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Abstract
Pythagorean fuzzy set as an extension of fuzzy set has been presented to handle the uncertainty in real-world decision-making
problems. In this work, we formulate a shortest path (SP) problem in an interval-valued Pythagorean fuzzy environment.
Here, the costs related to arcs are taken in the form of interval-valued Pythagorean fuzzy numbers (IVPFNs). The main
contributions of this paper are fourfold: (1) the interval-valued Pythagorean fuzzy optimality conditions in directed networks
are described to design of solution algorithm. (2) To do this, an improved score function is used to compare the costs between
different paths with their arc costs represented by IVPFNs. (3) Based on these optimality conditions and the improved score
function, the traditional Dijkstra algorithm is extended to find the cost of interval-valued Pythagorean fuzzy SP (IVPFSP) and
corresponding IVPFSP. (4) Finally, a small sized telecommunication network is provided to illustrate the potential application
of the proposed method.

Keywords Shortest path problem · Pythagorean fuzzy numbers · Score function · Dijkstra algorithm

Introduction

Shortest path (SP) problems lie at the heart of network flows.
They arise frequently in practice since the aim of a wide vari-
ety of real-life problems is to send some goods between two
specified nodes in a network as cheaply as possible. There-
fore, SP problemswith the aim of finding a pathwith the least
cost (time or length) from the source node to the destination
node can be used for formulating such real applications. Tra-
ditionally, it has been generally assumed that traversal costs
of arcs are expressed in termsof crisp numbers.But, these val-
ues are generally imprecise or vague in nature since the costs
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fluctuate with traffic conditions and weather. For this, Zadeh
[1] proposed the fuzzy set theory which is a very useful tool
to cope with imprecise data in SP problems. Consequently,
various attempts have been made by researchers for different
types of SP problems in fuzzy environment.

Based on possibility theory, Okada [2] proposed an algo-
rithm for solving fuzzy SP problem to determine the degree
of possibility for each arc. Keshavarz and Khorram [3] sim-
plified the fuzzy SP problem into a bi-level programming
problem and proposed an efficient algorithm, based on the
parametric SP problem for solving the resulting problem.
Dou et al. [4] solved the fuzzy SP problem in multiple
constraints network with vague multi-criteria decision mak-
ing methods based on similarity measures. Deng et al. [5]
extended the Dijkstra algorithm for solving fuzzy SP prob-
lems using the graded mean integration representation of
fuzzy numbers. Moreover, some authors [6, 7] focused on
computing a shortest path in the network having various types
of fuzzy arc cost based on heuristic algorithms.

However, fuzzy set takes only a membership function and
cannot express non-membership function. Here, the degree
of non-membership is just the complement of the degree of
membership. ThenAtanassov [8] introduced intuitionistic FS
(IFS) to incorporate the non-membership degree during the
analysis. Here, the sum of membership degree and the non-
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membership degree is equal to or less than one. Under IFS
environment, some researchers pay more attention to solv-
ing SP problemwith intuitionistic fuzzy arc costs.Mukherjee
[9] considered the SP problem in an intuitionistic fuzzy envi-
ronment. Geetharamani and Jayagowri [10] proposed a new
algorithm to deal with the IFSP problem using intuitionistic
fuzzy shortest path length procedure and similarity measure.
Biswas et al. [11] developed a method to search for an intu-
itionistic fuzzy shortest path between the source node and the
destination node. Kumar et al. [12] proposed an algorithm to
find the shortest path and shortest distance in a networkwhere
interval-valued fuzzy intuitionistic arc weights. Sujatha and
Hyacinta [13] proposed two different approaches for solving
the SP problem under intuitionistic environment. Motameni
and Ebrahimnejad [14] worked on solving SP with an addi-
tional constraint under intuitionistic fuzzy environment.

However, there may be a situation where the sum of the
membership and non-membership degrees is greater than
one. Thus, Yager [15] introduced a generalization of IFS
called Pythagorean fuzzy set (PFS) where the square sum of
themembership and non-membership degrees sum is equal to
or less than one. Zhang [16] extended the concept of PFSs to
interval-valued PF (IVPF) sets where the values of member-
ship and non-membership functions are expressed in terms
of intervals rather than crisp numbers. After PFSs, IVPF set
and different extensions of them have been used by some
researchers to process fuzzy information in multi criteria
decision making problems [17–27]. However, to the best of
our knowledge there is no study in the literature on solving
SP problems in IVPF environment.

