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Abstract
Smart technologies present numerous opportunities for enhancing mobile health care. However, existing applications of 
smart technologies to mobile health care face several difficulties. As a result, whether a smart technology application to 
mobile health care will be sustainable is questionable. To address this issue, the fuzzy geometric mean (FGM)–α-cut opera-
tions (ACO)–fuzzy weighted average (FWA) approach is proposed in this study. In the proposed methodology, at first FGM 
is applied to aggregate multiple experts’ opinions on the relative importance of a critical factor. Then, ACO is applied to 
derive the absolute fuzzy importance level of the critical factor. At last, FWA is applied to assess the sustainability of the 
smart technology application to mobile health care. The proposed methodology has been applied to assess the sustainability 
of thirteen smart technology applications to mobile health care. According to the experimental results, the most and least 
sustainable smart technology applications to mobile health care were smart mobile service and smart clothes, respectively. 
In addition, the ranking result using the proposed methodology was somewhat different from those using existing methods 
based on approximation.

Keywords  Mobile · Health care · Smart technology · Fuzzy geometric mean · α-Cut operations · Fuzzy weighted average · 
Sustainability

Introduction

Smart technologies are technologies that use electronic 
devices or systems that can be connected to the Internet, 
used interactively, and are to some extent intelligent [19]. 
Smart technologies have been applied to provide superior 
health care services to mobile users [22, 27]. For example, 
mobile guides such as Google Maps direct users after detect-
ing their locations through the global positioning system 
(GPS) to enable users to reach destinations as soon as pos-
sible, thereby increasing their comfort and reducing their 
tiredness [11, 13]. Smart watches have full mobile phone 
capability and are equipped with many sensors, such as 
thermometers and heart rate monitors, to monitor and help 
maintain users’ physical conditions, which are then con-
veyed to the backend server for further diagnosis [35]. Apps 

have been developed to guide a mobile patient to the near-
est clinic that provides the required treatment and satisfies 
the patient’s preferences [12]. In a smart hospital, wireless 
sensors are attached to mobile patients to collect real-time 
information such as their pulses and oxygen saturation read-
ings [17]. The location of a patient with a smart phone can 
be detected by comparing the WiFi signal strengths in dif-
ferent zones [43].

In summary, smart technologies have the following 
benefits:

1.	 Smart technologies can be applied to provide health care 
assistance to mobile users in both indoor and outdoor 
environments.

2.	 Some smart technologies can overcome the limitations 
of existing technologies.

3.	 Smart technologies are more effective in guiding a user 
to lead healthy lifestyles than in providing health care 
services or health care resource information to the user.

However, existing applications of smart technologies to 
mobile health care face several difficulties. First, some smart 
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technologies are obtrusive, which discourages users, par-
ticularly mobile users, from applying such smart technolo-
gies. For example, monitoring autonomic nervous system 
activities requires a large wrist device to be worn by a user, 
which is obviously obtrusive [4]. Smart glasses are heavy 
and striking to put on despite their advantages in provid-
ing real-time information and instructions. Smart clothes 
are uncomfortable to wear even if they can detect the most 
real-time health conditions. In addition, it is still a challeng-
ing task to aggregate the collected heterogeneous data from 
multiple sources [2]. As a result, the applications of some 
smart technologies to mobile health care may not sustain. To 
address this issue, the fuzzy geometric mean (FGM)–α-cut 
operations (ACO)–fuzzy weighted average (FWA) approach 
is proposed in this study to evaluate the sustainability of 
a smart technology application to mobile health care. The 
motives for this study include the following:

1.	 A systematic way for evaluating the sustainability of a 
smart technology application to mobile health care is 
still lacking [31]. In the literature, only [18] modeled the 
improvement in the successful recommendation rate of a 
clinic recommendation system with a learning process, 
so as to evaluate the sustainability of the clinic recom-
mendation system.

2.	 The critical factors for ensuring the sustainability of a 
smart technology application to mobile health are usu-
ally subjective [15], which can be properly handled 
using FAHP.

3.	 Existing FAHP methods are usually based on approxi-
mation [1, 6]. However, the precise weights of critical 
factors can provide more information than approximated 
weights.

