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Abstract
This paper presents a predictive model based on adaptive neuro-fuzzy inference system namely ANFIS to determine the 
moment capacity of spiral-reinforced concrete columns. For this purpose, five input parameters including the longitudinal 
reinforcement index, transverse reinforcement index, axial force, diameter to length ratio and also shear force were considered 
to estimate the moment capacity. A collection of experimental database was applied to train and test the proposed system. 
This database includes 82 spiral-reinforced concrete columns (with flexure failure) which were reported in the literature and 
modified by PEER as a uniform database of cantilever columns. The model is created by fuzzy C-means algorithm with four 
cluster and Gaussian membership functions, also trained and tested by 70 and 12 datasets, respectively. It was concluded 
that the model of this study with high accuracy could be able to estimate the moment capacity.

Keywords Flexure failure · Moment capacity · Neuro-fuzzy system · Reinforced concrete · Spiral-reinforced concrete 
column

Introduction

One of the most complex issues in structural engineering is 
the investigation of the structural elements behaviors and 
estimation of final capacities. This issue is essential in deter-
mining the damages and the failures of elements under load-
ing such as an earthquake. There are many efforts to inves-
tigate this topic which were published in the literature, and 
some of them are reviewed here by the authors. Panagiotako 
et al. [1] studied the effect of capacity design for Reinforced 
Concrete (RC) column under seismic loading and showed 
that in some cases, damage of the element could not be pre-
vented by full capacity design. Hernandez et al. [2] investi-
gated the effect of longitudinal reinforcement on the capacity 
of concrete columns and presented a method to determine 
a suitable combination of reinforcement. An experimental 
study on the compressive capacity of RC columns was done 
by Chen et al. [3]. They presented an analytical approach for 

their purpose and based on the experimental results, showed 
that their method could determine the considered behavior of 
special-shaped reinforced concrete columns. Some research-
ers studied the capacity of RC columns which made by recy-
cled aggregate [4–6].

Today, soft computing (SC) has many applications in 
engineering problems [7–10]. There are numerous articles 
on the use of SC in civil engineering such as earthquakes 
[11, 12] dams [13], concrete [14] and structural control [15]. 
Also, these methods are considered to estimate the capac-
ity of structural elements [16, 17] instead of finite element 
analysis which is a time-consuming approach [18, 19]. Liu 
et al. [20] studied the application of artificial neural net-
works to predict the shear strength of RC columns and veri-
fied their model with an experimental database. Jakubek [21] 
used fuzzy weight neural networks to predict the critical 
axial load of bulking tests in RC columns. Xu et al. [22] 
identified the seismic damages of RC columns by neural 
networks based on images. Their results indicated that these 
soft computing approaches could be used for damage detec-
tion of RC columns.

The current research investigated the application of a 
powerful soft computing approach namely ANFIS (adap-
tive neuro-fuzzy inference system) to determine the 
moment capacity in spiral-reinforced concrete columns. The 
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presented model is trained and tested by a collection of the 
experimental database. Details of the proposed ANFIS struc-
ture are provided in the mathematical framework to increase 
the ability to use it by engineers.

ANFIS

Adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy 
inference model in a neural network structure for function 
approximation [23]. It used a Sugeno-type fuzzy system in 
the five-layer network [23]. ANFIS contains an input vec-
tor with some Membership Function (MF) for each input. 
ANFIS used a hybrid approach, which is a combination 
of backpropagation and least squares methods, to find its 
unknown parameters. This type of soft computing method 
is widely considered as a powerful system because it has the 
ability of both artificial neural networks and fuzzy systems 
simultaneously [7, 23–31].

Database

Neuro-fuzzy inference system needs a database to determine 
its unknown coefficients, and in this paper, a collection of 
spiral-reinforced columns tests results, which were presented 
by other researchers [32–65] and modified by PEER [66], was 
used. This database contains three types of cantilever column 
including octagonal, circular and square. More information 
can be seen in the PEER report. Also, five input variables 

which are described in Table 1 and presented in “Appendix” 
are used in this study. The two first parameters can also be 
defined by Eqs. 1 and 2:

where �l, fyl, �s, fys, f
′

c
 are longitudinal reinforcement ratio 

(%), the yield stress of longitudinal reinforcement (MPa), 
volumetric transverse reinforcement ratio (%), the yield 
stress of transverse reinforcement (MPa) and also the com-
pressive strength of concrete (MPa), respectively. Table 2 
shows the details of the collected database. 

