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Abstract
One of the methods of studying on two sets is to calculate the similarity of two sets. Triangular norms and conorms generalize
the basic connectives between fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets. In this paper we used triangular
conorms (S-norm). The advantage of using S-norm is that the similarity order does not change using different norms. In fact,
we are looking for a new definition for calculating the similarity of two Pythagorean fuzzy sets. To achieve this goal, using
an S-norm, we first present a formula for calculating the similarity of two Pythagorean fuzzy values, so that they are truthful
in similarity properties. Following that, we generalize a formula for calculating the similarity of the two Pythagorean fuzzy
sets which prove truthful in similarity conditions. Finally, we give some examples of this method.

Keywords Pythagorean fuzzy value · Pythagorean fuzzy sets · Similarity

Introduction

Atanassov [1] initiated the concept of intuitionistic fuzzy
set (IFS), which is a generalization of Zadeh’s fuzzy sets.
Another generalization of fuzzy sets is Pythagorean fuzzy
sets (PFSs), whichwas introduced byYager [2] as an efficient
expansion of the intuitionistic fuzzy sets. A intuitionis-
tic fuzzy sets and Pythagorean fuzzy set has emerged as
an effective tool for depicting uncertainty of the multiple
attribute decision-making (MADM) problems [3–6]. The
PFS is also characterized by the membership degree and
the non-membership degree, whose sum of squares is less
than or equal to 1. The Pythagorean fuzzy sets, more com-
prehensive than IFS, provides a new method for modeling
uncertainty and vagueness. PFSs have meaningful applica-
tions in many different fields. For example, extension of
TOPSIS to multiple criteria decision making (Zhang and Xu
[4], Yang et al. [7], Liang and Xu [8]); Pythagorean fuzzy
Choquet integral based MABAC method (Peng and Yang
[9]); the multiobjective optimization on the basis of ratio
analysis (MOORA) method (Perez-Dominguez et al. [10]);
Pythagorean fuzzy analytic hierarchy process (Mohd and
Abdullah [11], Ilbahar et al. [12]); application of Pythagorean
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fuzzy AHP and VIKOR methods in occupational health and
safety risk assessment (Gul [13]).

Peng and Yang [14] developed a Pythagorean fuzzy supe-
riority and inferiority ranking method to solve uncertainty
multiple attribute group decision-making problem. Ren et al.
[15] extended the TODIM approach to solve the MCDM
problems with Pythagorean fuzzy information. Garg [16]
proposed a novel correlation coefficient, and weighted cor-
relation coefficient formulation to measure the relationship
between two PFSs. Peng and Selvachandran [17] provided
two novel algorithms in decision-making problems under
Pythagorean fuzzy environment. Garg [18] presented a new
decision-making model with probabilistic information and
using the concept of immediate probabilities has been devel-
oped to aggregate the information under the Pythagorean
fuzzy set environment. Xue et al. [19] studied the linear
programming technique for multidimensional analysis of
preference method under the Pythagorean fuzzy circum-
stance to solve MAGDM problems and so on [20–29].

The similarity measures are important and useful tools for
determining the degree of similarity between two objects.
The definition of similarity measure between PFSs is one
of the most important topics in PFSs theory and it com-
pares the information carried by PFSs.Measures of similarity
betweenPFSs is an important tool forMADMProblem,med-
ical diagnosis, decisionmaking, pattern recognition,machine
learning, imageprocessing, and in other real-world problems.
Recently, some researchers have been engaged in the devel-
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opment of similarity measure of PFSs and its applications .
For example, Zhang [31] developed a new decision method
based on similaritymeasure to addressmultiple criteria group
decision-making problems within Pythagorean fuzzy envi-
ronment. Recently, Peng [32] defined novel Pythagorean
fuzzy distance measure and similarity measure. Further-
more, Wei and Wei [33] presented similarity measures of
Pythagorean fuzzy sets based on the cosine function for deal-
ing with the decision-making problems. Mohd and Abdullah
[34] investigated similarity measures of Pythagorean fuzzy
sets based on a combination of cosine similarity measure
and Euclidean distance measure. Ejegwa [35] presented
axiomatic definitions of distance and similarity measures for
Pythagorean fuzzy sets, taking into account the three param-
eters, namely, membership degree, non-membership degree,
and indeterminate degree, and so on [36–38]. In this paper,
our aim is to propose similarity measures based on norms
for PFSs, and some of the basic properties of the new sim-
ilarity measures were discussed. The motivation for writing
this paper is that we introduced triangular conorms (S-norm)
as a new similarity measure for Pythagorean fuzzy sets. The
advantage of using S-norm is that the similarity order does
not change using different norms. In addition, we propose
a multi-criteria group decision-making method based on the
new similarity measures.