To address these issues, the following treatments are 
taken in this study:

1.	 Factors critical to the sustainability of smart technology 
applications to mobile health care are discussed.

2.	 Multiple experts compare the relative importance levels 
of critical factors using a FAHP method that is com-
posed of FGM and ACO.

3.	 FGM is applied to aggregate experts’ opinions. In con-
trast, most of the past studies (e.g., [24, 29, 33]) applied 
fuzzy arithmetic mean (FAM), which led to an inap-
propriate aggregation result if the pairwise comparison 
results by two experts were contrary to each other.

4.	 ACO is applied to derive the fuzzy eigenvalue and eigen-
vector. The fuzzy eigenvector is normalized to derive the 
absolute fuzzy importance level of each critical factor. 
In contrast, in most of the past studies, FGM and fuzzy 
extent analysis (FEA) were applied to fulfill the same 
purpose [24, 40]. However, FGM and FEA are approxi-

mation techniques, and may overestimate or underesti-
mate the absolute fuzzy importance level of a critical 
factor.

5.	 From the FAHP results, FWA is applied to assess the 
sustainability of a smart technology application to 
mobile health care.

The novelty and originality of the proposed methodol-
ogy reside in the following:

1.	 The sustainability of smart technology applications to 
mobile health care has rarely been discussed in the past. 
Most of the past studies on similar topics were focused 
on the acceptance (or adoption) of a limited number of 
smart devices such as smart phone, smart home, and 
smart watch. For example, Chen et al. [10] applied inno-
vation diffusion theory (IDT), technology acceptance 
model (TAM), and self-efficacy theory to find out the 
factors affecting the adoption of smart phones in the 
logistics industry. For the same purpose, Chen et al. [9] 
applied TAM and self-efficacy theory in the delivery 
service industry. Gaul and Ziefle [23] applied TAM to 
find out factors affecting the acceptance of a smart medi-
cal stent for monitoring health status in a smart home. 
After a TAM analysis, Kim and Shin [28] concluded 
that the determinants of smart watch adoption included 
affective quality, relative advantage, mobility, availabil-
ity, and subcultural appeal. However, the topic discussed 
in this study is not limited to specific smart devices. In 
addition, sustainability, unlike technology acceptance, 
is a long-term concept.

2.	 In addition, most of the past studies on similar topics 
were based on questionnaires [10, 23], while the pro-
posed methodology is based on experts’ pairwise com-
parison results.

3.	 Although FGM, ACO, and FWA have been applied in 
the past FAHP studies [5, 39], the combination of FGM, 
ACO, and FWA has rarely been investigated. This com-
bination ensures a precise deriving of the absolute fuzzy 
importance of a critical factor.

The remainder of this paper is organized as follows. 
Section 2 is dedicated to a literature review. Section 3 
details the FGM–ACO–FWA approach for assessing the 
sustainability of a smart technology application to mobile 
health care. A case study has been conducted to illus-
trate the applicability of the FGM–ACO–FWA approach, 
as described in Sect. 4. Some existing methods are also 
applied to the case for a comparison. Finally, Sect. 5 pre-
sents concluding remarks and provides some directions 
for future research.
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Literature review

Classification of smart technologies

Smart technologies and systems can be classified into four 
categories [44]:

1.	 Wirelessly connected smart systems, such as Internet 
of things, smart TV, smart baby monitor, smart phone, 
smart watch, smart wallet, smart motion sensor, smart 
smoke alarm, smart glasses, spectacles and contact 
lenses, smart body analyzer, smart thermostat, and smart 
city.

2.	 Interactive smart systems, such as smart table, smart 
board, smart burglar alarm, smart fridge, smart cooker, 
smart washing machine, smart light bulb, smart meter, 
and smart plug.

3.	 Predictive smart systems, such as smart hard drive, 
smart connected vehicle, smart building, smart traffic 
light, smart surveillance camera, smart toilet, smart wig, 
smart farm, smart grid, and smart shelf.

4.	 Intelligent smart systems, such as smart WiFi, smart 
mobile service, smart restart, smart defense, smart 
pajama, smart vacuum cleaner, smart travel card, smart 
wheelchair, and sleep-monitoring system.

