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Abstract This paper presents a formal game-theoretic
belief learning approach to model criminology’s routine
activity theory (RAT). RAT states that for a crime to occur a
motivated offender (criminal) and a desirable target (victim)
must meet in space and time without the presence of capable
guardianship (law enforcement). The novelty in using belief
learning to model the dynamics of RAT’s offender, target,
and guardian behaviors within an agent-based model is that
the agents learn and adapt given observation of other agents’
actions without knowledge of the payoffs that drove the other
agents’ choices. This is in contrast to other crime mod-
eling research that has used reinforcement learning where
the accumulated rewards gained from prior experiences are
used to guide agent learning. This is an important distinction
given the dynamics of RAT. It is the presence of the various
agent types that provide opportunity for crime to occur, and
not the potential for reward. Additionally, the belief learn-
ing approach presented fits the observed empirical data of
case studies, producing statistically significant results with
lower variance when compared to a reinforcement learn-
ing approach. Application of this new approach supports
law enforcement in developing responses to crime problems
and planning for the effects of displacement due to directed
responses, thus deterring offenders and protecting the public
through crime modeling with multi-agent learning.
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Introduction

Problem-oriented policing (POP) is a policing approach
initially proposed in the 1970s that focuses on “problem-
solving” as a systematic way to understand crime and
disorder [1]. Typically, POP follows the SARAmodel, where
law enforcement (S)cans their jurisdiction for a problem,
(A)nalyzes the issue, develops and deploys a (R)esponse,
and then (A)ssesses the effectiveness of the response [2].
Knowledge-based approaches to identifying problems, such
as CompStat (short for Computer Statistics) which analyzes
crime data at an aggregate level, put emphasis on doing
something quickly when crime spikes [3]. Responses are
commonly implemented with a geographic focus; in prac-
tice, this is known as place-based or “hot spot” policing.
Law enforcement dedicates resources to the problem area
to combat the crime issue. One major concern of using this
technique is that crime will merely displace to nearby areas,
with the benefit to the response area coming at the expense
of surrounding areas, creating a ‘whack-a-mole’ effect.

Research by Telep et al. [4] and Weisburd and Telep [5],
which reviewed “hot spot” policing and crime displacement
studies, report that displacement occurs less often than it is
believed to occur. In some cases, they found a diffusion of
benefit to surrounding areas. When there is evidence of dis-
placement, the amount of crime displaced does not outweigh
the benefit of crime reduced in the response area. Due to these
findings, they consider “hot spot” policing to be an effec-
tive strategy. Andresen and Malleson [6] claim these prior
displacement studies had measurement issues making iden-
tification of displacement difficult. The size of the targeted
response areas compared to the displacement catchment
areaswas disproportionate and newunits of analysis for iden-
tifying displacement have been recommended. Sorg et al. [7]
have also noted that while there may be positive effects from
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“hot spot” initiatives, the effects may not last. Crime rates in
their study returned to the response area within a fewmonths
after the initiative ended, depicting an inverse displacement.

This paper presents a new approach to explore this dis-
placement problem using agent-based modeling (ABM) and
game-theoretic belief learning to simulate offender (crimi-
nal), target (victim), and guardian (law enforcement) behav-
iors. The ABM paradigm is a generative approach to system
modeling, and is an accepted approach to modeling systems
with emergent behavior driven by the interactions of agents
[8]. The ability to model autonomous agents in an environ-
ment and then observe the emergent macro level behavior
of the system is a natural fit to the interest in the displace-
ment problem. The use of ABM as an acceptable approach
to study criminological systems has been reviewed by Birks
et al. [9], Groff et al. [10] and Gerritsen [11]. The originality
in using belief learning for agent logic is that the agents learn
by observing opposing agents’ actions without regard for the
payoffs that drove the other agents’ choices. This differs from
reinforcement learning approaches that are guided by accu-
mulated rewards. The beliefs learned depict where opposing
agent types will likely occupy and not were positive reward
signals have been experienced, providing a directmechanism
to model offender, target, and guardian dynamics.

The remainder of this paper is organized as follows: first,
the underlying criminological theories are introduced along
with the modeling approaches used in this work. Next, a
literature review is discussed, covering areas of research
that complement this work, which fills gaps in the litera-
ture. Finally, the methodology is setup and a case study is
conducted, comparing the belief learning approach in this
paper to a previously researched Q-learning implementation
of reinforcement learning.