The rest of the presented paper is outlined as the follow-
ing: In “Definitions and some properties” section, we review
some definitions and properties. In “S-similarity measure of
Pythagorean fuzzy sets” section, we propose several new
similarity measures for Pythagorean fuzzy based on norms.
In “Applications” section, we present examples. This paper
is concluded in “Conclusions”.

Definitions and some properties

In sets theory, ambiguity in membership can be viewed from
two perspectives: truth membership and false membership.
Hence, these notions can be defined as follows.

Definition 2.1 [1,40] Let U = {u1, u2, u3, . . . , un} ndenote
the discourse set. A intuitionistic fuzzy set A in U is char-
acterized by a membership function μA : U → [0, 1]
nand a non-membership function νA : U → [0, 1], where
μA(ui ) + νA(ui ) ≤ 1.

Recently, Yager [2] introduced Pythagorean fuzzy set
(PFS) characterized by a membership degree and a non-
membership degree satisfying the condition that the square
sum of its membership degree and non-membership degree
is equal to or less than 1, which is a generalization of IFS.

Definition 2.2 [4] Let U = {u1, u2, u3, . . . , un} denote the
discourse set. A Pythagorean fuzzy set A in U is charac-
terized by a truth-membership function μA : U → [0, 1]

and a false-membership function νA : U → [0, 1], where
μA(ui ) are grades of the membership of ui in A and νA(ui )
are the negation of ui in A, andμ2

A(ui )+ν2A(ui ) ≤ 1. Simply
expressed, μAi := μA(ui ) and νAi := νA(ui ), i = 1, . . . , n.
P(U ) stands for the set of all Pythagorean fuzzy subsets in
U and for A ∈ P(U ), it can be we written as

A = {(ui , PA(ui ))|ui ∈ U }, (2.1)

where PA(ui ) = (μAi , νAi ) is Pythagorean fuzzy value.

For two Pythagorean fuzzy values (μ1, ν1) and (μ2, ν2),
we have

(μ1, ν1) = (μ2, ν2) ⇔ μ1 = μ2 and ν1 = ν2

and

(μ1, ν1) ≤ (μ2, ν2) ⇔ μ1 ≤ μ2 and ν1 ≥ ν2

and

(μ1, ν1) < (μ2, ν2) ⇔ μ1 < μ2 and ν1 > ν2.

In addition

min{(μ1, ν1), (μ2, ν2)}
= (μ, ν) ↔ μ = min{μ1, μ2}, ν = max{ν1, ν2}.

Definition 2.3 [14] For two Pythagorean fuzzy sets A, B ∈
P(U ), we can claim A ⊆ B if and only if μAi ≤ μBi and
νAi ≥ νBi for each ui ∈ U ; i = 1, . . . , n.

Decision making is the process of selecting a possible
course from all of the possible alternatives. An effective
approach to select an eligible alternative based on our opin-
ion is its similarity to ideal point. In addition, in our study,
we employ S-norm as an instrument for employing similarity
measure. Hence, we give the following definitions.

Definition 2.4 Let A, B, and C be three sets. A real func-
tion s(., .) is called the similarity measure if s satisfies the
following properties:

(1) 0 ≤ s(A, B) ≤ 1.
(2) s(A, B) = s(B, A).
(3) s(A, B) = 1 ↔ A = B.
(4) If A ⊆ B, and B ⊆ C , then s(A,C) ≤ min

{s(A, B), s(B,C)}.