Thus, the object of this paper was to propose a method for
solving SP problems under IVPF environment. To do this, we
first present the mathematical formulation on SP problems
where the traversal costs of arcs are represented in terms of
interval-valuedPythagorean fuzzynumbers (IVPFNs). Then,
we describe the optimality conditions in IVPF networks to
design of solution algorithm. To do this, an improved score
function is used to compare the costs between different paths
with their arc costs represented by IVPFNs. Then, the tra-
ditional Dijkstra algorithm is extended to find the cost of
interval-valued Pythagorean fuzzy SP (IVPFSP) and corre-
sponding IVPFSP. The proposed algorithm is illustrated by
a small sized telecommunication network under IVPF envi-
ronment.

The rest of the paper is organized as follows: In Sect. 2,
some basic concepts of interval-valued Pythagorean fuzzy
sets are presented. In Sect. 3, themathematical formulation of
the SP problem under IVPF environment is given. The IVPF
shortest path optimality conditions and the extended Dijk-
stra’s algorithm are presented Sect. 4. In Sect. 5, a numerical
example is given to illustrate the proposed solution technique.
Last, the paper is concluded in Sect. 6.

Preliminaries

In this section, we present some necessary background and
notions of the interval-valued Pythagorean fuzzy numbers
which are applied throughout this paper [8, 15, 17–19].

Definition 1 Let X denotes the universe set. An intuitionis-
tic fuzzy set (IFS) ÃI in X is defined by a set of ordered
triple ÃI � {〈x , μ ÃI (x), υ ÃI (x)

〉
; x ∈ X

}
, where the func-

tions μ ÃI (x) : X → [0, 1] and υ ÃI (x) : X → [0,
1], respectively, represent the membership degree and non-
membership degree of x in ÃI such that for each element
x ∈ X , 0 ≤ μ ÃI (x) + υ ÃI (x) ≤ 1. For any IFS ÃI and
x ∈ X , π ÃI (x) � 1 − μ ÃI (x) − υ ÃI (x) is said to be the
degree of hesitation of x to ÃI .

Definition 2 A Pythagorean fuzzy set (PFS) ÃP in
the universe set X is defined by the set ÃP �{〈
x , μ ÃP (x), υ ÃP (x)

〉
; x ∈ X

}
, where the membership

function μ ÃP (x) : X → [0, 1] and non-membership func-

tion υ ÃP (x) : X → [0, 1], satisfy the condition
[
μ ÃP (x)

]2+
[
υ ÃP (x)

]2 ≤ 1 for each element x ∈ X . For any PFS ÃP

and x ∈ X , π
ÃP
(x) �

√
1 − [μ ÃP (x)

]2 − [υ ÃP (x)
]2 is said

to be the degree of hesitation of x to ÃP .

For convenience, Zhang and Xu [16] called(
μ ÃP (x), υ ÃP (x)

)
a Pythagorean fuzzy number (PFN)

denoted by ÃP � (μ ÃP , υ ÃP

)
.

For example, assume that the membership degree of an

element to a fuzzy set is
√
3
2 and the non-membership degree

of this element is 1
2 . This situation cannot be described by

utilizing the IFS since
√
3
2 + 1

2 > 1. However,
(√

3
2

)2
+
( 1
2

)2 ≤
1; thus PFN is suitable to handle this situation.

Definition 3 The score function and the accuracy function of
any PFN ÃP � (μ ÃP , υ ÃP

)
are defined as follows, respec-

tively:

S( ÃP ) � (μ ÃP )2 − (υ ÃP )2, S( ÃP ) ∈ [−1, 1]

H ( ÃP ) � (μ ÃP )2 + (υ ÃP )2, H ( ÃP ) ∈ [0, 1]

Definition 4 An interval-valued Pythagorean fuzzy set

(IVPFS) ¯̃A−
P

in the universe set X is defined by

the set ¯̃A−
P � {〈x , μ̄− ¯̃A−

P (x), ῡ− ¯̃A−
P (x)〉; x ∈ X} where

μ̄− ¯̃A−
P (x) � [μ− ¯̃A−

P (x), μ̄ ¯̃A−
P (x)] ⊆ [0, 1] and ῡ− ¯̃A−

P (x) �
[υ− ¯̃A−

P (x), ῡ ¯̃A−
P (x)] ⊆ [0, 1] are inteval numbers

satisfying the condition [μ̄ ¯̃A−
P (x)]2 + [ῡ ¯̃A−

P (x)]2 ≤
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1 for each element x ∈ X . For any IVPFS
¯̃A−
P

and x ∈ X , π̄−
¯̃A−
P

(x) � [π−
¯̃A−
P

(x), π̄ ¯̃A−
P (x)] �

[
√
1 − [μ̄ ¯̃A−

P (x)]2 − [ῡ ¯̃A−
P (x)]2,

√
1 − [μ− ¯̃A−

P (x)]
2 − [μ− ¯̃A−

P (x)]
2] is said

to be the hesitation interval of x to ¯̃A−
P
.

