
Complex & Intelligent Systems (2019) 5:217–228
https://doi.org/10.1007/s40747-019-0105-4

ORIG INAL ART ICLE

Exponential similarity measures for Pythagorean fuzzy sets and their
applications to pattern recognition and decision-making process

Xuan Thao Nguyen1 · Van Dinh Nguyen1 · Van Hanh Nguyen1 · Harish Garg2

Received: 25 August 2018 / Accepted: 12 April 2019 / Published online: 2 May 2019
© The Author(s) 2019

Abstract
A Pythagorean fuzzy set is one of the successful extensions of the intuitionistic fuzzy set to handle the uncertain and fuzzy
information in amore wider way. In this paper, some new exponential similarity measures (SMs) for measuring the similarities
between objects are proposed. For it, we used the exponential function for the membership and the non-membership degrees
and hence defined some series of the SMs for PFSs. The various desirable properties and their relations are examined. Several
counter-intuitive cases are given to show the effectiveness of the proposed measures with the existing SMs. Furthermore,
examples to classify the pattern recognition and the decision-making problems are presented and compared with the existing
approaches.

Keywords Pythagorean fuzzy sets · Similarity measures · Decision-making problems · Pattern recognition · Exponential
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Introduction

Decision-making theory is one of themost important theories
to trace the finest objects among the set of the feasible ones.
In our day-to-day lie situations, we always make a decision
to access our decision in such a way that we can get much
benefit from them based on our past records. However, due
to complex environment these days and insufficient knowl-
edge about the systems due to lack of information or human
errors, it is sometimes very difficult to make an optimal deci-
sion in a reasonable time. To address the uncertainties in
the data, a concept of fuzzy sets (FSs) introduced by Zadeh
[1] to handle the uncertain information. In FSs theory, each
element is measured with a membership degree (MD) lying
between 0 and 1 to represent the partial information of the
set. However, FSs does not encounter about the hesitancy
between the element of the set. To address it, an extension
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of the FSs named intuitionistic fuzzy sets (IFSs) [2] by con-
sidering a non-membership degree (NMD) ν of an element
along with MD μ, such that they satisfy the linear inequal-
ity μ + ν ≤ 1. After their existence, several authors have
addressed the decision-making problems (DMPs) under the
IFSs’ environment. For example, Ye [3] presented a cosine
SMs for IFSs. Garg and Kumar [4] presented similarity mea-
sures (SMs) for IFSs using the concept of set pair analysis.
Hwang et al. [5] defined the SMs based on Jaccard index and
applied it to solve the clustering problems. Garg and Kumar
[6] defined the exponential-based distance measure for solv-
ing the DMPs. However, apart from them, some others kinds
of SMs by utilizing the fuzzy information are summarized
in [7–16]. In addition, a complete bibliometric analysis of
DMPs is summarized in [17,18].

All the above work has been conducted under the IFSs
environment which is own restricted to the domain of feasi-
ble region μ + ν ≤ 1. Hence, the theory of IFSs is very
narrow, and hence, under some special cases, this theory
is unable to quantify the analysis. For example, if prefer-
ence towards the object is given as 0.6 MD and 0.7 as NMD
then clearly 0.6 + 0.7 � 1. Thus, to handle it, a concept of
Pythagorean fuzzy sets (PFSs) [19] introduced by expanding
the domain of feasible region fromμ+ν ≤ 1 toμ2+ν2 ≤ 1.
It is clearly seen that PFSs expand the region and hence
more effective than IFSs. Furthermore, it can easily handle
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the DMPs, where IFSs fail. Therefore, every IFSs is also
PFSs. After its existence, several researchers have studied
and enhanced the theory of PFSs using aggregation opera-
tors (AOs) or the SMs to different fields. For example, Peng
and Yang [20] presented some results on PFSs. Beliakov and
James [21] defined the averagingAOs for PFSs. Garg [22,23]
proposed the weighted averaging and geometric AOs using
Einstein t-normoperators for solvingDMPsunder PFSs envi-
ronment. Wei [24] defined the interactive averaging AOs for
solving the DMPs. Wei and Lu [25] defined the Maclaurin
symmetric mean operators to the Pythagorean fuzzy (PF)
environment. Ma and Xu [26] proposed the symmetric aver-
aging AOs for the PF information. Garg [27,28] developed
exponential and logarithms operations and their based AOs
for solving the DMPs under the PFS environment. However,
apart from them, several authors [29–31] handled the DMPs
under the PFS environment.