According to Demirkan [21], the three types of smart 
technologies that can be applied to mobile health care are 
biosensor, wearable device, and intelligent software agent. 
According to Chen and Chiu (2016), smart technologies 
suitable for supporting mobile health care include smart 
watch, smart motion sensor, smart body analyzer, smart 
connected vehicle, smart wig, smart mobile service, smart 
defense technology, and smart wheelchair. Obviously, 
not all of existing smart technologies are applicable in a 
mobile environment.

Applications of smart technologies to mobile health 
care

Smart phones are the handiest and prevalent smart technol-
ogy for mobile health care. In addition to cameras and a 
global positioning system (GPS) receiver, a smart phone is 
equipped with a variety of sensors such as accelerometer, 
proximity sensor, compass (or magnetometer), gyroscope, 
barometer, photometer, and thermometer. These sensors 
are either hardware or software [34], and can be divided 
into motion sensors, environmental sensors, and position 
sensors [3]. There have been sufficient evidences support-
ing the effectiveness of smart phone applications to mobile 
health care. For example, messaging services help to 

prevent the risk factors for cardiovascular diseases, cancer, 
diabetes, and chronic respiratory diseases, and improve the 
perceived self-care [22, 47]. However, simple text mes-
saging may not lower the mortality rate [22]. The trend 
is towards the usage of apps and online social networks. 
Most of existing apps are intended for use by consumers 
or patients. Only few of them are targeted at health care 
professionals [36]. In addition, some health care profes-
sionals are reluctant to use mobile health care apps [46].

A wrist-worn device is usually equipped with sensors 
such as compass, GPS, heart rate monitor, gyroscope, 
accelerometer, barometer, vibration motor, and photo-
plethysmography sensor. These devices can be applied 
to track the energy expenditure (EE) (i.e., the calories 
burned), steps taken, distance traveled, and heart rate (HR) 
[42]. Shcherbina et al. [38] assessed the accuracy of seven 
commercially available wrist-worn devices in estimating 
HR and EE. The results were compared with those meas-
ured with continuous telemetry and indirect calorimetry. 
According to the experimental results, the error rate was 
the lowest when a user was cycling, and was the highest 
when the user was walking, which seemed to be a big 
problem since walking is the most common motion in our 
daily lives. In addition, a higher error rate was associated 
with male, darker skin color, and higher body mass index. 
On average, the error rates of estimating HR and EE using 
wrist-worn devices were 5% and up to 20%, respectively. 
The most representative wrist-worn device is smart watch. 
The combination of a smart watch (with an accelerometer) 
and a smart phone (with a vibration feedback) has been 
demonstrated to be a convenient and effective means for 
developing user–system interaction based on gesture rec-
ognition [7, 32]. For this purpose, an app based on existing 
application program interfaces (APIs) must be installed 
on a smart phone in advance to preprocess the collected 
data, perform client-side reasoning, transmit the collected 
data to the backend server, and receive a recommendation 
message. Porzi et al. [32] observed that an accelerometer 
on a smart watch usually samples at a rate much higher 
than the rate that can be handled by the APIs on a smart 
phone, which makes the preprocessing step essential. The 
compatibility of a smart watch with various types of apps 
is, therefore, critical [42].

A smart motion sensor is an essential device for a smart 
home for detecting the motion of a resident and comparing 
the detection result with normal motions or the resident’s 
routine. Sixsmith and Johnson [41] used a smart motion sen-
sor to detect the possible falls of an elderly person. Isken 
et al. [26] demonstrated the feasibility of using a sensor net-
work for collecting the data of patient flows through health 
care clinics. However, according to the survey conducted 
by Demiris et al. [20], a smart motion sensor was more 
valuable for elderly people in detecting intruders, which 
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reduced anxiety. Moreover, compared with other smart home 
devices, smart motion sensors were less intrusive.

However, a major barrier hampering existing applications 
of smart technologies is the related laws that restrict the pos-
sibility of distant medical care [25].

