
Complex & Intelligent Systems (2019) 5:145–163
https://doi.org/10.1007/s40747-018-0090-z

ORIG INAL ART ICLE

Multi-granulation Pythagorean fuzzy decision-theoretic rough sets
based on inclusion measure and their application in incomplete
multi-source information systems

Prasenjit Mandal1 · A. S. Ranadive2

Received: 29 August 2018 / Accepted: 27 December 2018 / Published online: 9 January 2019
© The Author(s) 2019

Abstract
Multi-granulation rough sets (MGRSs) and decision-theoretic rough sets (DTRSs) are two important and popular generaliza-
tions of classical rough sets. The combination of two generalized rough sets have been investigated by numerous researchers in
different extensions of fuzzy settings such as interval-valued fuzzy sets (IVFSs), intuitionistic fuzzy sets (IFSs), bipolar-valued
fuzzy sets (BVFSs), etc. Pythagorean fuzzy (PF) set is another extension of fuzzy set, which is more capable in comparison
to IFS handle vagueness in real world. However, few studies have focused on the combination of the two rough sets in PF
settings. In this study, we combine the two generalized rough sets in PF settings. First, we introduce a type of PF subset (of
subset of the given universe) of the PF Set (of the given universe). Then we establish two basic models of multi-granulation PF
DTRS (MG-PF-DTRS) of PF subset of the PF set based on PF inclusion measure within the framework of multi-granulation
PF approximation space. One model is based on a combination of PF relations (PFRs) and the construction of approximations
with respect to the combined PFR. By combining PFRs through intersection and union, respectively, we construct twomodels.
The other model is based on the construction of approximations from PFRs and a combination of the approximations. By
using intersection and union to combine the approximations, respectively, we again get two models. As a result, we have
total four models. Further for different constraints on parameters, we obtain three kinds of each model of the MG-PF-DTRSs.
Then, their principal structure, basic properties and uncertainty measure methods are investigated as well. Second, we give a
way to compute PF similarity degrees between two objects and also give a way to compute PF decision-making objects from
incomplete multi-source information systems (IMSISs). Then we design an algorithm for decision-making to IMSISs using
MG-PFDTRSs and their uncertainty measure methods. Finally, an example about the mutual funds investment is included to
show the feasibility and potential of the theoretic results obtained.

Keywords Pythagorean fuzzy set · Pythagorean fuzzy inclusion measure · Multi-granulation Pythagorean fuzzy
decision-theoretic rough set · Incomplete multi-source information system

Introduction

In light ofBayesian decision procedure [4], decision theoretic
rough set (DTRS) model was proposed by Yao and Wong
[35] to analyze the noisy data by considering the tolerance of
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classification error. Since then the DTRSmodel has found its
applications in various theoretical and practical fields, and it
has produced many god results [2,15–17,20,25].

However, the DTRS model cannot deal with numerical
data directly. To overcome this disadvantage, researchers
used tolerance relations [21], similarity measures [23],
domains relations [3], covering [33], inclusion measures
[38], fuzzy relations [32,41,42], fuzzy preference relations
[26], interval-valued fuzzy preference relations [29], intu-
itionistic fuzzy relations [19,40], intuitionistic fuzzy inclu-
sion measure [13,13], bipolar-valued fuzzy relations [24,28]
in place of equivalence relations.

To handle all types of real data, Yager proposed the
concepts of Pythagorean fuzzy set (PFS) [34], which are
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more powerful than intuitionistic fuzzy sets (IFSs) [1] for
dealing with the uncertain information in decision-making
procedures. For example, if a decision maker gives the
membership degree and non-membership degree as 0.8 and
0.6, respectively, then it is only valid for PFS. Fortunately,
PFSs generalize the concept of IFSs and the correspond-
ing operational laws, which have been successfully applied
to some complex practical decision-making situations, e.g.,
road-building projects [11], selection of the optimal produc-
tion strategy [12] and group decision-making problems [8].
Besides, Zhang and Ren [37] investigated Pythagorean fuzzy
multigranulation rough set over two universes and its appli-
cations in merger and acquisition. Liang et al. [18] gave a
method of three-way decisions using ideal TOPSIS solutions
on Pythagorean fuzzy informations. Mandal and Ranadive
[25] studied decision-theoretic rough sets under Pythagorean
fuzzy information.

From the aforementioned literature it is clear that PFSs
provide us a novel evaluation format to measure the fuzzy
environment, especially when we utilize the positive and
negative sides to depict a question [1,19]. Based on the
Pythagorean fuzzy environment, we introduce PFSs into
multi-granulation rough set (MGRS) and decision-theoretic
rough set (DTRS), which are two important and popular
extended type of Pawlak’s classical rough sets [30] and
established multi-granulation Pythagorean fuzzy decision-
theoretic rough sets (MG-PF-DTRS) based on Pythagorean
fuzzy inclusion measure. First, we introduce a type of
Pythagorean fuzzy subset (of subset of the given uni-
verse) of the Pythagorean fuzzy Set (of the given universe).
Then we establish two basic models of multi-granulation
Pythagorean fuzzy decision-theoretic rough set (MG-PF-
DTRS) of Pythagorean fuzzy subset of the PFS based on
Pythagorean fuzzy inclusion measure within the frame-
work of multi-granulation Pythagorean fuzzy approximation
space. One model is based on a combination of PF relations
(PFRs) and the construction of approximations with respect
to the combined PFR. By combining PFRs through inter-
section and union, respectively, we construct two models.
The other model is based on the construction of approxima-
tions from PFRs and a combination of the approximations.
By using intersection and union to combine the approxima-
tions, respectively, we again get two models. As a result,
we have total four models. For different constraints on
parameters, we obtain three kinds of each model of the
MG-PF-DTRSs. Then, their principal structure, basic prop-
erties and uncertainty measure methods are investigated
as well. Second, we suggest a decision-making process
for incomplete multi-source information systems (IMSISs)
using these theoretic results about MG-PF-DTRSs. In this
process, we encounter two challenges: (1) How to find the
similarity degrees between two objects from IMSISs in
the Pythagorean fuzzy settings and (2) how to obtain the

Pythagorean fuzzy decision-making objects from IMSISs.
To meet out these issues, we first adopt the method of Liu
et al. [23] to obtain the unknown value of the given objects
with respect to the given attribute. Then we give the method
to find the similarity degree between two objects in the
Pythagorean fuzzy setting and construct an algorithm for
obtaining Pythagorean fuzzy decision-making objects. Hav-
ing solved these two issues, we design an algorithm for
decision-making to IMSISs using MG-PFDTRSs and their
uncertainty measure methods. In this algorithm, we address
the problem if X1, X2, . . . , Xr ⊆ U (U is the finite uni-
verse of discourse) such that |X1| = |X2| = · · · = |Xr |,
then find the best Xi (1 ≤ i ≤ r), where the elements of
Xi are selected randomly. To solve this problem, first we
have the IMSIS for the given alternatives with respect to the
considered attributes. Second, we compute PFS from IMSIS
and PFRs from each sub-information source from IMSIS of
U . Then, we derive the PFS and PFRs for each Xi . Third,
we obtain the approximation results for each type MG-PF-
DTRSs for each Xi . We see that the obtained results are not
entirely consistent. For this reason we also suggest several
methods of uncertainty measure such as accuracy, approxi-
mation degree and approximation quality for four types of
MG-PF-DTRSs. Fourth, we obtain best Xi according to the
higher accuracy, approximation degree and approximation
quality. This is our main objective. In comparison to existing
results [13,14], our model has several advantages as listed
below:

1. our model can deal with both intuitionistic fuzzy and
Pythagorean fuzzy information instead of only intuition-
istic fuzzy information;

2. our model can deal with complete and incomplete multi-
source information systems instead of only complete
multi-source information systems;

3. instead of assuming a fuzzy decision-making object as
many researchers do, we give a method to find it.

As far as organization of this paper is concerned we give
some necessary concepts of PFSs in “Preliminaries”. In
“MG-PF-DTRSs based on inclusion measure”, we pro-
pose a common framework of inclusion measure based on
MG-PF-DTRSs and study four types of MG-PF-DTRSs
which are constructed using the Pythagorean fuzzy inclu-
sion measure. The uncertainties of the proposed four types
of MG-PF-DTRSs are measured in “Uncertainty measures”.
In “Decision-making to incomplete multi-source informa-
tion systems usingMG-PF-DTRSs”,we apply our theoretical
results to decision-making in IMSIS. An example about
selection of mutual funds is also included in this sec-
tion to show the feasibility and potential of our proposed
decision-making approach. “Conclusions” is the concluding
section.

123



Complex & Intelligent Systems (2019) 5:145–163 147

Preliminaries

In this section, we present some basic concepts and termi-
nology used throughout the paper.

Definition 1 (Peng et al. [39]) Let U be a universe of dis-
course. A PFS A in U is given by

A = {〈x, μA(U )(x), νA(U )(x)
〉 | x ∈ U }

=
∑

x∈U

〈μA(x), νA(x)〉
x

, (1)

where μA : U → [0, 1] denotes the degree of membership
and νA : U → [0, 1] denotes the degree of nonmember-
ship of the element x ∈ U for the set A, respectively, with
the condition that 0 ≤ μ2

A(x) + ν2A(x) ≤ 1. The degree of

indeterminacy πA(x) is given by
√
1 − μ2

A(x) − ν2A(x). For
convenience, Zhang and Xu [39] called 〈μA(x), νA(x)〉 a
Pythagorean fuzzy number (PFN) denoted by A = 〈μA, νA〉.

If X ⊆ U , we define a Pythagorean fuzzy subset of X of
the PFS of U in the following way:

A(X) =
{

〈μA(x), νA(x)〉 if x ∈ X ,

〈0, 1〉 if x /∈ X ,
(2)

which may also denoted by

A(X) = {〈
x, μA(X)(x), νA(X)(x)

〉 | x ∈ X ⊆ U
}

=
∑

x∈X⊆U

〈
μA(X)(x), νA(X)(x)

〉

x
. (3)

In this case the PFN is denoted by A(X) = 〈
μA(X), νA(X)

〉
.

The complement of A(X) is denoted by A(Xc) and defined
as

A(Xc) =
{〈

μA(X (x), νA(x)
〉

if x /∈ X .

