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Abstract
Imprecision is an important factor in any decision-making process. Different tools and approaches have been introduced to
handle the imprecise environment of group decision-making. One of the latest tools in dealingwith imprecision is Pythagorean
fuzzy sets. These sets generalize intuitionistic fuzzy sets with a wider scope of applications, and, thus, themotivation for inves-
tigating into its resourcefulness in tackling career placements problem. In this paper, we explore the concept of Pythagorean
fuzzy sets and deduce some theorems in connection to score and accuracy functions. Some properties of Pythagorean fuzzy
sets are outlined. The idea of relation is established in Pythagorean fuzzy set setting called Pythagorean fuzzy relation with
numerical illustrations to validate the developed relation. Finally, a decision-making approach of career placements on the
basis of academic performance is presented using the proposed Pythagorean fuzzy relation called max–min–max composi-
tion to ascertain the suitability of careers to applicants. The approach adopted in this paper is suggestible to solve the other
multi-criteria decision-making problems or multi-attribute decision-making problems, respectively.

Keywords Career placements · Fuzzy set · Intuitionistic fuzzy set · Pythagorean fuzzy relation · Pythagorean fuzzy set

Introduction

Considering the imprecision in decision-making, Zadeh [1]
introduced the idea of fuzzy set which has a membership
function,μ that assigns to each element of the universe of dis-
course, a number from the unit interval [0, 1] to indicate the
degree of belongingness to the set under consideration. The
notion of fuzzy sets generalizes classical sets theory by allow-
ing intermediate situations between thewhole and nothing. In
a fuzzy set, a membership function is defined to describe the
degree of membership of an element to a class. The member-
ship value ranges from 0 to 1, where 0 shows that the element
does not belong to a class, 1 means belongs, and other values
indicate the degree of membership to a class. For fuzzy sets,
the membership function replaced the characteristic function
in crisp sets.

Albeit, the concept of fuzzy sets theory seems to be incon-
clusive because of the exclusion of nonmembership function
and the disregard for the possibility of hesitation margin.
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Atanassov critically studied these shortcomings and pro-
posed a concept called intuitionistic fuzzy sets (IFSs) [2–5].
The construct (that is, IFSs) incorporates both membership
function, μ and nonmembership function, ν with hesitation
margin, π (that is, neither membership nor nonmembership
functions), such that μ + ν ≤ 1 and μ + ν + π = 1.
Atanassov [6] introduced intuitionistic fuzzy sets of second
type (IFSST) with the property that the sum of the square
of the membership and nonmembership degrees is less than
or equal to one. This concept generalizes IFSs in a way.
The notion of IFSs provides a flexible framework to elab-
orate uncertainty and vagueness. The idea of IFS seems to be
resourceful in modeling many real-life situations like med-
ical diagnosis [7–11], career determination [12], selection
process [13], and multi-criteria decision-making [14–16],
among others.

There are situations where μ + ν ≥ 1 unlike the cases
capture in IFSs. This limitation in IFS naturally led to a con-
struct, called Pythagorean fuzzy sets (PFSs). Pythagorean
fuzzy set (PFS) proposed in [17–19] is a new tool to deal
with vagueness considering the membership grade, μ and
nonmembership grade, ν satisfying the conditionsμ+ν ≤ 1
or μ + ν ≥ 1, and also, it follows that μ2 + ν2 + π2 = 1,
where π is the Pythagorean fuzzy set index. In fact, the ori-
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gin of Pythagorean fuzzy sets emanated from IFSST earlier
studied in the literature. As a generalized set, PFS has close
relationship with IFS. The construct of PFSs can be used
to characterize uncertain information more sufficiently and
accurately than IFS. Garg [20] presented an improved score
function for the ranking order of interval-valued Pythagorean
fuzzy sets (IVPFSs). Based on it, a Pythagorean fuzzy tech-
nique for order of preference by similarity to ideal solution
(TOPSIS) method by taking the preferences of the experts
in the form of interval-valued Pythagorean fuzzy decision
matrices was discussed. Other explorations of the theory of
PFSs can be found in [21–27].

Pythagorean fuzzy set has attracted great attentions of
many researchers, and subsequently, the concept has been
applied to many application areas such as decision-making,
aggregation operators, and information measures. Rahman
et al. [28] worked on some geometric aggregation operators
on interval-valued PFSs (IVPFSs) and applied same to group
decision-making problem. Perez-Dominguez [29] presented
a multiobjective optimization on the basis of ratio analysis
(MOORA) under PFS setting and applied it to MCDM prob-
lem. Liang and Xu [30] proposed the idea of PFSs in hesitant
environment and its MCDM ability by employing TOPSIS
using energy project selection model. Mohagheghi et al.
[31] offered a novel last aggregation group decision-making
process for the weight of decision-makers using PFSs. Rah-
man et al. [32] proposed some approaches to multi-attribute
group decision-making based on induced interval-valued
Pythagorean fuzzy Einstein aggregation operator.

Garg [33,34] unveiled some new logarithmic operational
laws and their aggregation operator for PFS with some
applications and discussed a decision-making problem under
Pythagorean fuzzy environment by proposing some general-
ized aggregation operators. Garg [35] proposed an improved
score function for solving MCDM problem with partially
known weight information, such that the preferences related
to the criteria are taken in the form of interval-valued
Pythagorean fuzzy sets. Garg [36,37] developed a new
decision-makingmodelwith probabilistic information, using
the concept of immediate probabilities to aggregate the infor-
mation under the Pythagorean fuzzy set environment, and
defined two new exponential operational laws about IVPFS
and their corresponding aggregation operators with appli-
cation to MCDM. Other applications of PFSs and IVPFSs,
respectively, in conjunction to decision-making problems,
especially in MCDM andMADM, have been studied in [38–
51].

