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Abstract
Two types of flooding, namely fluvial flood (FF) and pluvial flash flood (PFF), exist in tropical cities located close to permanent
rivers, where extreme precipitation intensity occurs. Although several methods are available for assessment of FF, however,
PFF has received minimal attention from the researchers. Studies rarely presented joint FF and PFF hazards. Therefore, the
current study not only aims to evaluate probability and hazards for FF and PFF independently but also implements combined
FF with PFF probabilistic inundation analysis. First, an integrated model was developed to analyze probability using fully
distributed geographic information system (GIS)-based algorithms. These methods were performed on Damansara River
Catchment in Kuala Lumpur, because yearly monsoon triggers FFs and simultaneously coincides with heavy local rainfalls.
A hydraulic 2D high-resolution sub-grid model of Hydrologic Engineering Center River Analysis System was performed to
simulate FF probability and hazard. Nine significant contributing parameters were trained with PFF inventory by GIS-based
random forest (RF) model and each RF parameter was optimized by particle swarm optimization algorithm (PSO) to model
the PFF probabilistic hazard. Finally, PFF was combined with FF probabilities to discover the impact and contribution of each
type of urban flood hazard. This study is the first attempt to model PFF hazard using GIS and physical-based PSO–RF model
and combined FF and PFF probabilistic map. The results provide detailed flood information for urban managers to smartly
equip infrastructures, such as highways, roads, and sewage network.
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Introduction

Flooding is one of the most frequent natural disasters; thus
analysis, forecasting, andmodeling flood at various temporal
scenarios and spatial scales bear significance [1]. Particu-
larly, tropical countries have received significant attention
in flood mitigation plans because of frequent occurrences of
urban floods. Malaysia suffers from frequent flood events
especially during the monsoon period [2]. Despite that, flood
events are generally unanticipated to a high certain extent,
they can be governed using recent and precise deterministic
andprobabilistic floodmodeling to predict floodanddecrease
the amount of damages or losses [3].
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Simulated flood inundation and flood plain system can
provide significant information, benefitting probability and
emergency cases tomitigate loss and damages to human lives
and properties [4]. A significant portion of the urban flood
damages occur especially in dense populations and areas of
concentrated urban infrastructures [5].

Different types of flooding, namely fluvial flood (FF) and
pluvial flash flood (PFF), typically occur in urban regions
located next to rivers [6]. In tropical cities, such as Kuala
Lumpur with many impervious urban surfaces that prevent
ground infiltration and presence of many permanent rivers
flowing inside the city, both types of floods may possibly
occur. Such situation is aggravated at cities in river deltas,
wherein high intensity of precipitation limits drainage capac-
ity, and long duration of precipitation in upstream areas
causes additional fluvial inundation [7,8].

PFF is considered quick flooding caused by heavy rain-
ing. Within a short time, high-precipitation intensity results
in impervious surface without sufficient infiltration. High-
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precipitation intensity in this condition is typically rapid and
occurs within a few minutes to some hours after raining [9].

FF exists when excessive precipitation over an extended
period causes a river to exceed its capacity. Inundation flood-
ing occurs once river water overflows over river banks [10].
Recently, as a result of rapid urbanization in tropical cities,
PFF and FF prediction, flood probability, flood hazard and
risk assessment, and operational flood mitigation prepara-
tion became a critical task in flood management and water
resource planning [11].

Despite huge effects of urban flood by different inundation
types, assessment of urban flood hazard is generally lim-
ited to simply one type of flooding (e.g., FF). An increasing
number of urban FF analyses are provided in the literature,
predominantly with advance computational capabilities and
specific direction toward flood probability, hazard, and risk
models [10–15]. Characterizing river behavior and fluvial
floodplains with high potential for FFs can help specialists
develop management approaches for overflow mitigation;
these approaches include creating water control structures
(dike and levee implementations) and facilitating disaster
preparedness to handle situations before, during, and after
flood occurrence [16].

To date, 2D hydraulic models are possibly the most well-
known models to extend accurate flood mapping and flood
hazard analysis projects [17]. Chang et al. (2010) com-
bined a 1D hydraulic model using Hydrologic Engineering
Center RiverAnalysis System (HEC-RAS)with a travel fore-
cast model to assess urban flooding on roads and highway
network systems. However, the previous literature mostly
focused on regional scale or large basin level only, with less
courtesy on PFF at the urban level [18]. Given the lack of
high spatial and temporal resolution data, studies were usu-
ally unable to explicitly deliver thorough information from
2D surface flooding on urban infrastructures [18].

Previous studies rarely discussed probabilistic analyses
of pluvial floods. Natural parameters are the most effective
contributing factors associated with pluvial flood probabil-
ity; these factors include land use (LU) types, magnitude
of intensity precipitation, geomorphology, altitude, surface
slope, and hydrological characteristics and should not be
overlooked [3]. Though understanding PFF risk in urban
is highly on demand, to date, a few studies struggled to
model the potential area of PFFs in urban infrastructures.
This difficulty may be due to lack of sufficient observa-
tions and precise data, struggle in systematic PFF modeling
dynamics, and complexity of quantifying inundation model
by spatial heterogeneity caused by rainfalls [19]. Basically,
flood modeling mostly relies on water-level gauging and
meteorological station historical data, which feature some
drawbacks. Stations are not well distributed among study
areas and are placed on river sites which cannot record the
amount of surface water outside rivers; lack of sufficient

number of stations used as historical inventory data also
limits PFF probability and surface runoff simulation stud-
ies [20]. Intensity–duration–frequency curves are one of the
gauging station-based traditional approaches for quantifying
probability of rainfall events. However, stochastic, proba-
bilistic, and spatial rainfall simulators were also established
to accurately define possible precipitation spatial coverage
and intensity and probability of pluvial occurrence instead
of traditional approaches [21–23].

