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Abstract
Data-driven decision-making (D3M) is often confronted by the problem of uncertainty or unknown dynamics in streaming
data. To provide real-time accurate decision solutions, the systems have to promptly address changes in data distribution
in streaming data—a phenomenon known as concept drift. Past data patterns may not be relevant to new data when a data
stream experiences significant drift, thus to continue using models based on past data will lead to poor prediction and poor
decision outcomes. This position paper discusses the basic framework and prevailing techniques in streaming type big data
and concept drift for D3M. The study first establishes a technical framework for real-time D3M under concept drift and details
the characteristics of high-volume streaming data. The main methodologies and approaches for detecting concept drift and
supporting D3M are highlighted and presented. Lastly, further research directions, related methods and procedures for using
streaming data to support decision-making in concept drift environments are identified. We hope the observations in this
paper could support researchers and professionals to better understand the fundamentals and research directions of D3M in
streamed big data environments.
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Introduction

Organizational decision-making is to find an optimal or the
most satisfactory solution for a decision problem. These
decision problems have various types, from daily opera-
tional decisions to long-term strategy business decisions,
from an internal single decision to a multi-level decision
or a multi-organizational decision [41]. Different decision-
making tasks may have different features and, therefore, are
normallymodeled in different forms or presented by different
methods and solvedbydifferent decision-making techniques.

In general, organizational decision problems can be clas-
sified by their natures. The classic classification is based on
a given problem’s structure, i.e., structured, semi-structured
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and unstructured [34]. The last two are also called ill-
structured. A structured decision problem can be described
by classic mathematical models, such as linear program-
ming or statistics methods. The procedure for obtaining the
optimal solution is known as standard solution methods.
An unstructured decision problem is fuzzy, uncertain and
vague, for which there is no standard solution method to
get an optimal solution or such an optimal solution does not
exist. Semi-structured decision problems fall between struc-
tured and unstructured problems, having both structured and
unstructured features, and reflecting most real-world situa-
tions.Conventional decision support techniques performance
well on solving structured decision problems, but cannot
solve ill-structured decision problems. Data-driven decision-
making (D3M) techniques or called machine-learning-based
decision-making techniques are more suitable for an ill-
structured decision problem and for decision making in
dynamic and complex situations.

Recent years, various data sources (datasets, data ware-
houses, databases, data streams, etc.) become available to
form a Big Data environment. Many decision problems,
particularly ill-structured, can be well solved by findings
obtained from data through data mining, data analysis and
machine learning, that is D3M techniques [41]. Various D3M
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techniques including models, methods, algorithms and soft-
ware tools have been developed through learning from big
data. As a result, conventional decision-making or decision
support systems (DSSs) have evolved in linewith the increas-
ing availability of data and computational power. Current
D3M techniques are capable to generate decision options
through collected data from databases or data warehouses,
and to provide queries and management reports according
to decision-makers’ requirements. However, they are inade-
quate for supporting highly dynamic (rapid change) decision
situationswhich require fast responses to the changes. A very
recent survey [21] has pointed out that a dynamic environ-
ment with uncertainty (concept drift) is an inherent property
of big streaming data. These unavoidable rapid changes in
decision environments, e.g., new markets, new products and
new customer behaviors, inevitably results in changes in the
underlying data distribution in data streams. These changes
are known as concept drift and may result in poor prediction
and poor decision outcomes, as the pattern of past data does
not conform to that of newly arriveddata.How tomaintain the
effectiveness of a DSS under concept drift for big streaming
data is a challenging research question, and developing a new
generation of adaptive DSS for real-time decision-making is
an urgent requirement. In other words, self-learning and self-
adaptive features are important characteristics for the next
generation of D3M and D3M-based DSSs

This paper presents our position on DSSs in the context
of big streaming data containing concept drift. We present
each challenge and discuss their implications. The rest of
the paper is organized as follows. Section 2 summarizes the
adaptive decision-making framework. Section 3 highlights
the characteristics and the challenges of streamed big data.
Section 4 analyzes the existing work on big streaming data
and introduces essential work that has not yet been done.
Section 5 presents our position on the future directions for
real-time decision support under concept drift. Lastly, Sect.
6 presents our summary of this paper.

Adaptive decision-making framework

This section presents the general framework of adaptive
decision-making.

Data-driven decision-making

Data-driven decision-makinguses a variety ofmachine learn-
ing approaches for data analysis by characterizing a decision
problem and ascertaining the connections between the prob-
lem variables (input, internal and output variables) without
having explicit knowledge of the physical behavior of the
decision model.

Adaptive decision-making to address the concept drift
problem has gained considerable attention. Concept drift
detection and adaptation is an effective strategy for improv-
ing the accuracy of decision-making in a dynamic data
streaming environment. When a drift is detected, machine
learning techniques are applied to adapt decision models to
new concepts. The components of an adaptive data-driven
decision-making framework are introduced in the next sec-
tion.