Background

Theoretical basis

Routine activity theory (RAT) developed by Cohen and Fel-
son [12] is a micro-level theory that describes the most basic
units needed for a crime to occur. The theory states that crim-
inal acts require convergence in space and time of likely
offenders, suitable targets and the absence of guardianship
against crime [13]. RAT asserts that crime is opportunis-
tic and easily reflected by analogy with a crime triangle in
Fig. 1. Crime has the potential to occur when offenders and
targets/victims meet in space and time without guardian-
ship. Guardianship can be through the formal presence of
a guardian (law enforcement) or informally through the col-
lective presence of bystanders. The collective presence has
an effect akin to a criminal not wanting to be seen committing
a crime in a crowd or fear of being stopped by a bystander.

Fig. 1 Crime Triangle (from POP Center [14])

As noted by Groff [15], RAT provides a groundwork for
interaction, but does not provide a framework for decision
making. Cornish and Clarke’s [16] rational choice theory
(RCT) contends that offenders are rational, similar to non-
offenders; however, they have a propensity to commit crime
that sets them apart. RCT provides a perspective by which
offenders are rational actors and seek optimal strategies for
themselves. RATprovides a framework for interacting pieces
within a criminological system and RCT provides a theory
for rational offender decision-making.

Agent-based modeling

The ABM paradigm is a computational method to model
complex systems through the collective interaction of
autonomous entities. These entities, called agents, have
characteristics and behaviors that describe how they make
decisions and act due to interaction with other agents and
their environment. At themost basic level, ABMconsists of a
set of agents and their relationships [17]. ABM is considered
a “bottom-up” approach to systemmodeling, as it is oriented
around the micro-level behaviors and interactions of hetero-
geneous agents. ABM can be used to explore goal directed
behaviors such as completing a task in robotic autonomy [18]
or to study emergent macro-level outcomes that arise from
micro-level agent interactions such us workforce attrition in
STEMorganizations [19]. Agent behaviors are typically a set
of rules to follow to make a decision given their interactions
and environmental observations. Agents individually assess
their situations andmake their decisions using their rule set.A
staple feature of the ABM paradigm is the repetitive interac-
tion of agents. Agents can be developed to evolve and adapt,
emulating some sort of learning from their interactions [17].
In general ABM’s consist of [20]:

• a set of agents, their attributes and behaviors;
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• a set of agent relationships and methods of interaction—
an underlying topology of connectedness defines how
and with whom agents interact; and

• the agents’ environment—agents interact with their envi-
ronment

While no set definition exists for what an agent is, the
only agreed upon characteristic is autonomy, meaning the
agent can function independently in the environment and in
interactions with other agents [20]. This autonomy generally
means agents should also be self-contained (i.e., individually
identifiable, heterogeneous, discrete entities with their own
attributes), have a state that varies over time, and be social
(interact with other agents and/or the environment) [20].

Game theory

Game Theory is a way of thinking about strategic interac-
tions between self-interested players [21]. It is used in many
disciplines, like economics, as it is concerned with how self-
interested players will behave in these strategic interactions.
A game can be thought of as any interaction between two or
more players where the outcomes of the interactions depend
on what the players choose to do. Self-interested means the
players have personal descriptions of the state of the game
and they choose their actions based on this description. Each
player’s view of the state of the game is described through
a payoff structure, called a utility function. The player’s
utility functions capture their attitude toward the actions
available [21]. Game theory often assumes that players are
rational, and will attempt to maximize their utility. Games
can be played simultaneously (i.e., matching pennies and
rock/paper/scissors), or sequentially (i.e., chess and poker).
Simultaneously played games are considered normal form
(or strategic form) games and sequentially played games are
considered extensive form games. Games are generallymade
of three elements: players, alternatives, and payoffs. The gen-
eral formulation of a normal form game is [22]:

• a finite set of players N = {1, 2, . . . , n}, indexed by i ;
• a set of alternatives for player i , a = (a1, a2 . . . , an) in

A = A1×A2×· · ·×An ,where A is the set of alternatives
for each player and a is the strategy profile which is the
list of alternatives chosen by each player; and

• the utility for player i , Ui , as a function of alternatives
played, which is the payoff for the different players. Ui

describes how each player evaluates the different out-
comes of the game.

Using their available utility functions, players can then
compute a best response and choose an alternative. Inter-
esting dynamics arise when games are played repeatedly
providing long-term interaction between players. Players can

make assessments onwhat they believe opposing playerswill
do or what they think their future payoffs can be, then select
a best response using this information. This repeated game
playing gives rise to learning in games where players can
adjust their strategies and utilities update given new obser-
vations and outcomes in previous stages of the game.