Recently, hydrological studies for determining flood mit-
igation used machine learning (ML) based geographic infor-
mation system (GIS) and hydraulic models [24]. Accuracy
and precision of ML approaches were previously tested for
flood probability by numerous researchers [25,26]. Decision
tree (DT), artificial neural network, and logistic regression
algorithms are some examples of ML models, and they
are capable of modeling flooding probability and hazards
[27]. Although some ML models can produce acceptable
results, they still feature some specialweakpoints that require
improvement [28].

Therefore, in the current study, a comprehensive method-
ology was proposed by combining FF and PFF probability
modeling to quantify impacts of PFF and FF in urban areas.
To anticipate PFF probability, coupled GIS-based random
forest (RF) with particle swarm optimization (PSO) methods
were implemented based on sufficient number of recorded
historical PFF events. Additionally, 2D high-resolution sub-
grid (2D-HRS) hydraulic model was performed to engage FF
inundation probability. Finally, we combined PFF with FF
models to discover impact and contribution of each type to
urban flood hazard in Damansara catchment. The city center
ofDamansara,Malaysiawas selected; in this area, residential
buildings and urban infrastructures are prone to both FF and
PFF events. The main objectives are as follows: (a) devel-
oping a sample RF-PSO physical model to describe PFF
probability regions using recorded historical events (flash
flood inventory) and maximum recorded rainfall intensity;
(b) implementing hydraulic 2D-HRS approach to model
FF probability and flood inundation depth measurement;
and (c) integrating two different inundation probabilistic
models to quantify probable type of flood events that may
threaten urban inhabitants. Therefore, the approach was used
as source for flood mitigation planning in Damansara City,
where FFs and high-intensity rainfalls naturally occur at the
same period and are not easily distinguished. Consequently,
the developed model was utilized as a plan for flood hazard
and risk assessments in these study areas.

Study area and dataset

Recently, rapid urban development at river watershed basin
led to high runoff while causing increases in floodmagnitude
and frequency [29]. In the past decades, Damansara catch-
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Fig. 1 Location of the study area

ment experienced different types of flood events, usually
between November and February, because of the monsoon
season [30]. Considering that this area is an urban envi-
ronment (e.g., residential and commercial buildings and
highways) and includes a part of Klang river watershed basin
with some permanent rivers, it is prone to both PFF and FF.

The Damansara River catchment is located in Kuala
Lumpur, Selangor, Malaysia. The study area is situated at
3◦8′45.6′′ latitude and 101◦32′27.24′′ longitude. This catch-
ment measures almost 117 km2 and considered a small
watershed, (see Fig. 1).

Hydro-geomorphological characteristics of the study area,
such as basin slope, area, and length, were calculated using
GIS spatial analyst tools (Table 1).

Digital elevationmodel (DEM)was used for data analysis.
DEM was extracted from interferometric synthetic aperture
radar (InSAR) images at a pixel size of 5 × 5 m. High-
resolution WorldView-3 satellite imagery was processed to
extract land use (LUs) of the study area. Both satellite images
were captured in 2015.

Precipitation and streamflow data were provided by the
Department of Irrigation and Drainage, Selangor meteoro-
logical rain-gauge stations. In this study, 15-year-
meteorological data, including hourly precipitation and
hourly streamflow at stations, were investigated among 11

Table 1 Hydro-geomorphological details for Damansara River catch-
ment

Hydrological characteristics Values Units

Basin slope 0.07 Degree

Maximum flow distance 22,222.66 Meter

Stream centroid to outlet 8426.41 Meter

Maximum stream length 21,473.58 Meter

Maximum stream slope 0.001 Degree

Basin length 15,625.50 Meter

Basin shape factor 2.09 Index

Basin perimeter 71,440.35 Meter

Basin average elevation 37.86 Meter

CENTROID X 397,595.17 Longitude

CENTROID Y 346,340.79 Latitude

Basin LA County lateral 65.00 Index

Basin LA County basin hydrograph 2.00 Index

rainfall stations and four gauging stations inside or nearby
the Damansara River catchment. Table 2 and Fig. 2 illustrate
availability and locations of rainfall stations,
respectively.
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Table 2 Streamflow and rainfall stations

No. Rainfall station code Streamflow and water
level station code

Station name Latitude Longitude Started Ended

1 3115084 3115404 KG Melayu Subang 3.15006 101.541 2/1/2009 Present

2 3115083 3115403 Taman Mayang 3.11228 101.596 1/6/2003 Present

4 – 3015435 BATU 3 (TIGA) 3.08 101.55 23/1/2002 Present

5 3015083 3015490 TTDI jaya Shahalam 3.09694 101.554 18/2/2002 Present

7 3014080 – Bandar Kelang 3.04806 101.445 23/1/2002 Present

8 3015001 – Puchong Drop 3.01953 101.597 27/9/2003 Present

9 3015084 – Taman Sri Muda 3.03772 101.535 23/1/2002 Present

10 3016080 – Gandhi 3.07644 101.621 29/9/2005 Present

11 3114087 – Bukit lanjan Subang 3.18308 101.612 18/2/2003 Present

12 3016077 – Penchala (jalan 222) 3.09653 101.634 9/1/2004 Present

Fig. 2 Distribution of streamflow, rainfall, and rain gauges stations in and around the Damansara River catchment

Methodology

Overall, the applied method can be divided in three parts;
PFF simulation, FF simulation, and combined FF and PFF
which is shown in details in Fig. 3.

Preprocessing of geo-statistical GIS-based approach

Geo-statistical GIS-based probability model analyzes and
transforms dependent input factors with independent param-

eters into a unique output layer using proper computed
weighting, interpolating, data mining, and qualitative tech-
niques [31]. Considering that PFF disaster follows a non-
linear concept because of the complexity of morphology and
climate dynamics, land cover, rainfall intensity and triggering
factors, sufficient and precise condition factors are needed
to run the probability model [3]. In this model, optimal
regression was developed between dependent (condition-
ing factors) and independent parameters (pluvial inventory
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Fig. 3 Overall flowchart of
current study

records). Then, each parameter obtains its own weight using
RF algorithm to model PFF probability map.