The proposed methodology

FGM for aggregating multiple experts’ evaluation 
results

The proposed methodology uses a group of K experts. First, 
each expert performs a pairwise comparison of the relative 
importance levels of factors critical to the sustainability of a 
smart technology application. The results are put in a fuzzy 
pairwise comparison matrix:

where

ãij(k) is the fuzzy pairwise comparison result by expert 
k for the relative importance of criterion i over criterion j. 
Equation (2) is the reciprocal requirement for a fuzzy judge-
ment matrix. The following linguistic terms, all in triangu-
lar fuzzy numbers (TFNs), are provided for the experts to 
choose from (Stefanini et al. 2008):

As important as: ãij(k) = (1, 1, 3)
Slightly more important than: ãij(k) = (1, 3, 5)
Considerably more important than: ãij(k) = (3, 5, 7)
Extremely more important than: ãij(k) = (5, 7, 9)
Absolutely more important than: ãij(k) = (7, 9, 9)

These TFNs can be tailored to a specific expert group 
[14]. It is also possible to choose a value between two 
neighboring linguistic terms. ãij(k) is a positive comparison 
if ãij(k) ≥ 1 . To aggregate the results by all experts, FGM 
is applied:

Theorem 1  Equation (3) meets the reciprocal requirement 
for a pairwise comparison matrix.

(1)�̃n×n(k) = [ãij(k)]; i, j = 1 ∼ n; k = 1 ∼ K,

(2)

ãij(k) =

{
1 if i = j
1

ãji(k)
otherwise

; i, j = 1 ∼ n; k = 1 ∼ K

(3)ãij =
K

√√√√ K∏
k=1

ãij(k); k = 1 ∼ K.

Proof  Substituting Eqs. (2) into (3) gives

Theorem 1 is proved.

It is well known that theoretically the product of K TFNs 
is not a TFN anymore. Nevertheless, after taking the K-th 
root, the FGM of K TFNs can be approximated with a TFN.

Subsequently, the fuzzy eigenvalue and eigenvector of �̃ , 
indicated, respectively, with 𝜆̃ and �̃ , are derived by solving 
the following two equations [37]:

and

where (−) and (×) denote fuzzy subtraction and multiplica-
tion, respectively. However, the two equations are not easy 
to solve. For this reason, most of the past studies applied 
approximation techniques such as FGM (not the FGM for 
aggregation) [48] and FEA. In contrast, in the proposed 
methodology, ACO is applied to derive the values of 𝜆̃ and 
�̃ precisely, which will be described in the next section.

Based on the values of 𝜆̃ and �̃ , the fuzzy maximal eigen-
value and the fuzzy weight of each critical factor are derived, 
respectively, as

Based on 𝜆̃max , the consistency among the fuzzy pairwise 
comparison results is evaluated as

(4)

ãij =
K

���� K�
k=1

ãij(k)

=
K

���� K�
k=1

1

ãji(k)
; k = 1 ∼ K

= K

�
1∏K

k=1
ãji(k)

=
1

k

�∏K

k=1
ãji(k)

=
1

ãji

(5)det(�̃(−)𝜆̃�) = 0

(6)(�̃(−)𝜆̃�)(×)�̃ = 0,

(7)𝜆̃max = max𝜆̃,

(8)w̃i =
x̃i∑n

j=1
x̃j
.

(9)Consistency index �C.I. =
𝜆̃max − n

n − 1
,
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where R.I. is the random index [37]. The fuzzy pairwise 
comparison results are inconsistent if �C.I. > 0.1 ∼ 0.3 or 
�C.R. > 0.1 ∼ 0.3 , depending on the matrix size ([37]; Wed-
ley 1993; Business Performance Management Singapore, 
2013).

ACO for deriving the fuzzy eigenvalue 
and eigenvector

Complicated operations on fuzzy variables can be performed 
via their α cuts. For this reason, fuzzy parameters and vari-
ables in Eqs. (5) and (6) are replaced with their α cuts, which 
leads to

where each α cut is an interval:

where L and R indicate the left and right α cuts of a fuzzy 
variable, respectively. If α takes 11 possible values (0, 0.1, 
…, 1), Eqs. (11) and (12) need to be solved 10·2Cn

2 + 1 times 
to derive the membership functions of fuzzy eigenvalue and 
eigenvector. In the past studies like Csutora and Buckley 
(2001), only the results when α = 0 or 1 were derived to 
simplify the computation.

