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Abstract
Pythagorean fuzzy set (PFS), disposing the indeterminacy portrayed by membership and non-membership, is a more viable
and effective means to seize indeterminacy. Due to the defects of existing Pythagorean fuzzy similarity measures or distance
measures (cannot obey third or fourth axiom; have no power to differentiate positive and negative difference; have no power
to deal the division by zero problem), the major key of this paper is to explore the novel Pythagorean fuzzy distance measure
and similarity measure. Meanwhile, some interesting properties of distance measure and similarity measure are proved. Some
counterintuitive examples are presented to state their availability of similarity measure among PFSs.
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Introduction

Pythagorean fuzzy sets (PFSs) [2], initiatively introduced
by Yager, have regarded as an efficient tool to describe the
vagueness of the MADM issues. PFSs are also denoted by
the degrees of membership and nonmembership, which their
sumof squares is equal or less thanone. In some special cases,
PFSs can deal with issues in which IFSs fail. For instance, if
a DM or expert presents the degree of nonmembership and
membership as 0.5 and 0.7, respectively, it is just efficacious
for the PFSs. That is to say, all the IFSs are a part of the
PFSs, which reveals that the PFSs are more forceful for solv-
ing the indeterminate issues. Zhang and Xu [3] presented the
particular mathematical language expression for PFSs and
defined notion of PFN. Besides, they continued to propose a
revised Pythagorean fuzzy TOPSIS (PF-TOPSIS) for deal-
ing with the MCDM issue with PFNs. Peng and Yang [4]
explored the subtraction and division operations for PFNs
and initiated a Pythagorean fuzzy SIR (PF-SIR) algorithm
to handle multi-criteria group decision-making (MCGDM)
issue. Moreover, some extension models [5–8] of PFSs are
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rapidly developed. Meanwhile, some research hotspots are
concentrated on the aggregation operators [9–22], decision-
making methods [3,23–31].

Similarity measure (distance measure) is a significant
means for measuring the uncertain information. The fuzzy
similarity measure (distance measure) is a measure that
depicts the closeness (difference) among fuzzy sets. Zhang
[33] proposed the Pythagorean fuzzy similarity measures for
dealing the multi-attribute decision-making problems. Peng
et al. [23] proposed the many new distance measures and
similarity measures for dealing the issues of pattern recogni-
tion,medical diagnosis and clustering analysis, anddiscussed
their transformation relations. Wei and Wei [32] presented
some Pythagorean fuzzy cosine function for dealing with
the decision-making problems. However, some existing sim-
ilarity measures/distance measures cannot the obey third or
fourth axiom, and also have no power to differentiate positive
difference and negative difference or deal with the division
by the zero problem. Due to the above counterintuitive phe-
nomena [32–34,36–46] of the existing similarity measures
of PFSs, they may be hard for DMs to choose convincible or
optimal alternatives. As a consequence, the goal of this paper
is to deal with the above issue by proposing a novel similar-
ity measure and distance measure for Pythagorean fuzzy set,
which can be without counterintuitive phenomena.

For counting the distance measure and similarity measure
of the two PFSs, we introduce a novel method to build the
distance measure and similarity measure which rely on four
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parameters, i.e., a, b, t and p, where p is the L p norm and
a, b, t identify the level of vagueness. Meanwhile, their rela-
tion with the similarity measures for PFSs are discussed in
detail.

The rest of the presented paper is listed in the following.
In Sect. 2, the fundamental notions of PFSs and IFSs are
shortly retrospected, which will be employed in the analy-
sis in each section. In Sect. 3, some new distance measures
and similarity measures are proposed and proved. In Sect. 4,
some counterintuitive examples are given to show the effec-
tiveness of Pythagorean fuzzy similarity measure. The paper
is concluded in Sect. 5.

Preliminaries

In this section, we briefly review the fundamental concepts
related to IFS and PFS.

Definition 1 [1] Let X be a universe of discourse. An IFS I
in X is given by

I = {〈x, μI (x), νI (x)〉 | x ∈ X}, (1)

where μI : X → [0, 1] denotes the degree of membership
and νI : X → [0, 1] denotes the degree of nonmembership
of the element x ∈ X to the set I , respectively, with the
condition that 0 ≤ μI (x) + νI (x) ≤ 1. The degree of inde-
terminacy πI (x) = 1−μI (x)− νI (x). For convenience, Xu
and Yager [35] called (μI (x), νI (x)) an intuitionistc fuzzy
number (IFN) denoted by i = (μI , νI ).

Definition 2 [2] Let X be a universe of discourse. A PFS P
in X is given by

P = {〈x, μP (x), νP (x)〉 | x ∈ X}, (2)

where μP : X → [0, 1] denotes the degree of membership
and νP : X → [0, 1] denotes the degree of nonmembership
of the element x ∈ X to the set P , respectively, with the
condition that 0 ≤ (μP (x))2 + (νP (x))2 ≤ 1. The degree
of indeterminacy πP (x) = √

1 − (μP (x))2 − (νP (x))2. For
convenience, Zhang and Xu [3] called (μP (x), νP (x)) a
Pythagorean fuzzy number (PFN) denoted by p = (μP , νP ).

Definition 3 [3] For any PFN p = (μ, ν), the score function
of p is defined as follows:

s(p) = μ2 − ν2, (3)

where s(p) ∈ [−1, 1].
Definition 4 [5] For any PFN p = (μ, ν), the accuracy func-
tion of p is defined as follows:

a(p) = μ2 + ν2, (4)

where a(p) ∈ [0, 1].
For any two PFNs p1, p2,

(1) if s(p1) > s(p2), then p1 � p2;
(2) if s(p1) = s(p2), then

(a) if a(p1) > a(p2), then p1 � p2;
(b) if a(p1) = a(p2), then p1 ∼ p2.