Inventory of historical flood events

To evaluate flood probability analysis in the catchment, last
flood events were examined and analyzed [32]. Therefore,
inventory information reflects the most essential parts for
predicting probable flood occurrence; such information can
signify multiple historical events within a certain return
period in a specific region [33]. For this research, flood inven-
tory was created by mapping single PFF locations, wherein
excess water was recorded by field observation and sur-
veying. In other words, PFF locations and conditions were
recorded within 4 h after high-intensity rainfall. In general,
68 different events, which were far from the river bank, were
recorded since 2002 until the present (15-year interval) in the

study area. Additionally, locations ofmaximumprecipitation
for 1 h storms were extracted from rainfall stations.

PFF inventory map was then separated into 70% training
and 30% validation [3], as shown in Fig. 4. Training-flooded
locations (47 out of 68 points) were randomly selected. PFF
probability model was run based on training events and val-
idated based on testing events. Basically, the model was
developed using two sets of value, namely 0 and 1. Zero
specifies absence of PFF events, whereas 1 shows presence
of PFF events. Similarly, an equal number of points (47 out
of 68) were selected as non-flooded areas, wherein any PFF
occurrence since 2002 was not recorded and assigned with a
value of 0. The remaining observed PFF events (21 points)
were utilized for model validation.
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Fig. 4 Historical inventory events of PFF

Flood-conditioning parameters

Some contributing available parameters that were intended
for inventory information and influenced PFF occurrence
were named as “conditioning factors” [25]. The correla-
tion between conditioning factors with flood occurrence was
examined to perform probability analysis.

Building a PFF probability assessment model requires a
set of training parameters [3]. Precision of the model can be
influenced by accuracy of conditioning parameter. Thirteen
conditioning factors were tested for FF and were consid-
ered the most significant [30]. The analysis indicated that
soil, geology, aspect, and sediment transportation indexes
are insignificant contributors to flood risk analysis.

Thus, in the current study, related PFF conditioning factor
layers contributing to probable PFF comprised the following:
curvature, stream power index (SPI), topographic rough-
ness index (TRI), topographic wetness index (TWI), digital
surface elevation, surface slope, surface runoff, maximum
precipitation intensity, and LU/land cover (LULC).

Surface elevation

Elevation is one of the most significant parameters in flood
analysis (Fig. 5a), and occurrence of PFF in highly elevated
areas is nearly impossible [34]. Water flows from highly ele-
vated areas toward lower regions. Consequently, probability
of any type of flood event is naturally high in low altitude or
flat terrains. Rather than digital terrain model (DTM), digi-
tal surface model (DSM) must be considered in calculating
altitude parameter because of the urban pattern of this study
area, wherein high-rise buildings and other facilities act as
flood obstacles. However, other topographical factors related

to flood occurrence were derived from DTM. Thus, a highly
precise DTM presents a significant basic datum [35].

Surface slope

Slope is another topographical factor regarded as an impor-
tant parameter in hydrology [30] because of its effects on
runoff accumulation and velocity of excess rainfall. An
increase in slope degree decreases time for surface infiltra-
tion. Subsequently, a large amount of water enters drainage
networks and causes flood (Fig. 5b).

Curvature

Curvature also contributes significantly to PFF model physi-
cally; it ranges originally from negative to positive values in
raster andmust be classified into three classes. Positive values
were converted into convex areas. Negative values were then
grouped into concave areas, and pixels with zero value were
assigned to flat regions. Basically, concave and flat regions
are prone to flooding (Fig. 5c).

Hydrological indices

SPI and TWI are water-related parameters that are calculated
using the following formulas [36]:

SPI = As tan β, (1)

TWI = ln

(
As

tan β

)
, (2)
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Fig. 5 contributing factors to PFF: a surface elevation, b surface slope, c curvature, d SPI, e TWI, and f TRI. Continued PFF-contributing factors:
g surface runoff, h LU, and i maximum rainfall intensity

where As represents catchment area or flow accumulation
(m2 m−1), and β refers to local slope gradient measured in
degrees.

SPI indicates erosive power of water flow (Fig. 5d). TWI
represents effects of topography on runoff generation and

amount of flow accumulation at any location in the river
catchment [36], as shown in Fig. 5e. Accuracy of a topo-
graphic index can be estimated with regard to grid spacing
and terrain roughness by comparing topographic index sur-
face with respect to reference data.
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Fig. 5 continued

TRI is another morphological parameter widely used in
flood analysis and calculated using the following equation:

TRI =
√
Abs

(
max2 − min2

)
, (3)

where max and min represent the largest and smallest val-
ues of cells in nine rectangular neighborhoods of altitude,
respectively (Fig. 5f).

Surface runoff

Soil capacity is fully saturated by water throughout land,
and water flow exceeds limits required for surface runoff
(Fig. 5g). This parameter was estimated using an empiri-
cal equation called Soil Conservation Service curve number
method [37,38]:

S = 1000

CN
− 10. (4)

Thus, S was calculated to generate curve number (CN) map.
In generatingCNmap index, soil hydrologic groups from soil
map and LU classes were combined in antecedent moisture
condition scheme:

Q = (P − 0.2s)

P + 0.8s
, (5)

where Q refers to direct runoff (mm); P represents accu-
mulated rainfall (mm); S refers to potential maximum soil
retention (mm), and CN is the curve number.

Land use (LU)

LU types are also primary-related factors that strongly con-
tribute to flooding. A detailed understanding of LUs bear
extreme significance for environmental and natural hazards
[39]. Vegetated areas are less prone to flooding because of
the negative correlation between flood events and vegeta-
tion density. However, urban areas are typically composed of
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impermeable surfaces and bare lands, which increase storm
water runoff. Therefore, considering the importance of this
factor, high-resolution image obtained from the WorldView-
3 satellite was used to extract an LULC map [40]. The
WorldView-3 satellite is a high-spectral- and high-resolution
satellite imagery. This satellite features 31 cm panchromatic
resolution, 1.24 m multispectral resolution, and 3.7 m short-
wave infrared resolution captured in 2015 (Fig. 5h).