In this paper, the authors used Eq. 3 as a normalization 
relationship to convert all amounts of the database into a 
value between − 1 and + 1. In this equation, the parameters 
xn, xmin, xmax are indicated to the normal, minimum and maxi-
mum values of xi.

Based on Table 2 and also Eq. 3, the amount of the vari-
ables is normalized by Eqs. 4–9 before using in training and 
testing the proposed ANFIS model.

(1)x1 =
�lfyl

f
�

c

,

(2)x2 =
�sfys

f
�

c

,

(3)xn = 2
xi − xmin

xmax − xmin

− 1

(4)X1 = 2
x1 − 6.78

65.60
− 1

(5)X2 = 2
x2 − 1.05

36.99
− 1

(6)X3 = 2
x3

6770
− 1

(7)X4 = 2
x4 − 0.07

0.6
− 1

Table 1  Description of the considered variables

a D diameter of column (mm), L length of equivalent cantilever (mm)

Parameter Notation Description

Input 1 X1 Longitudinal reinforcement index
Input 2 X2 Transverse reinforcement index
Input 3 X3 Axial force (kN)
Input 4 X4 D/La

Input 5 X5 Shear load (kN)
Output M Moment capacity (kN m)

Table 2  Description of the 
considered parameters

Parameter X1 X2 X3 X4 X5 M

Minimum 6.78 1.05 0.00 0.07 14.00 22.00
Maximum 72.37 38.05 6770.00 0.67 957.00 1300.00
Median 27.86 12.72 552.50 0.22 136.00 220.00
Average 30.15 14.48 917.33 0.27 199.87 368.28
St. deviation 13.70 7.16 1078.75 0.14 209.56 340.19
Mode 15.27 13.70 222.00 0.22 77.00 394.00
Range 65.60 36.99 6770.00 0.60 943.00 1278.00
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Proposed ANFIS model

As mentioned in the previous sections, ANFIS uses some 
membership functions for each input. In this research, four 
Gaussian membership functions (Eq. 10) were used for each 
of the five inputs in the proposed ANFIS structure (Fig. 1). 
The parameters of the membership functions for all inputs are 
presented in Table 3. These functions can be seen in Fig. 2:

(8)X5 = 2
x5 − 14

943
− 1

(9)Y = 2
M − 22

1278
− 1

(10)Ci(x; �, c) = e
−(x−c)2

2�2 ,

where c is the mean and σ is the variance for x.
The proposed ANFIS uses linear-type functions (Eq. 5) as 

the output of each node with five coefficients and one constant 
value. Table 4 presents the details of these linear functions and 
their coefficients.

where Xi is the normalized value of inputs and a1,… , a5 
are coefficients of the linear function. C is also the constant 
value of the equation. In this equation, j denotes the number 
of linear functions.

There are four rules in the proposed ANFIS. The weight 
of each rule Wi (j = 1,…,4) is calculated by Eq. 12. In these 
equations, MF is a membership function value of each input, 
which can be calculated by Eq. 10 based on the presented 
amounts of Table 3.

(11)
fj = a1jX1 + a2jX2 + a3jX3 + a4jX4 + a5jX5 + Cj j = 1,… , 4,

Fig. 1  Proposed ANFIS struc-
ture

Table 3  Details of the 
membership function

MF1 MF2 MF3 MF4

σ c σ c σ c σ c

X1 0.202 − 0.05196 0.2011 − 0.3444 0.1633 − 0.2706 0.1842 − 0.3268
X2 0.2793 0.1796 0.1853 − 0.3405 0.1488 − 0.36 0.1507 − 0.4305
X3 0.09427 − 0.8847 0.1438 − 0.8701 0.1301 − 0.6938 0.1196 − 0.6849
X4 0.2928 0.07414 0.1706 − 0.4769 0.227 − 0.1356 0.2035 − 0.552
X5 0.1236 − 0.7507 0.1644 − 0.8406 0.2803 − 0.1641 0.1116 − 0.6885
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(12)

W1 = MF1,X1MF1,X2MF1,X3MF1,X4MF1,X5

W2 = MF2,X1MF2,X2MF2,X3MF2,X4MF2,X5

W3 = MF3,X1MF3,X2MF3,X3MF3,X4MF3,X5

W4 = MF4,X1MF4,X2MF4,X3MF4,X4MF4,X5

The final output of the proposed ANFIS model is deter-
mined by Eq. 13:

(13)−1 ≤

�

Y =

∑4

j=1
Wjfj

∑4

j=1
Wj

�

≤ 1.