Agent learning

Agent learning can generally be summarized using the con-
cept of stigmergy (Fig. 2). Stigmergy is ameans of interaction
between agents and is used to coordinate the effect of current
actions to stimulate further actions.

In the case of an agent based model, agent actions (e.g.
alternative selections) producemarks (e.g. indicators of pres-
ence or rewards received) in amedium (e.g. the environment).
These marks, in turn, can be observed by other agents and
future actions can be stimulated given these observations.
The type of learning agents employ affects how the observa-
tions of the marks are used and how information is updated
given actions taken. There are twomain approaches that often
guide agent learning, namely belief learning and reinforce-
ment learning.

In belief learning, players learn and adapt given obser-
vation of opponent players’ actions without knowledge of
the payoffs that drove the other players’ actions. Only the
observations of opposing players’ actions are used to derive
a player’s beliefs. Beliefs are expressed as the ratio of strat-
egy choice counts for a given strategy to the total experience
of strategies selected [23]. The belief that player i has that
opposing player (denoted −i) will play strategy k at stage t
is denoted by Bk

−i (t). This is essentially the proportion of
time that strategy k has been played by player −i compared
to all strategies player−i has played up to stage t . Beliefs are
learned and updated every iteration of the game following a
weighted fictitious play process [24,25] in Eq. (1), where the
belief in the current stage is the weighted combination of the
belief from the previous stage and any new information from
the current stage.

Bk
−i (t) = φBk

−i (t − 1) + (1 − φ) ∗ 1{a−i=k} (t) (1)

medium 

agent 

stim
ulates

produces

Fig. 2 Stigmergy

123



158 Complex Intell. Syst. (2018) 4:155–169

1{a−i=k} (t) is an indicator function that equals 1 if the alter-
native chosen by opposing player a−i during stage t is equal
to strategy k, and 0 otherwise. φ ∈ [0, 1) is a weight param-
eter that depreciates prior beliefs. With φ = 0, all weight
would be placed on the most recent information and as φ

approaches 1, more weight is placed on prior beliefs (i.e.,
fictitious play). Player i would then use these beliefs in a
utility function to choose an alternative.

In reinforcement learning, players learn by interacting
with the environment through feedback, or reinforcement,
given actions taken. Players seeks to maximize their rewards
and ultimately learn through trial and error over repeated
interactionswith the environment.Actions that results in pos-
itive reinforcement are more likely to be taken again. Similar
to training a pet by reinforcing good behavior with a treat,
over time the pet learns to repeat the desired behavior. In a
multi-agent setting, the reinforcement received by a player
may be affected by the actions other players have taken, cre-
ating a dynamic reward environment. Action-value functions
are one way for a player to find an optimal strategy. Watkins
[26] introduced the popular one step reinforcement learning
model, Q-Learning, which directly approximates the optimal
action-value to be followed by the learning player.

Q (St , At ) ← Q (St , At )

+α
[
Rt+1 + γ max

a
Q (St+1, a) − Q (St , At )

]
(2)

Here, the action-value function can be thought of as similar to
a utility function. Q (St , At ) is the expected reward the player
can receive for selecting action At when in state St at stage
t . α ∈ [0, 1] is the learning rate of how much the previous
action-value is adjusted given the reinforcement received.
The new reinforcement is the reward, Rt+1, plus any value
gained from the difference between the maximum available
action-value max

a
Q (St+1, a) from other alternatives and the

previous action-value. γ ∈ [0, 1] is the discount factor for
the maximum available action-value.

In summary, reinforcement learning involves learning
what actions to take bymaximizing rewards.Only these accu-
mulated rewards are used in determining the next alternative
to select without knowledge of opposing player choices, even
though opposing player choices may affect the reward they
receive. Belief learning differs from reinforcement learn-
ing in that players learn by observing what alternatives
opposing players select without regard for the utilities that
drove the opposing players’ choices. Players do not learn
which alternatives return the best reward. In both belief and
reinforcement learning, players make subsequent alternative
selections using updated beliefs or expected rewards.