Definition 2.5 [39] A binary operation S : [0, 1] × [0, 1] 	→
[0, 1] is a continuous S-norm if it satisfies the following con-
ditions:

(S-1) S is associative and commutative.
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(S-2) S(a, 0) = a for all a ∈ [0, 1].
(S-3) S(a, b) ≤ S(c, d) whenever a ≤ c and b ≤ d, for

each a, b, c, d ∈ [0, 1].

Some of the basic S-norm are as follows:

S1(a, b) = max{a, b} S2(a, b) = min{a + b, 1}
S3(a, b) = a + b − ab.

S-similarity measure of Pythagorean fuzzy
sets

In this section, in order to determine a similar measure
between two Pythagorean fuzzy sets, it is necessary that we
first present the method for calculating a similar measure for
two Pythagorean fuzzy values and then extended it for two
Pythagorean fuzzy sets.

In [4], Zhang and Xu introduced a similar measure
between Pythagorean fuzzy values as follows: Let x =
(μx , νx ), y = (μy, νy) be two Pythagorean fuzzy values,
the similarity measure between x and y is defined as

sm(x, y) = d(x, yc)

d(x, y) + d(x, yc)
, (3.1)

where yc = (νy, μy) and

d(x, y) = 1

2

(∣∣∣μ2
x − μ2

y

∣∣∣ +
∣∣∣ν2x − ν2y

∣∣∣
)

. (3.2)

Definition 3.1 Let x and y be two Pythagorean fuzzy values,
such that x = (μx , νx ) and y = (μy, νy), where μx

2 +
νx

2 ≤ 1 and μy
2 + νy

2 ≤ 1. The s-similarity measure for
the Pythagorean fuzzy values x and y denoted by s(x, y)S is
defined by

s(x, y)S =
√
1 − S((μx − μy)2, (νx − νy)2), (3.3)

where S(., .) is a continuous S-norm.

Notation 3.2 The similar measure between Pythagorean
fuzzy values by Zhang and Xu [4] in Eq. (3.1) does not
give a suitable similar measure for μy = νy . The similar
measure by Eq. (3.1) is 1

2 , but the similar measure between
Pythagorean fuzzy values by Eq. (3.3) has a suitable similar
measure.

Theorem 3.3 Let x = (μx , νx ), y = (μy, νy) and z =
(μz, νz) be three Pythagorean fuzzy values. Therefore,
s(., .)S corresponding to the formula (3.3) is satisfied in the
following property.

(1) 0 ≤ s(x, y)S ≤ 1.

(2) s(x, y)S = s(y, x)S.
(3) s(x, y)S = 1 ↔ x = y.
(4) If μx ≤ μy ≤ μz , and νx ≥ νy ≥ νz , then s(x, z)S ≤

min{s(x, y)S, s(y, z)S}.

Proof Simply we can obtain 1, 2 and 3. For 4:
If μx ≤ μy ≤ μz , and νx ≥ νy ≥ νz , then

(μx − μy)
2 ≤ (μx − μz)

2,

(μz − μy)
2 ≤ (μx − μz)

2,

(νx − νy)
2 ≤ (νx − νz)

2,

(νz − νy)
2 ≤ (νx − νz)

2.

Regarding (S-3) of Definition 2.5

S((μx − μy)
2, (νx − νy)

2) ≤ S((μx − μz)
2, (νx − νz)

2),

S((μz − μy)
2, (νz − νy)

2) ≤ S((μx − μz)
2, (νx − νz)

2).

Hence

√
1 − S((μx − μy)2, (νx − νy)2)

≥
√
1 − S((μx − μz)2, (νx − νz)2),√

1 − S((μz − μy)2, (νz − νy)2)

≥
√
1 − S((μx − μz)2, (νx − νz)2).

With Definition 3.1

s(x, y)S ≥ s(x, z)S, s(y, z)S ≥ s(x, z)S,

then

s(x, z)S 
 min{s(x, y)S, s(y, z)S},

and the proof is completed. ��
Remark 3.4 s(x, y)S2 ≤ s(x, y)S3 ≤ s(x, y)S1 .