An adaptive data-driven decision-making
framework under concept drift

Data-driven decision support under concept drift in high-
volume streaming data has threemajor components as shown
in Fig. 1. The first collects raw data from various sources and
reformats them to unify the time frame and feature space,
so that they can be applied to modeling and constructing the
training data. The second detects and interprets the changes
in data streamsover time. If themost recently arrived data sig-
nificantly conflictswith thehistorical data, a concept driftwill
be reported and an adaptation process will be triggered. The
third component is adaptive decision-making. In this compo-
nent, DSSs are actively updated according to the results of the
drift detection and understanding. The data-driven decision
process under this framework is as follows. Drift detection
part will detect drift, once a drift is identified, it will notify
the system. The drift understanding will be then initialized to
target the drift and propose possible drift resolve solutions.
To help finding a better solution, the systemwill interpret the
drift from When the drift occurred, How significant the drift
is, andWhere the drift is located. Drift responses and adapta-
tion are dependent on the types of DSSs. For a model-based
DSS, adaptive decision-making could be able to react to drift
by, e.g., updating an optimization model’s parameters; for a
knowledge-based DSS, adaptive decision-making could be
able to react to drift by, e.g., updating a knowledge base. In
a data-driven DSS, adaptive decision-making involves, e.g.,
retraining a prediction model. In this paper, we only focus
on data-driven DSSs.

Streamed big data

This section discusses the characteristics of big streaming
data and the challenges of learning under big streaming data.

Characteristics of streamed big data

Big data is an outcome of the current information explosion
that is relevant to a diverse range of fields in the natural,
life, social, and applied science, including physics, biology,
medicine, economics and management [26]. Big data has
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Fig. 1 A general framework of adaptive D3M

been widely characterized by the three Vs [15]: a hugely
increased Volume of data, a Variety of data sources and
quality, and the high Velocity at which data is generated or
obtained. Big data technology holds incredible promise for
improving people’s lives, accelerating scientific discovery
and innovation, and instigating positive societal change [7].
Meanwhile, new challenges accompanying the heterogene-
ity, incompleteness, scale, timeliness, privacy and process
complexity of big data, including aspects of data acquisition,
data storage, information extraction, and big data analysis,
need to be overcome [18]. Further three Vs are now rec-
ognized as the development of big data analysis: Veracity,
which focuses on the unreliability inherent in data sources;
Variability, which refers to variations in data flow rates; and
Value, which refers to the issue of low value density [8,9,13].

Challenges in streamed big data

Eight big streaming data challenges were discussed in [17],
covering the cycle of knowledge discovery from data. We
consider these challenges from three aspects: (1) the devel-
opment of new data mining skills for big streaming data; (2)
the development of simpler, self-adaptive machine learning
algorithms; and (3) the requirements of privacy and confi-
dentiality for gaining trust of the users and society in the
system.

As data evolves over time, the validity and reliability of
the historical data are questionable. Decision support for
big streaming data has to consider these issues to perform
accurate, up-to-date, real-time analysis. For example, the
detection of highway flooding [28]. Although data streams,
online learning, big data, and adaptation to concept drift have
become important research topics during the last decade,
a truly autonomous, self-maintaining, adaptive data mining
system is still lacking [17]. The short lifespan of data restricts
us to storing and accessing all historical data during each pro-
cessing cycle; however, processing accuracy has been strictly
limited by the fact that the data can be accessed only once
(one-pass setting). This is critical when concept drift occurs,
because good and bad data samples are treated equally when
they are used to learn a new concept. Computing resources
such as hardware and storage space have been developed to
be more efficient and effective, therefore, it is more practical
to adopt a limited storage assumption rather than a zero-
storage assumption when discussing decision support for
high-volume streaming data. In addition, previous decisions
are no longer applicable when data evolve and have to be
replaced according to the current situation. Therefore, when
tomake a decision change and how to conduct that change are
two unsolved aspects of this problem, which become more
difficult when multiple streams are involved.
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Concept drift in streamed big data

This section presents the definition of concept drift and how
to detect, understand and react it. Related real-world appli-
cations are also discussed.

Learning with concept drift

Learning with concept drift is an auxiliary research field
of continuous learning, as discussed in [32], and has also
been referred to as learning under a dynamic environment
[12,37], or learning in a non-stationary environment [5].
The research objective is to identify whether the model
learnt from historical data is the same as that in the
hypothesis set, which demonstrates the best performance
on current concepts, where a concept is a mapping from
input space to labels or target values. Concept drift can
be caused by changes in data distribution, or training with
misleading samples. Learning with high-volume stream-
ing data requires particular attention to be paid to concept
drift.