For an IVPFS ¯̃A−
P
, the pair

〈[μ− ¯̃A−
P (x), μ̄ ¯̃A−

P (x)], [υ− ¯̃A−
P (x), ῡ ¯̃A−

P (x)]〉 is called an interval-
valued Pythagorean fuzzy number (IVPFN) denoted by
¯̃A−
P � 〈[μ− ¯̃A−

P , μ̄ ¯̃A−
P ], [υ− ¯̃A−

P , ῡ ¯̃A−
P ]〉.

Remark 1 [18] Two IVPFNs, ¯̃0−
P � 〈[0, 0], [1, 1]〉 and

¯̃1−
P � 〈[1, 1], [0, 0]〉 are the smallest and the largest IVPFNs,

respectively.

Definition 5 The IVPFN ¯̃A−
P � 〈[μ− ¯̃A−

P , μ̄ ¯̃A−
P ], [υ− ¯̃A−

P , ῡ ¯̃A−
P ]〉

is siad to be non-negative if μ− ¯̃A−
P ≥ υ− ¯̃A−

P and μ̄ ¯̃A−
P ≥ ῡ ¯̃A−

P .

Definition 6 [19] Let ¯̃A−
P � 〈[μ− ¯̃A−

P , μ̄ ¯̃A−
P ], [υ− ¯̃A−

P , ῡ ¯̃A−
P ]〉 and

¯̃B−
P � 〈[μ− ¯̃B−

P , μ̄ ¯̃B−
P ], [υ− ¯̃B−

P , ῡ ¯̃B−
P ]〉 be two IVPFNs. Then

¯̃A−
P ⊕ ¯̃B−

P �
〈⎡

⎣
√
(μ− ¯̃A−

P )
2 + (μ− ¯̃B−

P )
2 − (μ− ¯̃A−

P )
2(μ− ¯̃B−

P )
2,

×
√
(μ̄ ¯̃A−

P )2 + (μ̄ ¯̃B−
P )2 − (μ̄ ¯̃A−

P )2(μ̄ ¯̃B−
P )2

]

,

×
⎡

⎣υ− ¯̃A−
Pμ− ¯̃B−

P , ῡ ¯̃A−
P ῡ ¯̃B−

P

⎤

⎦
〉

Remark 2 For any IVPFN ¯̃A−
P �

〈[μ− ¯̃A−
P , μ̄ ¯̃A−

P ], [υ− ¯̃A−
P , ῡ ¯̃A−

P ]〉, we have ¯̃A−
P ⊕ ¯̃0−

P � ¯̃A−
P
.

Definition 7 [19] The score function and the accuracy func-

tion of any IVPFN ¯̃A−
P � 〈[μ− ¯̃A−

P , μ̄ ¯̃A−
P ], [υ− ¯̃A−

P , ῡ ¯̃A−
P ]〉, are

defined as follows, respectively:

S( ¯̃A−
P
) �

(μ− ¯̃A−
P )

2 + (μ̄ ¯̃A−
P )2 − (υ− ¯̃A−

P )2 − (ῡ ¯̃A−
P )2

2
,

S( ¯̃A−AP ) ∈ [−1, 1]

H ( ¯̃A−
P
) �

(μ− ¯̃A−
P )

2 + (μ̄ ¯̃A−
P )2 + (υ− ¯̃A−

P )2 + (ῡ ¯̃A−
P )2

2
,

H ( ¯̃A−AP ) ∈ [0, 1]

Let ¯̃A−
P � 〈[μ− ¯̃A−

P , μ̄ ¯̃A−
P ], [υ− ¯̃A−

P , ῡ ¯̃A−
P ]〉 be an IVPFN.

Based on three concepts, hesitation interval index, favor

degrees and against degrees relative to ¯̃A−
P
, Garg [19] defined

an improved score function of ¯̃A−
P
as follows:

M( ¯̃A−
P
) �

⎛

⎝(μ− ¯̃A−
P )

2 − (υ− ¯̃A−
P )2

⎞

⎠

⎛

⎝1 +
√
1 − (μ− ¯̃A−

P )
2 − (υ− ¯̃A−

P )2

⎞

⎠ +

(

(μ̄ ¯̃A−
P )2 − (ῡ ¯̃A−

P )2
)(

1 +
√
1 − (μ̄ ¯̃A−

P )2 − (ῡ ¯̃A−
P )2

)

2
, (1)

where M( ¯̃A−
P
) ∈ [−1, 1].

Remark 3 [19] For two IVPFNs ¯̃0−
P � 〈[0, 0], [1, 1]〉 and

¯̃1−
P � 〈[1, 1], [0, 0]〉, we have M( ¯̃0−

P
) � −1 and M( ¯̃1−

P
) �

1.