It can be easily shown that

s(x, y)S1 =
√
1 − max

{
(μx − μy)2, (νx − νy)2

}
,

s(x, y)S2 =
√
1 − min

{
(μx − μy)2 + (νx − νy)2, 1

}
,

s(x, y)S3

=
√
1 − {

(μx−μy)2+(νx−νy)2−(μx−μy)2(νx−νy)2
}
.

Let c = (μx − μy)
2 and d = (νx − νy)

2, then we have
0 ≤ c ≤ 1, 0 ≤ d ≤ 1 and 0 ≤ c+d−cd ≤ 1, c+d−cd ≤
c + d. Finally, we have c + d − cd ≤ min {c + d, 1}, that is
s(x, y)S2 ≤ s(x, y)S3 .
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In addition, it is clear that c ≤ c + d − cd and d ≤
c+d − cd, than max {c, d} ≤ c+d − cd, that is s(x, y)S3 ≤
s(x, y)S1 .

We find S-similarity measures for some Pythagorean
fuzzy values with various S-norms presented in Defini-
tion 2.5. If x = (0.9, 0.3), y = (0.7, 0.4), then with regard
to S-similarity measures in [4] sm(x, y) = 0.67.

With regard to our S-similarity measures, the results are

s(x, y)S1 = 0.978318; s(x, y)S2 = 0.965325;
s(x, y)S3 = 0.965886.

In [33], Wei and Wei have presented:

1. A weighted cosine similarity measure between
Pythagorean fuzzy sets A and B is as follows:

WPFC1 (A, B)

=
n∑
j=1

w j
μ2

A(x j )μ2
B(x j ) + ν2A(x j )ν2B(x j )√

μA(x j )4 + νA(x j )4
√

μB(x j )4 + νB(x j )4

(3.4)

2. Two weighted cosine similarity measures between
Pythagorean fuzzy sets A and B are as follows:

WPFCS1 (A, B)

=
n∑
j=1

w j cos
[π

2

(∣∣∣μ2
A

(
x j

) − μ2
B

(
x j

)∣∣∣∨
∣∣∣ν2A

(
x j

) − ν2B
(
x j

)∣∣∣
)]

(3.5)

WPFCS2 (A, B)

=
n∑
j=1

w j cos
[π

4

(∣∣∣μ2
A

(
x j

) − μ2
B

(
x j

)∣∣∣

+
∣∣∣ν2A

(
x j

) − ν2B
(
x j

)∣∣∣
)]

(3.6)

3. Two weighted cotangent similarity measures between
Pythagorean fuzzy sets A and B are as follows:

WPFCT 1 (A, B)

=
n∑
j=1

w j cot
[π

4
+ π

4

(∣∣∣μ2
A

(
x j

) − μ2
B

(
x j

)∣∣∣

∨
∣∣∣ν2A

(
x j

) − ν2B
(
x j

)∣∣∣
)]

(3.7)

WPFCT 2 (A, B)

=
n∑
j=1

w j cot
[π

4
+ π

8

(∣∣∣μ2
A

(
x j

) − μ2
B

(
x j

)∣∣∣

+
∣∣∣ν2A

(
x j

) − ν2B
(
x j

))]
, (3.8)

where w = (w1, w2, . . . , wn)
T is the weight vector of x j

( j = 1, 2, . . . , n), with w j ∈ [0, 1] ( j = 1, 2, . . . , n),∑n
j=1 w j = 1 and the symbol “∨” is the maximum oper-

ation.

Definition 3.5 Let U = {u1, u2, u3, . . . , un} denote dis-
course set and A, B ∈ P(U ) be two Pythagorean fuzzy sets.
The s-similarity measure for the Pythagorean fuzzy sets A
and B denoted by s(A, B)S is defined by

s(A, B)S =
n∑

i=1

wi s(PA(ui ), PB(ui ))S, (3.9)

where wi > 0 is the weight of the element ui ∈ U , i =
1, 2, . . . , n, where

∑n
i=1 wi = 1 and it depends on what

decision maker and s(., .)S is defined in Eq. (3.3).