In this paper, we are motivated to investigate the resource-
fulness of PFSs in tackling career placements problem via
max–min–max rule because of its wider scope of appli-
cations in real-life problems imbedded with imprecision.
The paper is aimed at exploring the notion of PFSs and its
application to career placements on the basis of academic per-

formance using max–min–max composition. To achieve this
aim, we reiterate the concept of PFSs, outline some prop-
erties of PFSs, and deduce some theorems with respect to
score and accuracy functions studied in the literature hith-
erto. The idea of Pythagorean fuzzy relation is proposed as
an extension of fuzzy relation, as well as intuitionistic fuzzy
relation introduced in [8,52], respectively. Conclusively, a
new application of Pythagorean fuzzy sets is explicated in
career placements on the basis of academic performance
using the proposed relation. The rest of the paper are thus
presented: Sect. 2 provides some preliminaries on fuzzy sets
and IFSs as foundations to the idea of PFSs, while Sect. 3
covers the notion of PFSs with some theorems. We present
Pythagorean fuzzy relation and its numerical verifications in
Sect. 4. An application of Pythagorean fuzzy relation (max–
min–max composition) is supplied in a hypothetical case
study in Sect. 5. Finally, Sect. 6 concludes the paper and
provides direction for future studies.

Preliminaries

We recall some basic notions of fuzzy sets and IFSs.

Fuzzy sets

Definition 2.1 (See [1]) Let X be a nonempty set. A fuzzy
set A in X is characterized by a membership function:

μA : X → [0, 1].

That is:

μA(x) =
⎧
⎨

⎩

1, if x ∈ X
0, if x /∈ X
(0, 1) if x is partly in X .

Alternatively, a fuzzy set A in X is an object having the form

A={〈x, μA(x)〉 | x ∈ X} or A=
{〈

μA(x)

x

〉

| x ∈ X

}

,

where the function

μA(x) : X → [0, 1]

defines the degree of membership of the element, x ∈ X .

The closer the membership value μA(x) to 1, the more x
belongs to A, where the grades 1 and 0 represent full mem-
bership and full nonmembership. Fuzzy set is a collection
of objects with graded membership, that is, having degree of
membership. Fuzzy set is an extension of the classical notion
of set. In classical set theory, themembership of elements in a
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set is assessed in binary terms according to a bivalent condi-
tion; an element either belongs or does not belong to the set.
Classical bivalent sets are in fuzzy set theory called crisp sets.
Fuzzy sets are generalized classical sets, since the indicator
function of classical sets is special cases of the membership
functions of fuzzy sets, if the latter only take values 0 or
1. Fuzzy sets theory permits the gradual assessment of the
membership of element in a set; this is described with the
aid of a membership function valued in the real unit interval
[0, 1].

Let us consider two examples:

(i) all employees of XY Z who are over 1.8 m in height;
(ii) all employees of XY Z who are tall.

The first example is a classical set with a universe (all
XY Z employees) and a membership rule that divides the
universe into members (those over 1.8 m) and nonmembers.
The second example is a fuzzy set, because some employees
are definitely in the set and some are definitely not in the set,
but some are borderline.

This distinction between the ins, the outs, and the border-
line is mademore exact by themembership function,μ. If we
return to our second example and let A represent the fuzzy set
of all tall employees and x represent amember of the universe
X (i.e. all employees), then μA(x) would be μA(x) = 1 if
x is definitely tall or μA(x) = 0 if x is definitely not tall or
0 < μA(x) < 1 for borderline cases.

Intuitionistic fuzzy sets

Definition 2.2 (See [2–5]) Let a nonempty set X be fixed. An
IFS A in X is an object having the form:

A = {〈x, μA(x), νA(x)〉 | x ∈ X}

or

A =
{〈

μA(x), νA(x)

x

〉

| x ∈ X

}

,

where the functions

μA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of nonmem-
bership, respectively, of the element x ∈ X to A, which is a
subset of X , and for every x ∈ X :

0 ≤ μA(x) + νA(x) ≤ 1.

For each A in X :

πA(x) = 1 − μA(x) − νA(x)

is the intuitionistic fuzzy set index or hesitation margin of
x in X . The hesitation margin πA(x) is the degree of non-
determinacy of x ∈ X , to the set A and πA(x) ∈ [0, 1].
The hesitation margin is the function that expresses lack of
knowledge of whether x ∈ X or x /∈ X . Thus:

μA(x) + νA(x) + πA(x) = 1.

Example 2.1 Let X = {x, y, z} be a fixed universe of dis-
course and

A =
{〈

0.6, 0.1

x

〉

,

〈
0.8, 0.1

y

〉

,

〈
0.5, 0.3

z

〉}

be the intuitionistic fuzzy set in X . The hesitation margins of
the elements x, y, z to A are as follows:

πA(x) = 0.3, πA(y) = 0.1 and πA(z) = 0.2.

Construct of Pythagorean fuzzy sets

Definition 3.1 (See [17–19]) Let X be a universal set. Then,
a Pythagorean fuzzy set A, which is a set of ordered pairs
over X , is defined by the following:

A = {〈x, μA(x), νA(x)〉 | x ∈ X}

or

A =
{〈

μA(x), νA(x)

x

〉

| x ∈ X

}

,

where the functions

μA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of nonmem-
bership, respectively, of the element x ∈ X to A, which is a
subset of X , and for every x ∈ X :

0 ≤ (μA(x))2 + (νA(x))2 ≤ 1.

Supposing (μA(x))2 + (νA(x))2 ≤ 1, then there is a degree
of indeterminacy of x ∈ X to A defined by πA(x) =√
1 − [(μA(x))2 + (νA(x))2] and πA(x) ∈ [0, 1]. In what

follows, (μA(x))2 + (νA(x))2 + (πA(x))2 = 1. Otherwise,
πA(x) = 0 whenever (μA(x))2 + (νA(x))2 = 1.
We denote the set of all PFSs over X by PFS(X).

Example 3.1 Let A ∈ PFS(X). Suppose that μA(x) = 0.7
and νA(x) = 0.5 for X = {x}. Clearly, 0.7 + 0.5 � 1,
but 0.72 + 0.52 ≤ 1. Thus, πA(x) = 0.5099, and hence,
(μA(x))2 + (νA(x))2 + (πA(x))2 = 1.
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Table 1 Pythagorean fuzzy sets and intuitionistic fuzzy sets

Intuitionistic fuzzy sets Pythagorean fuzzy sets

μ + ν ≤ 1 μ + ν ≤ 1 or μ + ν ≥ 1

0 ≤ μ + ν ≤ 1 0 ≤ μ2 + ν2 ≤ 1

π = 1 − (μ + ν) π = √
1 − [μ2 + ν2]

μ + ν + π = 1 μ2 + ν2 + π2 = 1

Table 1 explains the difference between Pythagorean
fuzzy sets and intuitionistic fuzzy sets.