The above-stated work is based on the AOs; however,
information measures such as SMs, score and accuracy func-
tions, divergence etc., are also useful to solve the DMPs.
Under such measures, researchers have also actively par-
ticipated which can easily be seen through the literature.
For example, Zhang and Xu [32] presented the concept of
PF numbers (PFNs) and a TOPSIS (“Technique for Order
Preference with respect to the Similarity to the Ideal Solu-
tion”) method to solve the DMPs with PFSs’ information.
Zeng et al. [33] developed an approach utilizing the AOs
and the distance measures for solving the DMPs. Garg [34]
defined the correlation coefficientsmeasures for PFSs. Zhang
[35] defined an SM-based algorithm to solve the DMPs for
PFNs. Wei and Wei [36] define the SMs based on the cosine
measures for PFSs. Apart from them, several authors have
addressed the extensions of the PFSs such as interval-valued
PFSs [42], hesitant PFS [43,44], and linguistic PFS [45] and
applied them to solve the various DMPs under the differ-
ent environments such as health [46] and site selection [47].
Furthermore, some other measures such as an accuracy func-
tion [37,38], operations [39], and improved score functions
[40,41] are defined for PFS and interval-valued PFS. In the
context of DMPs problems, a comparison between two or
more objects is an important principle and thus for it, and a
concept of SMs is useful.

The existing SMs are based on the Hamming distance
which ignore the influences of the MD and NMD indepen-
dently. Furthermore, to extend the existing measures, in this
paper, we introduce some new SMs for PFSs based on the
exponential functions defined on both the MDs and NMDs’
function. The salient features of thesemeasures are also stud-
ied in detail. Furthermore, an algorithm for solving DMPs is
addressed in the paper based on the proposed SMs. Finally,
numerical examples are taken to illustrate them .

The remaining work is summarized as follows. The basic
concepts of PFSs and the SMs are reviewed briefly in “Pre-

liminaries”. In “New similarity measures on Pythagorean
fuzzy sets”, we define some new SMs based on the exponen-
tial function for PFSs and studied their properties. Section
“Applications of the proposed SMs” deals with the appli-
cations of the proposed measures. Finally, a conclusion is
given.

Preliminaries

In this section, we briefly review the basic concepts related
to PFS and SM over the set X .

Definition 1 [2] An IFS A in X is given by

A = {〈x, μA(x), νA(x)〉 | x ∈ X}, (1)

where μA, νA : X → [0, 1] be the MD and NMD function,
such that μA + νA ≤ 1, ∀x ∈ X . For conveniences, Xu [48]
denoted this pair as A = (μA, νA).

Definition 2 [19] A PFS P is given by

P = {(x, μP (x), νP (x)) | x ∈ X} (2)

where 0 ≤ μP , νP , μ2
P + ν2P ≤ 1. A pair of these is written

by P = (μP , νP ) and called as PFN [32]. Also, the degree

of indeterminacy is given as πP =
√
1 − μ2

P − ν2P .

Note 1 The collection of all PFSs over X is written asΦ(X).

Definition 3 [19,20,27] Let P = (μ, ν), P1 = (μ1, ν1) and
P2 = (μ2, ν2) be three PFNs, then we have

(i) Pc = (ϑ, ζ ).
(ii) P1 ⊆ P2 if μ1 ≤ μ2 and ν1 ≥ ν2.
(iii) P1 = P2 if P1 ⊆ P2 and P2 ⊆ P1.
(iv) P1 ∩ P2 = (min(μ1, μ2),max(ν1, ν2)).
(v) P1 ∪ P2 = (max(μ1, μ2),min(ν1, ν2)).

(vi) P1 ⊕ P2 =
(√

μ2
1 + μ2

2 − μ2
1μ

2
2, ν1ν2

)
.

(vii) P1 ⊗ P2 =
(

μ1μ2,

√
ν21 + ν22 − ν21ν

2
2

)
.

(viii) λP1 =
(√

1 − (1 − μ2
1)

λ, νλ
1

)
, λ > 0.

(ix) Pλ
1 =

(
μ1

λ,

√
1 − (1 − ν21 )

λ

)
, λ > 0.

(x) λP =
⎧
⎨
⎩

(
λ
√

1−ζ 2 ,
√
1 − λ2ϑ

)
if λ ∈ (0, 1)(

(1/λ)
√

1−ζ 2 ,
√
1 − (1/λ)2ϑ

)
if λ ≥ 1

Definition 4 A real-valued function S : Φ(X) × Φ(X) →
[0, 1] is called similarity measure if the following properties
are satisfied:
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(P1) 0 ≤ S(P,Q) ≤ 1.
(P2) S(P,Q) = 1 ⇔ P = Q
(P3) S(P,Q) = S(Q,P)

(P4) If P ⊆ Q ⊆ R then, S(P,R) ≤ S(P,Q) and
S(P,R) ≤ S(Q,R), where P,Q,R ∈ Φ(X).