Rainfall intensity

Rainfall intensity is the most important factor affecting flash
floods [41]. Intensity and frequency of rainfall display equal
importance in evaluating high-magnitude floods in specific
basins. Basically, under heavy rainfall during a limited time,
surface soils are under full saturation condition. Thus, fur-
ther rainfall fail to penetrate the ground and are converted as
excess runoff. In urban regions, maximum intensity of pre-
cipitation causes failure of sewage network systems to drain
out runoff at streets. Thus, this phenomenon results in PFF
in impervious infrastructures [42].

In this study, maximum rainfall event for 1-h storm among
15-year data was selected in each station. Then, related inten-
sities were extracted by dividing maximum rainfall depth at
60 min into nine metrological stations. Using inverse dis-
tance weightage (IDW) model, maximum intensity of each
station was interpolated and extended spatially to the entire
catchment area [30] (Fig. 5i).

PFF probability assessment using GIS and
physical-basedmodel

Machine-learning algorithms, such as RF, demonstrated
excellent performance on many environmental applications
and is used for modeling natural resource phenomena [43].
RF method was used to predict probability of PFF model
in this study. This model evaluates the relationship between
each conditioning factor with historical inventory events to
forecast future PFF-prone areas [44]. RF is an ensemble
learning method for optimization, classification, and regres-
sion run by building a large set of DTs at training time,
resulting in formation of a class, which is the mode among
entire classes (classification) or calculated weight for each
dependent factor with respect to their contribution in inde-
pendent events or achieved mean prediction of individual
trees [45].

In the RF model, each tree is built using a deterministic
method by selecting a random dataset of variables and a ran-
dom sample among training data [46]. Basically, to gain ideal
results using RF, three factors of this methodwere optimized,
namely (a) “n tree” (NT), which represents the number of
regression trees developed based on observation bootstrap
sample, (b) “m try” (MT), which refers to the number of var-

ious predictors examined at each node, and (c) “node size”
(NS), which corresponds to the minimum size of terminal
nodes of trees. Degree of significance of predictor was mea-
sured by calculating percent increase in root mean square
error (RMSE).

Particle swarm optimization algorithm

PSO method is a known computation method [47] and is
extracted from well-known complex adaptive system. This
method was initially motivated by consistency of bird’s
activity; then, Kennedy and Eberhart introduced basic imple-
mentation of PSO on swarm intelligence [47]. PSO describes
the solution of each optimization issue as a bird, which
searches one space “particle”. In general, PSO is modified
to a class of unsystematic particles used to explore ideal
answers using iterative techniques [40]. Thus, for each iter-
ation, particles communicate by tracing excesses of position
and velocity. This mentioned behavior of i th particles is
expressed mathematically (Eq. 6) [48] as follows:

⎧⎪⎨
⎪⎩
V n+1
i = t .V n

i + c1 × r1 × (
pni − xni

)
+ c2 × r2 ×

(
png − xni

)
,

xn+1
i = xni + V n

i

(6)

where i = 1, 2, . . . , K , K defines the entire number of par-
ticles, and n shows existing iteration number. t stands for
inertia weight; pni represents distinct ideal position for i th
particle, and png describes the best location of total particles
at nth iteration. c1 and c2 refer to learning elements; r1 and
r2 show sample random numbers fluctuating from 0 to 1.
V n
i and xni are defined as existing locations of i th particles

and velocity, respectively. V n+1
i 1 stands for updated veloc-

ity, whereas xn+1
i represents place of i th particle at n + 1

iteration.
To validate and evaluate the accuracy of PSO model,

RMSE was used for each practice [49]. Primary population
with 20 practices is created. The population size is selected
with respect to number of particles versus RMSE.

(OPTi )2nRMSE = SQRT

[(
1

n

)
× (TAGi − OPTi )

2
]

(7)

where, n stands as total number of samples in training dataset
or the validation dataset. TAGi is the goal values of the train-
ing dataset; OPTi is output values from the PFF model.

The lower RMSE indicates good fitness. Position and
velocity of entire particles can be updated using Eq. (6) and
RMSE for their newposition are calculated to select the finest
one. In this stage, lowest RMSE determines the final position
of swarm.
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Table 3 Step by step PSO-RF
technique

Input Possible range of random forest training and testing parameters

1 Producing primary particles included in NT and MT for RF model

Defining PSO factors, such as total number of iterations, highest iteration number, first-particle
swarm site, unsystematic flight velocity, and learning factors

For each particle, completing training procedures for Stages 3 to 9

2 Selecting training and testing trials

3 Assigning number of iteration n = 20

4 Implementing 20 times cross-validation over training samples and computing average of
cross-validation precision regarding NT and MT

5 Assessing fitness by average cross-validation precision (output of Stage 4)

6 Adjusting local and global ideal solution regarding fitness assessment result

7 Transferring each particle to a new location xni with certain velocity V n
i based on Eq. (6)

8 Up to this iteration, comparing local ideal result of i th particle pni with new location xni .
However, good results may be the new pni by n + 1 iteration. The same approach was applied
on png , which is considered a global ideal result for all particles until n iteration

9 Repeating Step 3 when maximum iterations met optimal solution. Otherwise, the technique
proceeded to Step 10

10 Stopping training when examined iteration reached optimal cross-validation precision to escape
any over-training issues

11 Forming RF model over verification samples with respect to its optimal parameters (NT and
MT) obtained from Stage 10

Output Optimized RF parameters

Ensemble of PSO-RFmodel

To enhance performance of RF model, optimal values for
NT, MT, and NS parameters were selected. Based on the
last position of the swarm, the optimal consequent and
antecedent factors were extracted to derive the optimal RF
model. Ensemble PSO algorithm with RF model can effi-
ciently solve the aforementioned issue. Table 3 presents the
steps of this combination, which was implemented in MAT-
LAB.