Proposition 1 If ¯̃A−
P � 〈[μ

− ¯̃A−
P , μ̄ ¯̃A−

P ], [υ− ¯̃A−
P , ῡ ¯̃A−

P ]〉be anon-

negative IVPFN, then M( ¯̃A−
P
) ≥ 0.

Proof According to Definition 5, we have μ− ¯̃A−
P ≥ υ− ¯̃A−

P

and μ̄ ¯̃A−
P ≥ ῡ ¯̃A−

P . Therefore, (μ− ¯̃A−
P )

2 − (υ− ¯̃A−
P )2 ≥ 0 and

(μ̄ ¯̃A−
P )2 − (ῡ ¯̃A−

P )2 ≥ 0. Now, based on Eq. (1), we conclude

that M( ¯̃A−
P
) ≥ 0.

Remark 4 Garg [19] used the improved score
function given in (1) to compare two IVPFNs

123



96 Complex & Intelligent Systems (2019) 5:93–100

¯̃A−
P � 〈[μ− ¯̃A−

P , μ̄ ¯̃A−
P ], [υ− ¯̃A−

P , ῡ ¯̃A−
P ]〉 and ¯̃B−

P �
〈[μ− ¯̃B−

P , μ̄ ¯̃B−
P ], [υ− ¯̃B−

P , ῡ ¯̃B−
P ]〉 as follows:

• If M( ¯̃A−
P
) > M( ¯̃B−

P
), then ¯̃A−

P � ¯̃B−
P
.

• If M( ¯̃A−
P
) � M( ¯̃B−

P
), then ¯̃A−

P ∼ ¯̃B−
P
.

The existing approaches for comparing two IVPFNs are
based on the score and accuracy functions. Such approaches
neglect the hesitation interval index and thus they are unable
to give the exact position of IVPFNs. However, the ranking
function given in (1) overcomes this shortcoming and pro-
vides exact positions of IVPFNs by sufficiently considering
the indeterminacy information of an IVPFS.

Interval-valued Fuzzy Pythagorean Shortest
Path problem

In this section, the mathematical formulation of the interval-
valued Pythagorean fuzzy shortest path (IVPFSP) problem
is presented.

We consider a directed network G � (V , E),
with node set V � {1, 2, . . . , m} and arc set
E � {(i , j) : i , j ∈ V , i �� j}. For two different nodes
i , j ∈ E , the ordered pair (i , j) denotes an arc of the
network. Two nodes 1 and m are considered as the source
and destination nodes of the network, respectively. It is
supposed that there is only one directed arc (i , j) from node
i to node j . A path pi j from node i to node j is a sequence of
arcs pi j � {(i , i1), (i1, i2), . . . , (ik , j)} in which the initial
node of each arc is same as the terminal node of preceding
arc in the sequence. The cost of a directed path is defined
as the sum of the arc costs the path. We assume the network
contains a directed path from the source node to every other
node in the network.

The non–negative weight ci j is associated with each arc
(i , j) representing the cost associated with the respective
arc. The main purpose of the SP problem is to find a path
with the least cost, from node 1 to node m. Conventional
SP problems consider certain and precise values for the arc
costs, which is not always the case in real-life problems.
As time and cost fluctuate with traffic conditions, weather
and payload, different extensions of fuzzy set can be uti-
lized to represent imprecise and vague arc costs. In this
work, interval-valued Pythagorean fuzzy numbers are used to
represent the vague parameters of the SP problem under con-
sideration. The resulting problem is, therefore, referred to as
an interval-valued Pythagorean fuzzy SP (IVPFSP) problem.

An IVPFSP problem having non-negative IVPFNs for the
arc costs is formulated as follows:

min ˜̄Z− �
m∑

i�1

m∑

j�1

˜̄c−P

i j
xi j

s.t.
n∑

j�1

xi j −
m∑

k�1

xki �
⎧
⎨

⎩

1, i � 1,
0, i �� 1,m,
−1, i � m,

xi j ≥ 0, i , j � 1, 2, . . . ,m. (2)

If arc (i , j) is in the path, then xi j � 1; otherwise xi j � 0.
Let Tst denote the set of all paths from node s to node

t . Define ¯̃C−
P
(puv) � ∑

(i , j)∈puv

¯̃C−
P

i j
as the interval-valued

Pythagorean fuzzy cost of path puv from node u to node
v.

Extended Dijkstra Algorithm in IVPF
environment

In this section, the traditional Dijkstra algorithm is extended
for solving the IVPFSP problem (2).

Theorem 1 (IVPFSP optimality conditions) For every node

j ∈ E, let ¯̃w−
P

j
denote the interval-valued Pythagorean fuzzy

cost of some directed path from the source node 1 to node j .