〈0, 1〉 if x ∈ X .
(4)

For example, let A = {〈x1, 0.9, 0.3〉, 〈x2, 0.4, 0.7〉,
〈x3, 0.8, 0.4〉, 〈x4, 0.7, 0.2〉, 〈x5, 0.7, 0.6〉, 〈x6, 0.9, 0.2〉,
〈x7, 0.7, 0.5〉, 〈x8, 0.8, 0.2〉, 〈x9, 0.5, 0.7〉, 〈x10, 0.7, 0.6〉}
be a PFS. If X = {x4, x7, x8, x10} ⊆ U , then A(X) =
{〈x1, 0, 1〉, 〈x2, 0, 1〉, 〈x3, 0, 1〉, 〈x4, 0.7, 0.2〉, 〈x5, 0, 1〉,
〈x6, 0, 1〉, 〈x7, 0.7, 0.5〉, 〈x8, 0.8, 0.2〉, 〈x9, 0, 1〉, 〈x10, 0.7,
0.6〉} and A(Xc) = {〈x1, 0.9, 0.3〉, 〈x2, 0.4, 0.7〉, 〈x3, 0.8,
0.4〉, 〈x4, 0, 1〉, 〈x5, 0.7, 0.6〉, 〈x6, 0.9, 0.2〉, 〈x7, 0, 1〉,
〈x8, 0, 1〉, 〈x9, 0.5, 0.7〉, 〈x10, 0, 1〉}.

Throughout this paper by PFS(U ) we mean the set of all
PFSs defined on U .

Definition 2 (Peng et al. [31]) If A, B ∈ PFS(U ), then

1. Ac = {〈x, νA(x), μA(x)〉 | x ∈ U };
2. A ⊆ B if ∀x ∈ U , μA(x) ≤ μB(x) and νA(x) ≥ νB(x);
3. A = B iff ∀x ∈ U ,μA(x) = μB(x) and νA(x) = νB(x);
4. �A = {〈x, 1, 0〉 | x ∈ U };
5. ∅A = {〈x, 0, 1〉 | x ∈ U };
6. A ∩ B = {〈x, μA(x) ∧ μB(x), νA(x) ∨ νB(x)〉 | x ∈

U };
7. A ∪ B = {〈x, μA(x) ∨ μB(x), νA(x) ∧ νB(x)〉 | x ∈

U }.

Thus it is clear that if X ⊆ U , then A(X), A(Xc) ⊆ A.

Definition 3 (Zhang et al. [36])APythagorean fuzzy relation
R on U is a PFS on U ×U . That is, R is expressed by

R = {〈(x, y), μR(x, y), νR(x, y)〉 | (x, y) ∈ U ×U } , (5)

where μR : U × U → [0, 1] and νR : U × U → [0, 1]
satisfy 0 ≤ μ2

R(x, y)+ν2R(x, y) ≤ 1 for all (x, y) ∈ U ×U .

A Pythagorean fuzzy relation R onU is denoted by R(U )

in this paper. If X ⊆ U , we define a Pythagorean fuzzy
relation R(U × X) on U × X as follows:

R(U × X) =
{

〈μR(x, y), νA(x, y)〉 if x ∈ U , y ∈ X ,

〈0, 1〉 if x ∈ U , y /∈ X .

(6)

For example, let U = {x1, x2, x3, x4, x5} and the
Pythagorean fuzzy relation on U be as given in Table 1 and
X = {x3, x5} ⊆ U ; then the Pythagorean fuzzy relation on
U × X will be as given in Table 2.

The Pythagorean fuzzy inclusion measure is also called
the Pythagorean fuzzy subsethood measure, which indi-
cates the degree to which one PFS is contained in another
PFS. Peng et al. [31] provided a simple definition of the
Pythagorean fuzzy inclusion measure as follows:

Definition 4 (Peng et al. [31]) Let A, B and C be three
PFSs on U . An inclusion measure I (A, B) is a mapping
I : PFS(U ) × PFS(U ) → [0, 1], possessing the following
properties:

1. 0 ≤ I (A(U ), B(U )) ≤ 1;
2. I (A, B) = 1 iff A ⊆ B;
3. I (A, B) = 0 iff A = �A, B = ∅B ;
4. If A ⊆ B ⊆ C , then I (C, A) ≤ I (B, A) and I (C, A) ≤

I (C, B).

We provide an inclusion measure on PFS(U ) on the basis
of the Theorems 3.7(10) and 3.22 presented by Peng et al.
[31].

Definition 5 (Peng et al. [31]) For A, B ∈ PFS(U ), an inclu-
sion measure I on PFS(U ) can be defined as follows:
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Table 1 The Pythagorean fuzzy
relation on U

R(U ×U ) x1 x2 x3 x4 x5

x1 〈1, 0〉 〈0.5, 0.7〉 〈0.6, 0.7〉 〈0.4, 0.3〉 〈0.5, 0.3〉
x2 〈0.5, 0.7〉 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.6〉 〈0.6, 0.4〉
x3 〈0.6, 0.7〉 〈0.5, 0.4〉 〈1, 0〉 〈0.7, 0.6〉 〈0.6, 0.5〉
x4 〈0.4, 0.3〉 〈0.5, 0.6〉 〈0.7, 0.6〉 〈1, 0〉 〈0.4, 0.3〉
x5 〈0.5, 0.3〉 〈0.6, 0.4〉 〈0.6, 0.5〉 〈0.4, 0.3〉 〈1, 0〉

Table 2 The Pythagorean fuzzy relation on U × X

R(U × X) x1 x2 x3 x4 x5

x1 〈0, 1〉 〈0, 1〉 〈0.6, 0.7〉 〈0, 1〉 〈0.5, 0.3〉
x2 〈0, 1〉 〈0, 1〉 〈0.5, 0.4〉 〈0, 1〉 〈0.6, 0.4〉
x3 〈0, 1〉 〈0, 1〉 〈1, 0〉 〈0, 1〉 〈0.6, 0.5〉
x4 〈0, 1〉 〈0, 1〉 〈0.7, 0.6〉 〈0, 1〉 〈0.4, 0.3〉
x5 〈0, 1〉 〈0, 1〉 〈0.6, 0.5〉 〈0, 1〉 〈1, 0〉

I (A, B) =
∑

x∈U (((μ2
A(x) ∧ μ2

B(x)) + ν2A(x))
∑

x∈U (μ2
A(x) + (ν2A(x) ∨ ν2B(x)))

.

(7)

The inclusion measure I (A, B) defined in Eq. 5 satisfies
the four conditions of the Definition 4.

For example, two PFSs A = {〈x1, 0.9, 0.3〉, 〈x2, 0.4, 0.7〉,
〈x3, 0.8, 0.4〉, 〈x4, 0.7, 0.2〉} and B = {〈x1, 0.7, 0.6〉, 〈x2,
0.9, 0.2〉, 〈x3, 0.7, 0.5〉, 〈x4, 0.8, 0.2〉}. Then I (A, B) =
0.49+0.16+0.49+0.49+0.09+0.49+0.16+0.04
0.81+0.16+0.64+0.49+0.36+0.49+0.25+0.04 = 2.41

3.24 = 0.74382716

MG-PF-DTRSs based on inclusionmeasure

In this section first we propose and study the models of
inclusion measure-based MG-PF-DTRSs, within the frame-
work of multi-granulation Pythagorean fuzzy approximation
space.

Definition 6 Let U be a finite universe. For any X ⊆ U and
Rk(U × X)(1 ≤ k ≤ m) be m Pythagorean fuzzy relations
on U × X . Then, we call (U , X , Rk(U × X)(1 ≤ k ≤ m))

a multi-granulation Pythagorean fuzzy approximation space
on U .

Definition 7 Let Rk(U × X)(1 ≤ k ≤ m) be m Pythagorean
fuzzy relations on U × X , where X ⊆ U . For each x ∈ U ,
two PFSs [x]∩m

k=1Rk (U×X) and [x]∪m
k=1Rk (U×X) are defined as

follows:

[x]∩m
k=1Rk(U×X) =

{〈
y,∧m

k=1μRk (U×X)(x, y),

∨m
k=1 νRk (U×X)(x, y)

〉
| x ∈ U , y ∈ X

}
(8)

and

[x]∪m
k=1Rk (U×X) =

{〈
y,∨m

k=1μRk (U×X)(x, y),

∧m
k=1 νRk (U×X)(x, y)

〉
| x ∈ U , y ∈ X

}
(9)

for all y ∈ X .

We are now ready to propose a model of four types of
MG-PF-DTRSs. This model is shown by Fig. 1. The first
two models, called Type-I multi-granulation Pythagorean
fuzzy decision-theoretic rough set (Type-I MG-PF-DTRS)
and Type-II multi-granulation Pythagorean fuzzy decision-
theoretic rough set (Type-IIMG-PF-DTRS), are a class based
on combination of relation first and then construction of
approximations, as demonstrated in the upper half Fig. 1.
The next two models, called Type-III multi-granulation
Pythagorean fuzzy decision-theoretic rough set (Type-III
MG-PF-DTRS) and multi-granulation Pythagorean fuzzy
decision-theoretic rough set (Type-IV MG-PF-DTRS), are
another class that is used the reverse order, as demonstrated
in the lower half Fig. 1.

Now in the following we study four types PF-DTRSs
based on the inclusion measure, within the framework of
multi-granulation Pythagorean fuzzy approximation space,
i.e., four types of MG-PF-DTRSs.

Type-I MG-PF-DTRSs

Definition 8 Let (U , X , Rk(U×X)(1 ≤ k ≤ m)) be amulti-
granulation Pythagorean fuzzy approximation space, for any
X ⊆ U with non-empty and finite universe of discourse U
andm Pythagorean fuzzy relations Rk(U × X)(1 ≤ k ≤ m).
For any A(X) and 0 ≤ β < α ≤ 1, the inclusion measure-
based Type-I multi-granulation Pythagorean fuzzy α-lower
and β-upper approximations of A(X) w.r.t. (U , X , Rk(U ×
X)(1 ≤ k ≤ m)) are defined, respectively, as follows:

Aprα∩m
k=1Rk (U×X)

(A(X))

=
{
x ∈ U : I ([x]∩m

k=1Rk (U×X), A(X)) ≥ α
}

,
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Fig. 1 Models of multi-granulation Pythagorean fuzzy rough sets

Apr
β

∩m
k=1Rk (U×X)(A(X))

=
{
x ∈ U : I ([x]∩m

k=1Rk(U×X), A(X)) > β
}

.