Fig. 2  Membership functions of the input parameters

Table 4  The parameters of 
Eq. 11

Function Coefficients Constant

a1 a2 a3 a4 a5 C

f1 − 0.0351 − 0.0275 0.0110 − 0.0642 0.4107 − 0.5734
f2 0.1251 0.2258 − 0.0757 − 0.2742 0.8458 − 0.2343
f3 − 0.3503 − 0.0999 − 0.1728 − 1.5300 1.6980 − 0.0266
f4 − 0.1095 0.0262 − 1.4740 − 1.9110 4.2500 1.0400
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As mentioned in the previous section, the result of the 
ANFIS is a normal value between − 1 and 1, and therefore, 
it needs to convert to the corresponding real value (22–1300 
kN m) by Eq. 14:

Results of the ANFIS

The training of the proposed system was done by 70 data-
sets, and the results of this phase showed that the model was 
trained very well. Also, to validate the ANFIS, 12 datasets 

(14)M(kN m) = 1278
Y + 1

2
+ 22.

were applied to the trained system. The results of regres-
sion plots (Fig. 3) for the normal values showed the correla-
tion coefficients equal to 0.99 and 0.98 for the train and test 
phases, respectively.

Figure 4 shows the obtained results by ANFIS against the 
experimental values after converting the normalized values 
into their corresponding real values for the considered data-
base. It is clear from the figure that the proposed ANFIS was 
able to estimate the moment capacity of spiral-reinforced 
concrete columns.

The amount of root means squared error for the train, 
and test phases (Figs. 5, 6) were 50.36 and 92.11 which was 
shown that the ANFIS could be used as a suitable tool for 

Fig. 3  Regression plots of the 
results based on normal values

Fig. 4  The results of the ANFIS vs. experimental values
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Fig. 5  Results for the train data

Fig. 6  Results for the test data
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prediction. Figure 7 illustrated the results of ANFIS for all 
of 82 datasets.

Figure 8 shows the effect of changes in input variables 
(X1, …, X5) on the output parameter (Y). In drawing each of 
these graphs, the values of the three variables from the five 
input variables are considered constant, which is equal to its 
corresponding median value (see Table 2), and the values 
of the other two variables have been varied between − 1 and 
1. Then, the output value for this database is calculated and 
plotted.

Conclusion

This paper presents a neuro-fuzzy inference system 
namely ANFIS to predict the moment capacity of spiral-
reinforced concrete columns which are failed in flexure. 
For this purpose, a collection of 82 datasets were used to 
train and test the model. The system created based on five 

input parameters including longitudinal reinforcement, 
transverse reinforcement index, axial force, diameter to 
length ratio and also a shear force to calculate the tar-
get (moment capacity). The proposed ANFIS used Fuzzy 
C-means approach to determine its unknown coefficients. 
Also, four clusters and Gaussian membership functions are 
applied to creating the neuro-fuzzy model. The results of 
the paper in both training and testing phases indicated that 
this type of soft computing methods with high accuracy 
could be considered for predicting the moment capacity of 
the considered RC columns. The model presented in this 
article has many applications in the design of concrete 
structures. Also, due to the proposed neuro-fuzzy model 
in a mathematical framework, it is an efficient and feasible 
model. Therefore, it is easy for engineers to understand the 
equations of this paper and to use them for their purposes. 
In the future works, other soft computing methods can be 
used to estimate the moment capacity of the RC columns.

Fig. 7  Results for all data
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Fig. 8  The effect of input changes on the considered output
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Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix

Data ID in PEER 
report [48]

