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Abstract
Particle swarm optimization (PSO) is a population-based stochastic algorithm modeled on the social behaviors observed
in flocking birds. Over the past quarter century, the particle swarm optimization algorithm has attracted many researchers’
attention. Through the convergent operation and divergent operation, individuals in PSO group and diverge in the search
space/objective space. In this paper, the historical development, the state-of-the-art, and the applications of the PSO algorithms
are reviewed. In addition, the characteristics and issues of the PSO algorithm are also discussed from the evolution and
learning perspectives. Every individual in the PSO algorithm learns from itself and another particle with good fitness value.
The search performance and convergence speedwere affected by different learning strategies. The scheduling and data-mining
problems are illustrated as two typical cases of PSO algorithm solving real-world application problems. With the analysis of
different evolution and learning strategies, particle swarm optimization algorithm could be utilized on solvingmore real-world
application problems effectively, and the strength and limitation of various PSO algorithms could be revealed.
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vid Velocity of the i th particle at the dth dimen-
sion

pid Personal best position of the i th particle at the
dth dimension

pnd Neighborhood best position of the i th particle
at the dth dimension

f (xi ) Fitness value: the objective function value of
xi

t Iteration number
maxFEs Maximum number of iteration
ud , ld Upper/lower boundary of the dth search vari-

able
Vmax Maximum value of velocity
S Population size: the number of particles in a

population
D Number of decision variables
w Inertia weight
c1, c2 Cognitive/social acceleration coefficient
χ Constriction coefficient
ϕ1, ϕ2 Acceleration coefficient limits
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Introduction

Many algorithms vanished after a decade. The particle swarm
optimization algorithm is still attracted many researchers’
attention over nearly a quarter century. Swarm intelligence,
which is based on a population of individuals, is a collec-
tion of nature-inspired searching techniques. Particle swarm
optimization (PSO), which is one of swarm intelligence
algorithms, was invented by Eberhart and Kennedy in 1995
[29,42]. It is a population-based stochastic algorithm mod-
eled on social behaviors observed in flocking birds. Each
particle, which represents a solution, flies through the search
space with a velocity that is dynamically adjusted according
to its own and its companion’s historical behaviors. The par-
ticles tend to fly toward better search areas over the course
of the search process [31].

Optimization, in general, is concerned with finding “best
available” solution(s) for a given problem. For optimization
problems, it can be simply divided into unimodal problem
and multimodal problem. As the name indicated, unimodal
problem has only one optimum solution, on the contrary,
multi-modal functions have several or numerous optimum
solutions, of which many are local optimal solutions. It is
difficult for optimization algorithms to find the global opti-
mum solutions. Avoiding premature converge is important in
multimodal problem optimization, i.e., an algorithm should
have a balance between fast converge speed and the ability
of “jumping out” of local optima.

Many real-world applications could be modeled as opti-
mization problems. As an outstanding swarm intelligence
algorithm, the particle swarm optimization has been widely
used to solve enormous real-word problems. It is difficult, if
not impossible, to list all the problems that could be solved
via the PSO algorithms. The scheduling problem and data
mining problem are two typical real-world applications that
could be solved by the PSO algorithms.

The aimof this paper is to provide a comprehensive review
of the particle swarmoptimization algorithms.The remaining
of the paper is organized as follows. The basic concepts and
the developmental history of PSO algorithm are reviewed
in Sect. 2. In Sect. 3, different variants of PSO algorithms
and the applications on solving various problems are intro-
duced. The characteristics and issues of PSO algorithms are
described in Sect. 4. Section 5 gives some real-world applica-
tion of PSOalgorithms. Finally, Sects. 6 and 7 concludeswith
future research directions and some remarks, respectively.

The historical development

Rome was not built in a day. After a quarter century, several
papers on the PSO algorithms, which include the original
and canonical PSO algorithms, have been cited more than

ten thousand times [29,42,71]. There has been a great devel-
opment for PSO algorithm after it was proposed in 1995
[29,42].

Original particle swarm optimization

Each particle represents a potential solution in particle swarm
optimization, and this solution is a point in the n-dimensional
solution space. The original PSO algorithm is simple in con-
cept and easy in implementation [29,42]. The velocity vi j
and position xi j of the j th dimension of the i th particle are
updated as follow [32,43]:

vi j = vi j + c1rand()(pi j − xi j ) + c2Rand()(pnj − xi j ) (1)

xi j = xi j + vi j (2)

where c1 and c2 are positive constants, and rand() andRand()
are two random functions in the range [0, 1) and are different
for each dimension and each particle.