Wecall the pair (Aprα∩m
k=1Rk (U×X)

( A ( X ) ), Apr
β

∩m
k=1Rk (U×X)

(A(X))) as inclusion measure based Type-I (α, β)-MG-PF-
DTRS of A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)).
The positive, negative and boundary regions of A(X) w.r.t.
(U , Rk(1 ≤ k ≤ m)) are defined, respectively, as follows:

POSα(A(X)) = Aprα∩m
k=1Rk (U×X)

(A(X)),

NEGβ(A(X)) = (Apr
β

∩m
k=1Rk (U×X)(A(X)))c,

BND(α,β)(A(X)) = Apr
β

∩m
k=1Rk (U×X)(A(X))

− Aprα∩m
k=1Rk(U×X)

(A(X)).

Remark 1 For any X = {y1, y2, . . . , yn} ⊆ U and for all
x ∈ U , we have Eq. (10) from Eq. (7).

I ([x]∩m
k=1Rk (U×X), A(X)) =

∑n
i=1(((∧m

k=1μ
2
Rk (U×X)(x, yi )) ∧ μ2

A(X)(yi )) + (∨m
k=1ν

2
Rk (U×X)(x, yi )))∑n

i=1((∧m
k=1μ

2
Rk (U×X)(x, yi )) + ((∨m

k=1ν
2
Rk (U×X)(x, yi )) ∨ ν2A(X)(yi )))

. (10)

Remark 2 1. For any X ⊆ U , we obtain

Aprα∩m
k=1Rk (U×X)

(A(X)) ⊆ Apr
β

∩m
k=1Rk (U×X)(A(X)).

2. Aprα∩m
k=1Rk (U×U )

(U ) = UApr
β

∩m
k=1Rk (U×U )(U ).

3. For any X ⊆ U and 0 ≤ β1 ≤ β2 ≤ α1 ≤ α2 ≤ 1, we
obtain

Aprα2∩m
k=1Rk (U×X)

(A(X)) ⊆ Aprα1∩m
k=1Rk (U×X)

(A(X)).

and

Apr
β2
∩m
k=1Rk (U×X)(A(X)) ⊆ Apr

β1
∩m
k=1Rk (U×X)(A(X)).

4. For any X ,Y ⊆ U with A(X) ⊆ A(Y ), we obtain

Aprα∩m
k=1Rk (U×X)

(A(X)) ⊆ Aprα∩m
k=1Rk (U×X)

(A(Y ))

and

Apr
β

∩m
k=1Rk (U×X)(A(X)) ⊆ Apr

β

∩m
k=1Rk (U×X)(A(Y )).

Remark 3 In the Definition 8, the Type-I (α, β)-MG-PF-
DTRS is also refereed to as asymmetric MG-PF-DTRS, the
aim of which is to approximate Pythagorean fuzzy concepts
with high desired level of prediction accuracy. From Defini-
tion 8, we can derive the two special kinds ofMG-PF-DTRSs
are given, respectively, as follows:

1. The Type-I α-MG-PF-DTRS (with 0.5 < α ≤ 1) of
A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)) is defined
for any X ⊆ U in terms of inclusion measure based
Type-I multi-granulation Pythagorean fuzzy α-lower and
α-upper approximations as

Aprα∩m
k=1Rk (U×X)

(A(X))

= {x ∈ U : I ([x]∩m
k=1Rk(U×X), A(X)) ≥ α},
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Apr
β

∩m
k=1Rk (U×X)(A(X))

= {x ∈ U : I ([x]∩m
k=1Rk (U×X), A(X)) > 1 − α}.

2. The Type-I 0.5-MG-PF-DTRS of A(X) w.r.t. (U , X ,

Rk(U × X)(1 ≤ k ≤ m)) is defined for any X ⊆

U in terms of inclusion measure based Type-I multi-
granulation Pythagorean fuzzy 0.5-lower and 0.5-upper
approximations as

Aprα∩m
k=1Rk (U×X)

(A(X))

= {x ∈ U : I ([x]∩m
k=1Rk (U×X), A(X)) > 0.5},

Apr
β

∩m
k=1Rk (U×X)(A(X))

= {x ∈ U : I ([x]∩m
k=1Rk (U×X), A(X)) ≥ 0.5}.

Type-II MG-PF-DTRSs

Definition 9 Let (U , X , Rk(U×X)(1 ≤ k ≤ m)) be amulti-
granulation Pythagorean fuzzy approximation space, for any
X ⊆ U with non-empty and finite universe of discourse U
andm Pythagorean fuzzy relations Rk(U × X)(1 ≤ k ≤ m).
For any A(X) and 0 ≤ β < α ≤ 1, the inclusion measure-
based Type-II multi-granulation Pythagorean fuzzy α-lower
and β-upper approximations of A(X) w.r.t. (U , X , Rk(U ×
X)(1 ≤ k ≤ m)) are defined, respectively, as follows:

Aprα∪m
k=1Rk (U×X)

(A(X))

= {x ∈ U : I ([x]∪m
k=1Rk (U×X), A(X)) ≥ α},

Apr
β

∪m
k=1Rk (U×X)(A(X))

= {x ∈ U : I ([x]∪m
k=1Rk (U×X), A(X)) > β}.

We call the pair (Aprα∪m
k=1Rk (U×X)

(A(X))), Apr
β

∪m
k=1Rk (U×X)

(A(X)) as inclusion measure-based Type-II (α, β)-MG-PF-
DTRS of A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)).
The positive, negative and boundary regions of A(X) w.r.t.
(U , X , Rk(U × X)(1 ≤ k ≤ m)) are defined, respectively,
as follows:

POSα(A(X)) = Aprα∪m
k=1Rk (U×X)

(A(X)),

NEGβ(A(X)) = (Apr
β

∪m
k=1Rk (U×X)(A(X)))c,

BND(α,β)(A(X)) = Apr
β

∪m
k=1Rk (U×X)(A(X))

− Aprα∪m
k=1Rk (U×X)

(A(X)).

Remark 4 For any X = {y1, y2, . . . , yn} ⊆ U and for all
x ∈ U , we have Eq. (11) from Eq. (7).

I ([x]∪m
k=1Rk (U×X), A(X)) =

∑n
i=1(((∨m

k=1μ
2
Rk (U×X)(x, yi )) ∧ μ2

A(X)(yi )) + (∧m
k=1ν

2
Rk (U×X)(x, yi )))∑n

i=1((∨m
k=1μ

2
Rk (U×X)(x, yi )) + ((∧m

k=1ν
2
Rk (U×X)(x, yi )) ∨ ν2A(X)(yi )))

, (11)

Remark 5 1. For any X ⊆ U , we obtain

Aprα∪m
k=1Rk (U×X)

(A(X)) ⊆ Apr
β

∪m
k=1Rk (U×X)(A(X)).

2. Aprα∪m
k=1Rk (U×U )

(U ) = U = Apr
β

∪m
k=1Rk (U×U )(U ).

3. For any X ⊆ U and 0 ≤ β1 ≤ β2 ≤ α1 ≤ α2 ≤ 1, we
obtain

Aprα2∪m
k=1Rk (U×X)

(A(X)) ⊆ Aprα1∪m
k=1Rk (U×X)

(A(X))

and

Apr
β2
∪m
k=1Rk (U×X)(A(X)) ⊆ Apr

β1
∪m
k=1Rk

(A(X)).

4. For any X ,Y ⊆ U with A(X) ⊆ A(Y ), we obtain

Aprα∪m
k=1Rk (U×X)

(A(X)) ⊆ Aprα∪m
k=1Rk (U×X)

(A(Y ))

and

Apr
β

∪m
k=1Rk (U×X)(A(X)) ⊆ Apr

β

∪m
k=1Rk (U×X)(A(Y )).

Remark 6 From the Definition 9, we can derive the two spe-
cial kinds of MG-PF-RSs, given, respectively, as follows:

1. The Type-II α-MG-PF-DTRS (with 0.5 < α ≤ 1) of
A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)) is defined
for any X ⊆ U in terms of inclusion measure-based
Type-II multi-granulation Pythagorean fuzzy α-lower
and α-upper approximations as

Aprα∪m
k=1Rk (U×X)

(A(X))

=
{
x ∈ U : I ([x]∪m

k=1Rk (U×X), A(X)) ≥ α
}

,

Apr
β

∪m
k=1Rk (U×X)(A(X))

=
{
x ∈ U : I ([x]∪m

k=1Rk (U×X), A(X)) > 1 − α
}

.
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2. The Type-II 0.5-MG-PF-DTRS of A(X)w.r.t. (U , X , Rk

(U × X)(1 ≤ k ≤ m)) is defined for any X ⊆ U in terms
of inclusion measure-based Type-II multi-granulation
Pythagorean fuzzy 0.5-lower and 0.5-upper approxima-
tions as

Aprα∪m
k=1Rk (U×X)

(A(X))

= {x ∈ U : I ([x]∪m
k=1Rk (U×X), A(X)) > 0.5},

Apr
β

∪m
k=1Rk (U×X)(A(X))

= {x ∈ U : I ([x]∪m
k=1Rk (U×X), A(X)) ≥ 0.5}.

Type-III MG-PF-DTRSs

Definition 10 Let (U , X , Rk(U × X)(1 ≤ k ≤ m)) be a
multi-granulation Pythagorean fuzzy approximation space,
for any X ⊆ U with non-empty and finite universe of dis-
courseU andm Pythagorean fuzzy relations Rk(U×X)(1 ≤
k ≤ m). For any A(X) and 0 ≤ β < α ≤ 1, the inclu-
sion measure-based Type-III multi-granulation Pythagorean
fuzzy α-lower and β-upper approximations of A(X) w.r.t.
(U , X , Rk(U × X)(1 ≤ k ≤ m)) are defined, respectively,
as follows:

∩m
k=1 Apr

α

Rk(U×X)
(A(X))

= {x ∈ U : ∩m
k=1 I ([x]Rk (U×X), A(X)) ≥ α},

∪m
k=1 Apr

β

Rk(U×X)(A(X))

= {x ∈ U : ∪m
k=1 I ([x]Rk (U×X), A(X)) > β}.