Definition 5 [3,4] If M, N ∈ PFSs, then the operations can
be defined as follows:

(1) Mc = {〈x, νM (x), μM (x)〉|x ∈ X};
(2) M ⊆ N iff ∀x ∈ X , μM (x) ≤ μN (x) and νM (x) ≥

νN (x);
(3) M = N iff ∀x ∈ X , μM (x) = μN (x) and νM (x) =

νN (x);
(4) ΦM = {〈x, 1, 0〉|x ∈ X};
(5) ∅M = {〈x, 0, 1〉|x ∈ X};
(6) M

⋂
N =

{
〈x, μM (x)

∧
μN (x), νM (x)

∨
νN (x)〉

|x ∈ X
}
;

(7) M
⋃

N =
{
〈x, μM (x)

∨
μN (x), νM (x)

∧
νN (x)〉

|x ∈ X
}
;

(8) M ⊕ N =
{
〈x,

√
μ2
M (x) + μ2

N (x) − μ2
M (x)μ2

N (x),

νM (x)νN (x)〉|x ∈ X
}
;

(9) M ⊗ N =
{
〈x, μM (x)μN (x),

√
ν2M (x) + ν2N (x) − ν2M (x)ν2N (x)|x ∈ X

}
;

(10) M � N =
{
〈x,

√
μ2
M (x)−μ2

N (x)

1−μ2
N (x)

,
νM (x)
νN (x) 〉|x ∈ X

}
, if

μM (x) ≥ μN (x), νM (x) ≤ min
{
νN (x), νN (x)πM (x)

πN (x)

}
;

(11) M � N =
{
〈x, μM (x)

μN (x) ,

√
ν2M (x)−ν2N (x)

1−ν2N (x)
〉|x ∈ X

}
, if

νM (x) ≥ νN (x), μM (x) ≤ min
{
μN (x), μN (x)πM (x)

πN (x)

}
.

Definition 6 [34] Let M, N and O be three PFSs on X . A
distance measure D(M, N ) is a mapping D : PFS(X) ×
PFS(X) → [0, 1], possessing the following properties:

(D1) 0 ≤ D(M, N ) ≤ 1;
(D2) D(M, N ) = D(N , M);
(D3) D(M, N ) = 0 iff M = N ;
(D4) D(M, Mc) = 1 iff M is a crisp set;
(D5) If M ⊆ N ⊆ O , then D(M, N ) ≤ D(M, O) and

D(N , O) ≤ D(M, O).

Definition 7 [34] Let M, N and O be three PFSs on X . A
similarity measure S(M, N ) is a mapping S : PFS(X) ×
PFS(X) → [0, 1], possessing the following properties:

(S1) 0 ≤ S(M, N ) ≤ 1;
(S2) S(M, N ) = S(N , M);
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(S3) S(M, N ) = 1 iff M = N ;
(S4) S(M, Mc) = 0 iff M is a crisp set;
(S5) If M ⊆ N ⊆ O , then S(M, O) ≤ S(M, N ) and

S(M, O) ≤ S(N , O).

Distancemeasure and similarity measure of
PFSs

Theorem 1 Let M and N be two PFSs in X where X =
{x1, x2, · · · , xn}, then D(M, N ) is the distance measure
between two PFSs M and N in X.

D(M, N ) = p

√
1

2n(t + 1)p
∑n

i=1

(
|(t + 1 − a)(μ2

M (xi ) − μ2
N (xi )) − a(ν2M (xi ) − ν2N (xi ))|p

+ |(t + 1 − b)(ν2M (xi ) − ν2N (xi )) − b(μ2
M (xi ) − μ2

N (xi ))|p
)

(5)

where p is the L p norm, and t, a and b denote the level of
uncertainty with the condition a + b ≤ t + 1, 0 < a, b ≤
t + 1, t > 0.

Proof For two PFSs M and N , we have
(D1) |(t+1−a)(μ2

M (xi )−μ2
N (xi ))−a(ν2M (xi )−ν2N (xi ))| =

|((t + 1 − a)(μ2
M (xi ) − aν2M (xi )) − ((t + 1 − a)μ2

N (xi ) −
aν2N (xi ))|,

|(t +1−b)(ν2M (xi )− ν2N (xi ))−b(μ2
M (xi )−μ2

N (xi ))| =
|((t + 1 − b)(ν2M (xi ) − bμ2

M (xi )) − ((t + 1 − b)ν2N (xi ) −
bμ2

N (xi ))|.
Since 0 ≤ μM (xi ), μN (xi ), νM (xi ), νN (xi ) ≤ 1, we can

have
−a ≤ (t + 1 − a)(μ2

M (xi ) − aν2M (xi ) ≤ t + 1 − a,
−(t + 1 − a) ≤ −((t + 1 − a)μ2

N (xi ) − aν2N (xi )) ≤ a.
Therefore, we have −(t + 1) ≤ ((t + 1 − a)(μ2

M (xi ) −
aν2M (xi )) − ((t + 1 − a)μ2

N (xi ) − aν2N (xi )) ≤ t + 1.
It means that 0 ≤ |((t + 1 − a)(μ2

M (xi ) − aν2M (xi )) −
((t + 1 − a)μ2

N (xi ) − aν2N (xi ))|p ≤ (t + 1)p.
Similarly, we can have 0 ≤ |((t + 1 − b)(ν2M (xi ) −

bμ2
M (xi )) − ((t + 1 − b)ν2N (xi ) − bμ2

N (xi ))|p ≤ (t + 1)p.
Hence, by the above Eq. (5), we can obtain 0 ≤

D(M, N ) ≤ 1.
(D2) This is straightforward from Eq. (5).
(D3) Firstly, we suppose that M = N , which implies
that μM (xi ) = μN (xi ) and νM (xi ) = νN (xi ) for i =
1, 2, · · · , n. Thus, by Eq. (5), we can have D(M, N ) = 0.

Conversely, assuming that D(M, N ) = 0 for two PFSs M
and N , this implies that

|(t + 1 − a)(μ2
M (xi )−μ2

N (xi ))−a(ν2M (xi )−ν2N (xi ))|p = 0

and

|(t + 1 − b)(ν2M (xi )−ν2N (xi ))−b(μ2
M (xi )−μ2

N (xi ))|p = 0.