There are several methods bywhich a playermay select an
alternative as a best response given the information available
to them. In game-theoretic terms, it is commonly assumed

players are rational and seek to maximize their utility. For
both belief and reinforcement learning, this would equate to
players using an argmax function to select the alternative
that returns the maximum utility. Not doing so is deemed an
irrational choice in a game-theoretic sense. argmax is also
knownas agreedyor exploitive best responsebecauseplayers
are trying to get the maximum immediate payoff. In one-shot
games this can be an effective strategy. However, in repeated
games, a player following the same strategy at every stage
invites opposing players to exploit this predictable behav-
ior. What players can do to mitigate this predictability is to
balance their exploitation with exploration. One approach
to balancing exploitation and exploration of alternatives is
called an ε-greedy best response. In this method, ε propor-
tion of time, players choose to randomly explore one of the
available alternatives without regard for utility. The remain-
ing (1 − ε) proportion of time, players use an argmax best
response. Another way to avoid predictability, players can
play a mixed-strategy, meaning they select an alternative
based on a probability distribution. The probability an alter-
nativemay be selected is proportional to the utility it provides
and the alternative that provides the maximum utility is more
likely to be selected. Following amixed-strategy keeps oppo-
nent players guessing and introduces randomized behavior
into repeated games.

Related work

A variety of work has been done in using both agent-
based modeling for studying criminological systems, as well
as game theoretic approaches to crime and security. One
collection of researchers explored statistical approaches to
modeling crime within an ABM. Specifically, they were
interested in repeat and near repeat victimization, which is
once a location is a victim of crime, it is more likely to be
victimized again. Short et al. [27] modelled offenders (which
they called criminals) on a grid environment to produce hot
spots. Following statistical formulas, offenders could com-
mit crimes and move around the environment. Jones et al.
[28] extended this model by incorporating guardian agents
(which they called law enforcement) in the grid environment.
The presence of guardian agents was used to deter offend-
ers from committing crime. Chaturapruek et al. [29] adjusted
Short et al. [27] by changing how offenders moved around
the grid environment. Instead of using local information to
their current location, offenders could survey the whole grid
and move following a stochastic process called Lévy flights.
This allowed the offenders to “jump” around the grid to
more attractive spaces beyond their immediate neighbors.
Camacho et al. [30] extended Jones, et al. by implementing
variations of strategies by the guardian agents, finding that
the best strategy was dependent on the size of the hot spots
and the number of guardians used in themodel to deter crime.
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Tambe and a suite of researchers have done research uti-
lizing game theoretic approaches to security [31]. Tambe’s
research uses algorithms to compute optimal resource allo-
cation strategies to defend targets from attackers. The topics
of this research have ranged from investigating crime in
metro-rail systems for major cities [32,33], to defending crit-
ical infrastructure targets [34], and some have researched to
defend wildlife from poaching [35]. The important feature
in many of these security games was the use of a quantal
response [36] function to derive probabilities in amixed strat-
egy to selecting alternatives. The quantal response can take
on a logit form:

πa (t) = eλHa(t)

∑k
b=1 e

λHb(t)
(3)

πa (t) is the probability of choosing alternative a at stage
t , Ha (t) is the player’s preference for alternative a at stage
t , and λ is a shape parameter that can be used to control
the ‘noise’ in the probabilities. If λ = 0, the probabilities
across the alternatives become uniformly distributed. If λ is
large, the player will be more certain about the alternative it
prefersmore. This quantal response function in Eq. (3) is also
commonly referred to as a softmax function or Boltzmann
distribution method in agent learning literature [37,38] to
make a choice following a distribution.

Groff [15] incorporatedABMandRAT to simulate offend-
ers and targets (called civilians), and guardians (called
police). Using various factors such as perceived wealth of
potential targets and presence of capable guardians, the
offenders could decide to commit a crime or not. The model
was executed with the agents moving on a street network
(represented as a network of nodes and edges) along pre-
defined routes. By varying the amount of time and distance
agents traveled from their ’home’, tipping points in time and
distance were found in which more crime occurred. Groff
expresses that improvements to the work could be made by
developing logic into guardian agents to have more realis-
tic strategies that were not random, but directed to specific
location.

Malleson’s doctoral dissertation [39] and various asso-
ciated papers [40,41] revolve around simulating burglary.
Malleson utilized geospatial data about the environment,
which included the locations of buildings/homes, perceived
value, ease of access, and other attributes. LikeGroff, offend-
ers moved along the transportation network and as their
attributes depleted (drugs, money, sleep, etc.), the offend-
ers could select a building/home and burglarize. Malleson
developed scenarios from an urban planning point of view
and showed notional crime patterns. Malleson goes on to
point out the lack of guardian agents present in the work and
suggests adding them to the model.