Wecall the pair (∩m
k=1Apr

α

Rk (U×X)
(A(X)),∪m

k=1Apr
β

Rk (U×X)

(A(X)) as inclusion measure-based Type-III (α, β)-MG-
PF-DTRS of A w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)).
The positive, negative and boundary regions of A(X) w.r.t.
(U , X , Rk(U × X)(1 ≤ k ≤ m)) are defined, respectively,
as follows:

POSα(A(X)) = ∩m
k=1Apr

α

Rk (U×X)
(A(X)),

NEGβ(A(X)) = (∪m
k=1Apr

β

Rk (U×X)(A(X)))c,

BND(α,β)(A(X)) = ∪m
k=1Apr

β

Rk (U×X)(A(X))

− ∩m
k=1Apr

α

Rk (U×X)
(A(X)).

Remark 7 For any X = {y1, y2, . . . , yn} ⊆ U and for all
x ∈ U , we have Eqs. (12) and (13) from Eq. (7).

∩m
k=1 I ([x]Rk (U×X), A(X)) =

m∧

k=1

∑n
i=1((μ

2
Rk (U×X)(x, yi ) ∧ μ2

A(X)(yi )) + ν2Rk (U×X)(x, yi ))∑n
i=1(μ

2
Rk (U×X)(x, yi ) + (ν2Rk (U×X)(x, yi ) ∨ ν2A(X)(yi ))

, (12)

∪m
k=1 I ([x]Rk (U×X), A(X)) =

m∨

k=1

∑n
i=1((μ

2
Rk (U×X)(x, yi ) ∧ μ2

A(X)(yi )) + ν2Rk (U×X)(x, yi ))∑n
i=1(μ

2
Rk (U×X)(x, yi ) + (ν2Rk (U×X)(x, yi ) ∨ ν2A(X)(yi ))

. (13)

Remark 8 1. For any X ⊆ U , we obtain

∩m
k=1Apr

α

Rk(U×X)
(A(X)) ⊆ ∪m

k=1Apr
β

Rk (U×X)(A(X)).

2. ∩m
k=1Apr

α

Rk(U×U )
(U ) = U ∪m

k=1 Apr
β

Rk(U×U )(U ).
3. For any X ⊆ U and 0 ≤ β1 ≤ β2 ≤ α1 ≤ α2 ≤ 1, we

obtain

∩m
k=1Apr

α2
Rk

(A) ⊆ ∩m
k=1Apr

α1
Rk (U×X)

(A(X))

and

∪m
k=1Apr

β2
Rk(U×X)(A(X)) ⊆ ∪m

k=1Apr
β1
Rk (U×X)(A(X)).

4. For any X ,Y ⊆ U with A(X) ⊆ B(X), we obtain

∩m
k=1Apr

α

Rk(U×X)
(A(X)) ⊆ ∩m

k=1Apr
α

Rk (U×X)
(A(Y ))

and

∪m
k=1Apr

β

Rk(U×X)(A(X)) ⊆ ∪m
k=1Apr

β

Rk (U×X)(A(Y )).

Remark 9 From the Definition 10, we can derive the two spe-
cial kinds ofMG-PF-RSs, are given, respectively, as follows:

1. the Type-III α-MG-PF-DTRS (with 0.5 < α ≤ 1) of
A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)) is defined
for any X ⊆ U in terms of inclusion measure-based
Type-III multi-granulation Pythagorean fuzzy α-lower
and α-upper approximations as

∩m
k=1 Apr

α

Rk(U×X)
(A(X))

= {x ∈ U : ∩m
k=1 I ([x]Rk (U×X), A(X)) ≥ α},

∪m
k=1 Apr

β

Rk(U×X)(A(X))

= {x ∈ U : ∪m
k=1 I ([x]Rk (U×X), A(X)) > 1 − α}.
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2. the Type-III 0.5-MG-PF-DTRS of A(X)w.r.t. (U , X , Rk

(U × X)(1 ≤ k ≤ m)) is defined for any X ⊆ U in terms
of inclusion measure-based Type-III multi-granulation
Pythagorean fuzzy 0.5-lower and 0.5-upper approxima-
tions as

∩m
k=1 Apr

α

Rk (U×X)
(A(X))

= {
x ∈ U : ∩m

k=1 I ([x]Rk (U×X), A(X)) > 0.5
}
,

∪m
k=1 Apr

β

Rk (U×X)(A(X))

= {
x ∈ U : ∪m

k=1 I ([x]Rk (U×X), A(X)) ≥ 0.5
}
.

Type-IV MG-PF-DTRSs

Definition 11 Let (U , X , Rk(U × X)(1 ≤ k ≤ m)) be a
multi-granulation Pythagorean fuzzy approximation space,
for any X ⊆ U with non-empty and finite universe of dis-
courseU andm Pythagorean fuzzy relations Rk(U×X)(1 ≤
k ≤ m). For any A(X) and 0 ≤ β < α ≤ 1, the inclu-
sion measure-based Type-IV multi-granulation Pythagorean
fuzzy α-lower and β-upper approximations of A(X) w.r.t.
(U , X , Rk(U × X)(1 ≤ k ≤ m)) are defined, respectively,
as follows:

∪m
k=1 Apr

α

Rk(U×X)
(A(X))

= {
x ∈ U : ∪m

k=1 I ([x]Rk (U×X), A(X)) ≥ α
}
,

∩m
k=1 Apr

β

Rk(U×X)(A(X))

= {
x ∈ U : ∩m

k=1 I ([x]Rk (U×X), A(X)) > β
}
.

Wecall the pair (∪m
k=1Apr

α

Rk (U×X)
(A(X)),∩m

k=1Apr
β

Rk (U×X)

(A(X)) as inclusionmeasure-based Type-IV (α, β)-MG-PF-
DTRS of A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)).
The positive, negative and boundary regions of A(X) w.r.t.
(U , X , Rk(U × X)(1 ≤ k ≤ m)) are defined, respectively,
as follows:

POSα(A(X)) = ∪m
k=1Apr

α

Rk (U×X)
(A(X)),

NEGβ(A(X)) = (∩m
k=1Apr

β

Rk (U×X)(A(X)))c,

BND(α,β)(A(X)) = ∩m
k=1Apr

β

Rk (U×X)(A(X))

− ∪m
k=1Apr

α

Rk (U×X)
(A(X)).

Remark 10 1. ∪m
k=1Apr

α

Rk (U×U )
(U ) = U∩m

k=1Apr
β

Rk (U×U )

(U ).
2. For any X ⊆ U and 0 ≤ β1 ≤ β2 ≤ α1 ≤ α2 ≤ 1, we

obtain

∪m
k=1Apr

α2
Rk (U×X)

(A(X)) ⊆ ∪m
k=1Apr

α1
Rk (U×X)

(A(X))

and

∩m
k=1Apr

β2
Rk(U×X)(A(X)) ⊆ ∩m

k=1Apr
β1
Rk (U×X)(A(X)).

3. For any X ,Y ⊆ U with A(X) ⊆ A(Y ), we obtain

∪m
k=1Apr

α

Rk(U×X)
(A(X)) ⊆ ∪m

k=1Apr
α

Rk (U×X)
(A(Y ))

and

∩m
k=1Apr

β

Rk(U×X)(A(X)) ⊆ ∩m
k=1Apr

β

Rk (U×X)(A(Y )).

Remark 11 From the Definition 11, we can derive the two
special kinds of MG-PF-RSs, are given, respectively, as fol-
lows:

1. the Type-IV α-MG-PF-DTRS (with 0.5 < α ≤ 1) of
A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤ m)) is defined
for any X ⊆ U in terms of inclusion measure-based
Type-IV multi-granulation Pythagorean fuzzy α-lower
and α-upper approximations as

∪m
k=1 Apr

α

Rk(U×X)
(A(X))

= {x ∈ U : ∪m
k=1 I ([x]Rk (U×X), A(X)) ≥ α},

∩m
k=1 Apr

β

Rk(U×X)(A(X))

= {x ∈ U : ∩m
k=1 I ([x]Rk (U×X), A(X)) > 1 − α}.

2. the Type-IV 0.5-MG-PF-DTRS of A(X)w.r.t. (U , X , Rk

(U × X)(1 ≤ k ≤ m)) is defined for any X ⊆ U in terms
of inclusion measure-based Type-IV multi-granulation
Pythagorean fuzzy 0.5-lower and 0.5-upper approxima-
tions as

∪m
k=1 Apr

α

Rk(U×X)
(A(X))

= {x ∈ U : ∪m
k=1 I ([x]Rk (U×X), A(X)) > 0.5},

∩m
k=1 Apr

β

Rk(U×X)(A(X))

= {x ∈ U : ∩m
k=1 I ([x]Rk (U×X), A(X)) ≥ 0.5}.

Uncertainty measures

In this section, several measures are utilized to calculate
the uncertainty of these models which is discussed in pre-
vious section. The uncertainty of knowledge is caused by the
boundary regions, in the view point of approximations. The
larger the boundary area is, the more the uncertainty. The
accuracy, roughness and approximation quality are studied
in the next.