X1 X2 X3 X4 X5 Y

1 29.3232 4.1349 380 0.1818 180 527
2 27.8250 3.9448 380 0.2857 334 600
3 28.8027 4.4521 380 0.1538 142 485
4 19.5963 12.2535 26.4 0.1832 133 365
5 22.3319 14.0117 16.9 0.1866 36 49
6 20.1345 15.5564 550 0.2688 61 72
7 28.7862 9.0031 680 0.2500 139 250
8 26.2611 15.0316 2111 0.2500 163 303
9 25.9257 7.9225 1920 0.5000 687 887
11 22.3796 10.2857 3785 0.5000 781 1000
12 22.9542 22.4862 3385 0.5000 812 1060
13 22.9542 22.4862 6770 0.5000 937 1124
22 47.9465 12.6903 751 0.4000 364 401
39 25.3533 8.9449 555 0.2500 142 240
40 30.3300 19.3304 2080 0.2500 175 324
41 21.5670 5.9520 2652 0.2500 212 393
42 22.1200 12.7400 3620 0.2500 207 394
43 35.6211 11.2105 907 0.5000 461 394
45 41.0811 11.5135 1813 0.5000 579 499
50 72.3293 26.0580 151 0.1333 14 22
51 72.3293 26.0580 151 0.2667 37 24
52 72.3293 26.0580 220 0.2667 36 24
55 36.6423 25.8012 120 0.3333 59 50
56 38.2286 26.9182 239 0.3333 73 63
57 34.7669 12.7433 120 0.1667 32 57
58 36.1918 25.4840 120 0.3333 63 51
59 36.3407 25.5889 239 0.3333 77 64
60 37.9004 13.8918 120 0.1667 30 52
61 6.7755 38.0453 184 0.6667 117 46
63 11.9858 11.6981 322 0.5000 102 53
66 28.0585 36.0964 322 0.5000 146 76
80 44.6502 16.3112 0 0.6111 176 79
84 47.6980 17.4246 215 0.6111 209 96
85 45.8213 7.8698 215 0.4583 151 93
90 45.2282 7.7680 430 0.4583 167 104
93 31.5145 14.0676 200 0.2223 74 115

Data ID in PEER 
report [48]

X1 X2 X3 X4 X5 Y

94 31.5145 14.0676 200 0.2223 75 120
95 25.7442 11.4918 222 0.2223 72 111
96 25.7442 11.4918 222 0.2223 77 123
97 25.7442 11.4918 222 0.2223 77 119
98 27.8634 12.4378 222 0.2223 79 120
99 27.8634 12.4378 222 0.2223 68 107
100 28.1206 12.5526 222 0.2223 75 114
101 33.8489 15.1096 200 0.2223 74 113
102 33.8489 15.1096 200 0.2223 68 103
103 33.8489 15.1096 200 0.2223 72 109
106 29.4477 8.9650 1780 0.1667 285 1300
107 26.9001 12.8049 1928 0.5022 535 530
109 26.1491 12.4474 970 0.5022 510 501
112 72.3743 37.7307 1914 0.5022 957 975
113 47.1787 11.1858 1780 0.1250 101 544
114 43.1685 6.5550 1780 0.1250 124 639
115 44.7342 10.6062 1780 0.1250 117 611
116 22.2041 13.7010 653.856 0.2500 269 708
117 22.2041 13.7010 653.856 0.1250 130 745
118 22.2041 13.7010 653.856 0.0670 80 604
119 11.1766 13.7010 653.856 0.2500 172 443
120 44.4082 13.7010 653.856 0.2500 448 1180
121 34.9187 15.6526 911.84 0.3333 525 1030
122 34.9187 15.6526 911.84 0.1250 172 975
123 34.9187 15.6526 911.84 0.0670 157 1160
125 24.8601 6.7266 400 0.3333 411 775
126 26.8218 10.6527 400 0.3333 433 815
127 21.1434 23.6923 1000 0.1520 55 138
128 21.1434 22.5508 1000 0.1520 53 132
129 15.2702 17.1111 1850 0.1520 56 163
130 15.2702 11.2778 1850 0.1520 55 162
131 15.2702 8.1200 1850 0.1520 57 154
132 15.2702 17.1111 925 0.1520 59 139
133 15.2702 17.1111 1850 0.1520 55 158
134 15.2702 16.0067 1850 0.1520 71 200
136 8.2647 1.0506 1139 0.3333 279 456
141 18.5048 11.4175 1308 0.2500 207 889
150 15.4853 11.4719 987.5 0.2129 144 372
151 15.0447 11.4719 987.5 0.2129 152 388
152 35.9624 12.2208 231.3 0.1875 180 462
153 34.3851 11.6848 231.3 0.1875 150 382
154 37.0969 12.6063 231.3 0.1875 94 306
155 34.6894 11.7882 231.3 0.1875 70 130
156 26.8745 4.1345 700 0.1596 74 136
157 14.6971 10.0410 0 0.2192 143 150
158 14.6971 10.0410 0 0.2192 164 172
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