Concept drift can be categorized as sudden/abrupt drift,
incremental drift, gradual drift or recurrent drift, accord-
ing to When, How and Where: (1) When the drift occurs
and how long it lasts; (2) How severe the drift is; and
(3) Where the drift region is. These three criteria provide
a three-dimensional perspective to describe concept drift.
Drift adaptation strategies are thus specifically designed and
applied to updatemodels experiencingdifferent types of drift.

Early concept drift studies mainly focused on drift point
detection, addressing theWhen criterion by identifyingwhen
the empirical error exceeded the upper bound of an estab-
lishedmodel [2,11,29]. Adaptationmethods are to relearn the
models or to use ensemble algorithms to adapt to new con-
cepts [3,33,35]. In recent years, drift point detection has been
developed to cover more complicated cases, such as feature
selection drift [4,39], region selection drift [19,20,25] and
the detection of multi-layer drift [1,40]. These developments
address the Where criterion. Some drift detection tech-
niques have similar objectives as multivariate two-sample
tests, which compare the similarity between two distribu-
tions according to the available samples [6,19]. A number
of recent publications have considered the test statistics
applied in two-sample tests as a measure for quantifying
drift severity, addressing the issue of How (How severe the
drift is). However, very few have proposed drift adaptation
strategies that use the severity information to learn new con-
cepts.

Learningwith concept drift has three steps: drift detection,
understanding drift, and drift adaptation. We will discuss the
challenges of each step in the paragraphs that follow.

Drift detection

A wide range of algorithms for concept drift detection have
been developed to identify the inconsistency between his-
torical data and newly available data. False-positive and
false-negative criteria are used to evaluate the performance
of drift detection algorithms. Type I errors detect drifts with
fewer false-positive detections, and Type II errors detect
drifts with fewer false-negative detections. In the case of
high-volume streaming data, this may be inadequate, since
Velocity ensures that data arrives at a very fast pace and there
may be insufficient time to collect labels or target values for
drift detection. Drift detection algorithms must detect drift
with a limited quantity of labeled samples, thus solutions
that achieve the desired drift detection accuracywith the least
number of samples are preferable. In other words, the con-
vergence rate of algorithms should also be considered as an
evaluation metric. Although active learning has been applied
to solve this problem [42], solving the issue of Velocity is
still an open question.

Drift understanding

Understanding drift is another key stage of learning under
concept drift. It refers to retrieving information about the
When, How, and Where of concept drift and is used to
describe the status of concept drift. This information is
learned and integrated after drift has been confirmed by drift
detection methods or algorithms and is used as the input
for knowledge adaptation. The need to understand drift has
increasingly gained attention, as mentioned in [36], but very
few concrete methods have been developed to quantify this
information.

Drift adaptation

How to update existing learning models according to the
characteristics of the drift is critical to achieve consistently
high performance [30]. This is called drift adaptation (or
knowledge adaptation). Some adaptation methods explic-
itly rely on drift detection algorithms and adopt a variety of
retraining strategies to better handle different types of drift
[24]. Others, mainly decision-tree-based methods, may not
include a global drift detection procedure but can partially
update models according to changes in some leaf node based
on the newly available data. Ensemble learning for streaming
data with concept drift has also achieved remarkable results
[16]; however, integrating concept drift adaptation into incre-
mental learning is still a challenging problem. Making better
use of How and Where drift information in high-volume
streaming data learning, rather than only When, is the next
step in boosting learning performance.
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Concept drift applications

Handling concept drift is highly important in real-world prac-
tice; for example, in traffic networks, telecommunications,
and financial transactions. Machine learning tasks in these
systems will inevitably encounter the problem of concept
drift, and in some cases, the ability to handle concept drift
will be the key factor in improving system performance.

A discussion of concept drift applications in industry
can be found in [43]. Drift detection applications in this
context refer to the industrial requirement to diagnose sig-
nificant internal and external environmental changes in
industry trends or customer preferences, such as using drift
detection technology to identify changes in the news pref-
erences of users [14]. Similar tasks include fraud detection
in finance, intrusion detection in computer security, mobile
masquerade detection in telecommunications, topic changes
in information document organization, and clinical studies
in biomedicine. The aim of drift adaptation applications is
to maintain a continuously effective evaluation and predic-
tion system for industry. This may also involve using drift
detection technologies to achieve greater accuracy. A real
case example, in which a credit risk assessment framework
for dynamic credit scoring was designed, is represented in
[31]. Other real-world drift adaptation applications can be
found in transportation traffic management, production and
service monitoring, customer recommendation, bankruptcy
prediction, and so on.

With the latest developments in technology, data streams
have become larger in size and faster. The new challenges
posed by high-volume streaming data require the develop-
ment of more advanced concept drift applications. One such
challenge is how to handle concept drift problems in the Inter-
net of Things (IoT) [43], since the huge quantity of streaming
data from the IoT requires deeper insight and better under-
standing of concept drift.