Substituting Eqs. (15) into (8) gives

which is a normalization process. The process of deriv-
ing fuzzy eigenvalue and eigenvector involves many fuzzy 

(10)Consistency ratio C̃.R. =
C̃.I.

R.I.
,

(11)det(�(�) − �(�)�) = 0,

(12)(�(�) − �(�)�)�(�) = 0,

(13)aij(�) =
[
aL
ij
(�), aR

ij
(�)

]
,

(14)�(�) =
[
�
L(�), �R(�)

]
,

(15)�(�) =
[
�
�(�), ��(�)

]
,

(16)

wi(�) =
�
wL
i
(�), wR

i
(�)

�

=

�
min
∗

x∗
i
(�)∑n

j=1
x∗
j
(�)

, max
∗

x∗
i
(�)∑n

j=1
x∗
j
(�)

�
,

multiplications. Therefore, the fuzzy maximal eigenvalue 
and weights may not be well approximated with TFNs.

FWA for evaluating the sustainability of a smart 
technology application to mobile health care

According to the derived fuzzy weights, FWA is applied to 
evaluate the sustainability of a smart technology application 
to mobile health care as follows:

where S̃k is the sustainability of the k-th smart technology 
application to mobile health care; p̃ki is the performance of 
the k-th smart technology application along the i-th dimen-
sion. Applying ACO to Eq. (17) gives

where the two symbols * and # can be R or L, representing 
a right or left α cut. Then, the center-of-gravity (COG) for-
mula [45] is applied to defuzzify S̃k to generate a crisp (or 
representative) value:

which is basically the weighted average of the α cuts of S̃k.

A case study

According to the results of the literature review, the follow-
ing five factors seem to be more critical to the applicability 
of smart technologies to mobile health care:

(17)S̃k =

∑n

i=1
w̃i(×)p̃ki∑n

i=1
w̃i

,

(18)SL
k
(�) = min

∗,#

�∑n

i=1
w∗
i
(�)p#

ki
(�)∑n

i=1
w∗
i
(�)

�
,

(19)SR
k
(�) = max

∗,#

�∑n

i=1
w∗
i
(�)p#

ki
(�)∑n

i=1
w∗
i
(�)

�
,

(20)D(S̃k) =

∑1

𝛼=0
𝛼

�
SL
k
(𝛼)+SR

k
(𝛼)

2

�

∑1

𝛼=0
𝛼

,

Table 1   The results of pairwise comparisons

CF1 CF2 CF3 CF4 CF5

CF1 1 (3, 5, 7), (5, 7, 9), (5, 7, 9) (7, 9, 9), (3, 5, 7), (5, 7, 9) (5, 7, 9), (7, 9, 9), (5, 7, 9) (3, 5, 7), (3, 5, 7), (1, 3, 5)
CF2 – 1 (1, 3, 5), (2, 4, 6), (1, 3, 5) (3, 5, 7), (1, 3, 5), (2, 4, 6) –
CF3 – – 1 – (3, 5, 7), (2, 4, 6), (3, 5, 7)
CF4 – – (1, 1, 3), (1, 3, 5), (1, 1, 3) 1 (5, 7, 9), (3, 5, 7), (4, 6, 8)
CF5 – (1, 3, 5), (3, 5, 7), (2, 4, 6) – – 1
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1.	 CF1: unobtrusiveness [7, 20, 32],
2.	 CF2: supporting online social networking [22, 47],
3.	 CF3: the relaxation of the related medical laws [25, 46],
4.	 CF4: the size of the health care market [36, 46], and
5.	 CF5: the correct identification of a user’s need and situ-

ation [7, 32, 38].

To determine the importance levels of critical factors, the 
proposed methodology was applied.

First, a group of three experts from medical and infor-
mation science fields was formed. Each expert performed 
a pairwise comparison of the relative importance levels of 
critical factors. The results are summarized in Table 1.

To aggregate the pairwise comparison results by experts, 
FGM was applied. The results are shown in Table 2. The 
FGM result was approximated with a TFN. It can be seen 
from Fig. 1 that a TFN fitted the FGM result well in the 
experiment.