Theorem 3.6 Let A, B,C ∈ P(U ) be three Pythagorean
fuzzy sets. Therefore, s(., .)S corresponding to the formula
(3.9) is satisfied in the following properties:

(1) 0 ≤ s(A, B)S ≤ 1.
(2) s(A, B)S = s(B, A)S.
(3) s(A, B)S = 1 ↔ A = B.
(4) If A ⊆ B ⊆ C, then s(A,C)S ≤ min

{s(A, B)S, s(B,C)S}.

Proof Simply we can obtain 1, 2 and 3. For 4:
If A ⊆ B ⊆ C then PA(ui ) ≤ PB(ui ) ≤ PC (ui ); then,

with case 4 of Theorem 3.3

s(PA(ui ), PC (ui ))S ≤ min{s(PA(ui ), PB(ui ))S,

s(PB(ui ), PC (ui ))S}.

Then

n∑
i=1

wi s(PA(ui ), PC (ui ))S ≤
n∑

i=1

wi s(PA(ui ), PB(ui ))S,

n∑
i=1

wi s(PA(ui ), PC (ui ))S ≤
n∑

i=1

wi s(PB(ui )S, PC (ui ))S .

In addition, we have

s(A,C)S ≤ s(A, B)S, s(A,C)S ≤ s(B,C)S .

Finally

s(A,C)S ≤ min{s(A, B)S, s(B,C)S}.

Therefore, s(A,C)S ≤ min{s(A, B)S, s(B,C)S} and the
proof is completed. ��
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Corollary 3.7 For two Pythagorean fuzzy sets A, B ∈ P(U ),
for i(i = 1, 2, 3), we have

s (A ∪ B, A ∩ B)si ≤ min
{
s (A ∪ B, A)si , s (A, A ∩ B)si

}
.

Proof Regarding A ∩ B ⊂ A ⊂ A ∪ B and case 4 of Theo-
rem 3.6, the proof will be complete. Let

� A =
{(

ui ,
(
μA(ui ), (1 − μ2

A(ui ))
1
2

))
|ui ∈ U

}
,

♦A =
{(

ui ,
(
(1 − ν2A(ui ))

1
2 , νA(ui )

))
|ui ∈ U

}
.

We have two corollaries in the following part. ��
Corollary 3.8 For two Pythagorean fuzzy sets A, B ∈ P(U ),
for i(i = 1, 2, 3), we have

s
(
� A,♦A

)
S

≤ min
(
s
(� A, A

)
S , s

(
A,♦A

)
S

)
.

Proof Regarding to � A ⊂ A ⊂ ♦A and case 4 of Theo-
rem 3.6, the proof will be complete. ��
Corollary 3.9 Let A = (μ, ν). Then, for si (i = 1, 2, 3), we
have

(i) s(A,� A)Si =
√

μ2 − ν2 + 2ν
(
1 − μ2

) 1
2 .

(ii) s(A,♦A)Si =
√

ν2 − μ2 + 2μ
(
1 − ν2

) 1
2 .

Proof (i)Since� A =
(

μ,
(
1 − μ2

) 1
2

)
, thenwe haveμA−

μ�A = 0. Finally, we have

s(A,� A)Si =
√
1 − (νA − ν�A)2.

Since (νA − ν�A)2 =
√

μ2 − ν2 + 2ν
(
1 − μ2

) 1
2 .

Proof for (i i) is similar to that of (i). ��
Remark 3.10 s(A, B)S2 ≤ s(A, B)S3 ≤ s(A, B)S1 .

The similarity measure defined in this paper according to
different choices si includes a set of similarity measures that
the decision maker can use appropriately.

Notation 3.11 The similar measure between Pythagorean
fuzzy sets by Wei and Wei [33] in Eq. (3.4) does not give
a suitable similar measure for x = (μx , νx ) and y = (0, 0),
but the similar measure between Pythagorean fuzzy sets by
Eq. (3.9) has a suitable similar measure for these x and y.

