5, 2)> d(5, 2) c(5, 3)> d(5, 3) c(5, 4)> d(5, 4) –

lems, it may be a situation in which a decision-maker has not
any preferencewith respect to somemeasures of alternatives.
In other words, thresholds can foster better understanding of
experts when solving real problems. For example, an investor
may have no difference between costs 1000 and 2000 dollar.
Thus, the measures of thresholds can help to experts when
facing with such situations. These reasons imply that the
ELECTRE III method with GIT2FNs is more reliable and
more logical for GMCDM problems.

On the other hand, to show effectiveness of the proposed
ranking method, LDMs were applied to the thresholdless
techniques such as TOPSIS and VIKOR (see illustrative
Example 1). Based on Table 41, the results ranked by our
method are similar to those of the others. It proves reliability
of the proposed ranking method.

Again, the proposed ranking method was integrated with
ELECTRE III in the illustrative Example 2. According to
Table 48, several conclusions can be obtained as follows:

• The last four approaches (the thresholdless techniques) in
this table have the similar ranking results as: A5 > A1 >

A3 > A4 > A2.
• Alternative 5 was selected as the optimal alternative based
on the proposedmethod (ELECTRE III usingLDM), TOP-
SISwith IT2FSs [29],WASPASwith IT2FSs [34],VIKOR
with IT2FSs [30], and SAW with IT2FSs [33].

• The results determined by the ELECTRE I method [32]
are quite different from those of the others. Alternative 4
was chosen as the most desirable alternative. It implies
that the recent approach cannot be the suitable method for
ranking alternatives.
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Table 46 Credit degree matrix
A1 A2 A3 A4 A5

A1 0.0000 0.4820 0.8475 0.5376 0.6719

A2 0.4563 0.0000 0.4494 0.7607 0.2607

A3 0.7853 0.0000 0.0000 0.0000 0.3381

A4 0.6618 0.8376 0.5001 0.0000 0.4540

A5 0.7054 0.7853 0.8324 0.6276 0.0000

Table 47 Net credibility matrix
A1 A2 A3 A4 A5

θcr 2.5389 1.9271 1.1234 2.4535 2.9507

θdr 2.6088 2.1049 2.6294 1.9259 1.7247

θr − 0.0699 − 0.1778 − 1.5060 0.5276 1.2260

Table 48 Ranking results of different approaches

Robots The proposed
method
(ELECTRE III
using LDM)

The ELECTRE I
method [32]

TOPSIS with
IT2FSs [29]

WASPAS with
IT2FSs [34]

VIKOR with
IT2FSs
[30]

SAW with IT2FSs
[33]

A1 3 3 2 2 2 2

A2 4 5 5 5 5 5

A3 5 4 3 3 3 3

A4 2 1 4 4 4 4

A5 1 2 1 1 1 1

Generally, it should be noted that the differences of orders
between the ELECTRE III with the others can be arisen
from the impact of the threshold values in the ELECTRE
III method. In other words, the main reason of these differ-
ences is the lack of thresholds in the VIKOR and TOPSIS
methods. Moreover, the results obtained by our approach are
stable and reliable when changing the criteria weights and
thresholds.

Some important directions for further studies are as fol-
lows:

1. Our methodology was implemented only in a kind of
MHE (named conveyor). However, managers can apply
it to the others such as cranes, forklift truck, etc.

2. Other criteria and sub-criteria may be taken into account
in the other manufacturing industries or service organi-
zations.

3. In our case study, the distance between alpha cuts was
determined 0.1 when LDMs were calculated. To obtain
more accurate results, one can adopt the smaller values
for them such as 0.05 or 0.01.

4. The proposed methodology is efficient for each number
of alternatives, qualitative criteria, and quantitative crite-
ria.

5. The proposed approach is applicable to other MCDM
techniques, in addition to ELECTRE.

6. Theproposedmethod canbe adopted for othermathemat-
ical branches such as data envelopment analysis (DEA)
and/or statistical science where probability density func-
tions with different curved forms may be applied.

7. The proposed method can be used to other fuzzy envi-
ronments such as intuitionistic fuzzy sets, spherical fuzzy
sets, neutrosophic fuzzy sets, etc.
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