Definition 12 Let (U , X , Rk(U × X)(1 ≤ k ≤ m)) be a
multi-granulation Pythagorean fuzzy approximation space,
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for any X ⊆ U with non-empty and finite universe of dis-
courseU andm Pythagorean fuzzy relations Rk(U×X)(1 ≤
k ≤ m). For any A(X) and 0 ≤ β < α ≤ 1, the Type-I MG-
PF-DTRS accuracy ρI, Type-II MG-PF-DTRS accuracy ρII,
Type-III MG-PF-DTRS accuracy ρIII and Type-IV MG-PF-
DTRS accuracy ρIV of A(X) w.r.t. ( U , X , Rk(U × X)(1 ≤
k ≤ m)) are defined, respectively, as follows:

ρI =

∣∣∣∣Apr
α

∩m
k=1Rk (U×X)

(A(X))

∣∣∣∣
∣∣∣Apr

β

∩m
k=1Rk (U×X)(A(X))

∣∣∣
, (14)

ρII =

∣∣∣∣Apr
α

∪m
k=1Rk (U×X)

(A(X))

∣∣∣∣
∣∣∣Apr

β

∪m
k=1Rk (U×X)(A(X))

∣∣∣
, (15)

ρIII =
∣∣∣∩m

k=1Apr
α

Rk (U×X)
(A(X))

∣∣∣
∣∣∣∪m

k=1Apr
β

Rk (U×X)(A(X))

∣∣∣
, (16)

ρIV =
∣∣∣∪m

k=1Apr
α

Rk (U×X)
(A(X))

∣∣∣
∣∣∣∩m

k=1Apr
β

Rk (U×X)(A(X))

∣∣∣
. (17)

Definition 13 Let (U , X , Rk(U × X)(1 ≤ k ≤ m)) be a
multi-granulation Pythagorean fuzzy approximation space,
for any X ⊆ U with non-empty and finite universe of dis-
courseU andm Pythagorean fuzzy relations Rk(U×X)(1 ≤
k ≤ m). For any A(X) and 0 ≤ β < α ≤ 1, the Type-I MG-
PF-DTRS approximation degree σI, Type-II MG-PF-DTRS
approximation degree σII, Type-III MG-PF-DTRS approxi-
mation degree σIII and Type-IV MG-PF-DTRS approxima-
tion degree σIV of A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤
m)) are defined, respectively, as follows:

σI =

∣∣∣∣Apr
α

∩m
k=1Rk (U×X)

(A(X))

∣∣∣∣

|X | , (18)

σII =

∣∣∣∣Apr
α

∪m
k=1Rk (U×X)

(A(X))

∣∣∣∣

|X | , (19)

σIII =
∣∣∣∩m

k=1Apr
α

Rk (U×X)
(A(X))

∣∣∣

|X | , (20)

σIV =
∣∣∣∪m

k=1Apr
α

Rk (U×X)
(A(X))

∣∣∣

|X | . (21)

Definition 14 Let (U , X , Rk(U × X)(1 ≤ k ≤ m)) be a
multi-granulation Pythagorean fuzzy approximation space,
for any X ⊆ U with non-empty and finite universe of dis-
courseU andm Pythagorean fuzzy relations Rk(U×X)(1 ≤
k ≤ m). For any A(X) and 0 ≤ β < α ≤ 1, the Type-I MG-
PF-DTRS approximation quality ωI, Type-II MG-PF-DTRS

approximation quality ωII, Type-III MG-PF-DTRS approxi-
mation quality ωIII and Type-IV MG-PF-DTRS approxima-
tion quality ωIV of A(X) w.r.t. (U , X , Rk(U × X)(1 ≤ k ≤
m)) are defined, respectively, as follows:

ωI =

∣∣∣∣Apr
α

∩m
k=1Rk (U×X)

(A(X))

∣∣∣∣

|U | , (22)

ωII =

∣∣∣∣Apr
α

∪m
k=1Rk (U×X)

(A(X))

∣∣∣∣

|U | , (23)

ωIII =
∣∣∣∩m

k=1Apr
α

Rk (U×X)
(A(X))

∣∣∣

|U | , (24)

ωIV =
∣∣∣∪m

k=1Apr
α

Rk (U×X)
(A(X))

∣∣∣

|U | . (25)

Decision-making to incomplete multi-source
information systems usingMG-PF-DTRSs

In this section, based on the MG-PF-DTRSs and their uncer-
tainty measures established in “MG-PF-DTRSs based on
inclusion measure” and “Uncertainty measures”, we will
construct a new method and approach to decision-making
with incomplete multi-source information systems. Also, we
will present the decision-making algorithm and the general
steps for established method in detail.

Incompletemulti-source information systems and
the similarity degrees

Definition 15 (Lin et al. [22]) A multi-source informa-
tion system is MSIS = {ISl | ISl = (U ,ATl , V =
{(Va)a∈ATl }, fl}, where

1. U is a finite non-empty set of objects, called the universe;
2. ATl is a non-empty finite set of attributes of each subsys-

tem;
3. {Va} is the domain of the attribute a ∈ ATl ; and
4. fl : U ×ATl �→ {(Va)a∈ATl } such that for all x ∈ U and

a ∈ ATl , f (x, a) ∈ Va .

Definition 16 An incomplete multi-source information sys-
tem (IMSIS) indicates theprecise attribute valuesVa for some
objects are unknown. In this paper, the IMSIS is still denoted
without confusion by IMSIS = {ISl | ISl = (U ,ATl , V , fl}.
Here V = {(Va)a∈ATl } ∪ {∗}, the special symbol “∗” is used
to indicate the unknown value. For instance, if f (x, a) = ∗,
the value of object x is unknown on the attribute a.
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Liu et al. [23] handle the incomplete single source infor-
mation system and compute the similarity degree between
two objects. Their similarity degree between two objects is
fuzzy set. Here, we handle the incompletemulti-source infor-
mation system and compute the similarity degree between
two objects. Our similarity degree between two objects is
PFS.

Given an IMSIS = {ISl | ISl = (U , ATl , V , fl}, sup-
pose the IMSIS contains n objects and t attributes, U =
{x1, x2, . . . , xn}, ATl ⊆ {a1, a2, . . . , at }. For ∀x, y ∈ U ,
∀ai ∈ ATl , the relations between (x, ai ) and (y, ai ) can be
treated as following four scenarios:

1. Consideration of (x, ai ) �= ∗ and (y, ai ) �= ∗, (x, ai ) and
(y, ai ) are equality iff (x, ai ) = (y, ai );

2. Consideration of (x, ai ) �= ∗ and (y, ai ) �= ∗, (x, ai ) and
(y, ai ) are not the same if (x, ai ) �= (y, ai );

3. Consideration of (x, ai ) = ∗ or (y, ai ) = ∗, because
of the unknown value “∗” is treated as “do not care”
conditions, it has the probability of 1∣∣Vai

∣∣ to equal to one

certain value of Vai (Vai is a domain of the attribute ai ,∣∣Vai
∣∣ denotes the cardinality of ai ).

4. Consideration of (x, ai ) = (y, ai ) = ∗, both of ai (x) and
ai (y) have the probability of 1∣∣Vai

∣∣ to equal to one certain

value of Vai , so the joint probability of (x, ai ) = (y, ai )
is 1∣∣Vai

∣∣2 .

With the above discussions, we apply the concepts of
PFSs, the similarity degrees between x and y on ai can be
written in the following way:

μSim(ai )(x, y)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 (x, ai ) = (y, ai ) �= ∗;
0 (x, ai ) �= (y, ai ) ∧ (x, ai ) �= ∗ ∧ (y, ai ) �= ∗;
1∣∣Vai

∣∣ (x, ai ) = ∗ ∨ (y, ai ) = ∗;
1∣∣Vai

∣∣2 (x, ai ) = ∗ ∧ (y, ai ) = ∗
(26)

and

νSim(ai )(x, y)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 (x, ai ) = (y, ai ) �= ∗;
1 (x, ai ) �= (y, ai ) ∧ (x, ai ) �= ∗ ∧ (y, ai ) �= ∗;√
1 − 1∣∣Vai

∣∣2
(x, ai ) = ∗ ∨ (y, ai ) = ∗;

√
1 − 1∣∣Vai

∣∣4
(x, ai ) = ∗ ∧ (y, ai ) = ∗

(27)

Table 3 A car incomplete multi-source information system

U EC1 EC2

c1 c3 c2 c4

x1 High Full Low Low

x2 Low Medium ∗ Low

x3 ∗ Compact ∗ Low

x4 High Full ∗ High

x5 ∗ Full ∗ High

x6 Low Compact High ∗

If ATl = {b1, b1, . . . , bs} ⊆ {a1, a2, . . . , at }, then
the similarity membership and non-membership degrees
between x and y are calculated as follows:

μRATl (U×U )(x, y) =
s∑

i=1

μSim(bi )(x, y)

s
(28)

νRATl (U×U )(x, y) =
s∑

i=1

νSim(bi )(x, y)

s
. (29)

Using Eqs. (28) and (29), from the Definition 3 we have:

Rk(U ×U ) =
{〈

(x, y),
s∑

i=1

μSim(bi )(x, y)

s
,

s∑

i=1

νSim(bi )(x, y)

s

〉
| x, y ∈ U

}

, (30)

where 1 ≤ k ≤ l.

Example 1 Let us consider an evaluation problem of a car
depicted by an IMSIS presented in Table 3. Suppose that
U = {x1, x2, x3, x4, x5, x6} is a set of six cars. Every car in
each sub-information (source) system, denoted by EC1 and
EC2, is describedby twoattributes. They are c1 = Price, c2 =
Mileage, c3 = Size, c4 = Max-speed, respectively. The
domains of the attributes are as follows: Vc1 = {High,Low},
Vc2 = {High,Low}, Vc3 = {Full,Medium,Compact},
Vc4 = {High,Low}.

According to Table 3 and Eqs. (26) and 27) we easily get
μSim(c1)(x1, x2) = 0, μSim(c3)(x1, x2) = 0, νSim(c2)(x1, x2)
= 1 and νSim(c4)(x1, x2) = 1. From Eqs. ( 28 ) and (29) we
have: μREC1 (U )(x1, x2) = 0+0

2 = 0 and νREC1 (U )(x1, x2) =
1+1
2 = 1. Similarly, we compute μREC1 (U )(xi , x j ) and

νREC1 (U )(xi , x j ) for all xi , x j ∈ U (i , j = 1, 2, . . . , 5),
which is outlined in Table 4.

In the same way, we also compute μREC2 (U ) (xi , x j ) and
νREC (U )(xi , x j ) for all xi , x j ∈ U (i , j = 1, 2, . . . , 5) but
here it is not necessary.
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Table 4 The computing results of REC1 (U )

REC1 (U ×U ) x1 x2 x3 x4 x5 x6

x1 〈1, 0〉 〈0, 1〉 〈0.2500, 0.9330〉 〈1, 0〉 〈0.7500, 0.4303〉 〈0, 1〉
x2 〈1, 0〉 〈0.2500, 0.6330〉 〈0, 1〉 〈0.2500, 0.9330〉 〈0.5000, 0.5000〉
x3 〈1, 0〉 〈0.2500, 0.9330〉 〈0.1250, 0.9841〉 〈0.2500, 0.9330〉
x4 〈1, 0〉 〈0.7500, 0.4330〉 〈0, 1〉
x5 〈1, 0〉 〈0.2500, 0.9330〉
x6 〈1, 0〉

Based on the basic principle of MG-PF-DTRSs, a
Pythagorean fuzzy decision-making object is approximated
over themulti-granulation Pythagorean fuzzy approximation
space. So, we give the approach for compute the Pythagorean
fuzzy decision-making object from the IMSIS. Then we give
the following algorithm for compute the degrees of member-
ship and non-membership of any alternative with respect to a
Pythagorean fuzzy decision-making object from the IMSIS:

Algorithm 1 Computation of the degrees of membership
and non-membership of any alternative with respect to a
Pythagorean fuzzy decision-making object from the IMSIS.