Wang [42] describes in detail an agent-based approach to
modeling crime. The threemain elements ofRATare present:
offender agents, target agents, and guardian agents (called
police agents). The work used an implementation of rein-
forcement learning called Q-learning [26] for offender and
target agents to learn and navigate a reward/cost grid. The
reward/cost grid is essentially a ‘mental map’ used by the
offender and target agents to track the history of past experi-
ences in terms of potential reward for an offender to move to
a grid cell and the cost for a target tomove to a grid cell where
they could potentially byvictimizedby anoffender.However,
thework did not use any learning for guardian agents and they
solely moved randomly in the simulated environment. Sub-
sequent work by Wang et al. [43] attempted to address the
lack of guardian agent learning by having guardians seek the
“hottest” crime locations to represent “hot spot” patrolling.

Another set of researchers, Bosse et al. [44–46], also
looked at modeling crime using ABM and RAT. Their
approach had the main elements of RAT: offender agents
(called criminals), target agents (called passersby), and
guardian agents. In their model, they used abstract represen-
tations for alternatives (i.e., Location 1,2,3). The agents could
choose to operate in any of the available locations and these
choices were made using the density of opposing agent types
in these locations. Given that the locations themselves were
the alternatives to choose from, the density of agent types in
the locations represented the choices of the agent types in the
previous time step. The model did not preserve the history
of prior observations and used only the previous time step’s
information for choosing responses in the next time step.

Motivation

Several areas from the Related Work discussed provide the
motivation for this research. First, this paper proposes using
belief learning as the learning method used by agents. The
novelty of using belief learning is that agents observe oppos-
ing agents’ actions without regard for the payoffs that drove
the opposing agents tomake those choices, formbeliefs using
these observations, and then make future choices using these
beliefs. Prior research by Wang [42] and Wang et al. [43]
used the reinforcement learning method Q-learning. In their
approach, rewards and costs are accumulated in the envi-
ronment where offenders seek optimal reward and targets
seek least cost (due to potential of being victimized). The
dynamics of RAT posit that for crime events to occur a moti-
vated offender and a desirable target must meet in space
and time without the presence of capable guardianship. The
Q-learning approach only learns rewards/costs from past
crime events and assumes some global communication of
these rewards and costs by the agents in the model. This
is not very reasonable as the rewards from crime events
is purely driven by the colocation of offender and target
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agents, which is dynamic and changing every stage of the
model. A belief learning approach seems more reasonable as
the agents directly learn in space where they believe oppos-
ing agents are likely to occupy. This assumes offenders can
easily observe where targets frequent most often or where
guardians patrol. Targets can observe where high crime areas
are, where offenders are likely to be, or where guardians
patrol. Guardians can observewhere offenders are frequently
or where potential targets choose to go.

Second, this paper will explicitly use the three main ele-
ments of RAT as agent types in the model and the three agent
types follow the proposed belief learning method. Previous
research was inconsistent in the use of the three elements of
RAT as agents within the models. Malleson’s [39] work did
not use guardian agents in themodel. Initially Short et al. [27]
did not use guardian agents, however later work by Jones et
al. [28] incorporated them into the model. When the three
elements of RAT were incorporated as agents, again pre-
vious research was inconsistent on giving guardian agents
any sort of learning process. In both Groff [15] and Wang
[42], guardian agents did not follow any learning process
and moved randomly. Agents in Bosse et al. [44–46] did not
‘learn’ over time and only responded to information from the
previous time step.

Finally, agents in this paper are unique, with heteroge-
neous attributes that affect their interactionswith other agents
and the environment. Short et al. [27] and the subsequent
derivative research solely used mathematical formulas to
model crime in their ABM’s. The agents in their models do
not have any attributes that update or affect agent choices
and interactions. Similar observations apply to the research
byBosse et al. [44–46]. The agents in their model do not have
attributes that distinguish them apart. Agents with heteroge-
neous attributes and dynamic states that vary over time is an
important feature of using ABM. It is this feature that dis-
tinguishes using a generative approach to modeling versus
using aggregate mathematical equations that neglect agent
heterogeneity [47].