After solving, we can obtain
μ2
M (xi ) − μ2

N (xi ) = 0, ν2M (xi ) − ν2N (xi ) = 0, which
implies μM (xi ) = μN (xi ), νM (xi ) = νN (xi ).

Consequently, M = N . Hence D(M, N ) = 0 iff M = N .

(D4) D(M, Mc) = 1 ⇔ p
√

1
n

∑n
i=1 |μ2

M (xi ) − ν2M (xi )|p =
1 ⇔ |μ2

M (xi ) − ν2M (xi )| = 1 ⇔ μM (xi ) = 1, νM (xi ) = 0
or μM (xi ) = 0, νM (xi ) = 1 ⇔ M is a crisp set.

(D5) According to the formula of the distance measure, we
have

D(M, N ) =
p

√
1

2n(t+1)p
∑n

i=1
(|(t+1 − a)(μ2

M (xi ) − μ2
N (xi )) − a(ν2M (xi ) − ν2N (xi ))|p+

|(t + 1 − b)(ν2M (xi ) − ν2N (xi )) − b(μ2
M (xi ) − μ2

N (xi ))|p),

D(M, O) =
p

√
1

2n(t+1)p
∑n

i=1
(|(t+1 − a)(μ2

M (xi ) − μ2
O (xi )) − a(ν2M (xi ) − ν2O (xi ))|p+

|(t + 1 − b)(ν2M (xi ) − ν2O (xi )) − b(μ2
M (xi ) − μ2

O (xi ))|p).

Since |(t + 1 − a)(μ2
M (xi ) − μ2

N (xi )) − a(ν2M (xi ) −
ν2N (xi ))| = |((t + 1 − a)(μ2

M (xi ) − aν2M (xi )) − ((t + 1 −
a)μ2

N (xi ) − aν2N (xi ))|,
|(t +1−b)(ν2M (xi )− ν2N (xi ))−b(μ2

M (xi )−μ2
N (xi ))| =

|((t + 1 − b)(ν2M (xi ) − bμ2
M (xi )) − ((t + 1 − b)ν2N (xi ) −

bμ2
N (xi ))|,
|(t +1−a)(μ2

M (xi )−μ2
O(xi ))−a(ν2M (xi )−ν2O(xi ))| =

|((t + 1 − a)(μ2
M (xi ) − aν2M (xi )) − ((t + 1 − a)μ2

O(xi ) −
aν2O(xi ))|,

|(t +1−b)(ν2M (xi )− ν2O(xi ))−b(μ2
M (xi )−μ2

O(xi ))| =
|((t + 1 − b)(ν2M (xi ) − bμ2

M (xi )) − ((t + 1 − b)ν2O(xi ) −
bμ2

O(xi ))|.
IfM ⊆ N ⊆ O , we haveμO ≥ μN (xi ) ≥ μM (xi ), νO ≤

νN (xi ) ≤ νM (xi ).
Hence, (t+1−a)μ2

M (xi )−aν2M (xi ) ≤ (t+1−a)μ2
N (xi )−

aν2N (xi ) ≤ (t + 1 − a)μ2
O(xi ) − aν2O(xi ),

(t + 1 − b)ν2O(xi ) − aμ2
O(xi ) ≤ (t + 1 − b)ν2N (xi ) −

aμ2
N (xi ) ≤ (t + 1 − b)ν2M (xi ) − aμ2

M (xi ).
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Consequently,

|((t + 1 − a)(μ2
M (xi ) − aν2M (xi )) − ((t + 1 − a)μ2

O(xi )

−aν2O(xi ))| ≤ |((t + 1 − a)(μ2
M (xi ) − aν2M (xi ))

−((t + 1 − a)μ2
N (xi ) − aν2N (xi ))|,

|((t + 1 − b)(ν2M (xi ) − bμ2
M (xi ))

−((t + 1 − b)ν2N (xi ) − bμ2
N (xi ))|

≤ |((t + 1 − b)(ν2M (xi ) − bμ2
M (xi ))

−((t + 1 − b)ν2O(xi ) − bμ2
O(xi ))|.

Therefore, D(M, O) ≥ D(N , O) and D(M, O) ≥
D(M, N ). ��

However, in most real environment, the diverse sets may
possess diverse weights. Therefore, the weight wi (i =
1, 2, . . . , n) of the alternative xi ∈ X should be taken
into consideration. We present a weighted distance measure
Dw(M, N ) between PFSs in the following.

Dw(M, N ) = p

√
1

2(t + 1)p
∑n

i=1
wi

(
|(t + 1 − a)(μ2

M (xi ) − μ2
N (xi )) − a(ν2M (xi ) − ν2N (xi ))|p+

|(t + 1 − b)(ν2M (xi ) − ν2N (xi )) − b(μ2
M (xi ) − μ2

N (xi ))|p
)

, (6)

where a + b ≤ t + 1, 0 < a, b ≤ t + 1, t > 0, and wi is the
weights of the element xi with

∑n
i=1 wi = 1.

Theorem 2 Dw(M, N ) is the distance measure between two
PFSs M and N in X.

Proof (D1) If we obtain the product of the inequality defined
above with wi , then we can easily have

0 ≤ wi |(t + 1 − a)(μ2
M (xi ) − μ2

N (xi )) − a(ν2M (xi ) − ν2N (xi ))|p ≤ wi (t + 1)p,

0 ≤ wi |(t + 1 − b)(ν2M (xi ) − ν2N (xi )) − b(μ2
M (xi ) − μ2

N (xi ))|p ≤ wi (t + 1)p .