Step 1: Firstwe consider the reasonablemembership degree
of the domains of the all attributes.

Step 2: If the membership degree of the domain of the
attribute ai = αi , i.e. (x, ai ) = αi , then we write

μA(x, ai ) = αi and compute νA(x, ai ) =
√
1 − α2

i .

If (x, ai ) = ∗, then we consider μA(x, ai ) = 1∣∣Vai
∣∣

and νA(x , ai ) =
√
1 − 1∣∣Vai

∣∣2 .

Step 3: The degrees of membership and non-membership
of any x ∈ U is calculated as follows:

μA(x) =
t∑

i=1

μA(U )(x, ai )

t
, (31)

νA(x) =
t∑

i=1

νA(U )(x, ai )

t
. (32)

For clearance we have the following example:

Example 2 (Continued in Example 1) In this example we find
the degrees ofmembership and non-membership of any alter-
native with respect to a Pythagorean fuzzy decision-making
object from a car IMSIS. According to Algorithm 1, we have

Step 1: Let us we consider the reasonable membership
degree of the domains of the all attributes, which
is shown in Fig. 2.

Fig. 2 Membership degree of the domains of the all attributes

Step 2: From Table 3, we get (x1, c1) = High = 1, i.e.
μA(x1, c1) = 1, then νA(x1, c1) = 0. Similarly,
μA(x1, c2) = 0, νA(x1, c2) = 1, μA(x1, c3) = 1,
νA(x1, c3) = 0, μA(x1, c4) = 0, νA(x1, c4) = 1.

Step 3: Using Eqs. (31) and (32), we have μA(x1) =
1+0+1+0

4 = 0.5 and νA(x1) = 0+1+0+1
4 = 0.5.

Similarly, we also find μA(xi ) and νA(xi ) i =
{2, 3, . . . , 6}, which is represented in Eq. (32).

A =〈0.5, 0.5〉
x1

+ 〈0.25, 0.93〉
x2

+ 〈0.44, 0.89〉
x3

+ 〈0.88, 0.27〉
x4

+ 〈0.75, 0.43〉
x5

+ 〈0.65, 0.63〉
x6

. (33)

An algorithm

With the help of the results in “MG-PF-DTRSs based on
inclusion measure” and “Uncertainty measures”, and the
discussion in “Decision-making to incomplete multi-source
information systems using MG-PF-DTRSs”, we design the
algorithm of decision-making based on MG-PF-DTRSs and

123



156 Complex & Intelligent Systems (2019) 5:145–163

their uncertainty measure methods, where the information
source is multiple and incomplete. The key steps are elabo-
rated as follows:

Step 1: Suppose that a decisionmaking problem the IMSIS
is MSIS = {ISl | ISl = (U ,ATl , V =
{(Va)a∈ATl } ∪ {∗}, fl}. Let us assume that X1,
X2, . . . , Xr be the subsets ofU , where the elements
of Xi (i = 1, 2, . . . , r) are randomly selected and
not repeat any other elements in Xi (i = 1, 2, . . .,
r). To find the best Xi (i = 1, 2, . . . , r).

Step 2: Computing Rk(1 ≤ k ≤ l)(U ) according to
Eq. (30).

Step 3: Constructing the Pythagorean fuzzy decision-
making object A according to Algorithm 1.

Step 4: Choose α and β.
Step 5: Computing the inclusion measure based Type-

I multi-granulation Pythagorean fuzzy α-lower
approximation
Aprα∩m

k=1Rk (U×X)
(A(Xi ))

and β-upper approximation

Apr
β

∩m
k=1Rk (U×X)(A(Xi ))

for each Xi ⊆ U , respectively.
Step 6: Computing the inclusion measure-based Type-

II multi-granulation Pythagorean fuzzy α-lower
approximation
Aprα∪m

k=1Rk (U×X)
(A(Xi ))

and β-upper approximation

Apr
β

∪m
k=1Rk (U×X)(A(Xi ))

for each Xi ⊆ U , respectively.
Step 7: Computing the inclusion measure-based Type-

III multi-granulation Pythagorean fuzzy α-lower
approximation
∩m
k=1Apr

α

Rk(U×X)
(A(Xi ))

and β-upper approximation

∪m
k=1Apr

β

Rk(U×X)(A(Xi ))

for each Xi ⊆ U , respectively.
Step 8: Computing the inclusion measure based Type-

III multi-granulation Pythagorean fuzzy α-lower
approximation
∪m
k=1Apr

α

Rk(U×X)
(A(Xi ))

and β-upper approximation

∩m
k=1Apr

β

Rk(U×X)(A(Xi ))

for each Xi ⊆ U , respectively.
Step 9: Computing ρI, ρII, ρIII and ρIV using Eqs. (14)–

( 17).
Step 10: Computing σI, σII, σIII and σIV using Eqs. (18)–

( 21).
Step 11: Computing ωI, ωII, ωIII and ωIV using Eqs. (22)–

( 25).

Step 12: Obtain the best Xi according to the higher accuracy,
approximation degree and approximation quality
for each Xi .

An illustrative example

In this subsection, we apply the proposed algorithm to a
real decision making. This example is about quick decision
making based on a real investment context, under the MG-
PF-DTRSs and their uncertaintymeasuresmodels, where the
information comes from multiple and incomplete.

Problem description

The various types of mutual funds (MFs) of different com-
panies listed in the Growth Enterprise Market board of the
India Stock Exchange are a popular investment source to an
investor as a long-term investment. However, the sufficient
knowledge about the various types of MFs of different com-
panies is always not possible for every investor. Our proposed
models are effective for those investors. Suppose an investor
plans to invest his/her money in MFs of different companies,
with the aim of high returns, while he/she has no sufficient
knowledge about all MFs, then He/she chooses initially ten
MFs according to the past performances, while he/she invests
his/her money intpp the best five MFs out of these ten MFs.
For making reasonable five MFs out of ten MFs, we have the
following decision analysis.

Decision analysis

We use the algorithm in “An algorithm” of decision analysis
based on MG-PF-DTRSs and their uncertainty measure, for
decision making.

Suppose an investor initially chooses ten MFs according
to the past performances, which is depicted by an IMSIS
presented in Table 5. Let U = {x1, x2, . . . , x10} be a set
of ten MFs. Every MF in each sub-information (source)
system, denoted by EC1, EC2, and EC3, is described by
attributes. They are c1 = Sharpe ratio, c2 = Expence
ratio, c3 = Portfolio concentration ratio, c4 = Exit load,
c5 = Standard deviation, c6 = Portfolio turnover ratio,
c7 = Treynor’s ratio, c8 = Beta, c9 = Fund perfor-
mance, and c10 = Investment philosophy, process and
systems followed at the fund house, respectively. The
domains of the attributes are: Vc1 = {High, Low}, Vc2 =
{Average, Low}, Vc3 = {Moderately low, Moderate}, Vc4 =
{Good, Fine}, Vc5 = {Low, Moderately low, Moderate,
Moderately high, high}, Vc6 = {Good, Fine, Poor}, Vc7 =
{Low, Moderately low, Moderate, Moderately high, High},
Vc8 = {Good, Fine, Poor}, Vc9 = {Low, Moderately low,
Moderate, Moderately high, High}, Vc10 = {Good, Fine,
Poor}.
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Table 5 Incomplete multi-source information system for ten MFs

U EC1 EC2 EC3

c1 c2 c6 c7 c3 c5 c8 c4 c9 c10

x1 High Average Fine Moderate Moderate Low Fine Fine Moderately high Fine

x2 High ∗ Fine Moderately high Moderate ∗ Fine Good High ∗
x3 Low ∗ Fine ∗ ∗ Moderate ∗ Good Moderately low Good

x4 ∗ Low Poor ∗ ∗ Moderately low ∗ Fine ∗ Fine

x5 High Average Good Low ∗ High Good ∗ High ∗
x6 ∗ Low Fine ∗ Moderately low ∗ ∗ Fine Moderate ∗
x7 ∗ ∗ Good High ∗ ∗ Fine ∗ Moderately high Fine

x8 Low ∗ Fine Moderately high Moderate ∗ Good Fine ∗ ∗
x9 ∗ Average Good ∗ ∗ Low Poor ∗ Low ∗
x10 Low Low Fine ∗ ∗ Moderate ∗ Fine Moderate Fine

Fig. 3 Membership degree of the domains of the all attributes

For compute A from Table 5, we consider the reasonable
membership degree of the domains of the all attributes, which
is shown in Fig. 3.

Therefor, we have find A(U ) according to Algorithm 1,
which is represented in Eq. (34).

A = 〈0.5250, 0.7724〉
x1

+ 〈0.6283, 0.6048〉
x2

+ 〈0.4783, 0.7355〉
x3

+ 〈0.3483, 0.8469〉
x4

+ 〈0.6833, 0.4541〉
x5

+ 〈0.3317, 0.9287〉
x6

+ 〈0.5950, 0.6837〉
x7

+ 〈0.4483, 0.8028〉
x8

+ 〈0.3533, 0.8387〉
x9

+ 〈0.3533, 0.9119〉
x10

(34)

Since the investor invest his/hermoney to the best fiveMFs
out of ten MFs, but there is no other factors which help the
investor. He/She has to randomly select five MFs to make

investment that means |X | = 5 (xi ∈ X is a MF between
x1, x2, . . . , x10 and not repeat any other MFs in X ). Suppose
X = {x1, x2, x3, x4, x5}, in order to facilitate understanding of
thesemodel,we exhibit a computational process for each type
of MG-PF-DTRSmodel. Then we calculate the Pythagorean
fuzzy decision making object A(X) from A using Eq. (2),
which is shown in Eq. (35).