Canonical particle swarm optimization

In the original particle swarm optimizer, the velocity is diffi-
cult to control during the search process. The final solution is
heavily dependent on the initial seeds (population). For dif-
ferent problems, there should be different balances between
the local search ability and global search ability. Shi and
Eberhart introduced a new parameter, an inertia weight w, to
balance the exploration and exploitation [71,78]. This inertia
weight w is added to Eq. (1), and it can be a constant, linear
decreasing value over time [72], or fuzzy value [73,76]. The
new velocity update equation is as follows

vi j = wvi j +c1rand()(pi j − xi j )+c2Rand()(pnj − xi j ) (3)

Adding an inertia weight w can increase the probability
for an algorithm to converge to better solutions, and have a
way to control the whole process of algorithm’s searching.
Generally speaking, algorithm should have a more explo-
ration and less exploitation ability at first, which has a high
probability to find more local optima. Exploration should
be decreased, and exploitation should be increased to refine
candidate solutions over the time. Accordingly, the inertia
weight w, should be linearly decreased or even dynamically
determined by a fuzzy system.

The equations of classical particle swarm optimization
algorithm can be rewritten in the vector form. The velocity
and position update equations are as follow [32,43,71]:

vi ← wvi + c1rand()(pi − xi ) + c2Rand()(pn − xi ) (4)

xi ← xi + vi (5)
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where w denotes the inertia weight [73,78], c1 and c2 are
two positive acceleration constants, rand() and Rand() are
two random functions to generate uniformly distributed ran-
dom numbers in the range [0, 1) and are different for each
dimension and each particle, xi represents the i th particle’s
position, vi represents the i th particle’s velocity, pi is termed
as personal best, which refers to the best position found by
the i th particle, and pg is termed as local best, which refers
to the position found by the members in the i th particle’s
neighborhood that has the best fitness evaluation value so
far.

The inertia weightw can be different for different particle
at different dimension. The inertia weight can be written as
wi . Consider the iteration number t , the equations are rewrit-
ten as:

vi (t + 1) ← wivi (t) + c1rand()(pi − xi (t))

+ c2Rand()(pn − xi (t))

xi (t + 1) ← xi (t) + vi (t + 1)

Random variables are frequently utilized in swarm optimiza-
tion algorithms. The length of search step is not determined
in the optimization. This approach belongs to an interesting
class of algorithms that are known as randomized algorithms.
A randomized algorithm does not guarantee an exact result
but instead provides a high probability guarantee that it will
return the correct answer or one close to it. The result(s) of
optimization may be different in each run, but the algorithm
has a high probability to find a “good enough” solution(s).

The flowchart of particle swarm optimization algorithm
is shown in Fig. 1 and the procedure of particle swarm opti-
mization algorithm is given in Algorithm 1.

Start

Initialization

Evaluation

Update pbest, nbestUpdate Velocity

Update Position

End?

Stop

No

Yes

Fig. 1 The flowchart of particle swarm optimization algorithm

Algorithm1:Theprocedure of particle swarmoptimiza-
tion algorithm

1 Initialization: Initialize velocity and position randomly for each
particle in every dimension;

2 while not find the “good” solution or not reach the maximum
iteration do

3 Calculate each particle’s fitness value;
4 Compare fitness value between current value and best

position in history (personal best, termed as pbest). For each
particle, if fitness value of current position is better than
pbest, then update pbest as current position;

5 Selection of a particle which has the best fitness value from
current particle’s neighborhood, this particle is called the
neighborhood best (termed as nbest)1;

6 for each particle do
7 Update particle’s velocity according equation (4);
8 Update particle’s position according equation (5);

A particle updates its velocity according to Eq. (4), and
updates its position according to Eq. (5). The c1rand()(pi −
xi )part canbe seen as a cognitive behavior,while c2Rand()(pg−
xi ) part can be seen as a social behavior.

In particle swarm optimization, a particle not only learns
from its own experience, but also learns from its companions.
It indicates that a particle’s “moving position” is determined
by its own experience and its neighbors’ experience.