Furthermore, we can write the following inequality:

0 ≤
n∑

i=1

wi |(t + 1 − a)(μ2
M (xi ) − μ2

N (xi ))

−a(ν2M (xi ) − ν2N (xi ))|p ≤
n∑

i=1

wi (t + 1)p,

0 ≤
n∑

i=1

wi |(t + 1 − b)(ν2M (xi ) − ν2N (xi ))

−b(μ2
M (xi ) − μ2

N (xi ))|p ≤
n∑

i=1

wi (t + 1)p.

It is easy to know that
n∑

i=1
wi (t + 1)p is equal to (t + 1)p

since
∑n

i=1 wi = 1.
Hence, 0 ≤ ∑n

i=1 wi |(t + 1 − a)(μ2
M (xi ) − μ2

N (xi )) −
a(ν2M (xi ) − ν2N (xi ))|p ≤ (t + 1)p,

0 ≤ ∑n
i=1 wi |(t+1−b)(ν2M (xi )−ν2N (xi ))−b(μ2

M (xi )−
μ2
N (xi ))|p ≤ (t + 1)p.
Hence, by Eq. (6), we can obtain 0 ≤ Dw(M, N ) ≤ 1.

(D2)–(D5) It is straightforward. ��
Theorem 3 If D(M, N ) and Dw(M, N ) are distance mea-
sures between PFSs M and N, then S(M, N ) = 1 −
D(M, N ) and Sw(M, N ) = 1 − Dw(M, N ) are similarity
measures between M and N , respectively.

S(M, N ) = 1 − D(M, N ) = 1 − p

√√√√ 1

2n(t + 1)p

n∑

i=1

(|(t + 1 − a)(μ2
M (xi ) − μ2

N (xi )) − a(ν2M (xi ) − ν2N (xi ))|p

+|(t + 1 − b)(ν2M (xi ) − ν2N (xi )) − b(μ2
M (xi ) − μ2

N (xi ))|p) (7)

Sw(M, N ) = 1 − D(M, N ) = 1 − p

√√√√ 1

2(t + 1)p

n∑

i=1

wi (|(t + 1 − a)(μ2
M (xi ) − μ2

N (xi )) − a(ν2M (xi ) − ν2N (xi ))|p+

|(t + 1 − b)(ν2M (xi ) − ν2N (xi )) − b(μ2
M (xi ) − μ2

N (xi ))|p). (8)
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Theorem 4 Let M and N be two PFSs, then we have

(1) D(M, M ⊗ N ) = D(N , M ⊕ N );
(2) D(M, M ⊕ N ) = D(N , M ⊗ N );
(3) S(M, M ⊗ N ) = S(N , M ⊕ N );
(4) S(M, M ⊕ N ) = S(N , M ⊗ N ).

Proof We only prove the (1), and (2)–(2) can be proved in a
homologous way.

(1) According to Definition 5 and Eq. (5), and for
D(M, M

⊗
N ) with ∀xi ∈ X , we can have

|(t + 1 − a)(μ2
M (xi ) − μ2

M (xi )μ
2
N (xi )) − a(ν2M (xi )

−(ν2M (xi ) + ν2N (xi ) − ν2M (xi )ν
2
N (xi )))|p

+|(t + 1 − b)(ν2M (xi )

−(ν2M (xi ) + ν2N (xi ) − ν2M (xi )ν
2
N (xi )))

−b(μ2
M (xi ) − μ2

M (xi )μ
2
N (xi ))|p

= |(t + 1 − a)(μ2
M (xi ) − μ2

M (xi )μ
2
N (xi ))

−a(ν2M (xi )ν
2
N (xi ) − ν2N (xi ))|p

+|(t + 1 − b)(ν2M (xi )ν
2
N (xi )

−ν2N (xi )) − b(μ2
M (xi ) − μ2

M (xi )μ
2
N (xi ))|p.

For D(N , M
⊕

N ) with ∀xi ∈ X , we can have

|(t + 1 − a)(μ2
N (xi ) − (μ2

M (xi )

+μ2
N (xi ) − μ2

M (xi )μ
2
N (xi )))

−a(ν2N (xi ) − ν2M (xi )ν
2
N (xi ))|p

+|(t + 1 − b)(ν2M (xi ) − ν2M (xi )ν
2
N (xi ))

−b(μ2
N (xi ) − (μ2

M (xi ) + μ2
N (xi )

−μ2
M (xi )μ

2
N (xi )))|p

= |(t + 1 − a)(μ2
M (xi )μ

2
N (xi ) − μ2

M (xi ))

−a(ν2N (xi ) − ν2M (xi )ν
2
N (xi ))|p

+|(t + 1 − b)(ν2N (xi ) − ν2M (xi )ν
2
N (xi ))

−b(μ2
M (xi )μ

2
N (xi ) − μ2

M (xi ))|p
= |(t + 1 − a)(μ2

M (xi ) − μ2
M (xi )μ

2
N (xi ))

−a(ν2M (xi )ν
2
N (xi ) − ν2N (xi ))|p

+|(t + 1 − b)(ν2M (xi )ν
2
N (xi )

−ν2N (xi )) − b(μ2
M (xi ) − μ2

M (xi )μ
2
N (xi ))|p.

Consequently, we can obtain D1(M, M ⊗ N ) = D1

(N , M ⊕ N ). ��
Theorem 5 Let M and N be twoPFSs, and xi ∈ X , μ2

M (xi )+
μ2
N (xi ) = 1, ν2M (xi ) + ν2N (xi ) = 1, then we have

(1) D(M, M � N ) = D(N , N � M), μM (xi ) ≤
μN (xi ), νM (xi ) ≥ νN (xi );

(2) D(M, M � N ) = D(N , N � M), μM (xi ) ≥
μN (xi ), νM (xi ) ≤ νN (xi );

(3) S(M, M � N ) = S(N , N � M), μM (xi ) ≤ μN (xi ),
νM (xi ) ≥ νN (xi );

(4) S(M, M � N ) = S(N , N � M), μM (xi ) ≥ μN (xi ),
νM (xi ) ≤ νN (xi ).

Proof We only prove (1), and (2)–(2) can be proved in a
homologous way.