Definition 5 [35] For two PFSs P andQ over the finite X =
{x1, x2, . . . , xn}. Then, the SM-based on distance measure is
defined as

Sm(P,Q) =
n∑

i=1

ωi
d(Pi ,QC

i )

d(Pi ,Qi ) + d(Pi ,QC
i )

, (3)

whereωi > 0 be the normalized weight vector of xi ∈ X and
QC is the complement of PFS Q. In addition, d(Pi ,Qi ) =
1
2 {|μ2

P (xi ) − μ2
Q(xi )| + |ν2P (xi ) − ν2Q(xi )| + |π2

P (xi ) −
π2
Q(xi )|} is the distance measure between the PF elements

Pi and Qi for all i = 1, 2, . . . , n.

Definition 6 [36] For two PFSs P and Q, two cosine SMs
between them is defined as

PFC1(P,Q)

=
n∑

i=1

ωi

⎛
⎝ μ2

P (xi )μ2
Q(xi ) + ν2P (xi )ν2Q(xi )√

μ4
P (xi ) + μ4

Q(xi )
√

ν4P (xi ) + ν4Q(xi )

⎞
⎠ ,

(4)

and

PFC2(P,Q) =
n∑

i=1

ωi

×
⎛
⎝ μ2

P (xi )μ
2
Q(xi ) + ν2P (xi )ν

2
Q(xi ) + π2

P (xi )π
2
Q(xi )√

μ4
P (xi ) + μ4

Q(xi ) + π4
P (xi )

√
ν4P (xi ) + ν4Q(xi ) + π4

Q(xi )

⎞
⎠ ,

(5)

where ωi > 0 is the normalized weight vector of xi ∈ X .

New similarity measures on Pythagorean
fuzzy sets

This section presents a new SM-based on exponential func-
tions for MDs and NMDs under PFS environment over the
finite set X .

Definition 7 For two PFSs P = {〈xi , μP (xi ), νP (xi )〉|xi ∈
X} and Q = {〈xi , μQ(xi ), νQ(xi )〉|xi ∈ X}, the two expo-
nential functions are defined as

Sμ
i (P,Q) = e−|μ2

P (xi )−μ2
Q(xi )| (6)

and

Sν
i (P,Q) = e−|ν2P (xi )−ν2Q(xi )|. (7)

Theorem 1 For any two PFSs P and Q, we have

(P1) 0 ≤ Sμ
i (P,Q),Sν

i (P,Q) ≤ 1;
(P2) Sμ

i (P,Q) = Sμ
i (Q,P) and Sν

i (P,Q) = Sν
i (Q,P);

(P3) Sμ
i (P,Q) = Sν

i (P,Q) = 1 if and only if P = Q;
(P4) if P ⊆ Q ⊆ R, then Sμ

i (P,R) ≤ min{Sμ
i (P,Q),

Sμ
i (Q,R)} and Sν

i (P,R) ≤ min{Sν
i (P,Q),

Sν
i (Q,R)}.

Proof Let P = (μP (xi ), νP (xi )) and Q=(μQ(xi ), νQ(xi ))
be two PFSs over X .

(P1) By definition of PFSs, we have μP (xi ), μQ(xi ) ≤ 1
and μ2

P (xi ) + ν2P (xi ) ≤ 1 for all xi ∈ X . Thus, we
have

−1 ≤ −|μ2
P (xi ) − μ2

Q(xi )| ≤ 0 and

−1 ≤ −|ν2P (xi ) − ν2Q(xi )| ≤ 0.

Hence

0 ≤ e−|μ2
P (xi )−μ2

Q(xi )| ≤ 1 and 0 ≤ e−|ν2P (xi )−ν2Q(xi )| ≤ 1.

Thus, (P1) holds.
(P2) It is obtained from the definition.
(P3) If Sμ

i (P,Q) = Sν
i (P,Q) = 1, then μP (xi ) =

μQ(xi ) and νP (xi ) = νQ(xi ) for all xi ∈ X . It means
that P = Q. On the other hand, if P = Q, then it is
clearly gives that Sμ

i (P,Q) = Sν
i (P,Q) = 1.

(P4) If P ⊆ Q ⊆ R, then for xi ∈ X , we have

0 ≤ μP (xi ) ≤ μQ(xi ) ≤ μR(xi ) ≤ 1

and

1 ≥ νP (xi ) ≥ νQ(xi ) ≥ νR(xi ) ≥ 0.