Subsequently, ACO was applied to derive the fuzzy 
maximal eigenvalue and weights from the aggregation 

Table 2   The aggregation results CF1 CF2 CF3 CF4 CF5

CF1 1 (4.22, 6.26, 8.28) (4.72, 6.80, 8.28) (5.59, 7.61, 9.00) (2.08, 4.22, 6.26)
CF2 – 1 (1.06, 3.30, 5.31) (1.82, 3.91, 5.94) –
CF3 – – 1 – (2.62, 4.64, 6.65)
CF4 – – (1.00, 1.44, 3.56) 1 (3.91, 5.94, 7.96)
CF5 – (1.82, 3.91, 5.94) – – 1
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result. The value of α ranged from 0, 0.1, …, to 1, so the 
maximal eigenvalue and eigenvector needed to be derived 
1 + 10 ⋅ 2C

5
2 = 10,241 times. The ACO method was imple-

mented using MATLAB 2017 on a PC with i7-7700 CPU 
3.6 GHz and 8 GB RAM. The execution time was less than 
11 s. The results are summarized in Figs. 2 and 3. Among 
the result, w̃3 and w̃5 could not be very well approximated 
with TFNs, as illustrated in Fig. 4.

Thirteen smart technologies, shown in Table 3, were con-
sidered. The performances of smart technologies along five 
dimensions were evaluated by the same expert group using 
the following linguistic terms [16]:

The evaluations by experts were averaged. The results are 
summarized in Table 3.

FWA was then applied to evaluate the sustainability of 
each smart technology application to mobile health care. 
The results are summarized in Fig. 5.

Subsequently, COG was applied to defuzzify the fuzzy 
sustainability of each smart technology application to mobile 
health care. The results are summarized in Table 4.

According to the experimental results,

1.	 Among thirteen smart technology applications to mobile 
health care, the application of smart mobile service 

Very poor: (0, 0, 1)

Poor: (0, 1, 2)

Moderate: (1.5, 2.5, 3.5)

Good: (3, 4, 5)

Very good: (4, 5, 5)

achieved the highest sustainability, while the application 
of smart clothes was considered the least sustainable.

2.	 The ranking result is shown in Fig. 6. By setting a thresh-
old of three for the derived sustainability, only five smart 
technology applications to mobile health care, including 
smart mobile service, smart phone, smart watch, smart 
connected vehicle, and smart smoke alarm, were suf-
ficiently sustainable.

3.	 Two existing methods, FGMi-FWA and FEAi-WA, 
were also applied in the experiment for a comparison. 
The weights estimated using FEAi were crisp. There-
fore, WA, instead of FWA, was subsequently applied. 
The results obtained using the two existing methods are 
compared with that obtained using the proposed meth-
odology in Fig. 7. Although the results looked similar, 
there were significant differences between those of 
some smart technology applications to mobile health 
care, e.g., smart clothes, smart mobile service, and smart 
phone.

4.	 The ranking results using various methods are not the 
same, as illustrated by Table 5, showing that approxi-
mation methods such as FGMi and FEAi were subject 
to inaccuracy that might mislead the decision-making 
process.

5.	 The fuzzy consistency index is shown in Fig. 8, reveal-
ing that there was some inconsistency among experts’ 
judgments. In addition, the range of the fuzzy con-
sistency index was a bit wide, showing that there was 
considerable uncertainty behind the fuzzy consistency 
index. It was not strange since smart technology applica-
tions to mobile health care were still in their infancy.

6.	 To ascertain whether the advantage of the FGM–ACO–
FWA approach over the FGMi method in improving the 

Table 3   The performances of thirteen smart technologies along the four dimensions

Requirement smart technol-
ogy

CF1 (unobtrusiveness) CF2 (online 
social network-
ing)

CF3 (relaxation of law) CF4 (market size) CF5 (correct identification)