A(X) = 〈0.5250, 0.7724〉
x1

+ 〈0.6283, 0.6048〉
x2

+ 〈0.4783, 0.7355〉
x3

+ 〈0.3483, 0.8469〉
x4

+ 〈0.6833, 0.4541〉
x5

+ 〈0, 1〉
x6

+ 〈0, 1〉
x7

+ 〈0, 1〉
x8

+ 〈0, 1〉
x9

+ 〈0, 1〉
x10

. (35)

In the following we have successively obtain for types of
MG-PF-DTRSs for α = 0.9 and β = 0.8.

Type-IMG-PF-DTRSs. First,we compute [xi ]∩3
k=1Rk(U×U )

(i = 1, 2, . . . , 10) from Tables 6, 7 and 8 using the Defini-
tion 7. Then we obtain [xi ]∩3

k=1Rk (U×X) (i = 1, 2, . . . , 10)

using Eq. (6), which is shown in Table 9.
Using Eq. (10), we compute all inclusion measures

I ([xi ]∩3
k=1Rk (U×X), A(X)) (1 ≤ i ≤ 10) as follows:

I ([x1]∩3
k=1Rk (U×X), A(X)) = 0.8738,

I ([x2]∩3
k=1Rk (U×X), A(X)) = 0.9053,

I ([x3]∩3
k=1Rk (U×X), A(X)) = 0.8749,

I ([x4]∩3
k=1Rk (U×X), A(X)) = 0.8499,

I ([x5]∩3
k=1Rk (U×X), A(X)) = 0.9265,

I ([x6]∩3
k=1Rk (U×X), A(X)) = 1,
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Table 6 The computing result of R1(U ) from EC1

R1(U ) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 < 1, < 0.6250, < 0.4250, < 0.1750, < 0.5000, < 0.4250, < 0.2500, < 0.3750, < 0.4250, < 0.3000,

0 > 0.4665 > 0.7115 > 0.9615 > 0.5000 > 0.7115 > 0.9330 > 0.7165 > 0.7115 > 0.7449 >

x2 < 1, < 0.3625, < 0.3000, < 0.3750, < 0.5500, < 0.1875, < 0.5625, < 0.3000, < 0.4250,

0 > 0.7370 > 0.9280 > 0.7165 > 0.6780 > 0.9586 > 0.4921 > 0.9280 > 0.7115 >

x3 < 1, < 0.2600, < 0.1750, < 0.5100, < 0.2375, < 0.6125, < 0.2600, < 0.635,

0 > 0.9328 > 0.9615 > 0.6828 > 0.9535 > 0.4870 > 0.9328 > 0.4663 >

x4 < 1, < 0.1750, < 0.3225, < 0.2375, < 0.3000, < 0.0725, < 0.385,

0 > 0.9615 > 0.7419 > 0.9535 > 0.9280 > 0.9919 > 0.7163 >

x5 < 1, < 0.1750, < 0.5000, < 0.1250, < 0.6750, < 0.0500,

0 > 0.9615 > 0.6380 > 0.9665 > 0.4615 > 0.9949 >

x6 < 1, < 0.2375, < 0.5500, < 0.0725, < 0.6350,

0 > 0.9535 > 0.6780 > 0.9919 > 0.4663 >

x7 < 1, < 0.1875, < 0.4875, < 0.3000,

0 > 0.9586 > 0.7035 > 0.9280 >

x8 < 1, < 0.3000, < 0.6750,

0 > 0.9280 > 0.4615 >

x9 < 1, < 0.1350,

0 > 0.9663 >

x10 < 1,

0 >

Table 7 The computing result of R2(U ) from EC2

R2(U ) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 < 1, < 0.7333, < 0.2778, < 0.2778, < 0.1667, < 0.1778, < 0.5667, < 0.4000, < 0.5000, < 0.2778,

0 > 0.3266 > 0.9363 > 0.9363 > 0.9553 > 0.9742 > 0.6153 > 0.6599 > 0.6220 > 0.9363 >

x2 < 1, < 0.3444, < 0.3444, < 0.2333, < 0.1244, < 0.5133, < 0.3467, < 0.2333, < 0.3444,

0 > 0.9295 > 0.9295 > 0.9486 > 0.9807 > 0.6217 > 0.6664 > 0.9486 > 0.9295 >

x3 < 1, < 0.1204, < 0.1944, < 0.2704, < 0.2611, < 0.3444, < 0.1944, < 0.4537,

0 > 0.9874 > 0.9704 > 0.9465 > 0.9636 > 0.9295 > 0.9704 > 0.6540 >

x4 < 1, < 0.1204, < 0.2704, < 0.2611, < 0.3444, < 0.1944, < 0.1204,

0 > 0.9874 > 0.9465 > 0.9636 > 0.9295 > 0.9704 > 0.9874 >

x5 < 1, < 0.3444, < 0.2611, < 0.5667, < 0.0833, < 0.1944,

0 > 0.9295 > 0.9636 > 0.6153 > 0.9894 > 0.9704 >

x6 < 1, < 0.2911, < 0.1244, < 0.3444, < 0.2704,

0 > 0.9360 > 0.9807 > 0.9295 > 0.9465 >

x7 < 1, < 0.1800, < 0.1500, < 0.2611,

0 > 0.9551 > 0.9827 > 0.9636 >

x8 < 1, < 0.2333, < 0.2333,

0 > 0.9486 > 0.9486 >

x9 < 1, < 0.1944,

0 > 0.9704 >

x10 < 1,

0 >
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Table 8 The computing result of R3(U ) from EC3

R3(U ) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 < 1, < 0.1111, < 0, < 0.7333, < 0.2778, < 0.4444, < 0.8333, < 0.5111, < 0.2778, < 0.6667,

0 > 0.9809 > 1 > 0.3266 > 0.9363 > 0.6476 > 0.2887 > 0.6409 > 0.9363 > 0.3333 >

x2 < 1, < 0.4444, < 0.1778, < 0.5370, < 0.3704, < 0.2778, < 0.1037, < 0.2704, < 0.1111,

0 > 0.6476 > 0.9742 > 0.6199 > 0.6646 > 0.9363 > 0.9912 > 0.9465 > 0.9809 >

x3 < 1, < 0.0667, < 0.2778, < 0.1111, < 0.1667, < 0.1778, < 0.2778, < 0,

0 > 0.9933 > 0.9363 > 0.9809 > 0.9553 > 0.9742 > 0.9363 > 1 >

x4 < 1, < 0.3444, < 0.5111, < 0.5667, < 0.4578, < 0.3444, < 0.7333,

0 > 0.9295 > 0.6409 > 0.6153 > 0.6473 > 0.9295 > 0.3266 >

x5 < 1, < 0.2037, < 0.1944, < 0.2704, < 0.1204, < 0.1944,

0 > 0.9533 > 0.9704 > 0.9465 > 0.9874 > 0.9704 >

x6 < 1, < 0.2778, < 0.4370, < 0.2037, < 0.7778,

0 > 0.9363 > 0.6579 > 0.9533 > 0.3143 >

x7 < 1, < 0.3444, < 0.1944, < 0.5000,

0 > 0.9295 > 0.9704 > 0.6220 >

x8 < 1, < 0.2704, < 0.5111,

0 > 0.9465 > 0.6409 >

x9 < 1, < 0.2778,

0 > 0.9363 >

x10 < 1,

0 >

Table 9 The computing result of [xi ]∩3
k=1Rk (U×X)

[xi ]∩3
k=1Rk (U×X) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 < 1, < 0.1111, < 0, < 0.1750, < 0.1667, < 0, < 0, < 0, < 0, < 0,

0 > 0.9809 > 1 > 0.9615 > 0.9553 > 1 > 1 > 1 > 1 > 1 >

x2 < 0.1111, < 1, < 0.3444, < 0.1778, < 0.2333, < 0, < 0, < 0, < 0, < 0,

0.9809 > 0 > 0.9295 > 0.9742 > 0.9486 > 1 > 1 > 1 > 1 > 1 >

x3 < 0, < 0.3444, < 1, < 0.0667, < 0.1750, < 0, < 0, < 0, < 0, < 0,

1 > 0.9295 > 0 > 0.9933 > 0.9704 > 1 > 1 > 1 > 1 > 1 >

x4 < 0.1750, < 0.1778, < 0.0667, < 1, < 0.1204, < 0, < 0, < 0, < 0, < 0,

0.9615 > 0.9742 > 0.9933 > 0 > 0.9874 > 1 > 1 > 1 > 1 > 1 >

x5 < 0.1667, < 0.2333, < 0.1750, < 0.1204, < 1, < 0, < 0, < 0, < 0, < 0,

0.9553 > 0.9486 > 0.9704 > 0.9874 > 0 > 1 > 1 > 1 > 1 > 1 >

x6 < 0.1778, < 0.1244, < 0.1111, < 0.2704, < 0.1750, < 0, < 0, < 0, < 0, < 0,

0.9742 > 0.9807 > 0.9809 > 0.9465 > 0.9615 > 1 > 1 > 1 > 1 > 1 >

x7 < 0.2500, < 0.1875, < 0.1667, < 0.2375, < 0.1944, < 0, < 0, < 0, < 0, < 0,

0.9330 > 0.9586 > 0.9636 > 0.9636 > 0.9704 > 1 > 1 > 1 > 1 > 1 >

x8 < 0.3750, < 0.1037, < 0.1778, < 0.3000, < 0.1250, < 0, < 0, < 0, < 0, < 0,

0.7165 > 0.9912 > 0.9742 > 0.9295 > 0.9665 > 1 > 1 > 1 > 1 > 1 >

x9 < 0.2778, < 0.2333, < 0.1944, < 0.0725, < 0.0833, < 0, < 0, < 0, < 0, < 0,

0.9363 > 0.9486 > 0.9704 > 0.9919 > 0.9894 > 0 > 1 > 1 1 > 1 >

x10 < 0.2778, < 0.1111, < 0, < 0.1204, < 0.0500, < 0, < 0, < 0, < 0, < 0,

0.9363 > 0.9809 > 1 > 0.9874 > 0.9949 > 1 > 1 > 1 > 1 > 1 >
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I ([x7]∩3
k=1Rk (U×X), A(X)) = 1,

I ([x8]∩3
k=1Rk (U×X), A(X)) = 0.9913,

I ([x9]∩3
k=1Rk (U×X), A(X)) = 1,

I ([x10]∩3
k=1Rk (U×X), A(X)) = 1.