This implies that

0 ≤ μ2
P (xi ) ≤ μ2

Q(xi ) ≤ μ2
R(xi ) ≤ 1

and

1 ≥ ν2P (xi ) ≥ ν2Q(xi ) ≥ ν2R(xi ) ≥ 0.

Hence

−|μ2
P (xi ) − μ2

R(xi )|
≤ min{−|μ2

P (xi ) − μ2
Q(xi )|,−|μ2

Q(xi ) − μ2
R(xi )|}
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and

−|ν2P (xi ) − ν2R(xi )|
≤ min{−|ν2P (xi ) − ν2Q(xi )|,−|ν2Q(xi ) − ν2R(xi )|}.

It means that

Sμ
i (P,R) ≤ min{Sμ

i (P,Q),Sμ
i (Q,R)}

and

Sν
i (P,R) ≤ min{Sν

i (P,Q),Sν
i (Q,R)}.

��
Next, based on the two functions defined in Eqs. (6) and

(7), we define the weighted SMs for PFSs as below.

Definition 8 LetP ,Q be two PFSs defined over X and ωi >

0 is the weight of the element of X which satisfy
∑n

i=1 ωi =
1. Then, a weighted SMs between them is defined as

S0(P,Q) =
n∑

i=1

ωi × Sμ
i (P,Q) × Sν

i (P,Q). (8)

Theorem 2 Themeasure defined in Definition 8 is a valid SM
for PFSs.

Proof For two PFSs P and Q and from the Theorem 1, we
have

(P1) Since 0 ≤ Sμ
i (P,Q),Sν

i (P,Q) ≤ 1 which implies
that 0 ≤ S0(P,Q) ≤ ∑n

i=1 ωi = 1.
(P2) As Sμ

i and Sν
i are symmetrical for PFSs, so S0 also

have this property.
(P3) As Sμ

i (P,Q) = Sν
i (P,Q) = 1 if and only ifP = Q,

so we get S0(P,Q) = 1 if only if P = Q, because∑n
i=1 ωi = 1.

(P4) For three PFSs P,Q and R satisfying P ⊆ Q ⊆
R, we observed from Theorem 1 that Sμ

i (P,R) ≤
min{Sμ

i (P,Q),Sμ
i (Q,R)} and Sν

i (P,R) ≤ min
{Sν

i (P,Q),Sν
i (Q,R)}. Thus, based on it, Eq. (8)

becomes S0(P,R) ≤ S0(P,Q) and S0(P,R) ≤
S0(B,C). ��

Besides this, we can also define some other types of the
SMs based on Eqs. (6) and (7), which are summarized in
Definitions 9 and 10.

Definition 9 For two PFSs P and Q, the weighted average
SM of the functions Sμ

i and Sν
i is defined as

S1(P,Q) =
n∑

i=1

ωi

(
Sμ
i (P,Q) + Sν

i (P,Q)

2

)
, (9)

where ωi > 0 be the normalized weight vector of element of
X .

Theorem 3 The measure given in Definition 9 is a valid SM
for PFSs.

Proof For two PFSs P and Q and from the Theorem 1, we
have

(P1) Since 0 ≤ Sμ
i (P,Q),Sν

i (P,Q) ≤ 1, we have

0 ≤ S1(P,Q) ≤
n∑

i=1

ωi = 1.

(P2) It can be easily proven, so we omit here.
(P3) As Sμ

i (P,Q) = Sν
i (P,Q) = 1 if and only ifP = Q,

so by the definition of S1, we get S1(P,Q) = 1 if
only if P = Q.

(P4) For PFSs P , Q and R such that P ⊆ Q ⊆ R
then Sμ

i (P,R) ≤ min{Sμ
i (P,Q),Sμ

i (Q,R)} and
Sν
i (P,R) ≤ min{Sν

i (P,Q),Sν
i (Q,R)}, so that

S1(P,R) ≤ S1(P,Q) and S1(P,R) ≤ S1(Q,R).

��
Definition 10 For two PFSsP andQ and using functions Sμ

i
and Sν

i , a generalized weighted SM Sp is defined as

Sp(P,Q) =
n∑

i=1

ωi

⎛
⎝

p
√

(Sμ
i (P,Q))p + (Sν

i (P,Q))p

2

⎞
⎠

for all p ∈ N∗ = {1, 2, 3, . . .}. (10)

Theorem 4 The function Sp given in Definition 10 is an SM.

The proof can be obtained as similar to Theorem 3.

Applications of the proposed SMs

This section explored the advantages of the proposed SMs in
terms of solving pattern recognition problem and DMPs.