Real-time decision support under concept
drift: future directions

This section presents possible future research directions of
real-time decision support under concept drift.

Adaptive decision support systems under concept
drift

Streaming data are a set of continuous record of events. The
volume of data is expanded by its time stamps, which can be
infinite in number. Nowadays, streaming data has the capac-
ity to track events for long periods at high frequency from
mobile and/or embedded devices (e.g., sensors) [10]. It can
thus continuously capture the potential risk of an event by

analyzing its data stream. If a potential risk is detected that
may result in a significant decision-making failure, the exist-
ing decision-making results need to be immediately updated
to prevent loss being caused by old decisions.We refer to this
as Adaptive Decision Support, and it has application in such
environments as the IoT, emergency management, industrial
control systems and online decision-making. An example of
the applications is situation awareness-based decision sup-
port systems which can improve human decision-makers’
performance and reduce error in dynamic environments [27].

Multi-stream decision support under concept drift

Huge amounts of streaming data are now generated by gov-
ernment and industry from multiple sources, such as sensors
and marketing activities. They are known as multi-streams.
Disruptive technologies and unique user experiences, e.g.,
new markets and new customer behaviors, have inevitably
resulted in changes in the underlying data distribution in
almost all streaming data. In addition, high-volume stream-
ing data commonly have undiscovered correlations across
data streams, and a drift in one stream may cause drift in
other streams. A data-driven decision support system on a
single stream could be highly related to decision support
systems on other streams, thus efficient learning methods
on streaming data, such as identifying correlations between
streams and constructing adaptive correlation networks, are
urgently needed to support the timely prediction of drift and
aid decision-making. In the finance industry, for example,
the bid/offer rate in the inter-bank lending market always
involves the behaviors ofmore than twobanks. The rate needs
to be determined based on the interrelationship between
banks to benefit the involved banks; in telecommunications,
smartphone producers are competitors between each other.
The marketing strategy of one producer affects other pro-
ducers’ strategies, especially for large companies, such as
Samsung and Apple. Therefore, it is import for the Apple
company to analyze marketing behaviors of Samsung to
make efficient strategies and maximize the profit. How to
take advantage of this interrelationship for decision support
to benefit these network groups individually or as a whole is
a promising future research direction.

Recommender systems under concept drift

Recommender systems have attracted great attention and
achieved great success in the last decade [22,38]. Neverthe-
less, the dynamic characteristics of high-volume streaming
data have not been adequately addressed. Current recom-
mender systems treat user preferences as static, in spite of
the fact that preferences changewith increased expertise, per-
sonal experiences, or social popularity. The performance of
recommender systemswill be impaired inmany aspects, such
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as accuracy, novelty and diversity, if these dynamic changes
in user profiles, item analysis, or user preferences are not con-
sidered. Recommendation should consider the consistency of
customer behaviors, customer interactions, and changes in
customer preferences; adopting concept drift detection and
reaction techniques are, therefore, promising directions in
recommender system research for both academia and indus-
try.

Data-driven decision-making under uncertainty

A significant challenge of using large quantities of streaming
data collected from different sources in different time frames
is uncertainty [23]. Uncertainty in high-volume streaming
data takes a number of different forms. We consider that four
main layers are impacted by uncertainty issues in streaming
data-driven decision support: the data layer, the stream layer,
the concept drift detection layer, and the decision-making
layer. The first two layers correspond to Component I in
Fig. 1. Layers three and four correspond, respectively, to
Component II and Component III. Uncertainty problems in
the data layer concern data insufficiency [33], outdatedness
[35], incompletion, and ambiguity [3]. In the stream layer,
uncertainty may exist in the relationship between streams,
such as whether two streams convey the same information,
and may also exist in the correlation of concept drift between
streams, such as the likelihood of drift in one stream causing
drift in other streams. In the concept drift layer, uncertainty
may take the form of noise, false alarms caused by outliers,
and new emerging classes. Uncertainty issues also need to be
considered in the generation of drift early warning. Lastly,
in the decision-making layer, both the model adaptation and
decision optimization processes may be subject to uncer-
tainty issues, since there is no universal decision model to fit
all situations. The research problem is to develop a general
guidance framework for addressing uncertainty issues and to
use uncertainty characteristics to aid decision support.

Summary

In this position paper, we propose a framework for adap-
tive D3M under concept drift in high-volume streaming data
environment, elaborate the challenges and opportunities pre-
sented by big streaming data, introduce the three steps of
learning under concept drift, and discuss future research
directions for adaptive decision support.

This paper highlights the issue of real-time D3M and
provides some fundamental knowledge and methodologies
for researchers and practitioners in decision support system
area. We hope it could provide a good guideline on how
to apply concept drift handling methodologies to help D3M
techniques in big streaming data.
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