Then, IVPFNs ¯̃w−
P

j
represent IVPFSP costs if and only if they

satisfy the following IVPFSP optimality conditions:

¯̃w−
P

j
≺− ¯̃w−

P

i
+ ˜̄c−P

i j
for all (i , j) ∈ E (3)

Proof If ¯̃w−
P

j
is the IVPF cost of a shortest path from the

source node 1 to node j , then it must satisfy the conditions

(3). Suppose not, i.e. ¯̃w−
P

j
� ¯̃w−

P

i
+ ˜̄c−P

i j
for some arc (i , j) ∈ E .

By assumption ¯̃w−
P

i
is the IVPF cost of a directed path like

p1i from the source node 1 to node i . This path plus the arc
(i , j) constructs a new path from the source node 1 to node j

with the IVPF cost ¯̃w−
P

i
+ ˜̄c−P

i j
. This contradicts the optimality

of IVPFSP cost ¯̃w−
P

j
.

We now show if the IVPF costs ¯̃w−
P

j
satisfy the conditions

in (3), they represent IVPFSP costs. To do this, consider any

IVPF costs ¯̃w−
P

j
satisfying (3). Let 1 � i1−i2−· · ·−ik � j be

any path p1 j from the source node 1 to node j . The conditions
(3) imply that

¯̃w−
P

j
� ¯̃w−

P

ik
≺− ¯̃w−

P

ik−1

+ ˜̄c−P

ik−1ik
,

¯̃w−
P

ik−1

≺− ¯̃w−
P

ik−2

+ ˜̄c−P

ik−2ik−1

,

123



Complex & Intelligent Systems (2019) 5:93–100 97

...

¯̃w−
P

i2
≺− ¯̃w−

P

i1
+ ˜̄c−P

i1i2
� ˜̄c−P

i1i2
,

The last equality follows from the fact that ¯̃w−
P

i1
� ¯̃w−

P

1
�

〈[0, 0], [1, 1]〉. Adding the equalities, we find that

¯̃w−
P

j
� ¯̃w−

P

ik
≺− ˜̄c−P

ik−1ik
+ ˜̄c−P

ik−2ik−1

+ · · · + ˜̄c−P

i1i2

�
∑

(i , j)∈p1 j

˜̄c−P

i j
� ¯̃C−

P
(pi j )

Thus ¯̃w−
P

j
is a lower bound on the IVPF cost of any path

from the source node 1 to node j . On the other hand, since
¯̃w−
P

j
is the IVPF cost of some path from the source node 1

to node j , it also is an upper bound on the IVPFSP cost.

Therefore, ¯̃w−
P

j
is the IVPFSP cost. �

Now, we are at a position to describe the extended Dijk-
stra’s algorithm for finding IVPFSP from the source node 1
to destination nodem in a directed network with IVPF costs.
This algorithm automatically yields the IVPFSP from the
source node 1 to all other nodes as well.

Algorithm 1: The extended Dijkstra’s algorithm under
IVPF environment

Initialization step:

Set ¯̃w−
P

1
� ¯̃0−

P � 〈[0, 0], [1, 1]〉,S � {1} and Pred{1} � 0.

Main step:
Let S̄ � V − S and consider all arcs in the set (S, S̄) �{

(i , j) : i ∈ S, j ∈ S̄
}
. Let

M

(
¯̃w−
P

u
⊕ ˜̄c−P

uv

)
� min

{
M

(
¯̃w−
P

i
+ ˜̄c−P

i j

)
; (i , j) ∈ (S, S̄)

}

Set ¯̃w−
P

v
� ¯̃w−

P

u
⊕ ˜̄c−P

uv
,Pred{v} � u, and S :� S ∪ {v}.

Repeat the main step exactly m − 1 times and then stop. The
IVPF cost of the SP and the corresponding IVPFSP are at
hand.

Remark 5 Note that Pred{i} gives the predecessor node of
node i .

Theorem 2 The extended Dijkstra’s algorithm under IVPF
environment yields the IVPFSP and its IVPS cost.

Proof Assume, inductively, that each ¯̃w−
P

i
for i ∈ S represents

the IVPF cost of the IVPFSP from the source node 1 to node

i . This is true for i � 1 since ¯̃w−
P

1
� ¯̃0−

P � 〈[0, 0], [1, 1]〉.