Verification and the comparative analysis

To show the superiority as well as advantages of the proposed
measures, we first compare their performance with measures
[3,7–16,35,36,49] defined in Table 1 on some common data
sets.

The results computed by the proposed SMs (S0 and S1)
and the existing SMs [3,7–16,35,36,49] are listed in Table 2,
which suggests that proposed ones SBA [16] and SCC [9] can
overcome the drawbacks of the several other existing SMs
(SR [8], SHY1 [10], SHY2 [10], SHY3 [10], SHK [11], SLC
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Table 2 Comparison of SMs adopted from [3]

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
M {(x, 0.3, 0.3)} {(x, 0.3, 0.4)} {(x, 1, 0)} {(x, 0.5, 0.5)} {(x, 0.4, 0.2)} {(x, 0.4, 0.2)}
N {(x, 0.4, 0.4)} {(x, 0.4, 0.3)} {(x, 0, 0)} {(x, 0, 0)} {(x, 0.5, 0.3)} {(x, 0.5, 0.2)}
SL [7] 0.9 0.9 0.2929 0.5 0.9 0.9293

SR [8] 1 0.9 0.5 1 1 0.95

SCC [9] 0.9225 0.88 0.25 0.5 0.9225 0.8913

SHY1 [10] 0.9 0.9 0 0.5 0.9 0.9

SHY2 [10] 0.8495 0.8495 0 0.3775 0.8495 0.8495

SHY3 [10] 0.8182 0.8182 0 0.3333 0.8182 0.8182

SHK [11] 0.9 0.9 0.5 0.5 0.9 0.95

SLC [12] 1 0.9 0.5 1 1 0.95

SLX [13] 0.95 0.9 0.5 0.75 0.95 0.95

SLS1 [14] 0.9 0.9 0.5 0.5 0.9 0.95

SLS2 [14] 0.95 0.9 0.5 0.75 0.95 0.95

SLS3 [14] 0.9333 0.9333 0.5 0.6667 0.9333 0.95

SM [15] 0.9 0.9 0.5 0.5 0.9 0.95

SY [3] 1 0.96 N/A N/A 0.9971 0.9965

SW [36] 1 0.8546 N/A N/A 0.9949 0.9963

SZ [35] 0.5 0 0.5 0.5 0.6 0.7

SP1 [49] 1 0.93 0.5 1 0.98 0.955

SP2 [49] 0.5625 0.5625 0 0 0.5882 0.6897

SP3 [49] 0.8692 0.8692 0.5 0.6 0.8843 0.9256

SBA [16] 0.967 0.9 0.5 0.8333 0.9667 0.95

S0(proposed) 0.8694 0.8694 0.3679 0.6065 0.8694 0.9139

S1(proposed) 0.9324 0.9324 0.6839 0.7788 0.9326 0.9570

Note: (p = 1 in SM,SLC ,SLS1,SLS2,SLS3, p = 1, t = 2 in SBA) “Bold” denotes unreasonable results.
“N/A” denotes that it cannot compute the degree of similarity due to “the division by zero problem”

[12], SLX [13], SL [7], SLS1 [14], SLS2 [14], SLS3 [14], SM

[15], SY [3], SP1 [49], SP2 [49], SP3 [49], SZ [35], and SW

[35]).
Furthermore, to achieve more advantages of the proposed

SMs with the existing measures, we consider another data
sets and the results computed by the existing measures [3,7–
16,35,36,49] aswell as proposedmeasures (S0,S1) are given
in Table 3. It is clearly seen from this table that the proposed
SMs overcome the certain drawbacks of the existing mea-
sures SBA [16], SR [8], SHY1 [10], SHY2 [10], SHY3 [10],
SHK [11],SLC [12],SLX [13],SL [7] ,SLS1 [14],SLS2 [14],
SLS3 [14], SM [15], SY [3], SP1 [49], SP2 [49], SZ [35], and
SW [36].

Finally, we further shows that existing measures [3,7–
16,35,36,49] also suffer from the shortcoming under some
special cases that are listed in Table 4. The computed results
by the proposed SM (S0,S1) show the best results as com-
pared to the existing measures SBA [16], SR [8], SHY1 [10],
SHY2 [10], SHY3 [10], SHK [11], SLC [12], SLX [13], SL

[7] , SLS1 [14], SLS2 [14], SLS3 [14], SM [15], SY [3], SP1

[49], SP2 [49], SZ [35], and SW [36].