(1) According to Definition 5 and Eq. (5), and for
D(M, M � N ) with ∀xi ∈ X , we can have

∣∣∣∣∣
(t + 1 − a)(μ2

M (xi ) − μ2
M (xi )

μ2
N (xi )

)

−a

(

ν2M (xi ) − ν2M (xi ) − ν2N (xi )

1 − ν2N (xi )

)∣∣∣∣∣

p

+
∣∣∣∣∣
(t + 1 − b)

(

ν2M (xi ) − ν2M (xi ) − ν2N (xi )

1 − ν2N (xi )

)

−b

(

μ2
M (xi ) − μ2

M (xi )

μ2
N (xi )

)∣∣∣∣∣

p

=
∣∣∣∣∣
(t + 1 − a)

μ2
M (xi )(1 − μ2

N (xi ))

μ2
N (xi )

−a

(
ν2N (xi )(1 − ν2M (xi ))

1 − ν2N (xi )

)∣∣∣∣∣

p

+
∣∣∣∣∣
(t + 1 − b)

ν2N (xi )(1 − ν2M (xi ))

1 − ν2N (xi )

−b
μ2
M (xi )(1 − μ2

N (xi ))

μ2
N (xi )

∣∣∣∣∣

p

.

For D(N , M�N )with ∀xi ∈ X andμ2
M (xi )+μ2

N (xi ) =
1, ν2M (xi ) + ν2N (xi ) = 1, we can have

∣∣∣∣∣
(t + 1 − a)

(

μ2
N (xi ) − μ2

N (xi ) − μ2
M (xi )

1 − μ2
M (xi )

)

−a

(

ν2N (xi ) − ν2N (xi )

ν2M (xi )

)∣∣∣∣∣

p

+
∣∣∣∣∣
(t + 1 − b)

(

ν2N (xi ) − ν2N (xi )

ν2M (xi )

)

−b(μ2
N (xi ) − μ2

N (xi ) − μ2
M (xi )

1 − μ2
M (xi )

)

∣∣∣∣∣

p

=
∣∣∣∣∣
(t + 1 − a)

μ2
M (xi )(1 − μ2

N (xi ))

1 − μ2
M (xi )

−a
ν2N (xi )(1 − ν2M (xi ))

ν2M (xi )

∣∣∣∣∣

p

+
∣∣∣∣∣
(t + 1 − b)

ν2N (xi )(ν2M (xi ))

ν2M (xi )
− b

μ2
M (xi )(1 − μ2

N (xi ))

1 − μ2
M (xi )

∣∣∣∣∣

p
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Table 1 Existing similarity measures

Authors Similarity measure

Li et al. [36] SL (M, N ) = 1 −
√∑n

i=1((μM (xi )−μN (xi ))2+(νM (xi )−νN (xi ))2)
2n

Chen [37] SC (M, N ) = 1 −
∑n

i=1 |μM (xi )−νM (xi )−(μN (xi )−νN (xi ))|
2n

Chen and Chang [38] SCC (M, N ) = 1 − 1
n

∑n
i=1(|μM (xi ) − μN (xi )| × (1 − πM (xi )+πN (xi )

2 )+
(
∫ 1
0 |μMxi

(z) − μNxi
(z)|dz) × (

πM (xi )+πN (xi )
2 ))

where μMxi
(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if z = μM (xi ) = 1 − νM (xi ),
1−νM (xi )−z

1−μM (xi )−νM (xi )
, if z ∈ [μM (xi ), 1 − νM (xi )],

0, otherwise.

Hung and Yang [39] SHY1(M, N ) = 1 −
∑n

i=1 max(|μM (xi )−μN (xi )|,|νM (xi )−νN (xi )|)
n ,

SHY2(M, N ) = eSHY1(M,N )−1−e−1

1−e−1 , SHY3(M, N ) = SHY1(M,N )
2−SHY1(M,N )

Hong and Kim [40] SHK (M, N ) = 1 −
∑n

i=1(|μM (xi )−μN (xi )|+|νM (xi )−νN (xi )|)
2n

Li and Cheng [41] SLC (M, N ) = 1 − p
√∑n

i=1 |ψM (xi )−ψN (xi )|p
n ,

where ψM (xi ) = μM (xi )+1−νM (xi )
2 , ψN (xi ) = μN (xi )+1−νN (xi )

2 , and 1 ≤ p < ∞.

Li and Xu [42] SLX (M, N ) = 1 −
∑n

i=1(|μM (xi )−νM (xi )−(μN (xi )−νN (xi ))|+|μM (xi )−μN (xi )|+|νM (xi )−νN (xi )|)
4n

Liang and Shi [43] SLS1(M, N ) = 1 − p
√∑n

i=1 |φμ(xi )+φν(xi )|
n , SLS2(M, N ) = 1 − p

√∑n
i=1 |ϕμ(xi )+ϕν(xi )|

n ,

SLS3(M, N ) = 1 − p
√∑n

i=1(η1(xi )+η2(xi )+η3(xi ))p

3n ,

where φμ(xi ) = |μM (xi )−μN (xi )|
2 , φν(xi ) = |νM (xi ))−νN (xi )|

2 , ϕμ(xi ) = |mM1(xi )−mN1(xi )|
2 ,

ϕν(xi ) = |mM2(xi )−mN2(xi )|
2 ,mM1(xi ) = |μM (xi )+mM (xi )|

2 ,mN1(xi ) = |μN (xi )+mN (xi )|
2 ,

mM2(xi ) = |1−νM (xi )+mM (xi )|
2 ,mN2(xi ) = |1−νN (xi )+mN (xi )|

2 ,mM (xi ) = |μM (xi )+1−νM (xi )|
2 ,

mN (xi ) = |μN (xi )+1−νN (xi )|
2 , η1(xi ) = |μM (xi )−μN (xi )|+|νM (xi )−νN (xi )|

2 ,

η2(xi ) = |(μM (xi )−νM (xi ))−(μN (xi )−νN (xi ))|
2 , η3(xi ) = max( πM (xi )

2 ,
πN (xi )

2 ) − min( πM (xi )
2 ,

πN (xi )
2 ).