After assigning optimal parameters in RF using PSO algo-
rithm, sequence of predictor significance (weightage) was
derived. Then, each parameter was obtained its own degree
and overlaid using spatial analyst tools. Degree of signif-
icance of predictor was measured by calculating percent
increase in RMSE.

In Damansara catchment, a sewerage and sewer network
system include open channels and underground pipes, which
are designed for average excess rainfalls. However, for this
study, capacity of sewage system was neglected in the pro-
posed PFF simulations.

Hazard analysis of FF and PFF inundation

A hazard is a possibly damaging physical event or phe-
nomenon that may cause environmental degradation, prop-
erty damage, and loss of life within a specified period. PFF
probability can be transformed into PFF hazard inundation

depth by multiplying it with hazardous triggering factor,
which may be an extreme rainfall event in this study (Eq. 8):

Hpff = f
(
Ppff , Tmp

)
, (8)

where Hpff indicates hazard probability; Ppff indicates PFF
probability obtained from the coupled RF-PSO model,
and Tmp refers to hazardous triggering layer. Rainfall was
assumed as one of the primary triggering factors of flood
occurrence over a study area, resulting in extreme events,
such as flooding and overflowing; it also contributed to prepa-
ration of flood hazard maps.

TMp is defined as maximum precipitation depth from each
meteorological station and was selected within a 15-year-
return time period. These distributed data were interpolated
by IDW method to extend over the entire urban catchment
area. As a result of applying Eq. (17), inundation depth of
PFF probability was quantified. Hazard was high when PFF
inundation depth reached more than 20 cm [50].

FF probability and hazard assessment using 2D-HRS
inundation analysis

Recent mainstream 2D models were developed with inte-
gration of computational hydraulics and numerical methods
with rapid advances in information technology and graphi-
cal user interface design [51]. Basically, 2D models signify
floodplain flow as a 2D aspect, which indicates inundation
probability, by calculating water depth as a third dimension
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where it reflects the hazard of inundated FF [39]. Majority of
methods explain 2D shallow water calculations by momen-
tum and mass conservation in a surface terrain obtainable by
applying Navier–Stokes equations [18]

Conservation of mass
∂h

∂t
+ ∂ (hu)

∂x
+ ∂ (hv)

∂ y
= 0, (9)

Conservation of momentum
∂ (hu)

∂t
+ ∂

∂x

(
hu2 + 1

2
gh2

)

+∂ (huv)

∂ y
= 0, (10)

∂ (hv)

∂t
+ ∂ (huv)

∂x
+ ∂

∂ y

(
hv2 + 1

2
gh2

)
= 0, (11)

where x and y represent spatial dimensions of plane, and
2D vector (v; u) describes average horizontal velocity across
vertical column.

To solve these equations, u, v, and h over space and time
were estimated. Several numerical structures were developed
for this algebraic approximation. With regard to numerical
discretization schemes, 2D methods are considered dis-
tributed models and may be classified into finite volume,
finite difference, and finite elements [52]. In terms of spatial
characteristics, these models can use either structured mesh,
unstructured mesh, or flexible mesh [52].

Unlike traditional 1D models (e.g., Saint–Venant equa-
tions), computational cells need not feature flat bottoms, and
cell edges neednot indicate a straight linewith a single height.
Instead, each cell face and computational cell follow details
of basic terrain morphology. This kind of inundation model
is titled the HRS model [53].

HRS model uses detailed underlying structured mesh of
sub-grid in conjunctionwithfinite elements poweredbyhigh-
resolution DEM to develop precise hydraulic and geometric
property [30]. Two-dimensional HRS model can be estab-
lished in HEC-RAS and can run preprocessing for flood
areas, analyzing cell faces into hydraulic property tables.

Sub-grid resolution principals

Using wetting and drying algorithms, for any identified
bathymetry h(x, y), a detailed explanation of flow domain,
which is capable for arbitrary subgrid resolution, can be
described as ancillary porosity function p(x, y, z) demarcated
by the following:

p (x, y, z)

=
{
1 if h (x, y) + z > 0,
0 otherwise

(x, y) ∈ �,−∞ < z < ∞,

(12)

where horizontal integral estimated at z = nni inside individ-
ual polygon is specified as follows:

Pi
(
nni

) =
∫

�i

p(x, y, nni )dxdy, (13)

where free surface area is signified. Equation (11) indicates
that pi (nni ) is non-decreasing, non-negative, and restricted.
Explicitly, 0 ≤ pi (nni ) ≤ Pi . Remarkably, once pi (nni ) =
0, i th polygon becomes dry; at time pi(nni ) = Pi, i t become
wet, and at 0 < pi (nni ) < Pi , i th polygon partially becomes
wet. Additionally, at each single point inside the i th polygon,
water depth is assumed by the following:

H
(
x, y, nni

) =
∫ nni

−∞
p (x, y, z) dz

= MAX [0, h (x, y) + nni ]. (14)

Consequently, H(x, y, nni ) ≥ 0 and strict incongruence rec-
ognize a wet point. The wet region inside the i th polygon is
computed using the following:

�n
i = {

(x, y) ∈ �i : H (
x, y, nni

)
> 0

}
. (15)

Volume of water inside the i th polygon is defined either as
a surface vertical integral or a horizontal integral for overall
water depth calculated by the following equation:

Vi
(
nni

) =
∫ nni

−∞
pi (z) dz =

∫
�i

H(x, y, nni )dx dy. (16)

Thus, considering that pi (z) is non-decreasing and non-
negative, one features V i (nni ) ≥ 0, and strict inequal-
ity essentially indicates pi (nni ) > 0. Non-negative cell-
averaged water depth is well defined as follows:

Hn
i = Vi (n

n
i )/pi . (17)

Lastly, by indicating x(s) and y(s), parameters synchronize
single points in the jth edge, linking two points recognized
by s = s1j and s = s2j parameters for an identified constant
value, where nni represents the level along j th edge. The
resultant wet cross-section zone is described as follows:

Ai
(
nni

) =
∫ s2j

s1j

H(x (s) , y (s) , nni )ds. (18)

Therefore, non-negative edge-averaged water depth can be
described as Hn = A j (nni )/λ j .

