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Abstract
We looked at the background of fault-detection and fault-tolerant control algorithms to propose a new high efficiency one 
with a focus on Tennessee Eastman process through fuzzy-based neural network representation. Due to the fact that the open-
loop system may not be stabilized, an advanced control strategy to generate proper control signals needs to be designed. At 
first, to detect and identify the fault, data preprocessing theories have been considered. Based upon the matter disclosed, to 
provide a reliable decision-maker block, fusion classifier idea has been realized. For this one, raw data, time, and frequency 
characteristics are divided into various classification tools and finally the obtained knowledge combination regarding each 
one of them is adopted. It should be noted that the proposed implementation tools are taken into real consideration as the 
fuzzy-based neural network representation. Subsequently, the fault-tolerant control approach based on local controller regu-
lation in case of each fault occurrence has been researched, which the investigated outcomes emphasize the effectiveness of 
the approach proposed here.

Keywords  Tennessee Eastman process · Fault-detection · Fault-tolerant control · Fusion classifier · Fuzzy-based neural 
network representation

Introduction

The production and process industries have always been 
under great pressure due to discussions such as produce 
high-quality productions, product rejection rates, observe 
safety strict and precise issues, and environmental rules. 
Due to the mentioned pressures, related operations to pro-
cess that was accepted at a time, are not sufficient anymore. 
In industrial systems, all faults include process parameter 
changes, turbulence parameters changes, disturbance in 
operation both operator and sensor [1–3]. To meet the mini-
mum system performance requirements, as long as the fault 

is accorded, it needs to detect, diagnose, and eliminate fault. 
The proposed control approach aims for the Tennessee East-
man (TE) process includes:

1.	 Maintain process variables on the optimal point.
2.	 Maintain operational conditions and process variables 

in its proposed contradictions range.
3.	 Minimize production speed changes and product con-

centration against process disturbances.
4.	 Minimize control valves changes that affect other pro-

cesses (valves that affect final product and process 
inputs).

5.	 Disturbances proper elimination and change production 
speed and product concentration.

Except for proposed aims referenced above, the process 
purpose can be considered cost reduction. The economic 
cost is calculated based on:

1.	 The total cost of raw materials used in input lines, purge 
stream, and output line or wasted is calculated.
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2.	 Energy production cost for a compressor that returns 
gaseous materials from the separator section to the reac-
tor section.

3.	 Energy production cost to produce steam for putty col-
umn.

A feature extraction and visualization method for fault-
detection of marine diesel engines and also NARX ANN-
based instrument fault-detection in motorcycle are proposed 
in this field, while L-Kurtosis and its application to fault-
detection of rolling element bearings and also fault-detec-
tion of a wheelset bearing in a high-speed train through the 
shock-response convolutional sparse-coding technique are 
suggested, as well. The TE process is unstable in open-loop 
mode and the first limitation that causes this instability is 
exceeding from reactor allowed pressure range. Realized 
control structure should be able to save process in opera-
tional conditions and can put process variables in its pro-
posed constraints range [4–17]. Regarding the proposed 
research novelty and its innovation, it can be expressed in 
three lines. At first, view, implement of data preprocessing 
theories such as extract time and frequency characteristics 
and the use of conversions to reduce the problem size and 
study it in a different view are taken into real consideration. 
To do this, it is independent of raw data, time domain con-
version includes PDA, LDA, and wavelet frequency domain 
separately in the fuzzy-neural networks. In the second one, 
using the fusion classifier approach to provide decision-
maker block with high reliability and more effectiveness. 
Finally, a fault-tolerant active control approach is proposed 
to combine output results. The importance of this research is 
from actual data of the TE process and complete simulation 
in MATLAB to detect four faults (which there is concur-
rency possibility for two of them) and five different working 
modes in the system as real-time by the fuzzy-neural fusion 
classifier and compare classification results with the pre-
sented sample in other reliable materials [18–30].

The rest of this paper is organized as follows: “The pro-
cess modeling” is the description of process modeling, while 
“The pattern recognition and classifier concept” is taken as 
the pattern recognition and classifier concept. “The pro-
posed approach” is the description of the proposed approach 
and finally “Simulation results” focuses on the simulation 
results.