Fully informed particle swarm optimization

Fully informed PSO (FIPS) does not share the concept of
“global/local best”. A particle in FIPS does not follow the
leader in its neighborhood, but follow all other particles in
its neighborhood. The basic equations of the FIPS algorithm
are as follow [44,56]:

vi ← χ

⎛
⎝vi +

Ni∑
k=1

U (0, ϕ)(pnbr(k) − xi )
Ni

⎞
⎠ (6)

xi ← xi + vi (7)

where χ denotes the acceleration coefficient, U (0, ϕ) is a
random function to generate random numbers in the range
[0, ϕ], Ni represents the neighborhood size of the i th particle,
andpnbr(k) represents the kth particle’s personal best position.
Each particle in PSOalgorithm represents a potential solution
which is a point in the D-dimensional solution space. Each
particle is associated with two vectors, i.e., the velocity vec-
tor and the position vector. Throughout this paper, i is used
to index the particles or solutions (from 1 to S) and d is used
to index the dimensions (from 1 to D). The S represents the

1 If the current particle’s neighborhood includes all particles then this
neighborhood best is the global best (termed as gbest), otherwise, it is
the local best (termed as lbest).
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number of particles, and D represents the number of dimen-
sions. The position of the i th particle is represented as xi ,
xi = [xi1, xi2, . . . , xid , . . . , xiD]. xid represents the value of
the dth dimension for the i th solution, where i = 1, 2, . . . , S,
and d = 1, 2, . . . , D. The velocity of a particle is represented
as vi , vi = [vi1, vi2, . . . , vid , . . . , vi D].

The parameter w was introduced to control the global
search and local search ability [71]. The PSO algorithm with
the inertia weight is termed as the canonical/classical PSO.
The canonical PSO algorithm could be rewritten as the PSO
with constricted factor (PSO-CF) version [26]. The explo-
sion, stability, and convergence of PSO-CF algorithm were
analyzed via the new velocity updating equation.

pmd = ϕ1 pid + ϕ2 pnd
ϕ1 + ϕ2

(8)

Equation (4) is reformed as follows:

vt+1
id = χ(vtid + ϕrand()(ptmd − xtid)) (9)

where the ϕ = ϕ1 +ϕ2. Equation (9) also could be reformed
as follows:

vt+1
id =χ [vtid + ϕ1rand()(p

t
id − xtid) + ϕ2rand()(p

t
nd − xtid)]

(10)

Based on Eqs. (10), (9) could be easily transferred to
Eq. (4) via χ = w, c1 = χ ×ϕ1, and c2 = χ ×ϕ2. The iner-
tia weights and constriction factors in PSO were discussed
in [30].

The state-of-the-art

There are many variants of PSO algorithms which have been
proposed, including multiple swarms, new efficient learning
strategy, diversity maintaining strategy, and hybrid algo-
rithms to solve various optimization problems.

Algorithms

It’s meaningless and difficult, if not impossible, to count the
number of PSO variants. The following list gives the name
of several PSO variants for examples. These PSO variants
could be generally categorized into five groups:

1. The first adjusts the configuration parameters to balance
the global and local search abilities:

– Standard particle swarm optimization (SPSO-BK)
[8],

– Standard particle swarm optimization 2011 [24],

– Self-organizing hierarchical particle swarm opti-
mizer with time-varying acceleration coefficients
(HPSO-TVAC) [66],

– Adaptive particle swarm optimization (APSO) [96].

2. The second aims to enhance the population diversity by
designing new information propagation strategies:

– Fully informed particle swarm optimization [44,56],
– Particle swarm optimization algorithm with Re-
initialize strategy [20].

3. The third is the hybridization of PSO algorithm and other
auxiliary search techniques:

– Multiple strategies-based orthogonal design particle
swarm optimizer (MSODPSO) [64],

– Particle swarm optimization algorithm with parasitic
behavior (PSOPB) [62],

– Particle swarmoptimizationwith dynamical exploita-
tion space reduction strategy (DESP-PSO) [21],

– Particle swarm optimization with an aging leader and
challengers (ALC-PSO) [13],

– Adaptive particle swarm optimization with hetero-
geneous multicore parallelism and GPU acceleration
[85].

4. The fourth introduces multiple swarms or coevolving
groups to improve the global search ability:

– Cooperative particle swarm optimizer (CPSO) [7],
– Dynamicmulti-swarmparticle swarmoptimizer (DMS-
PSO) [50],

– Particle swarm optimization with interswarm inter-
active learning strategy [63],

– Cooperatively coevolvingparticle swarms (CCPSO2)
[48].

5. The fifth is PSO algorithms with new efficient learning
strategy:

– Comprehensive learning particle swarm optimizer
(CLPSO) [49],

– Orthogonal particle swarm optimization (OPSO)
[38],

– Orthogonal learning particle swarm optimization
(OLPSO) [97],

– Genetic learning particle swarm optimization [35].

Different topology structure can be utilized in PSO, which
will have different strategies to share search information for
every particle. Global star and local ring are two most com-
monly used structures. A PSO with global star structure,
where all particles are connected to each other, has the small-
est average distance in swarm, and on the contrary, a PSO
with local ring structure, where every particle is connected to
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two near particles, has the biggest average distance in swarm
[22,56].