Methodology

This paper presents a formal game-theoretic belief learning
approach to RAT. The use of belief learning to model the
dynamics of RAT’s offender, target, and guardian behaviors
within an agent-based model is original in that the agents
learn and adapt given observation of other agents’ actions
without knowledge of the payoffs that drove the other agents’
choices. This departs from previous research that has mostly
explored statistical processes or reinforcement learning for
crimemodeling. This is a unique difference given the dynam-
ics of RAT. It is the presence of the different agent types that
provides opportunity for crime to occur, and not the poten-
tial for reward. All agents (including guardian agents) in the

Table 1 Location attributes

Attribute Description

Nm
O (t) Number of offender agents in given location at stage t

Nm
T (t) Number of target agents in given location at stage t

Nm
G (t) Number of Guardian agents in given locations at stage t

T m (t) Total crimes that have occurred in given location up to
stage t

Cm (t) Count of new crimes that occurred in given location at
stage t

model use belief learning and the agents have heterogeneous
attributes that affect their decision-making and the environ-
ment.

Formal setup

Consider players to be a set of n autonomous agents A :=
{1, 2, . . . , n} which are partitioned into three sets, O for
offender agent players, T for target agent players, and G
for guardian agent players, such that A = O ∪ T ∪ G. The
alternatives available for the agents to select and occupy is a
set of k total locations L := {m = 1, 2, . . . , k}. In a repeated
game, let stages be denoted by t = {0, 1, 2, . . .}. At each
stage t , agents select a location in which to operate. Each
location in L captures the attributes in Table 1 at every stage
of the game. These attributes are used by agents to perform
belief learning computations. Since agents choose to operate
in a location every stage, the set of locations is equivalent to
the set of alternatives.

Agents

Three agent types exist in the game representing elements of
RAT; offender, target, and guardian agents. Offender agents
have three attributes μ, Ns , and N f , as in Wang [42]. μ is
the offender’s motivation to commit a crime. Ns and N f

represent the number of successful and failed crime attempts
by the offender agent. The values start at 0, increment as the
model runs, and are used in updating the offender’s motiva-
tionμ. These attributes are used in determining the likelihood
of crime at every stage of the model. Target agents have two
attributes, δ and γ . δ ∈ [0, 1] represents the target’s desir-
ability and is set randomly for each target agent. γ ∈ [0, 1]
represents the target’s guardian capability to its peers and is
set randomly for each target agent. Aggregated target desir-
ability and guardian capability values within a location are
used in conjunction with an offender’s motivation to deter-
mine the likelihood of crime event. Guardian agents do not
have any attributes. Their presence acts as a deterrent for
crime and their choices of locations to operate within affect
other agents’ beliefs.
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Belief learning

The approach to learning looked at in this study is belief
learning. Agent beliefs, denoted Bm

O (t) , Bm
T (t), and Bm

G (t),
are the beliefs that offender (O), target (T), and guardian
(G) agents occupy location m at stage t . Since the set of
alternatives available to the agents is the set of locations in
the model, the beliefs about player choices are the densities
of agents of each type per location. The belief values are
updated at every stage of the game following Eqs. (4)–(6).

Bm
O (t) = φOB

m
O (t − 1) + (1 − φO)

Nm
O (t)

|O| (4)

Bm
T (t) = φTB

m
T (t − 1) + (1 − φT)

Nm
T (t)

|T| (5)

Bm
G (t) = φGBm

G (t − 1) + (1 − φG)
Nm
G (t)

|G| (6)

Beliefs are weighted combinations of beliefs from the previ-
ous stage and new information. Nm

O (t), Nm
T (t), and Nm

G (t)
are the count of offender, target, and guardian agents, respec-
tively, that chose to occupy location m during stage t , as
shown in Table 1. |O|, |T|, and |G| are the cardinalities
of the sets of offender, target, and guardian agents, respec-
tively. These belief values for offender, target, and guardian
agents are weighted by φO, φT, and φG, respectively. Letting
φ = h−1

h where h ≥ 1 is the number of stages of history to
preserve, setting h = 1 stage of history produces φ = 0,
meaning no prior belief information beyond the most recent
stage is preserved. If the history is set to use the current
model stage h = t + 1, then φ approaches 1 as time passes,
placing more weight on prior beliefs, which is pure weighted
fictitious play learning. The history may be set to any fixed
value, and will result in a moving average of history for the
belief for the set history length. These updated belief values
are then used to compute utilities using Eqs. (7)–(9) in each
stage of the game.

Next, the utilities for each agent type are computed. Sim-
ilar utilities as used in [46] are used in this study. Equations
(7)–(9) represent how the agents evaluate the outcome of
choosing a given location.