Theorem 3.1 Let X = {xi } be a universal set, for i = 1, ..., n
and A ∈ PFS(X). Suppose that πA(xi ) = 0, and then, the
following hold:

(i) |μA(xi )| = √|(νA(xi ) + 1)(νA(xi ) − 1)|.
(ii) |νA(xi )| = √|(μA(xi ) + 1)(μA(xi ) − 1)|.

Proof Suppose that xi ∈ X and A ∈ PFS(X). Then, we
prove (i) and (ii). Assume that πA(xi ) = 0 for xi ∈ X :
(i) we have the following:

(μA(xi ))
2+(νA(xi ))

2=1⇒−(μA(xi ))
2=(νA(xi ))

2 − 1

⇒ −(μA(xi ))
2 = (νA(xi ) + 1)(νA(xi ) − 1)

⇒ |(μA(xi ))
2| = |(νA(xi ) + 1)(νA(xi ) − 1)|

⇒ |μA(xi )|2 = |(νA(xi ) + 1)(νA(xi ) − 1)|
⇒ |μA(xi )| = √|(νA(xi ) + 1)(νA(xi ) − 1)|.

(ii) Similar to (i). 
�
Example 3.2 Suppose A ∈ PFS(X) and νA(xi ) = 0.8. Then:

|μA(xi )| = √|(1.8)(−0.2)| = √
0.36 = 0.6.

Thus, μA(xi ) = 0.6. Hence, (μA(xi ))2 + (νA(xi ))2 = 1
implies πA(xi ) = 0.

Definition 3.2 [19] Let A ∈ PFS(X). Then, the complement
of A denoted by Ac is defined as follows:

Ac = {〈x, νA(x), μA(x)〉|x ∈ X}.

Remark 3.1 It is noticed that (Ac)c = A. This shows the
validity of complementary law in PFS.

Definition 3.3 [19] Let A, B ∈ PFS(X). Then, the following
define union and intersection of A and B:

(i) A∪B = {〈x,max(μA(x), μB(x)),min(νA(x), νB(x))〉|
x ∈ X}.

(ii) A∩B = {〈x,min(μA(x), μB(x)),max(νA(x), νB(x))〉|
x ∈ X}.

Definition 3.4 [19] Let A, B ∈ PFS(X). Then, the sum of A
and B is defined as follows:

A ⊕ B=
{

〈x,
√

(μA(x))2+(μB(x))2−(μA(x))2(μB(x))2,

νA(x)νB(x)〉|x ∈ X

}

,

and the product of A and B is defined as follows:

A ⊗ B =
{

〈x, μA(x)μB(x),

√
(νA(x))2 + (νB(x))2 − (νA(x))2(νB(x))2〉|x ∈ X

}

.

Remark 3.2 Let A, B,C ∈ PFS(X). Then, the following
properties hold:

(a) Idempotent:

(i) A ∩ A = A
(ii) A ∪ A = A
(iii) A ⊕ A �= A
(iv) A ⊗ A �= A.

(b) Commutativity:

(i) A ∩ B = B ∩ A
(ii) A ∪ B = B ∪ A
(iii) A ⊕ B = B ⊕ A
(iv) A ⊗ B = B ⊗ A.

(c) Associativity:

(i) A ∩ (B ∩ C) = (A ∩ B) ∩ C
(ii) A ∪ (B ∪ C) = (A ∪ B) ∪ C
(iii) A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C
(iv) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C .

(d) Distributivity:

(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(iii) A ⊕ (B ∪ C) = (A ⊕ B) ∪ (A ⊕ C)

(iv) A ⊕ (B ∩ C) = (A ⊕ B) ∩ (A ⊕ C)

(v) A ⊗ (B ∪ C) = (A ⊗ B) ∪ (A ⊗ C)

(vi) A ⊗ (B ∩ C) = (A ⊗ B) ∩ (A ⊗ C).

(e) DeMorgan’s laws;

(i) (A ∩ B)c = Ac ∪ Bc

(ii) (A ∪ B)c = Ac ∩ Bc

(iii) (A ⊕ B)c = Ac ⊗ Bc

(iv) (A ⊗ B)c = Ac ⊕ Bc.

Definition 3.5 [53] Let A ∈ PFS(X). Then, the score func-
tion, s, of A is defined by s(A) = (μA(x))2 − (νA(x))2,
where s(A) ∈ [−1, 1].
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Definition 3.6 [53] Let A ∈ PFS(X). Then, the accuracy
function, a, of A is defined by a(A) = (μA(x))2 + (νA(x))2

for a(A) ∈ [0, 1].
Example 3.3 Let A ∈ PFS(X). Suppose that a(A) = 0.6 and
νA(x) = 0.7. Then, μA(x) = 0.3317, s(A) = −0.38, and
πA(x) = 0.6325.

In addition, suppose that s(A) = −0.5 and a(A) = 0.8.
Then, it follows that μA(x) = 0.3873, νA(x) = 0.8062, and
πA(x) = 0.4472.

Theorem 3.2 Let A ∈ PFS(X). Then, the following hold
∀x ∈ X:

(i) s(A) = 0 ⇔ μA(x) = νA(x).
(ii) s(A) = 1 ⇔ |νA(x)| = √|(1 + μA(x))(1 − μA(x))|.
(iii) s(A) = −1 ⇔ μA(x) = √

(νA(x) + 1)(νA(x) − 1).

Proof (i) Suppose s(A) = 0. Then, (μA(x))2 = (νA(x))2 ⇒
μA(x) = νA(x) ∀x ∈ X .

Conversely, assume that μA(x) = νA(x). It follows
immediately that, ∀x ∈ X , (μA(x))2 = (νA(x))2. Thus,
(μA(x))2 − (νA(x))2 = 0. Hence, s(A) = 0.