Notation 3.12 The similar measure between Pythagorean
fuzzy sets byWei andWei [33] inEqs. (3.6) and (3.8) does not
give a suitable similar measure for x = (1, 0) and y = (0, 0),
but the similar measure between Pythagorean fuzzy sets by
Eq. (3.9) has a suitable similar measure for these x and y.

Table 1 Similarity measures between Ai (i = 1, 2, 3) and A

Similarity measures (A1, A) (A2, A) (A3, A)

s(Ai , A)S1 0.782891 0.81779 0.813639

s(Ai , A)S2 0.71710 0.762529 0.727919

s(Ai , A)S3 0.750638 0.787019 0.765401

Applications

In this section,we present two numerical examples in order to
givemore insights for the similaritymeasure for Pythagorean
fuzzy sets.

Example 4.1 Let us consider a three known patterns Ai (i =
1, 2, 3) which are represented by the Pythagorean fuzzy
sets (PFSs) Ai (i = 1, 2, 3) in the feature space as X =
{x1, x2, x3}:

A1 ={(x1, 0.7, 0.6) , (x2, 0.7, 0.7) , (x3, 0.8, 0.5)}
A2 ={(x1, 0.63, 0.67) , (x2, 0.9, 0.4) , (x3, 0.8, 0.53)}
A3 ={(x1, 0.83, 0.4) , (x2, 0.5, 0.7) , (x3, 0.6, 0.71)} .

Consider an unknown pattern A ∈ PFSs(X) that will be
recognized, where

A = {(x1, 1, 0) , (x2, 1, 0) , (x3, 1, 0)} .

If we consider the weight of xi (i = 1, 2, 3), to be 0.5,
0.33, and 0.17, respectively. Then, the proposed weighted
similarity measures which have been computed from A to
Ai (i = 1, 2, 3) are given in Table 1.

From the numerical results presented in Table 1, we know
that the weighted similarity measures between A2 and A are
the largest.

Example 4.2 (Pattern recognition) [16,33] Let us consider a
three known patterns Ai (i = 1, 2, 3) which are represented
by the Pythagorean fuzzy sets (PFSs) Ai (i = 1, 2, 3) in the
feature space as X = {x1, x2, x3}

A1 ={(x1, 1, 0) , (x2, 0.8, 0) , (x3, 0.7, 0.1)}
A2 ={(x1, 0.8, 0.1) , (x2, 1.0, 0) , (x3, 0.9, 0.1)}
A3 ={(x1, 0.6, 0.2) , (x2, 0.8, 0) , (x3, 0.6, 0.2)} .

Consider an unknown pattern A ∈ PFSs(X) that will be
recognized, where

A = {(x1, 0.5, 0.3) , (x2, 0.6, 0.2) , (x3, 0.8, 0.1)} .

If we consider the weight of xi (i = 1, 2, 3), to be 0.5, 0.3,
and 0.2, respectively, then we use the proposed weighted
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similarity measures which have been computed from A to
Ai (i = 1, 2, 3) and are given in Table 2.

From the numerical results presented in Table 2, we know
that the weighted similarity measures between A3 and A are
the largest ones as derived by 5 similarity measures in [33],
and the results are similar to our similarity measures.

Example 4.3 (Medical diagnosis) [16,33] Let us consider a
set of diagnoses

A = {A1, A2, A3, A4, A5} ,

in which A1 = viral fever, A2 = Malaria, A3 = typhoid,
A4 = stomach Problem and A5 = chest problem and a set
of symptoms

X = {x1, x2, x3, x4, x5} ,

in which x1 = temperature, x2 = headache, x3 = stom-
achache, x4 = cough and x5 = chest Pain.

Suppose that a patient, with respect to all symptoms, can
be depicted by the following PFS:

A = {(x1, 0.8, 0.1) , (x2, 0.6, 0.1) ,

(x3, 0.2, 0.8) , (x4, 0.6, 0.1) , (x5, 0.1, 0.6)} .