Applications related to pattern recognition

Example 1 Consider a three known patterns Pi (i = 1, 2, 3)
whose characteristics are represented in terms of PFSs over
the feature space X = {x1, x2, x3} as follows:

P1 = {(x1, 1, 0), (x2, 0.8, 0), (x3, 0.7, 0.1)};
P2 = {(x1, 0.8, 0.1), (x2, 1, 0), (x3, 0.9, 0.1)};
P3 = {(x1, 0.6, 0.2), (x2, 0.8, 0), (x3, 1, 0)}.

Consider an unknown sample Q under PFSs and defined as

Q = {(x1, 0.5, 0.3), (x2, 0.6, 0.2), (x3, 0.8, 0.1)}.

Our goal is to find out the recognition of the patternQwith
one ofPi . To achieve it, we choose the arbitraryweight vector
ω = (0.5, 0.3, 0.2) of the elements of X , and hence, the
measurement values of the SMs alongwith existing SMs [35,
36] are computed and listed their results in Table 5. From it,
we found that the patternQ recognizes withP3 and coincides
with the existing measures.
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Table 3 Comparison of SMs adopted from [9]

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
M {(x, 0.5, 0.5)} {(x, 0.6, 0.4)} {(x, 0, 0.87)} {(x, 0.6, 0.27)} {(x, 0.125, 0.075)} {(x, 0.5, 0.45)}
N {(x, 0, 0)} {(x, 0, 0)} {(x, 0.28, 0.55)} {(x, 0.28, 0.55)} {(x, 0.175, 0.025)} {(x, 0.55, 0.4)}
SL [7] 0.5 0.4901 0.6993 0.6993 0.95 0.95

SR [8] 1 0.9 0.7 0.7 0.95 0.95

SCC [9] 0.5 0.45 0.7395 0.7055 0.9125 0.95

SHY1 [10] 0.5 0.4 0.68 0.68 0.95 0.95

SHY2 [10] 0.3775 0.2862 0.5668 0.5668 0.9229 0.9229

SHY3 [10] 0.3333 0.25 0.5152 0.5152 0.9048 0.9048

SHK [11] 0.5 0.5 0.7 0.7 0.95 0.95

SLC [12] 1 0.9 0.7 0.7 0.95 0.95

SLX [13] 0.75 0.7 0.7 0.7 0.95 0.95

SLS1 [14] 0.5 0.5 0.7 0.7 0.95 0.95

SLS2 [14] 0.75 0.75 0.7 0.7 0.95 0.95

SLS3 [14] 0.6667 0.6333 0.7933 0.7933 0.9667 0.9667

SM [15] 0.5 0.5 0.7 0.7 0.95 0.95

SY [3] N/A N/A 0.8912 0.7794 0.9216 0.9946

SW [36] N/A N/A 0.968 0.438 0.9476 0.9812

SZ [35] 0.5 0.5 0.5989 0.1696 0.625 0.6557

SP1 [49] 1 0.9 0.7336 0.7444 0.99 0.9525

SP2 [49] 0 0 0.3621 0.2284 0.4483 0.8119

SP3 [49] 0.6 0.6176 0.3133 0.6028 0.9806 0.9168

SBA [16] 0.8333 0.8333 0.7 0.7 0.95 0.95

S0(proposed) 0.6065 0.5945 0.5870 0.5998 0.9802 0.9094

S1(proposed) 0.7788 0.7749 0.7797 0.7747 0.9901 0.9536

Note: (p = 1 in SM,SLC ,SLS1,SLS2,SLS3, p = 1, t = 2 in SBA.) “Bold” denotes unreasonable results.
“N/A” denotes that it cannot compute the degree of similarity due to “the division by zero problem”

Application to the DMPs

This section states the DMP method based on the proposed
SMs under PFS environment to determine the finest alterna-
tive(s). For it, assume that P = {P1,P2, . . . ,Pm} be the
set of “m” alternatives and G = {G1,G2, . . . ,Gn} be the
set of “n” criteria, whose weight vector is ω j > 0 with∑n

j=1 ω j = 1. An expert evaluates these alternatives and
rates them in terms of PFNs γi j = (μi j , νi j ), such that
μ2
i j + ν2i j ≤ 1 satisfied. The complete PF decision matrix

D is defined as

D =

G1 G2 . . . Gn⎛
⎜⎜⎝

⎞
⎟⎟⎠

P1 γ11 γ12 . . . γ1n
P2 γ21 γ22 . . . γ2n
...

...
...

. . .
...

Pm γm1 γm2 . . . γmn

(11)

Then, the following steps are proposed based on the proposed
SMs to evaluate them.