Mitchell [44] SM (M, N ) = ρμ(M,N )+ρν(M,N )

2 ,

where ρμ(M, N ) = 1 − p
√∑n

i=1 |μM (xi )−μN (xi )|p
n , ρν(M, N ) = 1 − p

√∑n
i=1 |νM (xi )−νN (xi )|p

n , and 1 ≤ p < ∞.

Ye [45] SY (M, N ) = 1
n

∑n
i=1

μM (xi )μN (xi )+νM (xi )νN (xi )√
μ2
M (xi )+ν2M (xi )

√
μ2
N (xi )+ν2N (xi )

Wei and Wei [32] SW (M, N ) = 1
n

∑n
i=1

μ2
M (xi )μ2

N (xi )+ν2M (xi )ν2N (xi )√
μ4
M (xi )+ν4M (xi )

√
μ4
N (xi )+ν4N (xi )

Zhang [33] SZ (M, N ) =
1
n

∑n
i=1

|μ2M (xi )−ν2N (xi )|+|ν2M (xi )−μ2N (xi )|+|π2M (xi )−π2N (xi )|
|μ2M (xi )−μ2N (xi )|+|ν2M (xi )−ν2N (xi )|+|π2M (xi )−π2N (xi )|+|μ2M (xi )−ν2N (xi )|+|ν2M (xi )−μ2N (xi )|+|π2M (xi )−π2N (xi )|

Peng et al. [34] SP1(M, N ) = 1 −
∑n

i=1 |μ2
M (xi )−ν2M (xi )−(μ2

N (xi )−ν2N (xi ))|
2n

SP2(M, N ) = 1
n

∑n
i=1

(μ2
M (xi )

∧
μ2
N (xi ))+(ν2M (xi )

∧
ν2N (xi ))

(μ2
M (xi )

∨
μ2
N (xi ))+(ν2M (xi )

∨
ν2N (xi ))

SP3(M, N ) = 1
n

∑n
i=1

(μ2
M (xi )

∧
μ2
N (xi ))+(1−ν2M (xi ))

∧
(1−ν2N (xi ))

(μ2
M (xi )

∨
μ2
N (xi ))+(1−ν2M (xi ))

∨
(1−ν2N (xi ))

Boran and Akay [46] SBA(M, N ) = 1 − p
√∑n

i=1{|t(μM (xi )−μN (xi ))−(νM (xi )−νN (xi ))|p+|t(νM (xi )−νN (xi ))−(μM (xi )−μN (xi ))|p}
2n(t+1)p
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Table 2 The comparison of similarity measures adopted from [45]

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
M {〈x, 0.3, 0.3〉} {〈x, 0.3, 0.4〉} {〈x, 1, 0〉} {〈x, 0.5, 0.5〉} {〈x, 0.4, 0.2〉} {〈x, 0.4, 0.2〉}
N {〈x, 0.4, 0.4〉} {〈x, 0.4, 0.3〉} {〈x, 0, 0〉} {〈x, 0, 0〉} {〈x, 0.5, 0.3〉} {〈x, 0.5, 0.2〉}
SL [36] 0.9 0.9 0.2929 0.5 0.9 0.9293

SC [37] 1 0.9 0.5 1 1 0.95

SCC [38] 0.9225 0.88 0.25 0.5 0.9225 0.8913

SHY1 [39] 0.9 0.9 0 0.5 0.9 0.9

SHY2 [39] 0.8495 0.8495 0 0.3775 0.8495 0.8495

SHY3 [39] 0.8182 0.8182 0 0.3333 0.8182 0.8182

SHK [40] 0.9 0.9 0.5 0.5 0.9 0.95

SLC [41] 1 0.9 0.5 1 1 0.95

SLX [42] 0.95 0.9 0.5 0.75 0.95 0.95

SLS1 [43] 0.9 0.9 0.5 0.5 0.9 0.95

SLS2 [43] 0.95 0.9 0.5 0.75 0.95 0.95

SLS3 [43] 0.9333 0.9333 0.5 0.6667 0.9333 0.95

SM [44] 0.9 0.9 0.5 0.5 0.9 0.95

SY [45] 1 0.96 N/A N/A 0.9971 0.9965

SW [32] 1 0.8546 N/A N/A 0.9949 0.9963

SZ [33] 0.5 0 0.5 0.5 0.6 0.7

SP1 [34] 1 0.93 0.5 1 0.98 0.955

SP2 [34] 0.5625 0.5625 0 0 0.5882 0.6897

SP3 [34] 0.8692 0.8692 0.5 0.6 0.8843 0.9256

SBA [46] 0.967 0.9 0.5 0.8333 0.9667 0.95

S(proposed) 0.9825 0.9300 0.3750 0.9375 0.9625 0.9438

p = 1 in SM , SLC , SLS1, SLS2, SLS3, p = 1, t = 2 in SBA and p = 1, a = 1, b = 2, t = 3 in S.) “Bold” represents unreasonable results. “N/A”
represents the division by zero problem”

= |(t + 1 − a)
μ2
M (xi )(1 − μ2

N (xi ))

μ2
N (xi )

−a

(
ν2N (xi )(1 − ν2M (xi ))

1 − ν2N (xi )

)

|p

+
∣∣∣∣∣
(t + 1 − b)

ν2N (xi )(1 − ν2M (xi ))

1 − ν2N (xi )
− b

μ2
M (xi )(1 − μ2

N (xi ))

μ2
N (xi )

∣∣∣∣∣

p

.

Consequently,we can obtain D(M, M�N ) = D(N , M�
N ). ��

Apply the similarity measure between PFSs
to pattern recognition

For stating the advantage of the explored similarity measure
S, a comparison among the initiated similarity measure with
the current similarity measures is established. Some existing
similarity measures are presented in Table 1.