(ii) Suppose s(A) = 1. Then:

1 − (μA(x))2 = −(νA(x))2

⇒ (1 + μA(x))(1 − μA(x)) = −(νA(x))2

⇒ |(1 + μA(x))(1 − μA(x))| = |νA(x)|2
⇒ |νA(x)| = √|(1 + μA(x))(1 − μA(x))|

∀x ∈ X .
Conversely, assume that |νA(x)| =√|(1 + μA(x))(1 − μA(x))|. Therefore, we get the follow-

ing:

|νA(x)|2 =
√

|1 − (μA(x))2| ⇒ (νA(x))2 = 1 − (μA(x))2

or

|νA(x)|2=
√

|1 − (μA(x))2|⇒−(νA(x))2=1−(μA(x))2.

Take−(νA(x))2 = 1−(μA(x))2 ⇒ (μA(x))2−(νA(x))2 =
1 ⇒ s(A) = 1.

(iii) Suppose that s(A) = −1. Then

(νA(x))2 − 1 = (μA(x))2 ⇒ (νA(x) − 1)(νA(x) + 1)

= (μA(x))2 ⇒ μA(x) = √
(νA(x) − 1)(νA(x) + 1).

Conversely, supposeμA(x) = √
(νA(x) − 1)(νA(x) + 1).

Then

(μA(x))2 = (νA(x))2 − 1 ⇒ (μA(x))2 − (νA(x))2 = −1

⇒ s(A) = −1. 
�

Theorem 3.3 Let A ∈ PFS(X). Then, the following state-
ments hold ∀x ∈ X:

(i) a(A) = 1 ⇔ πA(x) = 0.
(ii) a(A) = 0 ⇔ |μA(x)| = |νA(x)|.

Proof (i) Suppose a(A) = 1. Therefore, we have (μA(x))2+
(νA(x))2 = 1, that is, πA(x) = 0, since πA(x) =√
1 − [(μA(x))2 + (νA(x))2].
Conversely, assume that πA(x) = 0. Then, it follows that:

(μA(x))2 + (νA(x))2 = 1 ⇒ a(A) = 1.

(ii) Suppose a(A) = 0. Then, (μA(x))2 = −(νA(x))2

or (νA(x))2 = −(μA(x))2 ⇔ |μA(x)|2 = |νA(x)|2 ⇔
|μA(x)| = |νA(x)|. 
�
Definition 3.7 Let A, B ∈ PFS(X). Then, A = B ⇔
μA(x) = μB(x) and νA(x) = νB(x) ∀x ∈ X , and A ⊆ B
⇔ μA(x) ≤ μB(x) and νA(x) ≥ νB(x) (or νA(x) ≤ νB(x))
∀x ∈ X . We say A ⊂ B ⇔ A ⊆ B and A �= B.

Definition 3.8 Let A, B ∈ PFS(X). Then, A and B are com-
parable to each other if A ⊆ B and B ⊆ A.

We state the following theorems without prove because of
their straightforwardness.

Theorem 3.4 Let A, B ∈ PFS(X). Then, the following state-
ments hold:

(i) s(A) = s(B) ⇔ A = B.
(ii) s(A) ≤ s(B) ⇔ A ⊆ B.
(iii) s(A) < s(B) ⇔ A ⊆ B and A �= B.

Theorem 3.5 Let A, B ∈ PFS(X). Then, the following hold:

(i) a(A) = a(B) ⇔ A = B.
(ii) a(A) ≤ a(B) ⇔ A ⊆ B.
(iii) a(A) < a(B) ⇔ A ⊆ B and A �= B.

Pythagorean fuzzy relation

In this section, we propose Pythagorean fuzzy relation as
an extension of both fuzzy relation and intuitionistic fuzzy
relation [8,52]. The notions of extension principle for fuzzy
sets [54,55] and intuitionistic fuzzy set [56], respectively, are
paramount toPythagorean fuzzy relation. Inwhat follows,we
define the extension principle for Pythagorean fuzzy sets.

Definition 4.1 Let X and Y be sets and let f be a function
from X to Y . Suppose that A and B are Pythagorean fuzzy
sets of X and Y , respectively. Then:
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(i) the image of A under f , denoted by f (A), is a
Pythagorean fuzzy set of Y defined by the following:

μ f (A)(y) =
{∨

x∈ f −1(y) μA(x), f −1(y) �= ∅
0, otherwise

and

ν f (A)(y) =
{∧

x∈ f −1(y) νA(x), f −1(y) �= ∅
1, otherwise;

for each y ∈ Y .
(ii) the inverse image of B under f , denoted by f −1(B), is

a Pythagorean fuzzy set of X defined by the following:

μ f −1(B)(x) = μB( f (x)) and

ν f −1(B)(x) = νB( f (x)) ∀x ∈ X .

Definition 4.2 Let X and Y be two nonempty sets. A
Pythagorean fuzzy relation (PFR), R, from X to Y is a PFS
of X ×Y characterized by the membership function, μR and
nonmembership function, νR . A PF relation or PFR from X
to Y is denoted by R(X → Y ).

Definition 4.3 Let A ∈ PFS(X). Then, the max–min–max
composition of R(X → Y ) with A is a PFS B of Y denoted
by B = R◦ A, such that its membership and nonmembership
functions are defined by the following:

μB(y) =
∨

x

(min[μA(x), μR(x, y)])

and

νB(y) =
∧

x

(max[νA(x), νR(x, y)])

∀x ∈ X and y ∈ Y , where
∨ =maximum,

∧ =minimum.

Definition 4.4 Let Q(X → Y ) and R(Y → Z) be two PFRs.
Then, themax–min–max composition R◦Q is a PFR from X
to Z , such that itsmembership and nonmembership functions
are defined by the following:

μR◦Q(x, z) =
∨

y

(min[μQ(x, y), μR(y, z)])

and

νR◦Q(x, z) =
∧

y

(max[νQ(x, y), νR(y, z)])

∀(x, z) ∈ X × Z and ∀y ∈ Y .