Um
O (t) = αOB

m
T (t) + (1 − aO)

(
1 − Bm

G (t)
)

(7)

Um
T (t) = αT

(
1 − Bm

O (t)
) + (1 − aT) Bm

G (t) (8)

Um
G (t) = αGBm

O (t) + (1 − aG) Bm
T (t) (9)

The goal of offender agents is to commit crimes. Following
RAT, a crime event can occur when offenders and targets
meet in space and time without guardianship present. Using
Eq. (7), offender agents seek to occupy locations they believe
target agents frequently occupy but also seek to occupy loca-
tions they believe guardian agents do not occupy frequently.

Offender preference to seek targets or to avoid guardians is
controlled by the weight parameter αO ∈ [0, 1]. For val-
ues of αO close to 1, offenders would place more preference
on seeking targets than avoiding guardian. For values closer
to 0, offenders would place more preference on avoiding
guardians than seeking targets. Similarly, the goal of tar-
get agents is avoid being victimized by offenders. Using Eq.
(8), target agents seek locations they believe offender agents
do not occupy frequently and seek locations they believe
guardian agents do occupy frequently. Target agent prefer-
ence to avoid offender agents or to seek guardian agents is
controlled by the parameter αT ∈ [0, 1]. Finally, the goal
of guardian agents is to deter offenders from committing
crime and to protect targets. Using Eq. (9), guardian agents
seek to occupy locations they believe offender agents occupy
frequently and seek to occupy locations they believe target
agents occupy. Guardian agent preference to seek offender
agents or to seek target agents is controlled by the parameter
αG ∈ [0, 1]. These three parameters will be set to the follow-
ing (αO = 0.5, αT = 1.0, and αG = 1.0). These parameters
depict that offender agents equally prefer to seek out target
agents and avoid guardian agents, target agents purely seek
to avoid offender agents, and guardian agents purely seek out
offender agents.

Likelihood of crime

All the research discussed in the Related Work section
used different approaches and mechanisms to generate crime
events. In this study, at each stage of the game, offender
agents can attempt a crime, but only if their motivation out-
weighs the guardianship present. This study uses a variation
of Eck’s likelihood for a crime event [12] as used by Wang
et al. [43]. The formula in Eq. (10) is rooted in criminolog-
ical theory and incorporates the heterogeneous attributes of
agents in the model. It is not a stochastic process as use in
other research. The likelihood for a crime event to occur is
given by:

L = μiδm

1 + γm
(10)

μi is the motivation of offender i , δm is the sum of the desir-
ability of all target agents in locationm, and γm is the sum of
the guardianship of all target agents in location m. The steps
for a crime event to occur as proposed by Wang [42] are as
follows (also see Fig. 3):

• If a guardian is present at a location, then no crime event
occurs.

• If the likelihood in Eq. (10) returns a value larger
than a random number between 0 and 1 (i.e., L >

Uniform (0, 1)), then a crime event is attempted
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Fig. 3 Offender logic for a
crime event (from Wang [42])

• If the likelihood L is larger than some minimum crime
threshold b ∈ [0, 1] ,then the crime is successful; else the
crime attempt fails.

These steps are followed by each offender in each loca-
tion at every stage of the game. The count of crimes that
occurred in a location during a stage is stored in loca-
tion attribute Cm (t) and the total number of crimes that
have occurred in the location is incremented by this value
Tm (t) = Tm (t − 1) + Cm (t).

Adaptive offender agents

Along with following belief learning, offender agents also
update their motivation to attempt crime, μi . The success or
failure of past crime events by offenders affects their moti-
vation to commit future crimes. This adaptability has been
represented in previous research using sigmoid curves [42].
The sigmoid curve used in this study is shown in Eq. (11):

μi = 1

1 + e
−

(
Ns
i −N f

i

) , (11)

where μi is the motivation of offender agent i , Ns
i is the

number of successful crime events by the offender agent, and
N f
i is the number of failed crime attempts by the offender

agent. An offenders’ motivation is between the values of 0
and1,μi ∈ [0, 1].As offender i’s number of successful crime

attempts outgrows the number of failures
(
Ns
i − N f

i

)
> 0,

μi approaches 1, meaning the offender is very motivated to
continue to attempt to commit crime. If offender i’s number
of failed crime attempts outgrows the number of successful

attempts,
(
Ns
i − N f

i

)
< 0, μi approaches 0, meaning the

offender is not motivated to attempt to commit crime.