Step 1: Determine the weight of each criteria
We determine the weight vector ω j,k, (k = 0,
1, 2, . . .) of each criteria G j using the following
equation:

ω j,k = (d j )
k

∑n
j=1(d j )k

, k = 0, 1, 2, . . . (12)

where d j = d1 j + d2 j in which d1 j = maxi μi j ,
d2 j = mini νi j for all j = 1, 2, . . . , n, such that∑n

j=1 ω j,k = 1 for k = 0, 1, 2, . . ..

Step 2: Determine the ideal values
The given criteria are divided into two disjoint sets,
namely, the cost F1 and the benefit F2. For F1

criteria, the ideal values are taken as (0,1), while
for F2 criteria, we take (1,0). It is noted here that
(1, 0) is the largest value of a PFNs and (0, 1) is
the smallest value of a PFN. Therefore, we rep-
resent the ideal values for all criteria as Pb =
(Pb(1),Pb(2), . . . ,Pb(n)), where Pb( j) = (1, 0)
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Table 4 Comparison of SMs

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
M {(x, 0.3, 0.7)} {(x, 0.3, 0.7)} {(x, 0.5, 0.5)} {(x, 0.4, 0.6)} {(x, 0.1, 0.5)} {(x, 0.4, 0.2)}
N {(x, 0.4, 0.6)} {(x, 0.2, 0.8)} {(x, 0, 0)} {(x, 0, 0)} {(x, 0.2, 0.3)} {(x, 0.2, 0.3)}
SL [7] 0.6863 0.6863 0.5 0.4901 0.8419 0.8419

SR [8] 0.9 0.9 1 0.9 0.85 0.85

SCC [9] 0.9 0.9 0.5 0.55 0.8438 0.7685

SHY1 [10] 0.9 0.9 0.5 0.4 0.8 0.8

SHY2 [10] 0.8494 0.8494 0.3775 0.2862 0.7132 0.7132

SHY3 [10] 0.8182 0.8182 0.3333 0.25 0.6667 0.6667

SHK [11] 0.9 0.9 0.5 0.5 0.85 0.85

SLC [12] 0.9 0.9 1 0.9 0.85 0.85

SLX [13] 0.9 0.9 0.75 0.7 0.85 0.85

SLS1 [14] 0.9 0.9 0.5 0.5 0.85 0.85

SLS2 [14] 0.9 0.9 0.5 0.75 0.85 0.85

SLS3 [14] 0.95 0.95 0.6667 0.6333 0.8833 0.8833

SM [15] 0.9 0.9 0.5 0.5 0.85 0.85

SY [3] 0.9832 0.9873 N/A N/A 0.9249 0.8685

SW [36] 0.9721 0.9929 N/A N/A 0.9293 0.6156

SZ [35] 0.7174 0.7857 0.5 0.5 0.5676 0.3684

SP1 [49] 0.9 0.9 1 0.9 0.905 0.915

SP2 [49] 0.6923 0.726 0 0 0.3448 0.32

SP3 [49] 0.75 0.6667 0.6 0.5517 0.8 0.8482

SBA [16] 0.9 0.9 0.8333 0.8333 0.8667 0.8667

S0(proposed) 0.8187 0.8185 0.6065 0.5945 0.8270 0.8437

S1(proposed) 0.9052 0.9060 0.7788 0.7749 0.9113 0.9191

Note: (p = 1 in SM,SLC ,SLS1,SLS2,SLS3, p = 1, t = 2 in SBA) “Bold” denotes unreasonable results.
“N/A” denotes that it cannot compute the degree of similarity due to “the division by zero problem”

Table 5 Comparison analysis and the ranking order

Similarity measures Measurement values of Q from Ranking order

P1 P2 P3

Measure PFC1 proposed by Wei and Wei [36] 0.96864 0.97113 0.98464 P3 � P2 � P1

Measure PFC2 proposed by Wei and Wei [36] 0.62729 0.72373 0.92666 P3 � P2 � P1

Measure Sm proposed by [35] 0.64018 0.63749 0.70645 P3 � P1 � P2

Measure S0 proposed in this paper 0.60585 0.63322 0.78205 P3 � P2 � P1

Measure S1 proposed in this paper 0.79017 0.80766 0.88802 P3 � P2 � P1

Measure S2 proposed in this paper 0.57250 0.58144 0.63113 P3 � P2 � P1

Table 6 Rating values in terms
of PFNs

G1 G2 G3 G4 G5 G6

P1 (0.2, 0.5) (0.3, 0.8) (0.4, 0.9) (0.3, 0.7) (0.2, 0.4) (0.8, 0.4)

P2 (0.3, 0.5) (0.8, 0.5) (0.5, 0.6) (0.5, 0.6) (0.4, 0.7) (0.6, 0.5)