Remark 4.1 FromDefinitions 4.3 and 4.4, themax–min–max
composition B or R ◦ Q is calculated by the following:

B = μB(y) − νB(y)πB(y)

∀y ∈ Y or

R ◦ Q = μR◦Q(x, z) − νR◦Q(x, z)πR◦Q(x, z)

∀(x, z) ∈ X × Z .

Proposition 4.1 If R and S are two PFRs on X × Y and
Y × Z, respectively. Then:

(i) (R−1)−1 = R.
(ii) (S ◦ R)−1 = R−1 ◦ S−1.

Numerical examples

Before applying this relation to career placements,wediscuss
the procedures of the approach step-wisely.

Example 4.1 Let E, F ∈ PFS(X) for X = {x1, x2, x3}. Sup-
pose that

E =
{〈

0.6, 0.2

x1

〉

,

〈
0.4, 0.6

x2

〉

,

〈
0.5, 0.3

x3

〉}

and

F =
{〈

0.8, 0.1

x1

〉

,

〈
0.7, 0.3

x2

〉

,

〈
0.6, 0.1

x3

〉}

.

We find the composition B using Definitions 4.3 and 4.4,
respectively, as follows:

min[μR(ei , x j ), μS(x j , fk)] = 0.6, 0.4, 0.5,

implying that

μB(ei , fk) =
∨

x j∈X
(0.6, 0.4, 0.5) = 0.6.

Again:

max[νR(ei , x j ), νS(x j , fk)] = 0.2, 0.6, 0.3,

implying that

νB(ei , fk) =
∧

x j∈X
(0.2, 0.6, 0.3) = 0.2.

Then

B = 0.6 − (0.2 × 0.7746) = 0.4451.
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Now, we consider a situation where the elements of PFSs are
not equal.

Example 4.2 Let G, H ∈ PFS(X) for X = {x1, x2, x3, x4,
x5}. Suppose that

G =
{〈

0.8, 0.4

x1

〉

,

〈
0.5, 0.7

x2

〉

,

〈
0.8, 0.4

x3

〉

,

〈
0.7, 0.2

x5

〉}

and

H =
{〈

0.7, 0.3

x1

〉

,

〈
0.4, 0.7

x3

〉

,

〈
0.9, 0.2

x4

〉}

.

Before calculating the max–min–max composition, we
rewrite the PFSs; thus:

G =
{〈

0.8, 0.4

x1

〉

,

〈
0.5, 0.7

x2

〉

,

〈
0.8, 0.4

x3

〉

,

〈
0.0, 1.0

x4

〉

,

〈
0.7, 0.2

x5

〉}

and

H =
{〈

0.7, 0.3

x1

〉

,

〈
0.0, 1.0

x2

〉

,

〈
0.4, 0.7

x3

〉

,

〈
0.9, 0.2

x4

〉

,

〈
0.0, 1.0

x5

〉}

.

Now, we find B as follows. Using Definitions 4.3 and 4.4,
we get

min[μR(gi , x j ), μS(x j , hk)] = 0.7, 0.0, 0.4, 0.0, 0.0,

implying that

μB(gi , hk) =
∨

x j∈X
(0.7, 0.0, 0.4, 0.0, 0.0) = 0.7.

Again

max[νR(gi , x j ), νS(x j , hk)] = 0.4, 1.0, 0.7, 1.0, 1.0,

implying that

νB(gi , hk) =
∧

x j∈X
(0.4, 0.7, 0.7, 0.2, 0.2) = 0.4.

Thus

B = 0.7 − (0.4 × 0.5916) = 0.4634.

Application of max–min–max composition
for Pythagorean fuzzy sets to career
placements

We localize the idea of PFR as follows. Let

S = {s1, ..., sl},C = {c1, ..., cm} and A = {a1, ..., an}

be finite set of subjects related to the courses, finite set of
courses, and finite set of applicants, respectively.

Suppose we have two PFRs, R(A → S) and U (S → C),
such that

R = {〈(a, s), μR(a, s), νR(a, s)〉|(a, s) ∈ A × S}

and

U = {〈(s, c), μU (s, c), νU (s, c)〉|(s, c) ∈ S × C},

whereμR(a, s) represents the degree to which the applicant,
a, passes the related subject requirement, s, and νR(a, s) rep-
resents the degree to which the applicant, a does not pass the
related subject requirement, s. Similarly,μU (s, c) represents
the degree to which the related subject requirement, s deter-
mines the course, c, and νU (s, c) represents the degree to
which the related subject requirement, s, does not determine
the course, c.

The composition, T , of R and U is given as T = R ◦
U . This describes the state in which the applicants, ai with
respect to the related subjects requirement, s j fit the courses,
ck . Thus:

μT (ai , ck) =
∨

s j∈S
{min[μR(ai , s j ), μU (s j , ck)]}

and

νT (ai , ck) =
∧

s j∈S
{max[νR(ai , s j ), νU (s j , ck)]}

∀ai ∈ A and ck ∈ C , where i, j and k take values from
1, ..., n.

The values of μR◦U (ai , ck) and νR◦U (ai , ck) of the com-
position T = R ◦U are as follows (Table 4):

The career placement can be achieved if the value of T is
given by the following:

T = μT (ai , ck) − νT (ai , ck)πT (ai , ck),

as computed from R andU for the placements of ai into any
ck with respect to s j is the greatest.
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Table 2 R(A → S) R English Maths Biology Physics Chemistry Health

Ada 〈0.6, 0.3〉 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.5, 0.3〉 〈0.5, 0.5〉 〈0.6, 0.2〉
Ene 〈0.5, 0.3〉 〈0.6, 0.3〉 〈0.5, 0.3〉 〈0.4, 0.5〉 〈0.7, 0.2〉 〈0.7, 0.1〉
Ehi 〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.7, 0.3〉 〈0.5, 0.4〉 〈0.4, 0.5〉 〈0.6, 0.3〉
Ebo 〈0.6, 0.4〉 〈0.8, 0.2〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0.5, 0.3〉 〈0.7, 0.2〉
Ela 〈0.8, 0.1〉 〈0.7, 0.2〉 〈0.8, 0.2〉 〈0.7, 0.1〉 〈0.6, 0.1〉 〈0.8, 0.1〉