The process modeling

Regarding the final goal of the TE production, it is to note 
that two produces including G and H are used by four opera-
tors including A, D, C, and E; however, they exist lateral 
production and neutral materials results in eight chemical 

component in the process that its equations are of the fol-
lowing form [3]:

In the above-referenced equations, F is the lateral prod-
uct, B is the neural material, although it affects the whole of 
process, as is not shown in the chemical equations of 1–4. 
All of these ones are irreversible and pyrogenic; so increas-
ing in reaction speed causes increasing in environment tem-
perature and decreasing in reaction speed causes decreas-
ing in environment temperature, correspondingly. Reaction 
speed relation and temperature based on Arrhenius relation 
is also expressed:

In this equation, Ea is the activation energy, R is the 
gases global constant, K is the number of collisions hap-
pened in the reaction. Due to Eq. (5), it is clear that reduc-
ing the activation energy (by adding a catalyst to be done) 
and/or temperature increasing collisions numbers should 
be decreased. based on the above-captioned equation, we 
can conclude that by stopping one of the processes impacts, 
production rate reduction is created (although, if a reac-
tion product treats as a reactive in another reaction, speed 
reaction of reaction product causes product speed reac-
tion of secondary production because remained product 
in reaction ambience had to be consumed). Another point 
that remains in terms of chemical equations govern on the 
process is that product reaction G requires more activation 
energy than other reactions, so, due to Eq. (6), this reaction 
may be more sensitive to temperature variations. The TE 
process based on Fig. 1 is made of five main units: reactor 
unit, condenser unit, compressor unit, separator unit, and 
stripper unit.

The pattern recognition and classifier 
concept

The pattern recognition is a scientific method and its aim 
is to classify objects based on topics or classes numbers. 
Based on its application, these objects can be taken into 
consideration as image, signal, or any type of measurement 
that need classification. To design a pattern recognition 

(1)A(gas) + C(gas) + D(gas) → G(liq.)

(2)A(gas) + C(gas) + E(gas) → H(liq.)

(3)A(gas) + E(gas) → F(liq.)

(4)3D(gas) → 2F(liq.).

(5)K = Ae−
Ea

RT .

(6)K = e−
Ea

RT →

dk

dT
=

Ea

RT2
e−

Ea

RT .
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system which is called classifier, we need data objects (that 
want to be classified), which describe objects well. To do 
this, consider the characteristics of them to distinguish 
objects related to different classes. The characteristic that 
is used to distinguish classes or levels is known as the fea-
ture. One feature may be sufficient for the separation (with 
enough and desirable accuracy) several features are needed 
for the separation. All classifiers include methods based 

on the neural networks such as MLP,1 RBF2 and statistical 
methods such as Bayesian, KNN,3 and Parzen Windows 
and also SVM.4 In Fig. 2, the diagram of fusion classifier 

Fig. 1   The schematic diagram of the TE process [3]

Fig. 2   All kinds of fusion clas-
sifier [3]

1  Multi-Layer Perceptron.
2  Radial Basis Function.
3  k-Nearest Neighbors.
4  Support Vector Machine.
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methods has been presented. As long as a fault has occurred 
in a system, the main problem has to be considered is fault 
announcement, in continue, and in the ideal case, detection, 
which fault has occurred, and finally choosing the dealing 
approach with that fault to be prioritized. Fault-detection 
problems, source finding, fault location, and proper reac-
tion time are essential and fundamental concepts of fault-
tolerant control systems [11]. Due to choosing the TE as 
the process on which presented research approach in this 
investigation is carried out (for presented fault in the TE 
process, the proper model is not available and have to use 
the obtained data from the system, which are collected 
when all faults have been occurred). Additionally, due to 
the benefits of data-axis FDI method, the combination of 
neural networks to design the above-referenced FDI for the 
TE is considered.