Smart clothes (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2) (3.17, 4.17, 4.5)
Smart glasses (1, 1.33, 2.33) (3.33, 4.33, 5) (3.17, 4.17, 4.5) (0, 1, 2) (3.17, 4.17, 4.5)
Smart watch (3.67, 4.67, 5) (3.17, 4.17, 4.5) (3.67, 4.67, 5) (3.17, 4.17, 4.5) (3.67, 4.67, 5)
Smart phone (3.67, 4.67, 5) (3.67, 4.67, 5) (3.17, 4.17, 4.5) (3.67, 4.67, 5) (3.67, 4.67, 5)
Smart motion sensor (2.33, 3.33, 4.00) (0, 1, 2) (2, 3, 4) (2.33, 3.33, 4.00) (3.67, 4.67, 5)
Smart smoke alarm (2.33, 3.33, 4.00) (0, 1, 2) (3.67, 4.67, 5) (2.33, 3.33, 4.00) (3.67, 4.67, 5)
Smart body analyzer (2, 2.67, 3.67) (2, 2.67, 3.67) (2.33, 3.33, 4.00) (2, 2.67, 3.67) (3.17, 4.17, 4.5)
Smart connected vehicle (2.67, 3.67, 4) (3.33, 4.33, 5) (2, 2.67, 3.67) (2, 2.67, 3.67) (2.33, 3.33, 4.00)
Smart toilet (2, 2.67, 3.67) (0, 1, 2) (2.33, 3.33, 4.00) (0, 1, 2) (2.33, 3.33, 4.00)
Smart wig (2.67, 3.33, 3.67) (0, 1, 2) (3.17, 4.17, 4.5) (0, 1, 2) (3.17, 4.17, 4.5)
Smart mobile service (3.67, 4.67, 5) (3.67, 4.67, 5) (3.67, 4.67, 5) (3.67, 4.67, 5) (3.33, 4.33, 5)
Smart defense technology (2, 2.67, 3.67) (0, 1, 2) (3.17, 4.17, 4.5) (2.83, 3.83, 4.5) (2.33, 3.33, 4.00)
Smart wheelchair (3.17, 4.17, 4.5) (0.5, 0.83, 1.83) (2, 2.67, 3.67) (0, 1, 2) (2, 2.67, 3.67)
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Fig. 5   The sustainability of each smart technology application to mobile health care
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precision of deriving fuzzy weights was significant, the 
paired t test was conducted:

	   H0: In improving the precision in terms of the average 
range of fuzzy weights, the performance of the FGM–
ACO–FWA approach is the same as that of the FGMi 
method.

	   H1: In improving the precision in terms of the average 
range of fuzzy weights, the performance of the FGM–

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

µ (
S 1

1)

S11

smart mobile
service

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

µ (
S 1

2)

S12

smart defense
technology

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

µ (
S 1

3)

S13

smart
wheelchair

Fig. 5   (continued)

Table 4   The defuzzification results

Smart technology Defuzzified 
sustainability

Smart clothes 1.36
Smart glasses 2.40
Smart watch 4.31
Smart phone 4.50
Smart motion sensor 3.03
Smart smoke alarm 3.20
Smart body analyzer 2.94
Smart connected vehicle 3.42
Smart toilet 2.32
Smart wig 2.75
Smart mobile service 4.52
Smart defense technology 2.81
Smart wheelchair 2.84
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Fig. 6   The ranked results
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ACO–FWA approach is higher than that of the FGMi 
method.

	   Table 6 presents a summary of the results. The null 
hypothesis H0 was rejected at α = 0.15, indicating that 
the FGM–ACO–FWA approach was statistically supe-
rior to the FGMi method in improving the precision of 
deriving fuzzy weights.

7.	 The case of selecting contaminated site remedial coun-
termeasures [33] was adopted to further elaborate the 
effectiveness of the proposed methodology. Four reme-
dial countermeasures, environmental effectiveness, 
financial affordability, implementability, and social 
acceptability, were considered. There were two scenar-
ios that were aggregated using FGM into the following 
fuzzy judgement matrix:
	 

�̃ =

⎡⎢⎢⎢⎣

(1, 1, 1) (0.41, 0.87, 1.58) (0.45, 0.82, 2.00) (1, 2, 4)

(0.63, 1.15, 2.45) (1, 1, 1) (0.50, 1.00, 2.00) (0.45, 0.82, 2.00)

(0.50, 1.22, 2.24) (0.50, 1.00, 2.00) (1, 1, 1) (0.45, 0.82, 2.00)

(0.20, 0.50, 1.00) (0.50, 1.22, 2.24) (0.50, 1.22, 2.24) (1, 1, 1)

⎤⎥⎥⎥⎦

which was processed using ACO. The derived fuzzy 
maximal eigenvalue and fuzzy weights are shown in 
Figs. 9 and 10. Obviously, the proposed methodology 
achieved a very high precision, especially in deriv-
ing 𝜆̃max and w̃3 . In contrast, existing approaches that 
approximated the results with TFNs would be imprecise.