Table 3 U (S → C) U Medicine Pharmacy Surgery Anatomy Physiology

English 〈0.8, 0.1〉 〈0.9, 0.1〉 〈0.5, 0.4〉 〈0.7, 0.3〉 〈0.8, 0.2〉
Maths 〈0.7, 0.2〉 〈0.8, 0.1〉 〈0.5, 0.3〉 〈0.5, 0.4〉 〈0.5, 0.3〉
Biology 〈0.9, 0.1〉 〈0.8, 0.2〉 〈0.9, 0.1〉 〈0.8, 0.2〉 〈0.9, 0.1〉
Physics 〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.6, 0.2〉
Chemistry 〈0.8, 0.2〉 〈0.7, 0.2〉 〈0.7, 0.3〉 〈0.8, 0.2〉 〈0.7, 0.2〉
Health 〈0.8, 0.1〉 〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.9, 0.1〉 〈0.8, 0.2〉

Table 4 μR◦U (ai , ck) and
νR◦U (ai , ck)

μ, ν Medicine Pharmacy Surgery Anatomy Physiology

Ada 〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.6, 0.3〉 〈0.6, 0.2〉 〈0.6, 0.2〉
Ene 〈0.7, 0.1〉 〈0.7, 0.1〉 〈0.7, 0.3〉 〈0.7, 0.1〉 〈0.7, 0.2〉
Ehi 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.7, 0.3〉 〈0.7, 0.3〉 〈0.7, 0.3〉
Ebo 〈0.7, 0.2〉 〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.7, 0.2〉
Ela 〈0.8, 0.1〉 〈0.8, 0.1〉 〈0.8, 0.2〉 〈0.8, 0.1〉 〈0.8, 0.1〉

Application example

We apply this method using a hypothetical case with a quasi-
real data. Let

A = {Ada, Ene, Ehi, Ebo, Ela}

be the set of applicants for the course placements;

C = {medicine, pharmacy, surgery, anatomy, physiology}

be the set of courses the applicants are vying for;

S = {English Lang., Maths, Biology, Physics,

Chemistry, Health Sci.}

be the set of related subjects requirement to the set of courses.
Suppose the PFR, R(A → S) is given in Table 2. These

data in PF values are assumably gotten after the afore-
mentioned applicants sat for a multiple choice qualification
examination on the itemized subjectswithin a stipulated time.

The first entry is the membership value, μ, representing
the Pythagorean fuzzy value of the marks allocated to the
questions that the applicants answered, and the second entry
is the nonmembership value, ν, representing the Pythagorean
fuzzy value of the marks allocated to the questions failed.

Again, the PFR,U (S → C), is the institution benchmark
for admission into the aforesaid courses in PF values. The
data are in Table 3.

We now find the indeterminate degree, π , for each appli-
cants against the courses. The value of π is the marks loss
due to the hesitation in answering within a stipulated time.
It is gotten by

√
1 − [μ2 + ν2]. The values of π enable us to

calculate T .

Decision-making on course/career placements

Wepresent two forms of decision-making, viz: (1) horizontal
decision with respect to applicant against courses, and (2)
vertical decision with respect to course against applicants.
Decisions are made based on the greatest value of relation
between applicants and courses.

In accordance to the institution’s benchmark for admission
and applicants’ performance in the qualification examination
within a stipulated time, we make the following decisions
from Table 5.

Horizontal decision This decision-making is based on
relation/suitability of the applicants to the list of
courses.

123



Complex & Intelligent Systems (2019) 5:165–175 173

Table 5 T = μT − νTπT

T Medicine Pharmacy Surgery Anatomy Physiology

Ada 0.4451 0.4451 0.3775 0.4451 0.4451

Ene 0.6293 0.6293 0.5056 0.6293 0.5629

Ehi 0.5629 0.5629 0.5056 0.5056 0.5056

Ebo 0.5629 0.6869 0.5056 0.5629 0.5629

Ela 0.7408 0.7408 0.6869 0.7408 0.7408

Ada is suitable to study any of medicine, pharmacy,
anatomy, and physiology.
Ene is suitable to study any of medicine, pharmacy, and
anatomy.
Ehi is suitable to study either medicine or pharmacy.
Ebo is suitable to study only pharmacy.
Ela is more suitable to study any of the courses; Ada is
suitable to study.

Vertical decision Vertical decision is centered on rela-
tion/suitability and competition. It is noticed that:

medicine is suitable to be studied by Ela (0.7408) and
Ene (0.6293);
pharmacy is suitable to be studied by Ela (0.7408) and
Ebo (0.6869);
surgery is suitable to be studied by Ela (0.6869) and any
of Ebo (0.5056), Ehi (0.5056), and Ene (0.5056);
anatomy is suitable to be studied by Ela (0.7408) and Ene
(0.6293);
physiology is suitable to be studied by Ela (0.7408), Ebo
(0.5629), and Ene (0.5629).

Observations

The following observations are deducible from the decisions
above.

(i) Vertical decision is the most reliable, because it con-
siders suitability/relation and mental ability, and it is
competitive.

(ii) Ela is the most brilliant applicant with the ability to
study all the courses ahead of the other applicants in the
order: medicine (0.7408), pharmacy (0.7408), anatomy
(0.7408), physiology (0.7408), and surgery (0.6869).

(iii) Ene has the ability to study the following courses in the
order: medicine (0.6293), anatomy (0.6293), physiol-
ogy (0.5629), and surgery (0.5056).

(iv) Ebo has the ability to study the following courses in
the order: pharmacy (0.6869), physiology (0.5629), and
surgery (0.5056).

(v) Ehi has the ability to study only surgery (0.5056) with
the same ability as Ene and Ebo.

(vi) Ada is not suitable to study any of the courses in a
competitive environment.

From the aforesaid discussion, it is meet to assert that the
max–min–max composition approach explored in this study
is very suitable and decisive, especially in a critical decision-
making problem like career placements. In fact, without this
approach, this exercise would have been compromised with
a consequent effect on performance and efficiency.