The proposed approach

Preprocessing includes more complex conversions to reduce 
data size. In summary, we can say that data preprocessing 
includes all conversions that are taken place on the raw data 
to provide them as a form to be simpler and more effective 
for next preprocessing like using in classifiers. There are 
various tools and methods for preprocessing; such as wavelet 
transform, a mathematical tool to reduce data, functions, or 
operators to various small frequency components and then 
study each component based on its scale. Normalization 
transforms data into new data with changes range or proper 
distribution. Whitening is used to data unbundling. Feature 
reduction, which is used to eliminate repetitive, extra, and 
irrelevant data to classify [13].

The NNPCA structure

In one of the proposed methods in this research, first, system 
input and output raw data are extracted through PCA pre-
processing and then, using the neural network, classify fault 
and normal modes. To do this, a dual-layer neural network 
by MLP structure has been realized and also BP training 
algorithm is used to update the model [14].

The description

The main foundation of the proposed method is that apply-
ing all signals and their features as neural networks inputs 
do not lead to improve the quality. That’s right that neural 
networks are potentially capable to approximate each func-
tion but it should be considered that the potentiality feature 
and its activity is the main point. In the proposed approach, 
at the first level, four neural classifiers have been used. At 
the first classifier input, data are raw. The other classifier 

inputs are the results of main components analysis, linear 
separator analysis, and wavelet. Main components analysis is 
proposed as a no-coach time domain mapping (design) and 
linear separator analysis is proposed in the time domain with 
pose handler. Wavelets are also frequency domain mapping; 
using wavelets mapping three features energy, entropy and 
variation to be extracted. Actually, it should be noted that 
three features are extracted for each signal. Considering time 
and frequency features result in improving fault-detection 
and identification sensitivity approach. This should be pre-
sented with simulation results in continue. In Fig. 3, the 
proposed approach structure is presented.

For the fuzzy section, the third approach namely fuzzy 
output is used. Five distinct outputs are considered between 
different working modes in the system for all neural networks. 
These networks outputs attached data input to the mode that is 
relevant. The membership functions are considered as Fig. 4. 
In the next step, this section results to be used in a fault active 
controller structure. Basic control structure for this purpose is 
R. The reason to use this structure is being under this control 
regarding the obtained data from the TE process.

In this structure, product value adjusts seven relative con-
trols that are shown by RC in Fig. 5. This relative control 
affects all input lines flows. It is clear that this structure, 
which is similar to MY structure, product rate G and H 
are effective to adjust input flow D and E and reactor input 

Fig. 3   The fault-detection and identification approach

Fig. 4   The membership function with three literal variable
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composition ratio that do not affect the mentioned input flow 
but is effective to adjust flow A and C of input combina-
tion rate, so input analyzer is needed. Reactor pressure is 
controlled using output gas flow of purification section (has 
been previously emphasized about its small size). To imple-
ment this structure, all three analyzers are required [9].

Simulation results

The latest version of Eastman Tennessee simulator and its 
presented data, which is available in [30], have been used 
to simulate. In addition, up to date, there is another main 
reason to use this material is that both simulator and data 
are available on this site. While in other referenced materi-
als such as [11, 12] either simulator or data is available. 
So, fault-detection and identification structure obtained the 
base of data, deals with the problem to be used in control 
structure. Because incompatibility possibility of indetermi-
nate sources such as noise, turbulence, and faults caused 
by solvers has existed. To achieve a fault active structure, 
relative loop changes the state after determining each fault 
occurrence. In other words, the respective loops each have 
two states that are related to the normal or fault state that is 
happened based on fault occurrence or non-occurrence. Here 

faults idv(1), idv(4), idv(8), idv(12) have been considered with 
idv(15), simultaneously, which based on the detection and 
identification, output loops and reactor temperature control 
should be adjusted. So, all classes in normal mode equal to 
5. In the following, first, each classifier result and then its 
combination are presented. At the end, this approach func-
tion is placed in an active control structure to provide the 
investigation of the proposed structure for Easton Tennessee.

The NNPCA method

In this section, the simulation of the proposed clas-
sifier presented in [14] is considered. After apply-
ing basic components analysis, the data dimensions 
numbers proportional to the normal state and faults 
idv(1), idv(4), idv(8), idv(12) and idv(15) is equal to 7, 11, 
7, 11, 12 as this classifier diagram is shown in the following.