Basically, the 2D flow area is considered the boundary for
which 2D computations occur and is following mostly the
ridge of basin catchment (Fig. 6).

A detailed LU dataset was used for surface roughness
analysis. LU map was extracted from WorldView-3 satellite
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Fig. 6 2D-HRS modeling computational mesh terminology

Table 4 Optimal values of Manning’s n

Surface type Manning’s n values

Range Calibrated

Concrete/Asphalt 0.01–0.013 0.010

Bare Sand/land 0.01–0.06 0.02

Bare Clay-Loam (Eroded) 0.012–0.033 0.023

Graveled surface 0.012–0.03 0.018

Short Grass 0.10–0.20 0.16

Light Turf/Grass 0.15–0.25 0.19

Lawns/Green lands 0.02–0.30 0.21

Dense Turf 0.30–0.40 0.34

Dense shrubbery and forest 0.35–0.50 0.41

imagery using object-based support vector machine algo-
rithm. Seven LU classes were detected, namely highways,
bare lands, forest, built-up area, green lands and recreation
area, roads, and water bodies. Then, averaged Manning’s
n values were assigned to each LU class [2], as shown in
Table 4. After comparison between simulated fluvial inun-
dation depth and observed water level, optimal Manning’s n
values for each class were figured out to calibrate FF simu-
lation (Fig. 11).

Flow hydrograph analysis

Flow hydrograph was calculated to divert a streamflow to
the 2D flow area. Some requirements were needed for this
analysis: (a) flow hydrograph calculated by flow (Q)/time (t)
and (b) energy slope of stream defined by degree of stream
slope. For computing normal depth, energy slope fromstream
flow rate along the boundary condition line was calculated
for each computational time period. Energy grade line slope
was defined at the downstream boundary.

Four gauging stations located inside the Damansara River
catchment recorded water level and streamflow since 2002,
as shown in Fig. 1. In this research, hourly recorded stream-
flow (2002–2017) was used for unsteady analysis to model
maximum FF inundation probability.

Boundary conditions in 2D-HRS model were also
extracted from the KG Melayu Subang and Taman Mayang
Kratie gauging stations to signify the upper boundary, and
Batu Tiga defines downstream of the Damansara watershed
basin. These boundary conditions were linked with probabil-
ity scenarios to achieve reliable hazard analysis [54].

DSM is converted into triangulated irregular network for-
mat for the next step of unsteady analysis. Additional 135
cross-sections were engaged in Damansara River, and they
can enhance performance and calibration of 2D-HRS model
[18]. Then, river centerline, river bank, and flow path were
also derived.

Combined FF and PFF probability analysis

Degree of dependency is an important issue for joint fluvial
and pluvial probability analysis. Two basic statements should
be considered in integration of probabilities: (a) dependence
and (b) coincidence. Dependence assumes a functional cor-
relation between two types of floods. In other words, FF and
PFFmay influence each other either in terms of magnitude or
probability of occurrence. However, coincidence is not about
any variable relationship but describes percentage chances
that FF and PFF occur simultaneously.

Although cause and effect of these two types of flood
differ, they may be similar in seasonal occurrence and fea-
ture initial triggering factors (extreme intensity of rainfall).
Thus, FF and PFF occasions are not absolutely independent
of each other. For the first step of joint hazard analysis, com-
bined probability was quantified by single probabilities of
incidences. For instance, for a certain pixel, when annual FF
probability is 0.5 (50%), and annual probability of PFFoccur-
rence reaches 0.5 (50%), then combined probability totals
0.25 (25%). Consequently, probability of occurrence of com-
bined pluvial–fluvial flooding can be illustrated as follows:

P ( f f , p f f ) = f {(P ( f f ) × P (p f f ) × P (c)} (19)

where P (c) represents probability of coincidence for both
flooding. P (c) is valued by usual duration of monsoon flood-
ing season and common length of FF events [55] suggested
0.2 as a value P (co) coefficient in tropical regions with
almost 80 days of flood season and 6 days of peak FF. In
this study, the authors also applied the same value because
of climate similarity.

Additionally, these two flood probability maps were stan-
dardized into a common dimensionless scale before they
were combined given that the scales of their data differ from
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each other [30]. The following equation was used for stan-
dardization:

Xi j = X j − Xi j

Xmax− j − Xmin− j
, (20)

where, Xi j represents standardized score for i th alterna-
tive and j th attribute; Xi j refers to the raw score, and
[Xmax− j − Xmin− j ] stand for maximum and minimum
probability values for j th attributes, respectively.

Accuracy assessment, calibration, and validation of
appliedmodels

This procedure was performed to evaluate efficiency and
precision of derived results. For fluvial hydraulic model (2D-
HRS), calibrationwas conducted on the 7th July 2011, during
one of the fluvial events. Simulated inundation depth for each
hour was calibrated by hourly water level and observed at
three gauging stations using linear regression method. After
successful calibration, the model was validated in another
period (28/12/2010) with dissimilar estimated magnitudes
usingRMSdeviation (RMSD) approach [42]. RMSD is com-
monly used on a cell-by-cell basis for evaluating difference
in water depths between observed and simulated data [56]
and can be measured as follows:

RMSD =
√∑n

i=0

(
dsi − dri

)2
n

, (21)

where dsj and dsi represent simulated and referenced water
depths, respectively, and n refers to total number of wet cells.