Problems

The optimization problem could be classified into several
categories. According to the number of objectives, the opti-
mization problems can be divided as single-objective, multi-
objective problems, and many-objective problems. Based on
the properties of decision variables, the problems are labeled
as dynamic problems, large-scale optimization problems, etc.

Single-objective problems

The single-objective problems is the basic problems for
optimization. The original PSO algorithm was tested on
single-objective problems with continuous search ranges
[29,42]. The modified PSO algorithm has been used to solve
discrete optimization or combinatorial optimization prob-
lems [6].

Multiobjective problems

Multiobjective Optimization refers to optimization problems
that involve two or three conflicting objectives, and a set of
solutions is sought insteadof one [27]. For themulti-objective
problems, the traditional mathematical programming tech-
niques have to perform a series of separate runs to satisfy
different objectives [27].Many kinds of PSOalgorithms have
been used to solving multiobjective optimization problems
[28], such as adaptive multiobjective PSO algorithm [36],
geometric structure-based PSO algorithm [94], normalized
ranking based PSO algorithm [17], just to name a few. An
essential issue in utilizing particle swarm optimizer to solve
multiobjective or many-objective problems is the setting of
the personal best pi and the neighborhood best pn [17].

Many-objective problems

Many-objective optimization refers to algorithms which
solve problems with more than three conflicting objectives
[33]. Unlike the multiobjective optimization, the Pareto opti-
mality is not effective because nearly all solutions are Pareto
non-dominated for problems with more than three objec-
tives [86]. The population diversity is another difficulty for
many objective optimization because the similarity is hard to
estimate in high-dimensional space [86]. The solution com-
parison or the selection of more “representative” solutions
is an essential issue in many-objective optimization. The
various PSO algorithms have been proposed to solve many-
objective optimization problems, such as PSOalgorithmwith
two-stage strategy and a parallel cell coordinate system [39],

the normalized ranking-based PSO algorithm [17], or two
archive algorithm [86], just to name a few.

Multimodal multiobjective problems

PSO algorithm is used to solve new kind of optimiza-
tion problems, such as multimodal multiobjective problems
[95]. For multimodal multiobjective problems, the algorithm
needs to find multiple global optima in search space which
satisfy more than one objective in objective space [19].

Beside the aforementionedproblems, PSOalgorithms also
have been applied to other problems, such as large scale prob-
lems [15,16], dynamic multimodal optimization problems
[88], etc.

Characteristics and issues

The evolution and learning are two basic characteristics
of PSO algorithms, or more general, swarm intelligence
algorithms.There aremanyunsolved issues for swarm intelli-
gence algorithms, such as the exploration versus exploitation,
the population diversity, and the parameter setting.

Evolution

Evolution is an important concept in evolutionary compu-
tation and swarm intelligence. In biology, the “evolution”
is defined as “a change in the heritable characteristics
of biological populations over successive generations.” In
swarm intelligence algorithms, the evolution indicates that
the solutions are generated iteration by iteration, and move
toward better and better search areas over the course of the
search process. For PSO algorithms, the “leader” particles
or the learned particles are selected in this self-evolution
or self-improvement process. The obtained fitness values
are improved based on the self-evolution process. Normally,
there is one group in the swarm intelligence algorithms, and
information is propagated in all individuals. The hybrid algo-
rithmandmultiple sub-swarms are two special swarmswhich
havedifferent evolutionmethods. For these twokinds of algo-
rithms, the search information is different for each group and
the search information is exchanged at certain times.

Hybrid algorithms

The aim of hybrid algorithm is to combine the strength of two
or more algorithms, while simultaneously trying tominimize
any substantial disadvantage [81]. The PSO algorithm has
been combinedwith the fuzzymodeling [83], self-organizing
radial basis function (RBF) neural network [37] to solve var-
ious problems.

123



232 Complex & Intelligent Systems (2018) 4:227–239

Multiple sub-swarm

Niching method is able to locate multiple solutions in multi-
modal search areas. The PSO algorithm could be combined
with niching techniques to rapidly solve problems [9]. The
swarmof particles could be divided intomultiple sub-swarms
[93], dynamically changing group size [48], or multiple
species [99]. The different swarm could have different func-
tion during the search, and the search information could be
propagated effectively via interswarm interactive learning
strategy [63].

Learning

Learning has two aspects in particle swarm optimization
algorithm. One is learning from the problems, which means
the algorithm is able to adjust its search strategies or parame-
ters dynamically during the search. The other one is learning
from particles themselves, which indicates the approach of
search information propagated among all particles.