Conclusion

The notion of Pythagorean fuzzy sets is a relatively novel
mathematical framework in the fuzzy familywith higher abil-
ity to cope imprecision imbedded in decision-making. In this
paper, we have studied the concept of PFS more expressly
with relevant illustrations, where necessary. Some important
remarks were drawn which differentiated PFSs from IFSs.
It was observed that every IFS is PFS, but the converse is
not always true. Some theorems on PFSs were deduced and
proved, especially on the ideas of score and accuracy func-
tions.We also extended the concept of relation to PFSs, called
PF relation (or PFR), and illustrated the concept using numer-
ical examples. Finally, an application of PFSs was explored
on course placements based on academic performance using
the proposed composition relation.

The max–min–max composition introduced in this paper
could be used as a viable tool in applying PFSs to MCDM
problems, MADM problems, pattern recognition problems,
etc. Notwithstanding, it is suggestible to consider this
approach from object-oriented perspective for quick output
in further research. In addition, some theoretic notions of
PFSs and PF relation could still be exploited, and the con-
cept of PFSs could be applied to solvemore real-life problems
imbedded with imprecision.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
2. AtanassovKT (1983) Intuitionistic fuzzy sets. VII ITKR’s Session,

Sofia
3. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst

20:87–96

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


174 Complex & Intelligent Systems (2019) 5:165–175

4. Atanassov KT (1999) Intuitionistic fuzzy sets: theory and applica-
tions. Physica, Heidelberg

5. Atanassov KT (2012) On intuitionistic fuzzy sets theory. Springer,
Berlin

6. Atanassov KT (1989) Geometrical interpretation of the elements
of the intuitionistic fuzzy objects. Preprint IM-MFAIS-1-89, Sofia

7. Davvaz B, Sadrabadi EH (2016) An application of intuitionistic
fuzzy sets in medicine. Int J Biomath 9(3):1650037

8. De SK, Biswas R, Roy AR (2001) An application of intuitionistic
fuzzy sets in medical diagnosis. Fuzzy Sets Syst 117(2):209–213

9. Ejegwa PA, Modom ES (2015) Diagnosis of viral hepatitis using
new distance measure of intuitionistic fuzzy sets. Int J Fuzzy Math
Arch 8(1):1–7

10. Szmidt E, Kacprzyk J (2001) Intuitionistic fuzzy sets in somemed-
ical applications. Note IFS 7(4):58–64

11. Szmidt E, Kacprzyk J (2004) Medical diagnostic reasoning using a
similarity measure for intuitionistic fuzzy sets. Note IFS 10(4):61–
69

12. Ejegwa PA,AkuboAJ, JoshuaOM (2014) Intuitionistic fuzzzy sets
in career determination. J Info Comput Sci 9(4):285–288

13. EjegwaPA (2015) Intuitionistic fuzzy sets approach in appointment
of positions in an organization via max–min–max rule. Glob J Sci
Front Res F Math Decis Sci 15(6):1–6

14. Garg H, Singh S (2018) A novel triangular interval type-2 intu-
itionistic fuzzy set and their aggregation operators. Iran J Fuzzy
Syst 15(5):69–93

15. Garg H, Kumar K (2018) An advance study on the similarity
measures of intuitionistic fuzzy sets based on the set pair anal-
ysis theory and their application in decision making. Soft Comput
22(15):4959–4970

16. GargH,KumarK (2018)Distancemeasures for connection number
sets based on set pair analysis and its applications to decision-
making process. Appl Intell 48(10):3346–3359

17. Yager RR (2013) Pythagorean membership grades in multicriteria
decision making. In: Technical report MII-3301. Machine Intelli-
gence Institute, Iona College, New Rochelle

18. Yager RR (2013) Pythagorean fuzzy subsets. In: Proceedings of
the joint IFSA world congress NAFIPS annual meeting, pp 57–61

19. Yager RR (2014) Pythagorean membership grades in multicriteria
decision making. IEEE Trans Fuzzy Syst 22(4):958–965

20. GargH (2017)Anew improved score function of an interval-valued
Pythagorean fuzzy set based TOPSIS method. Int J Uncertain
Quantif 7(5):463–474

21. Peng X, Yang Y (2015) Some results for Pythagorean fuzzy sets.
Int J Intell Syst 30:1133–1160

22. Peng X, Selvachandran G (2017) Pythagorean fuzzy set: state of
the art and future directions. Artif Intell Rev. https://doi.org/10.
1007/s10462-017-9596-9

23. Beliakov G, James S (2014) Averaging aggregation functions for
preferences expressed as Pythagorean membership grades and
fuzzy orthopairs. In: Proceedings of the IEEE international con-
ference on fuzzy systems (FUZZ-IEEE), pp 298–305

24. Dick S, Yager RR, Yazdanbakhsh O (2016) On Pythagorean and
complex fuzzy set operations. IEEE Trans Fuzzy Syst 24(5):1009–
1021

25. Gou XJ, Xu ZS, Ren PJ (2016) The properties of continuous
Pyhagorean fuzzy information. Int J Intell Syst 31(5):401–424

26. He X, Du Y, LiuW (2016) Pythagorean fuzzy power average oper-
ators. Fuzzy Syst Math 30(6):116–124

27. EjegwaPA(2018)Distance and similaritymeasures ofPythagorean
fuzzy sets. Granul Comput. https://doi.org/10.1007/s41066-018-
00149-z

28. Rahman K, Abdullah S, Shakeel M, Khan MSA, Ullah M
(2017) Interval-valued Pythagorean fuzzy geometric aggrega-
tion operators and their application to group decision making

problem. Cogent Math 4:1–19. https://doi.org/10.1080/23311835.
2017.1338638

29. Perez-Dominguez L, Rodriguez-Picon LA, Alvarado-Iniesta A,
Cruz DL, Xu Z (2018) MOORA under Pythagorean fuzzy sets
for multiple criteria decision making. Complex. https://doi.org/10.
1155/2018/2602376

30. Liang D, Xu Z (2017) The New extension of TOPSIS method for
multiple criteria decision making with hesitant Pythagorean fuzzy
sets. Appl Soft Comput 60:167–179

31. Mohagheghi V, Vahdani B Mousavi SM (2017) Enhancing
decision-making flexibility by introducing a new last aggregation
evaluating approach based onmulti-criteria group decisionmaking
and Pythagorean fuzzy sets. Appl Soft Comput 61:527–535