Consider the point at which a new node v is trying to be
added to S. Assume that

M

(
¯̃w−
P

u
⊕ ˜̄c−P

uv

)
� min

{
M

(
¯̃w−
P

i
+ ˜̄c−P

i j

)
; (i , j) ∈ (S, S̄)

}

(4)

We shall show that the IVPFSP from the source node
1 to node v has the IVPF cost ¯̃w−

P

v
� ¯̃w−

P

u
⊕ ˜̄c−P

uv
and can

be constructed iteratively as the IVPFSP from the source
node 1 to node u plus the arc (u, v).Consider any IVPF
path p1v from the source node 1 to node v. It suffices to

prove that M

(
∑

(i , j)∈p1v
˜̄c−P

i j

)
� M

(
¯̃C−
P
(p1v)

)
≥ M( ¯̃w−

P

v
).

Since 1 ∈ S and v ∈ S̄, there exists an arc (i , j) ∈ p1v
where i ∈ S and j ∈ S̄. Hence, path p1v can be decomposed
into three parts p1i , (i , j) and p jv . Based on the induction
hypothesis, the IVPF cost of p1i is greater than or equal to

¯̃w−
P

i
, i.e. M

(
¯̃C−
P
(p1i )

)
≥ M( ¯̃w−

P

i
). Since the IVPF costs of

all arcs are assumed to be nonnegative, M

(
¯̃C−
P
(p jv)

)
≥ 0

(see Proposition 1). Thus, M

(
¯̃C−
P
(p1v)

)
�− M

(
¯̃w−
P

i
⊕ ˜̄c−P

i j

)
.

Based on Eq. (3) and since M( ¯̃w−
P

v
) � M

(
¯̃w−
P

u
⊕ ˜̄c−P

uv

)
, we

conclude that M

(
¯̃C−
P
(p1v)

)
�− M

( ¯̃w−
P

v

)
. This completes

the induction argument and the validity of the algorithm is
established. �

Numerical example

In this section, a small sized telecommunication network is
provided to illustrate the potential application of the proposed
method.

Consider a mobile service company which handles six
geographical centers. A configuration of a telecommunica-
tion network is presented in Fig. 1. Assume that the cost
between any two centers is an interval-valued Pythagorean
fuzzy number (the arc costs are given in Table 1). The com-
pany wants to find an interval-valued Pythagorean fuzzy
shortest path for an effective message flow amongst the cen-
ters.

The interval-valued Pythagorean fuzzy shortest path cost
and the corresponding interval-valued Pythagorean fuzzy
shortest path can be obtained using the proposed extended
Dijkstra’s algorithm (Algorithm 1), as follows:

Initialization step:

Set ¯̃w−
P

1
� ¯̃0−

P � 〈[0, 0], [1, 1]〉, S � {1} and Pred{1} � 0.

Main step:
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Fig. 1 An example of IVFSP network

Table 1 Arc information in terms of IVPFNs

Arc Intuitionistic fuzzy cost

(1, 2) 〈[0.4, 0.5], [0.3, 0.4]〉
(1, 3) 〈[0.6, 0.7], [0.2, 0.3]〉
(2, 3) 〈[0.3, 0.6], [0.3, 0.4]〉
(2, 4) 〈[0.7, 0.8], [0.1, 0.2]〉
(2, 5) 〈[0.6, 0.7], [0.2, 0.3]〉
(3, 4) 〈[0.4, 0.6], [0.2, 0.4]〉
(3, 5) 〈[0.7, 0.8], [0.3, 0.5]〉
(4, 5) 〈[0.5, 0.6], [0.1, 0.3]〉
(4, 6) 〈[0.4, 0.7], [0.1, 0.2]〉
(5, 6) 〈[0.3, 0.4], [0.1, 0.2]〉

Iteration 1:
Let S̄ � V − S � {2, 3, 4, 5, 6} and (S, S̄) �{

(i , j) : i ∈ S, j ∈ S̄
} � {(1, 2), (1, 3)}. Thus, we have

¯̃w−
P

1
⊕ ˜̄c−P

12
� 〈[0, 0], [1, 1]〉 ⊕ 〈[0.4, 0.5], [0.3, 0.4]〉
� 〈[0.4, 0.5], [0.3, 0.4]〉

¯̃w−
P

1
⊕ ˜̄c−P

13
� 〈[0, 0], [1, 1]〉 ⊕ 〈[0.6, 0.7], [0.2, 0.3]〉
� 〈[0.6, 0.7], [0.2, 0.3]〉

Therefore,

M

(
¯̃w−
P

1
⊕ ˜̄c−P

12

)
� M(〈[0.4, 0.5], [0.3, 0.4]〉) � 0.14

M

(
¯̃w−
P

1
⊕ ˜̄c−P

13

)
� M(〈[0.6, 0.7], [0.2, 0.3]〉) � 0.61

Since M

(
¯̃w−
P

1
⊕ ˜̄c−P

12

)
� min{0.14, 0.61} � 0.14, we set

¯̃w−
P

2
� ¯̃w−

P

1
⊕ ˜̄c−P

12
� 〈[0.4, 0.5], [0.3, 0.4]〉, Pred{2} � 1,

and S � {1, 2}.
Iteration 2:

Let S̄ � V − S � {3, 4, 5, 6} and (S, S̄) �{
(i , j) : i ∈ S, j ∈ S̄

} � {(1, 3), (2, 3), (2, 4), (2, 5)}.
Thus, we have

¯̃w−
P

1
⊕ ˜̄c−P

13
� 〈[0, 0], [1, 1]〉 ⊕ 〈[0.6, 0.7], [0.2, 0.3]〉
� 〈[0.6, 0.7], [0.2, 0.3]〉

¯̃w−
P

2
⊕ ˜̄c−P

23
� 〈[0.4, 0.5], [0.3, 0.4]〉 ⊕ 〈[0.3, 0.6], [0.3, 0.4]〉
� 〈[0.48, 0.72], [0.09, 0.16]〉

¯̃w−
P

2
⊕ ˜̄c−P

24
� 〈[0.4, 0.5], [0.3, 0.4]〉 ⊕ 〈[0.7, 0.8], [0.1, 0.2]〉
� 〈[0.76, 0.85], [0.03, 0.08]〉

¯̃w−
P

2
⊕ ˜̄c−P

25
� 〈[0.4, 0.5], [0.3, 0.4]〉 ⊕ 〈[0.6, 0.7], [0.2, 0.3]〉
� 〈[0.68, 0.78], [0.06, 0.12]〉

Therefore,

M

(
¯̃w−
P

1
⊕ ˜̄c−P

13

)
� M(〈[0.6, 0.7], [0.2, 0.3]〉) � 0.61

M

(
¯̃w−
P

2
⊕ ˜̄c−P

23

)
� M(〈[0.48, 0.72], [0.09, 0.16]〉) � 0.62

M

(
¯̃w−
P

2
⊕ ˜̄c−P

24

)
� M(〈[0.76, 0.85], [0.03, 0.08]〉) � 0.97

M

(
¯̃w−
P

2
⊕ ˜̄c−P

25

)
� M(〈[0.68, 0.78], [0.06, 0.12]〉) � 0.87

Since M

(
¯̃w−
P

1
⊕ ˜̄c−P

13

)
� min{ 0.61, 0.62, 0.99, 0.87} �

0.61, then we set ¯̃w−
P

3
� ¯̃w−

P

1
⊕ ˜̄c−P

13
�

〈[0.6, 0.7], [0.2, 0.3]〉,Pred{3} � 1, and S � {1, 2, 3}.
Iteration 3:

Let S̄ � V − S � {4, 5, 6} and (S, S̄) �{
(i , j) : i ∈ S, j ∈ S̄

} � {(2, 4), (2, 5), (3, 4), (3, 5)}.
Thus, we have

¯̃w−
P

2
⊕ ˜̄c−P

24
� 〈[0.4, 0.5], [0.3, 0.4]〉 ⊕ 〈[0.7, 0.8], [0.1, 0.2]〉
� 〈[0.76, 0.85], [0.03, 0.08]〉

¯̃w−
P

2
⊕ ˜̄c−P

25
� 〈[0.4, 0.5], [0.3, 0.4]〉 ⊕ 〈[0.6, 0.7], [0.2, 0.3]〉
� 〈[0.68, 0.78], [0.06, 0.12]〉

¯̃w−
P

3
⊕ ˜̄c−P

34
� 〈[0.6, 0.7], [0.2, 0.3]〉 ⊕ 〈[0.4, 0.6], [0.2, 0.4]〉
� 〈[0.68, 0.82], [0.04, 0.12]〉

¯̃w−
P

3
⊕ ˜̄c−P

35
� 〈[0.6, 0.7], [0.2, 0.3]〉 ⊕ 〈[0.7, 0.8], [0.3, 0.5]〉
� 〈[0.82, 0.90], [0.06, 0.15]〉

Therefore,

M

(
¯̃w−
P

2
⊕ ˜̄c−P

24

)
� M(〈[0.76, 0.85], [0.03, 0.08]〉) � 0.97

M

(
¯̃w−
P

2
⊕ ˜̄c−P

25

)
� M(〈[0.68, 0.78], [0.06, 0.12]〉) � 0.87
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M

(
¯̃w−
P

3
⊕ ˜̄c−P

34

)
� M(〈[0.68, 0.82], [0.04, 0.12]〉) � 0.91

M

(
¯̃w−
P

3
⊕ ˜̄c−P

35

)
� M(〈[0.82, 0.90], [0.06, 0.15]〉) � 0.99

Since M

(
¯̃w−
P

2
⊕ ˜̄c−P

25

)
� min{ 0.97, 0.87, 0.91, 0.99} �

0.87, we set ¯̃w−
P

5
� ¯̃w−

P

2
⊕ ˜̄c−P

25
� 〈[0.68, 0.78], [0.06, 0.12]〉,

Pred{5} � 2, and S � {1, 2, 3, 5}.
Iteration 4:

Let S̄ � V − S � {4, 6} and (S, S̄) �{
(i , j) : i ∈ S, j ∈ S̄

} � {(3, 4), (5, 6)}. Thus, we have
¯̃w−
P

3
⊕ ˜̄c−P

34
� 〈[0.6, 0.7], [0.2, 0.3]〉

⊕ 〈[0.4, 0.6], [0.2, 0.4]〉
� 〈[0.68, 0.82], [0.04, 0.12]〉

¯̃w−
P

5
⊕ ˜̄c−P

56
� 〈[0.68, 0.78], [0.06, 0.12]〉

⊕ 〈[0.3, 0.4], [0.1, 0.2]〉
� 〈[0.71, 0.82], [0.018, 0.024]〉

Therefore,

M

(
¯̃w−
P

3
⊕ ˜̄c−P

34

)
� M(〈[0.68, 0.82], [0.04, 0.12]〉) � 0.91

M

(
¯̃w−
P

5
⊕ ˜̄c−P

56

)
� M(〈[0.71, 0.82], [0.018, 0.024]〉) � 0.957

SinceM

(
¯̃w−
P

3
⊕ ˜̄c−P

34

)
� min{ 0.91, 0.95} � 0.91, we set

¯̃w−
P

4
� ¯̃w−

P

3
⊕ ˜̄c−P

34
� 〈[0.68, 0.82], [0.04, 0.12]〉,Pred{4} �

3, and S � {1, 2, 3, 5, 4}.
Iteration 5:

Let S̄ � V − S � {6} and (S, S̄) �{
(i , j) : i ∈ S, j ∈ S̄

} � {(4, 6), (5, 6)}. Thus, we have
¯̃w−
P

5
⊕ ˜̄c−P

56
� 〈[0.68, 0.78], [0.06, 0.12]〉

⊕ 〈[0.3, 0.4], [0.1, 0.2]〉
� 〈[0.71, 0.82], [0.018, 0.024]〉

¯̃w−
P

4
⊕ ˜̄c−P

46
� 〈[0.68, 0.82], [0.04, 0.12]〉

⊕ 〈[0.4, 0.7], [0.1, 0.2]〉
� 〈[0.74, 0.91], [0.004, 0.024]〉

Therefore,

M

(
¯̃w−
P

5
⊕ ˜̄c−P

56

)
� M(〈[0.71, 0.82], [0.018, 0.024]〉) � 0.95

M

(
¯̃w−
P

4
⊕ ˜̄c−P

46

)
� M(〈[0.74, 0.91], [0.004, 0.024]〉) � 0.99

Since M

(
¯̃w−
P

5
⊕ ˜̄c−P

56

)
�min{ 0.95, 0.99} � 0.95, we

set ¯̃w−
P

6
� ¯̃w−

P

5
⊕ ˜̄c−P

56
� 〈[0.71, 0.82], [0.018, 0.024]〉,

Pred{6} � 5, and S � {1, 2, 3, 5, 4, 6}.
This means that the IVPFSP cost from the source node 1

to node 6 is equal to ¯̃w−
P

6
� 〈[0.71, 0.82], [0.018, 0.024]〉.

The corresponding IVPFSP can be found as follows:

Pred{6} � 5, Pred{5} � 2, Pred{2} � 1

Hence, the IVPF shortest path is p16 : 1 → 2 → 5 → 6.

Conclusions

Traditional SP problem requires precise arc weights which
is not always the case in real-life applications. In this
present work, a shortest path problem having an interval-
valued Pythagorean fuzzy arc costs has been investigated.
We first formulated the SP problem in the interval-valued
Pythagorean fuzzy environment. We used an existing
improved score function to compare the costs between dif-
ferent paths with their arc costs represented by IVPFNs.
Based on this improved score function, we described the
IVPF shortest path optimality conditions for the SP prob-
lem under consideration. The traditional Dijkstra’s algorithm
has been generalized to determine the IVPF cost of the
shortest path and corresponding IVPFSP. Finally, a small
sized telecommunication network has been provided to illus-
trate the proposed algorithm under IVPF environment. In the
future, we will extend the method to more complicated net-
work problems involving negative and non-negative IVPF
costs. The proposed approach for solving SP problems in
IVPF environment can be extended for solving them in gener-
alizedPythagorean fuzzy environment [28, 29].Moreover, he
development of the proposed method for deriving the IVPF
shortest path between all pairs of nodes is left to the next
study.
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