The developmental swarm intelligence (DSI) is a new
framework of swarm intelligence [77]. DSI algorithm has
two kinds of functionalities: capability learning and capacity
developing. The capacity developing is a top-level learning or
macro-level learning methodology. The capacity developing
describes the learning ability of an algorithm to adaptively
change its parameters, structures, and/or its learning poten-
tial according to the search states of the problem to be solved.
In other words, the capacity developing is the search poten-
tial possessed by an algorithm. The capability learning is
a bottom-level learning or micro-level learning. The capa-
bility learning describes the ability for an algorithm to find
better solution(s) from current solution(s) with the learning
capacity it possesses. The flowchart of developmental parti-
cle swarm optimization algorithm is shown in Fig. 2.

Learning from problem

The capability learning indicates that the algorithm has an
ability that could learning from problem. The PSO could
dynamically adjust its search strategy during the search. Sev-
eral particle swarm optimization algorithms with different
capability learning strategies have been proposed, such as
adaptive PSO [96].

The objects of learning

The objects of learning could be different for various PSO
algorithms. For example, a particle is able to learn personal
best search information from other particles in the compre-
hensive learning PSO (CLPSO) [49]. The learning equation
of CLPSO is given in Eq. (11).

Start

Initialization

Capacity developing

Capability learning

End?

Stop

Yes

No

Fig. 2 The flowchart of developmental particle swarm optimization
algorithm

vid = wvid + c × rand()(pbest f i(d)d − xid) (11)

where f i = [ fi(1), fi(2), · · · , fi(D)] defines which particle’s
pbest the i th particle will follow.

The speed of learning

A particle updates its position in the search space at each
iteration. The velocity update equation consists of three parts,
which are previous velocity, cognitive part, and social part.
The cognitive part means that a particle learns from its own
searching experience, and correspondingly, the social part
means that a particle can learn from other particles, or learn
from the best in its neighbors in particular. Topology defines
the neighborhood of a particle [22].

Particle swarm optimization algorithm has different kinds
of topology structures, e.g., star, ring, four clusters, or Von
Neumann structure.A particle in a PSOwith a different struc-
ture has different number of particles in its neighborhoodwith
a different scope. Learning from a different neighbor means
that a particle follows different neighborhood (or local) best,
in other words, topology structure determines the connec-
tions among particles, and the strategy of search information
propagation.

In general, PSO with star topology has the smallest
diameter and average distance, which means that search
information has the fastest propagation in all topologies, and
on the contrary, PSOwith ring topology has the largest diam-
eter and average distance.
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Exploration versus exploitation

The most important factor affecting an optimization algo-
rithm’s performance is its ability of “exploration” and
“exploitation”. Exploration means the ability of a search
algorithm to explore different areas of the search space to
have high probability to find good optimum. Exploitation, on
the other hand, means the ability to concentrate the search
around a promising region to refine a candidate solution.

A good optimization algorithm should optimally balance
the two conflicted objectives, which indicates that the ability
of exploration and ability of exploitation should be adjusted
via the population diversity analysis when solving differ-
ent problems or on different search stages. For example, to
solve multimodal problem, great exploration ability means
that algorithm has great possibility to “jump out” of local
optima.

Population diversity

Population diversity is a measurement of population state in
exploration or exploitation. It illustrates the information of
particles’ position, velocity, and cognitive. Particles getting
diverge means that algorithm in an exploration state, on the
contrary, particles converging into a small search area means
that algorithm in an exploitation state.

Population diversity of PSO is useful for measuring and
dynamically adjusting algorithm’s ability of exploration or
exploitation accordingly. Shi and Eberhart gave three defi-
nitions on population diversity, which are position diversity,
velocity diversity, and cognitive diversity [74,75]. Position,
velocity, and cognitive diversity are used to measure the dis-
tribution of particles’ current positions, current velocities,
and pbests (the best position found so far for each particles),
respectively. From diversity measurements, the useful infor-
mation can be obtained.

Low diversity, which particles converging into a small
search area, is often regarded as the main cause of prema-
ture convergence. Several mechanisms have been proposed
to promote diversity in particle swarm optimization, such as
PSO with elitist re-initialization.