32. RahmanK,AliA,Abdullah S,AminF (2018)Approaches tomulti-
attribute group decision making based on induced interval-valued
Pythagorean fuzzy Einstein aggregation operator. New Math Nat
Comput 14(3):343–361

33. Garg H (2018) New Logarithmic operational laws and their aggre-
gation operators for Pythagorean fuzzy set and their applications.
Int J Intell Syst. https://doi.org/10.1002/int.22043

34. Garg H (2018) Generalized Pythagorean fuzzy geometric inter-
active aggregation operators using Einstein operations and their
application to decisionmaking. J Exp Theor Artif Intell 30(6):763–
794

35. GargH (2018)A linear programmingmethodbasedon an improved
score function for interval-valued Pythagorean fuzzy numbers and
its application to decision-making. Int JUncertainFuzzinessKnowl
Based Syst 29(1):67–80

36. Garg H (2018) Some methods for strategic decision-making
problems with immediate probabilities in Pythagorean fuzzy envi-
ronment. Int J Intell Syst 33(4):687–712

37. GargH (2018) A new exponential operational laws and their aggre-
gation operators of interval-valued Pythagorean fuzzy information.
Int J Intell Syst 33(3):653–683

38. Gao H, Wei GW (2018) Multiple attribute decision making based
on interval-valued Pythagorean fuzzy uncertain linguistic aggrega-
tion operators. Int J Knowl Based Intell Eng Syst 22:59–81

39. Rahman K, Abdullah S (2018) Generalized Interval-valued
Pythagorean fuzzy aggregation operators and their application to
group decision making. Granul Comput. https://doi.org/10.1007/
s41066-018-0082-9

40. Rahman K, Abdullah S, Ali A (2018) Some induced aggregation
operators based on interval-valued Pythagorean fuzzy numbers.
Granul Comput. https://doi.org/10.1007/s41066-018-0091-8

41. Khan MSA, Abdullah S, Ali A, Amin F (2018) Pythagorean fuzzy
prioritized aggregation operators and their application to multiat-
tribute group decision making. Granul Comput. https://doi.org/10.
1007/s41066-018-0093-6

42. Khan MSA, Abdullah S, Ali A, Amin F (2018) An exten-
sion of VIKOR method for multiattribute decision making under
Pythagorean hesitant fuzzy setting. Granul Comput. https://doi.
org/10.1007/s41066-018-0102-9

43. Du YQ, Hou F, Zafar W, Yu Q, Zhai Y (2017) A novel method for
multiattribute decision making with interval-valued Pythagorean
fuzzy linguistic information. Int J Intell Syst 32(10):1085–1112

44. Garg H (2018) Linguistic Pythagorean fuzzy sets and its applica-
tions in multiattribute decision making process. Int J Intell Syst
33(6):1234–1263

45. Garg H (2016) A new generalized Pythagorean fuzzy information
aggregation using Einstein operations and its application to deci-
sion making. Int J Intell Syst 31(9):886–920

46. Garg H (2016) A novel accuracy function under inter-valued
Pythagorean fuzzy environment for solving multicriteria decision
making problem. J Intell Fuzzy Syst 31(1):529–540

123

https://doi.org/10.1007/s10462-017-9596-9
https://doi.org/10.1007/s10462-017-9596-9
https://doi.org/10.1007/s41066-018-00149-z
https://doi.org/10.1007/s41066-018-00149-z
https://doi.org/10.1080/23311835.2017.1338638
https://doi.org/10.1080/23311835.2017.1338638
https://doi.org/10.1155/2018/2602376
https://doi.org/10.1155/2018/2602376
https://doi.org/10.1002/int.22043
https://doi.org/10.1007/s41066-018-0082-9
https://doi.org/10.1007/s41066-018-0082-9
https://doi.org/10.1007/s41066-018-0091-8
https://doi.org/10.1007/s41066-018-0093-6
https://doi.org/10.1007/s41066-018-0093-6
https://doi.org/10.1007/s41066-018-0102-9
https://doi.org/10.1007/s41066-018-0102-9


Complex & Intelligent Systems (2019) 5:165–175 175

47. Garg H (2016) A novel correlation coefficients between
Pythagorean fuzzy sets and its applications to decision making
processes. Int J Intell Syst 31(12):1234–1252

48. Garg H (2017) Generalized Pythagorean fuzzy geometric aggrega-
tion operators using Einstein t-norm and t-conorm fo multicriteria
decision making process. Int J Intell Syst 32(6):597–630

49. Hadi-Venchen A, Mirjaberi M (2014) Fuzzy inferior ratio method
for multiple attribue decision making problems. Inf Sci 277:263–
272

50. Yager RR, Abbasov AM (2013) Pythagorean membership grades,
complex numbers and decisionmaking. Int J Intell Syst 28(5):436–
452

51. Yager RR (2016) Properties and applications of Pythagoean fuzzy
sets. Springer, Berlin

52. Sanchez E (1976) Resolution of composition fuzzy relation equa-
tions. Inf Control 30:38–48

53. Zhang XL, Xu ZS (2014) Extension of TOPSIS to multi-criteria
decision making with Pythagorean fuzzy sets. Int J Intell Syst
29:1061–1078

54. Zadeh LA (1975) The concept of linguistic variable and its appli-
cation to approximate reasoning. Inf Control 8:199–249

55. NguyenHT (1978) A note on the extension principle for fuzzy sets.
J Math Anal Appl 64:369–380

56. Atanassova L (2007) On intuitionistic fuzzy version of L . Zadeh’s
extension principle. Note IFS 13(3):33–36

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Pythagorean fuzzy set and its application in career placements based on academic performance using max–min–max composition
	Abstract
	Introduction
	Preliminaries
	Fuzzy sets
	Intuitionistic fuzzy sets

	Construct of Pythagorean fuzzy sets
	Pythagorean fuzzy relation
	Numerical examples

	Application of max–min–max composition for Pythagorean fuzzy sets to career placements
	Application example
	Decision-making on course/career placements
	Observations


	Conclusion
	References