Table 2 Similarity measures between Ai (i = 1, 2, 3) and A

Similarity measures (A1, A) (A2, A) (A3, A)

WPFC1(Ai , A) 0.9686 0.9712 0.9844

WPFCS1(Ai , A) 0.6573 0.7627 0.9329

WPFCS2(Ai , A) 0.8843 0.9228 0.9782

WPFCT 1(Ai , A) 0.4475 0.4995 0.7206

WPFCT 2(Ai , A) 0.6554 0.6887 0.8225

s(Ai , A)S1 0.925949 0.950922 0.987392

s(Ai , A)S2 0.892949 0.933695 0.977661

s(Ai , A)S3 0.900065 0.93573 0.977977

In addition, each diagnosis Ai (i = 1, 2, 3, 4, 5) can be
viewed as PFSs with respect to all the symptoms as follows:

A1 ={(x1, 0.4, 0) , (x2, 0.3, 0.5) , (x3, 0.1, 0.7) ,

(x4, 0.4, 0.3) , (x5, 0.1, 0.7)}
A2 ={(x1, 0.7, 0) , (x2, 0.2, 0.6) , (x3, 0, 0.9) ,

(x4, 0.7, 0) , (x5, 0.1, 0.8)}
A3 ={(x1, 0.3, 0.3) , (x2, 0.6, 0.1) , (x3, 0.2, 0.7) ,

(x4, 0.2, 0.6) , (x5, 0.1, 0.9)}
A4 ={(x1, 0.1, 0.7) , (x2, 0.2, 0.4) , (x3, 0.8, 0) ,

(x4, 0.2, 0.7) , (x5, 0.2, 0.7)}
A5 ={(x1, 0.1, 0.8) , (x2, 0, 0.8) , (x3, 0.2, 0.8) ,

(x4, 0.2, 0.8) , (x5, 0.8, 0.1)} .

Our purpose is to classify the pattern A in one of classes
Ai (i = 1, 2, 3, 4, 5). For this, the proposed similarity
measures which have been computed from A to Ai (i =
1, 2, 3, 4, 5) are given in Table 3. We consider the weight
of xi (i = 1, 2, 3, 4, 5) to be 0.15, 0.25, 0.20, 0.15, and 0.25,
respectively.

To provide a better view of the comparison results, they
have been presented in Table 3. The numbers are bold in
Table 3 refers to most appropriate diagnosis. According to
the results obtained in Table 3, we can see that ranking for
similarity measures with different S-norm is as follows

A4 < A5 < A2 < A1 < A3.

Meanwhile, similarity measure the based on the cosine func-
tion between PFSs does not the same order for ranking.

Conclusions

In this article,we have proposed some similaritymeasures for
PFSs based on S-norms by considering the degree of mem-
bership and degree of non-membership. Then, we applied
our similarity measures between PFSs to pattern recognition

Table 3 Similarity measures
between Ai (i = 1, 2, 3, 4, 5)
and A

Similarity measures (A1, A) (A2, A) (A3, A) (A4, A) (A5, A)

WPFC1(Ai , A) 0.8237 0.7840 0.8283 0.3512 0.2360

WPFCS1(Ai , A) 0.9191 0.9250 0.8599 0.7627 0.6392

WPFCS2(Ai , A) 0.9623 0.9554 0.9449 0.8115 0.7502

WPFCT 1(Ai , A) 0.6965 0.6917 0.6623 0.5193 0.4393

WPFCT 2(Ai , A) 0.7861 0.7802 0.7778 0.5844 0.5210

s(Ai , A)S1 0.963599 0.953632 0.976896 0.69625 0.885657

s(Ai , A)S2 0.947133 0.925329 0.973385 0.274601 0.718038

s(Ai , A)S3 0.949363 0.931862 0.974272 0.592272 0.819329
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andmedical diagnosis using numerical examples. The results
show that the proposed similarity measures in PFS envi-
ronment can suitably handle the real-life decision-making
problem.

In the future, the application of our proposed similarity
measures of PFSs needs to be explored in complex decision
making, risk analysis, and many other fields under uncertain
environments.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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