The fuzzy‑neural classifier fusion classifier

Before presenting the results, explanations about data 
type and its features are presented. Data are adapted 
from decentralized control structure in [9]. Faults have 
been presented an hour after running the program, while 
70% of available data are allocated to train and the rest 

Fig. 5   The control strategy
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is classified to test and also validation equally. To report 
each level, three general diagrams are presented; the sum 
of the squared error based diagram on training, test and 
evaluation, training condition diagram, and conjugation 
matrix are such these three diagrams. In all, matrix con-
fusion, class one represents the normal state. Classes 2–5 
expresses faults idv(1), idv(4), idv(8), idv(12) simultane-
ously with idv(15) . In one such case, the results are illus-
trated in Figs. 6, 7 and 8, respectively.

The neural networks with raw data

Due to illustrated diagram based on training data, opti-
mal repeat number is taken as 28. Actually, optimal repeat 
number can be considered as the convergence rate. Also 
based on training diagrams, it is seen that variations and 
descending gradient step length are enough small in repeti-
tions number 25. This implies a point under proper opti-
mal. Finally, with respect to confusion matrix, it is also 

Fig. 6   The sum square error 
diagram based on training, 
test, validation data in NNPCA 
method [14]

Fig. 7   The neural classifier 
training situation diagram in 
NNPCA method [14]
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shown that system operation in normal and fault condition 
is appropriate, while idv(1) has existed but in three faults 
idv(4), idv(8), idv(12) , simultaneously, with idv(15) have 
not properly operated. In this way, the results are illus-
trated in Figs. 9, 10 and 11, respectively.

The neural network with linear separator analysis

In continue, the second classifier results, which are a linear 
separator analysis should be reported. When linear separa-
tor analysis is used, maximum data dimension equals to 

Fig. 8   The configurations 
matrix in NNPCA method [14]

Fig. 9   The sum of squared error 
diagram based on training data, 
test and validation based on 
raw data
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classes number minus one. So, the entire class’s number 
equals to be four. Comparing the obtained results from this 
section with the previous results, it is shown that overall 
operation of the third classifier is similar to the second 
classifier, while the linear separator is applied.

Operation in faults of 8, 12, and 15 had been improved 
instead the quality reduction in fault 4 has been observed. 
These results confirm that fusion classifier provides the 

better performance as much as possible. The results are 
illustrated in Figs. 12, 13 and 14, respectively.

The neural network with data frequency 
characteristic (features)

In this section, the third classifier has been presented. These 
frequency domain classifier inputs are calculated by wavelet 

Fig. 10   The neural classifier 
training condition based on raw 
data

Fig. 11   The matrix confusion 
based on raw data
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mapping. As is stated previously, using mentioned wave-
let, variations, entropy, and energy futures are extracted in 
each signal. Considering raw signal numbers in the TE pro-
cess as it equals to 52, counting three mentioned frequency 
and the forth level input as is 156. Considering diagrams, 
the convergence rate is observed. Additionally, significant 
improvement is obtained in matrix confusion. The investi-
gated improvement in classes 4 and 5 is due to the fact that 
these faults are random. It is to note that the random sig-
nals in frequency domain have better separation capability 
than which in the time domain. The results are illustrated in 
Figs. 15, 16 and 17, respectively.

The fuzzy‑neural fusion classifier

At the end, the mentioned fusion classifier results through 
neural networks are presented. Applying each classifier out-
put as neural fusion input, and then fusion neural network 

training, the results should significantly be improved which 
is reported in the following. As is observed, the optimal 
repetition number is taken as 16. As expected to see, the 
convergence rate in comparison with wavelet analysis is 
slightly reduced (because time signals are involved), but in 
comparison with the first three, it has the better condition. 
And variation step indicates the proper quality of final point. 
Finally, the matrix confusion also indicates the improvement 
in all indices. The results are illustrated in Figs. 18, 19 and 
20, respectively.