Parameter setting

In swarm intelligence research, one comment often received
for any new proposed algorithm is “the authors should give
a fair comparison on all algorithms in the paper.” It’s very
normal that reviewers ask for a fair comparison. One reason
from a real comment is as follows: “The thing is that the
authors have certainly very carefully tuned their parameter
values to get the best possible results on their test functions.
However, I am almost certain that they did not do the same for
the other methods they compared to.” What is a fair compar-

ison among all algorithms? Usually, the proposed algorithm
and the other compared algorithms are tested on a set of new
benchmark functions, which are different from benchmark
functions used by other algorithms when they were firstly
proposed. Should all algorithms have different parameter set-
tings, and each algorithm have exactly the same settings with
the settings when it was firstly proposed? Or should all algo-
rithms have the same parameter settings?

In the algorithm comparison, it maybe a good option for
new variant of PSO algorithm or other swarm intelligence
algorithms that compare the proposed algorithm with the
standard PSO algorithm. It should be noted that there are two
variants called standard particle swarm optimization (SPSO)
algorithms. The first one, which termed as SPSO-BK, was
defined by Bratton and Kennedy in 2007 [8], and the other
one, which termed ad SPSO-C, was defined byClerc in 2006,
2007, and 2011 [25]. The analysis of these two algorithms
was given in [23]. The strategy of population size setting is
different for problems with different scale [12].

Real-world applications

Particle swarm optimization as one of outstanding swarm
intelligent algorithms has been widely used to solve enor-
mous real-word problems, such as optimal design of electric
machines problem [47], Wi-Fi indoor positioning problem
[14], indoor high precision three-dimensional positioning
problem [10], energy management problem [57], economic
load dispatch problems [61], just to name a few. It is no exag-
geration to say that PSO has unique performance nearly in
every area, like industrial engineering, intelligent manufac-
ture, data mining, information and communication system,
automatic control system, image processing. We cannot list
all these applications because of the various areas. Here, we
take scheduling problem and data mining problem as exam-
ple to review the application of PSO in real-world problems.

Scheduling problem

Scheduling problem is one kind of combinatorial optimiza-
tion problem and a very popular area in different industrial
field. The job shop scheduling problem (JSP) [90], the test
task scheduling problem (TTSP) [52], the parallel machine
scheduling problem (PMSP) [91] are typical representatives
of the scheduling problem. What they all have in common
is the rational allocation of jobs or tasks to machines or
resources. Therefore,we take theTTSP, the unrelated parallel
machine scheduling problem (UPMSP) [91] and the flexible
job shop scheduling problem (FJSP) [70] into consideration
to illustrate the characteristics of these scheduling problem
and the application of PSO.
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TTSP is one of the key technologies to improve the per-
formance of automatic test system (ATS) [82]. According to
the actual problem, the mathematical model of TTSP is that
test tasks have to be arranged on test resources. Each task
may have multiple options to choose, and each task may be
tested on multiple instruments at the same time. Although
FJSP has similarity with TTSP, there are some difference
between them. Each operation in FJSP has to be carried on
only one machine and the operations of a job are in accor-
dance with the predetermined order [53]. For UPMSP each
job requires a given processing time andmachines are consid-
ered unrelated when the processing times of the jobs depend
on the machine to which they are assigned to [84]. In these
mathematical models, each job of FJSP and PMSP can be
performed on every machine with no constraint. However,
a task in TTSP has to be performed on some predetermined
resources.

PSO and various variant PSO or hybrid PSO have demon-
strated their performance in solving these scheduling prob-
lems.

Test task scheduling problem (TTSP)

For TTSP, Lu proposed a hybrid particle swarm optimization
and tabu search for single-objective TTSP with constraints
[51]. PSO is used for solving the test task sequence problem
and tabu search is used for the instrument resource dis-
patching problem. It is one kind of non-integrated strategy
for solving the scheduling problem. A new kind of inertia
weight related with the iteration process and a constraint
handling mechanism based on coding strategy were used.
An encoding strategy of every particle was invented for han-
dling the serial task sequence constraints. Lu also combine
PSO with variable neighborhoodMOEA/D to solving multi-
objective TTSP, which used PSO to find the ideal point in
multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) [54]. The makespan and the mean load
of instrument are the two objectives. In addition, PSO was
used as an embedded algorithm in an integrated solution
framework based on packet scheduling and dispatching rule
for job-based scheduling problems. PSO demonstrated its
performance through comparison with other kind of meta-
heuristics algorithms.