Distributed PFF GIS-based model was validated using
receiver operating characteristic (ROC) curve. This method
calculated the area under the curve (AUC), which is widely
used in numerous studies to estimate performance of prob-
ability modeling [25]. In this validation method, 30% of
observed historical inventory, which was not involved in
training PFF model, was used to test model accuracy. The
curve was produced by plotting accumulative percentage of
simulated PFF prone regions (from maximum to minimum
probability) and accumulative percentage of historical PFF
events. ROC statistic varies between 1, for a perfect fit, and
0 once no overlapped inundation value exists.

Result and discussion

Simulated probability and hazard PFF results

Correlation of each conditioning factor with dependent
pluvial inventories was developed by assembling PSO-RF
model, as shown in Fig. 7.

0.8808 

0.3945 

0.2342 

0.4399 0.3961 

0.2015 

1.5668 

0.116 

1.1568 

Fig. 7 Optimizedweightage of parameters extracted by PSO-RFmodel

TRI, surface elevation, and slope achieved less signifi-
cant weight among other conditioning parameters, reaching
0.116, 0.2015, and 0.2342, respectively. PFF probability was
not influenced by these factors. Thus, these factors do not
play significant roles in PFF prediction. SPI, curvature, and
TWI gained moderate weights (approximately 0.4), show-
ing fluctuations in these index values affecting probability
of PFF occurrence. The most significant parameters highly
contributing in PFF probability include maximum intensity,
surface runoff, and LU factors, which gained 1.5668, 1.1568,
and 0.8808 weightage, respectively.

As mentioned previously, PSO-RF was used to gener-
ate a PFF probability map in GIS environment. To optimize
RF variables, NT values were examined from 500 to 9000,
whereas MT was tested from 1 to 20 using PSO algo-
rithm. Optimal values for NT and MT totaled 2500 and
17, respectively. Node size was defined as one. PSO was
rapidly accomplished and significantly improved the model
comparedwith stand-alonemodels, such as RF. PSO can pro-
duce generalization error, making assembled PSO-RFmodel
as one of the successful MLs and statistical methods [57].
Achieved correlation coefficient and mean absolute error
reached 0.86 and 0.071, respectively. Figures 8 and 9 show
results of PFF probability and hazard, respectively.

A strong relationship exists between maximum of rain-
fall density classes with probability of PFF. Basically, when
magnitude of precipitation was high within 60-min dura-
tion, probability of PFF occurrence was also high. Finally,
sensitivity analysis showed that each type of LU features sus-
ceptibility to PFF. LU features affect water flow velocity and
infiltration. For example, miner roads, water bodies, high-
ways, and bare lands are highly prone to PFF unlike forest,
green lands, and buildings.

Probability of PFF occurrence ranged from 0 to 0.99 for
a 15-year return period using coupled PSO-RF distributed
model (Fig. 8). Highest probability of PFF event was located
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Fig. 8 PFF probability map using GIS-based PSO-RF model

at scattered pond areas, central and eastern miner roads, and
highways. However, low degree of PFF events was observed
in either forest, green lands or high-rise buildings particularly
at west and north of the study area. During maximum level
of precipitation intensity, excess water flow spread out over
roads and highways, causing a wide range of road closures.

In this study, all aforementioned factors were classified
into different classes according to natural break method and
were examined by 130 individual points from simulated PFF
probability map. The model was performed by sensitivity
analysis with 12-times iteration with different training sam-
ple selections to test stability of accuracy. Sensitivity analysis
determines how different values of an independent variable
impact a particular dependent variable [58].

In all iterations, simulation accuracy was almost similar,
showing significantly less amount of uncertainties. Sensitiv-
ity of PFF probability index was extracted for each condition
factor. Lowest class of altitude obtains the highest value,
which is illustrative of the highest correlation of this class
with flood occurrence. This result may be due to natural
behavior of flooding, which occurs mostly in flat regions
instead in highly elevated place. No meaningful difference
was observed between PFF probability value and slope diver-
sity. Possibly, flash floods occurred at steep impervious areas
unlikeFF,whichmostly occurs at low-inclined lands. For cur-
vature factor, flat and concaved areas expectedly achieved the

highest correlation.High value of SPI factor gained less prob-
able value, indicating that low-power streams are prone to
flooding. However, high-value class of TWI factor obtained
high-sensitivity value, implying possible wetting. In TRI fac-
tors, class ranges of 0–0.05 obtained the highest probable
value, showing that in smooth regions, such as plain or air-
port band, occurrence of PFF is higher than rough area and
supports accuracy of distributed model.

To quantify PFF-probable areas, inundation depth should
be considered. Magnitude of flooding depth can illustrate
the level of hazard for PFF events. Hazardous areas were
affected by high magnitude of inundation depth. PFF inun-
dation depths, which were divided into five classes according
to natural break approach, spanned 0–2 and 2–10 cm classes
over the main part of catchment (Fig. 9). Ponding areas are
themost hazardous placewhen extreme rainfall events occurs
in the study area. Bands of Subang airport and some parts of
New Klang Valley Expressway are located in hazard zones
because of their simulated inundation depth. Visually, more
inundation depths (above 10 cm) are observed in highways
and road networks, mostly due to their impervious surface,
flat topography, and concentration of high-rainfall intensity.
However, this type of flash flood steadily recedes through
sewage and drainage networks.
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Fig. 9 PFF inundation depth hazard map using GIS-based PSO-RF model

Simulated probability and hazard FF results

Figure 10a demonstrates probabilistic FF map for a 15-year
return period using hydraulic 2D-HRS model. Inundation
map significantly shows flooding inundation pathways. Map
values range from 0 to 0.99 and are classified into five inter-
vals based on natural breakmethod. At the center of the basin
and along the main river, some lakes exist, and they are very
prone to FF (from 0.8 to 0.9). Extended area from river bank
is also located at 0.5 probable area, indicating 50% possi-
bility of flooding within a 15-year return period. However,
wide areas located in low elevated lands were predicted to
be influenced by river inundation of 20% probability. Sub-
ang, Sunway, and Subang Jaya districts are threatened by FF
hazard (Fig. 10b). Based on FF hazard assessment, scattered
ponding central areas and water bodies located on stream
direction represent the most hazardous areas with simulated
1–5m inundation depth. Expectedly, flood probability is high
when inundation model shows any significant depth.