Table 5   The ranking results 
using various methods

Rank The proposed methodology FGMi-FWA FEAi-WA

1 Smart mobile service Smart mobile service Smart mobile service
2 Smart phone Smart phone Smart phone
3 Smart watch Smart watch Smart watch
4 Smart connected vehicle Smart connected vehicle Smart connected vehicle
5 Smart smoke alarm Smart smoke alarm Smart smoke alarm
6 Smart motion sensor Smart body analyzer Smart wheelchair
7 Smart body analyzer Smart wheelchair Smart motion sensor
8 Smart wheelchair Smart motion sensor Smart body analyzer
9 Smart defense technology Smart defense technology Smart defense technology
10 Smart wig Smart wig Smart wig
11 Smart glasses Smart glasses Smart toilet
12 Smart toilet Smart toilet Smart glasses
13 Smart clothes Smart clothes Smart clothes
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Fig. 8   The fuzzy consistency index

Table 6   Results of paired t test

FGMi FGM–
ACO–
FWA

Mean 0.29 0.19
Variation 0.07 0.01
Observations 5 5
Pearson correlation coefficient 0.99
Degree of freedom 4
t statistics 1.14
P (T ≤ t) one-tail 0.15
t critical one-tail 2.13
P (T ≤ t) two-tail 0.32
t critical two-tail 2.78



119Complex & Intelligent Systems (2020) 6:109–121	

1 3

Conclusions

Smart technologies have been widely applied to mobile 
health care. However, existing applications of smart tech-
nologies to mobile health care face several difficulties. For 
example, there is a shortage of workforce for providing 
health care services, even in high-income countries. In 
addition, some smart technologies are obtrusive, which 
discourages mobile users from applying them. Further, 
aggregating heterogeneous data from multiple sources is 
a challenging task. As a result, some smart technology 
applications to mobile health care may not be sustainable. 
It is also a critical task to evaluate the sustainability of a 
smart technology application to mobile health care. To 
address these issues, the FGM–ACO–FWA approach is 
proposed in this study. In the proposed methodology, FGM 
is first applied to aggregate multiple experts’ opinions on 
the relative importance of a factor critical to the sustain-
ability of a smart technology application to mobile health 
care. Subsequently, ACO is applied to derive the abso-
lute fuzzy importance level of each critical factor. Finally, 
FWA is applied to assess the sustainability of a smart tech-
nology application to mobile health care.

After applying the FGM–ACO–FWA approach to a real 
case, the following conclusions were drawn:

1.	 Five factors critical to the applications of smart technol-
ogies to mobile health care were identified as unobtru-
siveness, supporting online social networking, relaxation 
of the related medical laws, the size of the health care 
market, and the correct identification of a user’s need 
and situation.

2.	 Among thirteen smart technology applications to mobile 
health care, the most and least sustainable applications 
were smart mobile service and smart clothes, respec-
tively. 3.	 The ranking result using the proposed methodology was 

somewhat different from those using two existing meth-
ods based on approximation.
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There are other ways to evaluate the sustainability of a 
smart technology application to mobile health care that can 
be explored in future studies to confirm the conclusions 
drawn in this study. In addition, experts’ pairwise compari-
son results were aggregated before deriving fuzzy weights 
in this study, which assumed that experts could reach a con-
sensus on the derived fuzzy weights. In a future study, fuzzy 
weights can be derived based on each expert’s pairwise com-
parison result. Then, whether the fuzzy weights derived for 
all experts overlap implies the existence of a consensus. 
Further, the efficiency of the proposed methodology can be 
enhanced with computational intelligence techniques [8, 30]. 
These constitute some directions for future research.
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