The fault‑tolerant control approach

The proposed structure to detect and identify a fault 
in fault-tolerant control in the TE process has been 
realized. The faults in this research are taken as 
idv(1), idv(4), idv(8), idv(12), s imul taneously,  wi th 
idv(15). The faults idv(1) and idv(8) have the direct impact 

Fig. 12   The sum of squared 
error diagram based on train-
ing data, test, and validation 
after applying linear separator 
analysis

Fig. 13   The diagrams of neural 
classifier training condition 
after applying linear separator 
analysis
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Fig. 14   The matrix confusion 
after applying linear separator 
analysis

Fig. 15   The diagram of sum of 
squared error based on training 
data, test, and validation after 
applying wavelet analysis
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on products concentration that are G and H to be shown. 
Therefore, after occurring these faults, output loop, 
which has to control G material concentration, have to be 
adjusted. idv(4) that is related to reactor temperature. In R 

structure, this variable is controlled by a local PI control-
ler by input cold water to reactor cooler. So, after detect-
ing this fault, it is enough to re-control this loop again. 
In R control structure, the condenser is not controlled, 

Fig. 16   The diagrams of neural 
classifier training condition 
after applying wavelet analysis

Fig. 17   The matrix confusion 
after applying wavelet analysis
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Fig. 18   The diagram of sum of 
squared error based on training 
data, test, and validation after 
fusion classifier

Fig. 19   The diagram of training 
condition of neural classifier 
after fusion classifier

Fig. 20   The diagram of matrix 
confusion after fusion classifier
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independently, so condenser valve adhesion impact on 
idv(15), idv(12) is not tangible in this structure; this manip-
ulation variable is not used. The normal-mode controller is 
existed in R structure and in fault mode, Ziegler–Nichols 
method is used to design the PIs because in the TE process 
faults are considered as noise. In Fig. 21, the black graph 
illustrates the normal mode with the normal controller. In 
the graphs of blue and black, idv(4) is applied an hour after 
system starting to work. The red graph indicates the sys-
tem in the presence of normal-mode controller, which has 
a slow behavior against idv(4) . But in the blue graph, in 
which fault-detection, identification block and controller 
reset have been used and the fault has been detected after 
some samples to overcome controller coefficients changes 
and speeds up idv(4) attenuation.

If the change occurs in line 4 condition of the TE pro-
cess, idv(1) and idv(8) , output loop must be reset. In Fig. 22, 
like the previous one, the black graph illustrates the normal 

conditions, while red and blue ones indicate faults. In this 
diagram, at sample 200, first idv(1) has occurred and in sam-
ple 800, idv(8) has also occurred. In the red graph, regard-
less of occurred fault or not, the normal-state controller has 
been used but in the blue one, fault-detection and identifi-
cation block are used by controller coefficients setting. It is 
observed that fluctuations ranges in the red graph are greater 
than the blue one.

Due to both previous diagrams, the proposed approach 
operation in the TE process system is validated. The follow-
ing table compares presented results in [10] with the proposed 
fusion classifier structure. Final classifier has the better per-
formance than individual classifier. In addition, it is seen that 
the performance has not changed for idv(4). This indicates 
that to detect this fault, PCA individual classifier can illustrate 
the best performance. Therefore, in fusion classifier through 
the final fuzzy-neural network, output results for this fault are 
similar to the individual classifier.

Fig. 21   The reactor temperature 
variations under normal condi-
tion and fault idv(4)

Fig. 22   The control G material 
concentration in normal condi-
tion in the presence of idv(1) 
and idv(8)
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Conclusion

A new fault-detection structure is designed in this inves-
tigation for extensive Tennessee Eastman process system 
through fuzzy-neural fusion classifier approach to adjust the 
process output as studied. To detect and identify the fault, 
data preprocessing theories have been analyzed. To provide 
a reliable decision-maker block, fusion classifier idea is real-
ized. The proposed algorithm implementation tools are taken 
as the fuzzy-neural networks. A fault-tolerant control active 
approach based on local controller adjustment in the pres-
ence of fault has been investigated. The investigated results 
emphasize the effectiveness of the approach proposed. It 
should be noted that the future of the present investigation 
can be considered in some aspects of investigations in line 
with the advanced intelligence-based algorithms including 
the separated combinations of the type-II fuzzy-based tech-
niques, Takagi–Sugeno–Kang fuzzy-based techniques and 
other related ones in association with the advanced neural 
network-based techniques, correspondingly.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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