Next, we utilize six series of PFSs originally adopted
from [45] to compare the decision results of the initiated
similarity measure S with the existing similarity measures
[32–34,36–46] shown in Table 2. From Table 2, it is clear

that the proposed similarity measure S, SBA [46] and SCC
[38] can conquer the shortcomings of obtaining the illogical
results of the existing similarity measures (SC [37], SHY1

[39], SHY2 [39], SHY3 [39], SHK [40], SLC [41], SLX [42],
SL [36], SLS1 [43], SLS2 [43], SLS3 [43], SM [44], SY [45],
SP1 [34], SP2 [34], SP3 [34], SZ [33] and SW [33]). We will
state the five major shortcomings in detail in the following.

(1) It is easily seen that the third axiom of similarity
measure (S3) is not satisfied by SC , SLC , SY , SW , SP1 since
SC (M, N ) = SLC (M, N ) = SY (M, N ) = SW (M, N ) =
SP1(M, N ) = 1 when M = (0.3, 0.3) and N = (0.4, 0.4)
(Case 1), which are indeed not equal to each other. Similarly,
the third axiom of similarity measure (S3) is also not satis-
fied by SC (M, N ), SLC (M, N ) when M = (0.5, 0.5), N =
(0, 0) and M = (0.4, 0.2), N = (0.5, 0.3). Moreover, we
also can find that the fourth axiom of similarity measure
(S4) is not satisfied by SZ when M = (0.3, 0.4) and N =
(0.4, 0.3)(Case 3) since SZ (M, N ) = 0, which are indeed
not a crisp number. Similarly, the fourth axiom of similarity
measure (S4) is also not satisfied by SHY1, SHY2, SHY3, SP2
when M = (1, 0), N = (0, 0) (Case 3) and SP2 when
M = (0.5, 0.5), N = (0, 0) (Case 4).
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Table 3 The comparison of similarity measures adopted from [38]

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
M {〈x, 0.5, 0.5〉} {〈x, 0.6, 0.4〉} {〈x, 0, 0.87〉} {〈x, 0.6, 0.27〉} {〈x, 0.125, 0.075〉} {〈x, 0.5, 0.45〉}
N {〈x, 0, 0〉} {〈x, 0, 0〉} {〈x, 0.28, 0.55〉} {〈x, 0.28, 0.55〉} {〈x, 0.175, 0.025〉} {〈x, 0.55, 0.4〉}
SL [36] 0.5 0.4901 0.6993 0.6993 0.95 0.95

SC [37] 1 0.9 0.7 0.7 0.95 0.95

SCC [38] 0.5 0.45 0.7395 0.7055 0.9125 0.95

SHY1 [39] 0.5 0.4 0.68 0.68 0.95 0.95

SHY2 [39] 0.3775 0.2862 0.5668 0.5668 0.9229 0.9229

SHY3 [39] 0.3333 0.25 0.5152 0.5152 0.9048 0.9048

SHK [40] 0.5 0.5 0.7 0.7 0.95 0.95

SLC [41] 1 0.9 0.7 0.7 0.95 0.95

SLX [42] 0.75 0.7 0.7 0.7 0.95 0.95

SLS1 [43] 0.5 0.5 0.7 0.7 0.95 0.95

SLS2 [43] 0.75 0.75 0.7 0.7 0.95 0.95

SLS3 [43] 0.6667 0.6333 0.7933 0.7933 0.9667 0.9667

SM [44] 0.5 0.5 0.7 0.7 0.95 0.95

SY [45] N/A N/A 0.8912 0.7794 0.9216 0.9946

SW [32] N/A N/A 0.968 0.438 0.9476 0.9812

SZ [33] 0.5 0.5 0.5989 0.1696 0.625 0.6557

SP1 [34] 1 0.9 0.7336 0.7444 0.99 0.9525

SP2 [34] 0 0 0.3621 0.2284 0.4483 0.8119

SP3 [34] 0.6 0.6176 0.3133 0.6028 0.9806 0.9168

SBA [46] 0.8333 0.8333 0.7 0.7 0.95 0.95

S(proposed) 0.9375 0.8350 0.7806 0.7379 0.9887 0.9513

(p = 1 in SM , SLC , SLS1, SLS2, SLS3, p = 1, t = 2 in SBA and p = 1, a = 1, b = 2, t = 3 in S.) “Bold” represents unreasonable results. “N/A”
represents the division by zero problem”

(2) Some similarity measures [34,36,39,40,43,44] have
no power to differentiate positive and negative difference.
For example, SL(M, N ) = SL(M1, N2) = 0.9 when M =
(0.3, 0.3), N = (0.4, 0.4) (Case 1), M1 = (0.3, 0.4) and
N1 = (0.4, 0.3) (Case 2). The same counter-intuitive exam-
ple exists for SHY1, SHY2, SHY3, SHK , SLS1, SLS3, SM ,

SP2, SP3. Another type of counter-intuitive case occurs
when M = (1, 0), N = (0, 0) (Case 3) and M1 =
(0.5, 0.5), N1 = (0, 0) (Case 4). In this case, SHK (M, N ) =
SHK (M1, N1) = 0.5. The same counter-intuitive example
exists for SLS1, SM ,

SZ , SP2.
(3) The similarity measures have no power to deal with

the division by zero problem. For example, SY and SW when
M = (1, 0), N = (0, 0) (Case 3) or M = (0.5, 0.5), N =
(0, 0) (Case 4).

(4) Another kind of counter-intuitive example can be
provided for the case where the similarity measures are
SHY1(M, N ) = SHY1(M1, N1) = 0.9 when M =
(0.4, 0.2), N = (0.5, 0.3) (Case 5), M1 = (0.4, 0.2), N1 =
(0.5, 0.2) (Case 6). The same counter-intuitive example also
exists for SHY2, SHY3, SLX , SLS2.