P3 (0.4, 0.3) (0.6, 0.8) (0.6, 0.7) (0.6, 0.8) (0.8, 0.6) (0.7, 0.4)

P4 (0.4, 0.7) (0.6, 0.8) (0.4, 0.7) (0.7, 0.6) (0.5, 0.7) (0.5, 0.8)

P5 (0.6, 0.8) (0.4, 0.7) (0.7, 0.4) (0.3, 0.4) (0.7, 0.7) (0.4, 0.7)

123



226 Complex & Intelligent Systems (2019) 5:217–228

Table 7 Comparative study for Example 2

Approach Measurement values of the alternatives from Pb Ranking order

P1 P2 P3 P4 P5

Method by PFC1 proposed in [36] 0.45365 0.64741 0.76863 0.42520 0.59741 P3 � P2 � P5 � P1 � P4

Method by PFC2 proposed in [36] 0.35854 0.51423 0.64996 0.39823 0.44496 P3 � P2 � P5 � P4 � P1

Method by Sm proposed in [35] 0.45293 0.51224 0.533656 0.38015 0.45933 P3 � P2 � P5 � P1 � P4

Method by S0 proposed in the paper 0.36337 0.38339 0.4134 0.27814 0.34522 P3 � P2 � P1 � P4 � P4

Method by S1 proposed in the paper 0.60576 0.62673 0.6468 0.53046 0.59481 P3 � P2 � P1 � P4 � P4

Method by S2 proposed in the paper 0.4397 0.45107 0.46275 0.37751 0.42857 P3 � P2 � P1 � P4 � P4

if G j ∈ F2 and Pb( j) = (0, 1) if G j ∈ F1 for all
j = 1, 2, . . . , n.

Step 3: Calculate the SMs of each alternative from its
ideal values
Using the proposed SMs, i.e.,S0,S1 orSp, compute
the measurement values of each alternative. Based
on the rating values and the idealmeasures, compute
the SMs values using either S0, S1, or Sp measures.

Step 4: Rank the alternatives
Based on the assessment values of the SMs, rank the
given alternatives with the following rules:

Pi ≺ Pp if and only if S(Pi ,Pb) ≤ S(Pp,Pb)

for all i, p = 1, 2, . . . ,m.

Here, S represent the SM.

Example 2 To demonstrate the above method, we consider
an example related to the invest the money in a certain com-
pany. For it, a person chooses the five possible companies
Pi , i = 1, 2, . . . , 5 and considered as an alternative. To eval-
uate these alternatives, a person hires an investment expert
which evaluates these companies under the set of six crite-
ria, namely, G1: “technical ability”, G2: “expected benefit”,
G3: “competitive power on the market”, G4: “ability to bear
risk”, G5: “management capability”, and G6: “organizational
culture”. The values of each alternative are listed in Table 6
using PFNs.

Then, the steps of the method are executed as follows:

Step 1: By Eq. (12) with k = 1, we can get

ω = (0.13, 0.19, 0.16, 0.16, 0.18, 0.18).

Step 2: As G4 ∈ F1, while others are belongs to F2, so the
ideal values are Pb(1) = Pb(2) = Pb(3) = Pb(5) =
Pb(6) = (1, 0) and Pb(4) = (0, 1).

Step 3: Utilize the similarity measure S1 to compute the mea-
surement values and get S1(P1,Pb) = 0.60576,

S1(P2,Pb) = 0.62673, S1(P2,Pb) = 0.6468,
S1(P4,Pb) = 0.53046, and S1(P5,Pb) = 0.59481.

Step 4: Since the measurement value of P3 alternative is the
highest and hence the best company is P3. However,
the overall ordering is P3 � P2 � P1 � P5 � P4.

Furthermore, using existing measures [35,36] and the
other proposed SMs (S0,Sp), we rank the given alternatives
in Table 7. This table shows the consistency of the proposed
measures as the finest alternative remains the same by all the
methods.

Conclusion

In this paper, we introduce some new SMs between PFSs
based on the exponential function of the MDs and NMDs.
The desirable combinations and their features are studied in
detail. To show the efficiency of the proposed SMs, we give
some counter-intuitive examples which shows that existing
measures fail under some certain cases, while the proposed
one classifies the objects. Later, we solve the pattern recogni-
tion as well as DMPs using the proposed SMs. The numerical
results are compared with the existing ones to show its con-
sistency. It is revealed from the proposed method that the
solution obtained is good compromise than the existing ones
and shows it conservative in nature. In the future, we shall
expand the proposed measures under the different uncertain
and fuzzy environments [50–54].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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