Calibration and validation assessment

Comparison of results of simulated fluvial inundation depth
with observed water level showed that 2D-HRS model logi-
cally simulated inundation amount. Sensitivity analysis was
performed by 21 iterations to achieve optimal Manning’s n

factor which results in synchronized simulated FF probabil-
ity with observed events. Simply, a small number of under
prediction was observed at the over-bank zones; this phe-
nomenon may be due to infiltration, depression, and surface
roughness dynamics. Then, hydraulic model was optimized
in terms of assigned Manning’s n and unsteady analysis,
and assessment was repeated for another period of valida-
tion (Table 5 and Fig. 11).

The same approach was performed for PFF probabilistic
inundation map, wherein simulated scenario was calibrated
and validated based on observed maximum precipitation
depth over three rainfall stations located in Damansara catch-
ment (Table 5 and Fig. 12).

R-squared and RMSD statistical findings showed satis-
factory and significant results for simulated FF and PFF,
respectively.

Additional validation assessment was also implemented
on simulated PFF probabilistic inundation to ensure high
performance of newGIS-based PSO-RFmodel. To verify the
model, 30% (21 points) of observed historical PFF inventory
not involved in training model were overlaid with simulated
PFF to measure accuracy of occurrence.

Performance of ROC was completely satisfactory in fore-
casting natural disaster occurrence short of any bias. When
calculated AUC was close to 1.0, this value shows con-
stancy andprecisionof appliedmodel.A sharp curve signifies
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Fig. 10 a Maximum FF
probability map and b
maximum FF inundation depth
hazard map

Table 5 Calibration and
validation results for FF and
PFF probabilities with observed
data at metrological stations

Flood type Statistical methods Water level stations Entire basin

Mayang Subang Batu-3

Fluvial Calibration R2 0.846 0.718 0.701 0.75

Validation RMSD 1.874 1.194 0.453 1.17

Flood type Statistical methods Rainfall stations Entire Basin

Mayang Subang Shahalam

Pluvial Calibration R2 0.908 0.825 0.842 0.86

Validation RMSD 2.235 8.105 5.469 5.79
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Fig. 11 Compared simulated FF
inundation depths with observed
water level depths over three
gauged stations on the 7th of
July 2011

Fig. 12 Compared simulated PFF inundation depth with observed pre-
cipitation depth over three rainfall stations

0

1

0 1

C
um

ul
at

iv
e 

 o
f o

bs
or

ve
d 

PF
F 

oc
cu

ra
nc

e

Simulated PFF Probability 

Success Rate: 85.3%

Fig. 13 ROC accuracy assessment of GIS-based PFF probability map

high number of observed PFF points falling into most prone
flood zones. ROC statistical model was performed to eval-
uate whether these points were located at high-probability
zones. Success rate of the model was proven by over 85%
accuracy, which is considered significant (Fig. 13).

Combined PFF and FF probabilistic

Joint FF and PFF probabilistic maps (Fig. 14) synthesize
characteristics of individual probability of each flood type.
In general, this method shows the same different inundation
hot zones at deep depths and flow of streamline with flu-
vial behavior, as perfected by PFF with spatially distributed
but shallow inundation. Technically, FF is a hazardous phe-
nomenon caused by deep inundations, whereas PFF occurs
frequently and plays awidespread spatial role with no chance
of FF occurrence.

Probabilities of both types of flood are simultaneously
much lower than that of individual event of each type (see
Fig. 14). Results were classified into eight classes based
on quantile method to visualize most possibilities (Fig. 15).
More than 1339 ha of catchment is threatened by 1% proba-
bility of combined FF and PFF occurrence in a given return
period.However, total areas ranging from11 to 20%probable
to both FF and PFF measure less than 3 ha.

Conclusion

Related PFF conditioning factors contributing to PFF proba-
bilistic hazard assessment were extracted as follows: curva-
ture, SPI, TRI, TWI, DSM, surface slope, surface runoff,
maximum precipitation intensity, and LULC. Significant
contribution parameters were successfully trained with PFF
inventory by coupling GIS-based RF with PSO models.
2D-HRS hydraulic model was designed and calibrated to
determine FF probability and hazards. This model uses a
structured mesh (sub-grid) in conjunction with finite ele-
ments powered by high resolution (5× 5m) DEM extracted
from InSAR. Hourly streamflow from three gauge stations
were applied for unsteady analysis since 2002. Finally, we
successfully combined PFF with FF probabilities to esti-
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Fig. 14 Combined PFF and FF probabilistic model

Fig. 15 Distribution of different combined FF and PFF probability
classes

mate impacts and contributions of each type to urban flood
hazard in Damansara catchment. R2 and RMSD statistical
assessments showed satisfactory and significant results for
simulated FF (0.755 and 1.174) and PFF (0.858 and 5.790),
respectively. Success rate of ROC method reached 85.3%
accuracy. Sensitivity analysis between simulated PFF, and
contributing factors obtained a reasonable cross-correlation.
The presented approach can be utilized for flood mitigation
planning for Damansara City, where FFs and high intensity

of rainfalls naturally occur at the same season and are not
easily distinguished.

For further studies, we suggest improving the model in
the following aspects: (a) using laser scanning data (e.g.,
LiDAR imagery), which features fine resolution, (b) consid-
ering sewer capacity (sewage network) in pluvial inundation
modeling, and (c) using this study to attain risk analysis.
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