(5) Another charming counter-intuitive issue happens
when M = (0.4, 0.2), N = (0.5, 0.3) (Case 5), M =
(0.4, 0.2), N1 = (0.5, 0.2) (Case 6). In such case, it is
expected that the degree of similarity between M and N
is bigger than or equal to the degree of similarity between
M and N1, since they are ranked as N1 � N � M by
means of score function shown in Definition 3. However,
the degree of similarity between M and N1 is bigger than
the degree of similarity between M and N when SL , SHY1,

SHY2, SHY3, SHK , SLC , SLX , SLS1, SLS2, SC , SLS3, SM ,

SW , SZ , SP2, SP3 are used, which does not seem to be rea-
sonable. On the other hand, our proposed similaritymeasures
S(M, N ) = 0.9625 and S(M, N1) = 0.9438. Therefore, the
developed similarity measure is the same as score function.
The presented similarity measure S and the existing simi-
larity measures (SCC and SBA) are the similarity measures
that have no such counter-intuitive issues as stated in Table
2. To continue digging the defects of the existing similarity
measures (SCC and SBA), we give the following tables for
further discussion.

Meanwhile, SBA [46] has the defects of obtaining uncon-
scionable results in some special conditions which is shown
in Table 3. In Table 3, we explore six sets of PFSs which
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Table 4 The comparison of similarity measures

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
M {〈x, 0.3, 0.7〉} {〈x, 0.3, 0.7〉} {〈x, 0.5, 0.5〉} {〈x, 0.4, 0.6〉} {〈x, 0.1, 0.5〉} {〈x, 0.4, 0.2〉}
N {〈x, 0.4, 0.6〉} {〈x, 0.2, 0.8〉} {〈x, 0, 0〉} {〈x, 0, 0〉} {〈x, 0.2, 0.3〉} {〈x, 0.2, 0.3〉}
SL [36] 0.6863 0.6863 0.5 0.4901 0.8419 0.8419

SC [37] 0.9 0.9 1 0.9 0.85 0.85

SCC [38] 0.9 0.9 0.5 0.55 0.8438 0.7685

SHY1 [39] 0.9 0.9 0.5 0.4 0.8 0.8

SHY2 [39] 0.8494 0.8494 0.3775 0.2862 0.7132 0.7132

SHY3 [39] 0.8182 0.8182 0.3333 0.25 0.6667 0.6667

SHK [40] 0.9 0.9 0.5 0.5 0.85 0.85

SLC [41] 0.9 0.9 1 0.9 0.85 0.85

SLX [42] 0.9 0.9 0.75 0.7 0.85 0.85

SLS1 [43] 0.9 0.9 0.5 0.5 0.85 0.85

SLS2 [43] 0.9 0.9 0.5 0.75 0.85 0.85

SLS3 [43] 0.95 0.95 0.6667 0.6333 0.8833 0.8833

SM [44] 0.9 0.9 0.5 0.5 0.85 0.85

SY [45] 0.9832 0.9873 N/A N/A 0.9249 0.8685

SW [32] 0.9721 0.9929 N/A N/A 0.9293 0.6156

SZ [33] 0.7174 0.7857 0.5 0.5 0.5676 0.3684

SP1 [34] 0.9 0.9 1 0.9 0.905 0.915

SP2 [34] 0.6923 0.726 0 0 0.3448 0.32

SP3 [34] 0.75 0.6667 0.6 0.5517 0.8 0.8482

SBA [46] 0.9 0.9 0.8333 0.8333 0.8667 0.8667

S(proposed) 0.9075 0.9125 0.9375 0.9350 0.9212 0.9063

(p = 1 in SM , SLC , SLS1, SLS2, SLS3, p = 1, t = 2 in SBA and p = 1, a = 1, b = 2, t = 3 in S.) “Bold” represents unreasonable results. “N/A”
represents the division by zero problem”

are adopted from [38] to compare the decision results of the
presented similarity measure S with the developed similarity
measures [32–34,36–46] shown in Table 3. From Table 3,
we can conclude that the presented similarity measure S and
SCC [38], SP3 [34] can conquer the defects of obtaining the
unconscionable results of the existing similarity measures
SBA [46], SC [37], SHY1 [39], SHY2 [39], SHY3 [39], SHK

[40], SLC [41], SLX [42], SL [36] , SLS1 [43], SLS2 [43], SLS3
[43], SM [44], SY [45], SP1 [34], SP2 [34], SZ [33] and SW
[32].

Nevertheless, SCC [38] also has the defects of obtaining
fallacious results in some special cases, which is shown in
Table 4. In Table 4, we explore six series of PFSs to compare
the results of the proposed similaritymeasure S and the exist-
ing similarity measures [32–34,36–46] as shown in Table 4.
From Table 4, we can see that the proposed similarity mea-
sure S with SP3 [34] can overcome the drawbacks of getting
the unreasonable results of the existing similarity measures
SBA [46], SC [37], SHY1 [39], SHY2 [39], SHY3 [39], SHK

[40], SLC [41], SLX [42], SL [36] , SLS1 [43], SLS2 [43], SLS3
[43], SM [44], SY [45], SP1 [34], SP2 [34], SZ [33] and SW
[32].

Conclusion

Themain contributions can be illustrated and reviewed in the
following.

(1) The formulae of Pythagorean fuzzy similarity mea-
sures and distance measures are proposed, and their prop-
erties are proved. Meanwhile, the diverse desirable relations
between the developed similaritymeasures anddistancemea-
sures have also been elicited.

(2) A comparison with some existing literature [32–34,
36–46] is constructed in Tables 2, 3, 4 to state the availability
of the proposed similarity measure.

In future, we will employ some similarity measures in
other domains, such asmedical diagnosis andmachine learn-
ing. Besides, as this paper is just an applied research focusing
on the similarity measures of PFSs, we will attempt to design
some softwares to preferably realize the initiated information
measure in daily life. Meanwhile, we also will take them into
diverse fuzzy environment [47–54].
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