Flexible job shop scheduling problem (FJSP)

For FJSP, Nouiri investigated a two stage particle swarm
optimization (2S-PSO), which consists of PSO after ini-
tial swarm for objective of makespan and PSO after final
swarm for stability or other objective, to solve the flexible
job shop predictive scheduling problem considering possible
machine breakdowns [59]. The objective is to solve the prob-
lem under uncertainty with only one breakdown. 2S-PSO are

tested on various benchmark data varying from partial FJSP
to total FJSP. The proposed 2S-PSO evaluates the effect of
disruptions on the solution using the robustness and stabil-
ity measure. Singh proposed an quantum behaved particle
swarm optimization (QPSO) for FJSP [79]. QPSO can effec-
tively address the drawback of PSO, which is easy to trap at
local optimum due to the large reduction in velocity value
as iteration proceeds and poses difficulty in reaching at best
solution. In addition, mutation has been introduced in QPSO
for avoiding the premature convergence. Zhang proposed an
effective hybrid particle swarm optimization algorithm for
multi-objective FJSP [98]. PSO and a tabu search algorithm
are combined to obtain the local and global searching abil-
ity. It is a very useful integrated strategy for multi-objective
optimization problems.

Parallel machine scheduling problem (PMSP)

For PMSP, Hulett focused on scheduling non-identical par-
allel batch processing machines to minimize total weighted
tardiness and PSO was used to solve the problem [40]. The
smallest position value rule is used to convert the continuous
position values of the particle to a discrete job permutation. It
is one kind of application for testing printed circuit boards in
an electronics manufacturing facility. Likewise, a heuristic is
proposed to simultaneously group the jobs into batches and
schedule them on a machine. Shahidi–Zadeh investigated a
comparison study for solving a bi-objective unrelated par-
allel batch processing machines scheduling problem [68].
The multi-objective particle swarm optimization (MOPSO),
non-dominated sorting genetic algorithm (NSGA-II), multi-
objective ant colony optimization algorithm (MOACO),
and multi-objective harmony search (MOHS) are used to
solve the problem. The MOPSO got a good performance
in diversity and spacing of Pareto optimal frontiers. Shah-
vari focused on a bi-objective batch processing problem
with dual-resources on unrelated-parallel machines. Four
bi-objective PSO-based search algorithms are proposed to
efficiently solve the optimization problem for medium- and
large-size instances [69].

Datamining problem

Data mining problem has different branches, like outlier
detection, association rule, cluster, classification, prediction.
PSO can be used to solve all these branches. Therefore, we
have various variant PSO, such as PSO for outlier detection,
PSO for classification, PSO for association rule mining and
PSO for prediction analysis for time series. In addition, these
variant PSO has been used in sensor networks, medical dialy-
sis, network security, financial monitoring, image processing
and other fields.
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Outlier detection

An outlier is a data which is different from the other data in
that domain.This abnormal data or point can be very useful to
describe the abnormality of that system. The outlier detection
is useful in many applications [3,65]. Misinem proposed a
rough set outlier detection strategy based on PSO, which is to
findminimum non-reduct [58]. Ye proposed a new algorithm
for high-dimensional outlier detection based on constrained
PSO [92]. The concept of outliers is defined as sparsely
populated patterns in lower-dimensional subspaces. PSO is
used with a specifically designed particle coding and con-
version strategy as well as some dimensionality-preserving
updating techniques to the search for best abnormally sparse
subspaces. Condition based maintenance (CBM) is gain-
ing importance in industry because of the need to increase
machine availability. An application of PSO is presented for
detection of machinery fault for CBM [67]. It is also one
kind of application for outlier detection. Alam used PSO-
based clustering strategy to realize web bots detection [2].
Feng proposed a multi-objective vector evaluated PSO with
time variant coefficients for outlier identification in power
systems [34]. It is one kind of unsupervised classification of
electric load data.

Association rule mining

Association rules aims in extracting important correlation,
frequent pattern, association or casuals structures among the
set of items in the data sets [5]. Association rule basically
extracts the patterns from the database based on the twomea-
sures such as minimum support and minimum confidence.
Ankita had reviewed the application of PSO in association
rulemining [5]. PSO is implemented for association rulemin-
ing in two ways. One is to generate rules by implementing
PSO in the traditional algorithm of association rule mining.
Another is optimization of association rule generated by tra-
ditional algorithm using PSO. Maragatham investigated a
weighted particle swarm optimization technique for optimiz-
ing association rules [55]. They consider the utility based
temporal association rule mining method for generating the
association rules and PSO is used to optimize the generated
rules. Indira proposed an adaptive PSO that yields a finer
solution by performing a diversified search over the entire
search space [41]. The parameters such as inertia weight and
acceleration coefficients are adjusted dynamically. We must
say that PSO has abundant application for mining associate
rule [4,45,89].