For α = 0.9 and β = 0.8 we obtain

Apr0.9∩3
k=1Rk (U×X)

(A(X))={x2, x3, x4, x5, x6, x7, x8, x9, x10},
Apr

0.8
∩m
k=1Rk (U×X)(A(X)) = U .

and

POS0.9(A(X)) = {x2, x3, x4, x5, x6, x7, x8, x9, x10},
NEG0.8(A(X)) = ∅,

BND(0.9,0.8)(A(X)) = {x1}.

Type-IIMG-PF-DTRSsFirst,we compute [xi ]∪3
k=1Rk (U×U )

(i = 1, 2, . . . , 10) from Tables 6, 7 and 8 using the Defini-
tion 7. Then we obtain [xi ]∪3

k=1Rk (U×X) (i = 1, 2, . . . , 10)
using Eq. (6), which is not display here. Using Eq. (10), we
compute all inclusion measures I ([xi ]∪3

k=1Rk (U×X), A(X))

(1 ≤ i ≤ 10) as follows:

I ([x1]∪3
k=1Rk (U×X), A(X)) = 0.7209,

I ([x2]∪3
k=1Rk(U×X), A(X)) = 0.8135,

I ([x3]∪3
k=1Rk (U×X), A(X)) = 0.8573,

I ([x4]∪3
k=1Rk (U×X), A(X)) = 0.7816,

I ([x5]∪3
k=1Rk (U×X), A(X)) = 0.8876,

I ([x6]∪3
k=1Rk (U×X), A(X)) = 0.9215,

I ([x7]∪3
k=1Rk (U×X), A(X)) = 0.8470,

I ([x8]∪3
k=1Rk (U×X), A(X)) = 0.8738,

I ([x9]∪3
k=1Rk (U×X), A(X)) = 0.9777,

I ([x10]∪3
k=1Rk (U×X), A(X)) = 0.7800.

For α = 0.9 and β = 0.8 we obtain

Apr0.9∪3
k=1Rk (U×X)

(A(X)) = {x6, x9},
Apr

0.8
∪m
k=1Rk (U×X)(A(X)) = {x2, x3, x5, x6, x7, x8, x9, x10}.

and

POS0.9(A(X)) = {x6, x9},
NEG0.8(A(X)) = {x1, x4},
BND(0.9,0.8)(A(X)) = {x2, x3, x5, x7, x8}.

Type-III MG-PF-DTRSs First we compute R1(U × X),
R2(U × X) and R3(U × X) from Tables 6, 7 and 8,
and I ( [xi ]R1(U×X), A(X) ), I ([xi ]R2(U×X), A(X)) and
I ([xi ]R3(U×X), A(X)) for (1 ≤ i ≤ 10), which are
not displayed here. Using Eqs. (12) and (13), we com-
pute all inclusion measures ∩3

k=1 I ([xi ]Rk (U×X), A(X)) and
∪3
k=1 I ([xi ]Rk(U×X), A(X)) for (1 ≤ i ≤ 10) as follows:

∩3
k=1 I ([x1]Rk(U×X), A(X)) = 0.7822,

∩3
k=1 I ([x2]Rk(U×X), A(X)) = 0.8346,

∩3
k=1 I ([x3]Rk(U×X), A(X)) = 0.8581,

∩3
k=1 I ([x4]Rk (U×X), A(X)) = 0.7827,

∩3
k=1 I ([x5]Rk(U×X), A(X)) = 0.8871,

∩3
k=1 I ([x6]Rk(U×X), A(X)) = 0.9328,

∩3
k=1 I ([x7]Rk(U×X), A(X)) = 0.8559,

∩3
k=1 I ([x8]Rk(U×X), A(X)) = 0.9289,

∩3
k=1 I ([x9]Rk(U×X), A(X)) = 0.9785,

∩3
k=1 I ([x10]Rk (U×X), A(X)) = 0.8360,

and ∪3
k=1 I ([x1]Rk(U×X), A(X)) = 0.8422,

∪3
k=1 I ([x2]Rk(U×X), A(X)) = 0.8877,

∪3
k=1 I ([x3]Rk(U×X), A(X)) = 0.8744,

∪3
k=1 I ([x4]Rk (U×X), A(X)) = 0.8499,

∪3
k=1 I ([x5]Rk(U×X), A(X)) = 0.9266,

∪3
k=1 I ([x6]Rk(U×X), A(X)) = 1,

∪3
k=1 I ([x7]Rk(U×X), A(X)) = 1,

∪3
k=1 I ([x8]Rk(U×X), A(X)) = 0.9281,

∪3
k=1 I ([x9]Rk(U×X), A(X)) = 1,

∪3
k=1 I ([x10]Rk (U×X), A(X)) = 0.9883.

For α = 0.9 and β = 0.8 we obtain

∩3
k=1 Apr

0.9
Rk (U×X)

(A(X)) = {x6, x8,9 },
∪3
k=1 Apr

0.8
Rk (U×X)(A(X)) = U .

and

POS0.9(A(X)) = {x6, x8, x9},
NEG0.8(A(X)) = ∅,

BND(0.9,0.8)(A(X)) = {x1, x2, x3, x4, x5, x7, x10}.

Type-IV MG-PF-DTRSs From inclusion measures
∩3
k=1 I ([xi ]Rk(U×X), A(X)) and ∪3

k=1 I ([xi ]Rk(U×X), A(X))

for (1 ≤ i ≤ 10) we have obtained Type-IV MG-PF-DTRSs
for α = 0.9 and β = 0.8 as follows:

∪3
k=1 Apr

0.9
Rk (U×X)

(A(X)) = {x5, x6, x7, x8, x9, x10},
∩3
k=1 Apr

0.8
Rk (U×X)(A(X)) = {x2, x3, x4, x5, x6, x7, x8, x9, x10}.
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Table 10 The results of uncertainty measures

No. X Type-I MG-PF-DTRSs Type-II MG-PF-DTRSs Type-III MG-PF-DTRSs Type-IV MG-PF-DTRSs

ρI σI ωI ρII σII ωII ρIII σIII ωIII ρIV σIV ωIV

1 x1,2,3,4,5 0.7 1.4 0.7 0.2857 0.4 0.2 0.3 0.6 0.3 0.75 1.2 0.6

2 x1,2,5,6,7 0.7 1.4 0.7 0.5 0.6 0.3 0.3 0.6 0.3 0.75 1.2 0.6

3 x1,3,5,7,8 0.6 1.2 0.6 0.25 0.4 0.2 0.2 0.4 0.2 0.6667 1.2 0.6

4 x1,3,4,6,7 0.5 1 0.5 0.5 0.4 0.2 0.2 0.4 0.2 1 1 0.5

5 x2,4,5,6,7 0.7 1.4 0.7 0.5 0.6 0.3 0.4 0.8 0.4 1 1.2 0.6

6 x2,4,5,9,10 0.6 1.2 0.6 0.1429 0.2 0.1 0.1 0.2 0.1 0.875 1.4 0.6

7 x2,7,8,9,10 0.6 1.2 0.6 0 0 0 0.1 0.2 0.1 0.8571 1.2 0.6

8 x3,4,6,8,9 0.5 1 0.5 0.25 0.2 0.1 0.2 0.4 0.2 1 1 0.5

9 x3,5,6,9,10 0.6 1.2 0.6 0.2 0.2 0.1 0.1 0.2 0.1 0.8571 1.2 0.6

10 x4,6,7,8,9 0.5 1 0.5 0 0 0 0.1 0.2 0.1 1 1 0.5

Fig. 4 A comparison of the accuracy

and

POS0.9(A(X)) = {x5, x6, x7, x8, x9, x10},
NEG0.8(A(X)) = {x1},
BND(0.9,0.8)(A(X)) = {x2, x3}.

It is obvious that these four types of results are not entirely
consistent. Then, the uncertainties are not entirely consistent
for them and several kinds of uncertainty measure meth-
ods are necessary. Consequently, in different fields should
select different model according the different requirements
in practical application. Based on the calculated approxima-
tion sets, we can measure the uncertainty of the alternative
MFs to estimate the investment. To evaluate the performance
of the proposed uncertainty measure methods, we conduct
a series of experiments to calculate these three uncertainty
measures. Therefor, in our experiment, we randomly select
fiveMFs from the setU , and uncertainty evolution’s for them
as shown in Table 10.

Fig. 5 A comparison of the approximation degree

Fig. 6 A comparison of the approximation quality

According to Table 10 and Figs. 4, 5 and 6 we can get that
the fifth set X = {x2, x4, x5, x6, x7} with higher accuracy,
approximation degree and approximation quality for each
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model. That is, x2, x4, x5, x6 and x7 are the best five MFs
out of ten MFs for the investors to invest. There is no doubt
that there are more recommended programs, but its best in
the given ten options.

Conclusions

In this paper, we present four types of MG-PF-DTRSs of
Pythagorean fuzzy subset (of a subset of the given universe)
of the PFS (of the given universe) and study their uncer-
tainty measure methods based on the Pythagorean fuzzy
inclusionmeasurewithin the framework ofmulti-granulation
Pythagorean fuzzy approximation space. Using this four
types ofMG-PF-DTRSs and their uncertaintymeasuremeth-
ods, we have presented a method for decision-making to
IMSIS. In this decision-making method for IMSIS, we have
analyzed three issues. (1) How to find the similarity degrees
between two objects from IMSISs in the Pythagorean fuzzy
settings. (2) How to obtain the Pythagorean fuzzy decision-
making objects from IMSISs. (3) The following problem: if
X1, X2, . . . , Xr ⊆ U (U is the finite universe of discourse)
then find the best Xr , where the elements of Xr are ran-
domly selected and not repeated any other elements in Xr .
The studies of this paper are focusing on the basis of the theo-
retical aspect and the general framework of decision-making
process to the IMSIS of the proposed model and method.
Therefore, it is recommended that the further improvement
of the proposed method to apply more complexity decision-
making problems in Garg [5–7,9,10], Mandal and Ranadive
[27] and the real-life data be used to test the approach estab-
lished in this paper.
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