Classification

Data clustering, one of the most important techniques in data
mining, aims to group unlabeled data into different groups

on the basis of similarities and dissimilarities between the
data elements. A typical clustering process involves fea-
ture selection, selection of a similarity measure, grouping
of data, and assessment of the output. Alam had reviewed
the research on particle swarm optimization based clustering
[3]. PSO is often used in this area to optimize the param-
eters of traditional algorithm, like support vector machines
(SVMs), backpropagation (BP) network and others. Porwik
focused on signatures verification based on probabilistic neu-
ral network (PNN) classifier optimised by PSO algorithm
[60]. Optimal parameters of the PNN have been determined
by means of PSO procedure. Cervantes proposed a PSO-
based method for SVM classification on skewed data sets
[11]. PSO algorithm is used to evolve the artificial instances,
eliminating noise instances for enhance the performance of
support vector machines. Zhang focused on image segmen-
tation using PSO and PCMwithMahalanobis distance [100].
PSO is used to optimize the initial clustering centers.

Prediction analysis for time series

Time series is an ordered sequence of observations that are
evenly spaced at uniform time intervals andmeasured succes-
sively. Prediction of time series uses a sequence of historical
values to develop a model for forecasting future values [46].
PSO was combined with other algorithms, like RBF neural
networks, regression analysis. Lee usedRBFneural networks
with a nonlinear time-varying evolution PSO algorithm to
realize the time series prediction in a practical power sys-
tem [46]. Akande proposed a hybrid PSO and support vector
regression model for modelling permeability prediction of
hydrocarbon reservoir [1]. PSO is investigated for the opti-
mal selection of SVR hyper-parameters for the first time in
modelling the hydrocarbon reservoir. Zou combined least
square support vector regression and PSO together for short
term load forecasting in power system to solve the power
dispatch problem [101].

Future research

Theory analysis

Particle swarm optimization, more widely, the swarm intelli-
gence algorithms are based on the “trail and error” strategy.
More research should be conducted on foundational prob-
lems of swarm intelligence. For example, search mechanism
of swarm intelligence algorithms, the learning ability of
swarm intelligence algorithms, the balance of exploration
and exploitation, and more effective search strategy of algo-
rithm should be studied.
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Fig. 3 A framework for data-driven swarm intelligence algorithms

Data-driven based algorithm

The data-driven algorithm indicates that the algorithm could
extract the features from the solved problem and obtain
the landscape by learning on the data set. Figure 3 gives
a framework of data-driven swarm intelligence algorithms.
Each candidate solution is a data sample from the search
space. The model could be designed or adjusted via the
data analysis on the previous solutions. The landscape
or the difficulty of a problem could be obtained during
the search, i.e., the problem could be understood bet-
ter. With the learning process, more suitable algorithms
could be designed to solve different problems, thus, the
performance of optimization could be improved [18]. Sev-
eral particle swarm optimization algorithms, especially the
surrogate-assisted PSO algorithms, have been employed in
data-driven algorithms, such as a surrogate-assisted PSO
algorithm with committee-based active learning strategy to
solve expensive problems [87], a surrogate-assisted coopera-
tive swarmoptimization to solve high-dimensional expensive
problems [80].

Applications

Different optimization problems could be modeled in many
areas in our everyday life. With the particle swarm optimiza-
tion algorithms, or more generally swarm intelligence, more
effective applications or systems can be designed to solve
real-world problems. The particle swarm optimization algo-
rithm not only could be used in problem with explicit model,
but also in problemwith implicitmodel.With the applications
in complex engineering or design problems, the strength and
limitation of various particle swarm optimization algorithm
could be revealed and interpreted.

Conclusion

After nearly a quarter century, the particle swarm optimiza-
tion algorithm has gained a great reputation and a wide range
of successful applications in evolutionary computation and
swarm intelligence. Particle swarm optimization algorithm,
which is modeled on the social behaviors observed in flock-
ing birds, is a population-based stochastic algorithm. In this
paper, the history development, the state-of-the-art, and the
applications of the PSO algorithm are reviewed. In addi-
tion, the characteristics and issues of the PSO algorithm are
also discussed from the evolution and learning perspectives.
Every individual in the PSO algorithm is learning from itself
and another particle with good fitness value. The search per-
formance and convergence speed are affected by different
learning strategies. PSO algorithm has been widely used to
solve enormous real-wordproblems.The scheduling anddata
mining problems are used as illustrations on PSO solving
real-world application problems.

“Now this is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.2” Particle
swarm optimization algorithm has been invented for a quar-
ter century, it still could be researched in many disciplines.
With the analysis of different evolution and learning strate-
gies, particle swarm optimization algorithm could be utilized
on solving more real-world application problems effectively,
and the strength and limitation of various PSO algorithm
could be revealed.
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