Best response

In game-theoretic settings players are assumed to be ratio-
nal meaning they always maximize their utility function.
Offenders, targets, and guardians hardly behave this way in
reality. To account for sub-optimal (or even apparent irra-

tional alternative selection), all agents in this study will
follow a mixed-strategy best response when determining
which location to occupy next using a softmax equation sim-
ilar to Eq. (3). In using softmax, agents are more likely to
choose the location that maximizes their utility function;
however, it is possible they could select a location that is
not best given their utility function. At each stage of the
game, offenders, targets, and guardians select which loca-
tion to occupy next using Eq. (12).

πm (t) = eU
m (t)

∑k
b=1 e

Ub(t)
(12)

πm (t) is the probability of choosing locationm at stage t and
Um (t) is the utility a given agent type perceives for location
m.Um (t) is replaced by Eqs. (7)–(9) for offender, target, and
guardian agents, respectively

The use of a probability distribution to select a location
introduces randomness into the model. Given this random-
ness, no two executions of the model will produce the same
results. Therefore, multiple replications of the model should
be run to return useful results.

Model algorithm

The resulting algorithm that ties all the elements of the pro-
posed model together is as follows. Starting in the top left
of Fig. 4, the model is instantiated with agents (offenders,
targets, and guardians), locations to be used as alternatives,
and priors of historical information to establish initial beliefs
for each agent type. After the model is initialized, the first
stage of the model begins. All agents (offenders, targets,
and guardians) independently survey the set of locations
and select a location to move to and occupy. This selec-
tion is made using the softmax best response in Eq. (12) and
their respective utilities in Eqs. (7)–(9). After all agents have
moved, crime events are computed by each offender agent
using Eq. (10) and the steps depicted in Fig. 3. Given any suc-
cessful or failed crime attempts, offender agents update their
motivation to commit crime following Eq. (11). After crime
events have been computed, each location then updates the
beliefs for each agent type using Eqs. (4)–(6), respectively.
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Fig. 4 Model algorithm

Using these updated beliefs, each location then updates the
utility for each agent type using Eqs. (7)–(9), respectively.
These updated utilities are now ready to be used in subse-
quent stages of the model. This completes one stage of the
model and the model continues until the desired number of
stages have been completed.

Theoretical exercise

To illustrate the behaviors of the proposed belief learning
approach, consider a model setup with k = 3 locations, 2
offender agents, 10 target agents, 1 guardian agent, and all

agents will use h = 50 stages of history. The model is run for
250 stages, with the 1 guardian agent having a directed patrol
to Location 1 for 50% of its time starting at stage t = 100 and
ending at stage t = 150. The model is run for 100 replica-
tions. Starting at stage t = 100, the guardian agent will spend
more of its time at Location 1. Given the learning dynamics
of the agents, with the guardian agent occupying Location
1 more frequently, potential crime would be prevented and
offenders would be deterred from occupying the location,
moving to other locations to attempt crime.

Figure 5 shows box plots of the crime proportions by loca-
tion and timeperiod for the 100 replications run. It canbe seen

123



164 Complex Intell. Syst. (2018) 4:155–169

Fig. 5 Illustrative example of
crime proportions by location
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that during the initiative, the proportionof crime inLocation1
is reduced given the directed response. During the 100 stages
after the initiative ends, the crime proportion increases at
Location 1. This is indicative of the guardian agent not occu-
pying Location 1 as frequently, seeking the other locations
given belief history that has built up there. This in turn allows
offenders to build up belief that the guardian does not occupy
Location 1 as much, causing crime to return to Location 1.

Model validation and case studies

The presented belief learning approach is applied to empiri-
cal case studies alongwith an implementation of aQ-learning
approach similar to Wang [42] and Wang et al. [43] for com-
parison (In their approach, offender agents seek reward for
committing crimes, target agents seek to minimize cost of
being victimized, and guardians seek high crime locations).
Case studies were derived given three factors. The first being
an initiative must have been completed, second the time
frame in which the initiative must be known, and finally the
crime data must be available from the time the initiative was
carried out.

Belief learning and Q-learningmodel runs both follow the
agent algorithm in Fig. 4 and have the same setup. The mod-
els are setup as follows: initial offender choice densities and
crime rates are computed from the 911 incidence response
data using the threemonths prior to the initiative. There are 30
target agents, 6 offender agents and 3 guardian agents used.
Guardian agents are directed to spend 25% of their time in
the response area during the initiatives. The models are run

for 100 replications. All offenders are initialized with moti-
vation μ = 0.5, which will update independently given each
offender agent’s experiences. For belief learning model runs,
h = 14 stages of beliefs are preserved. The use of h = 14 is
to represent 14 stages (or two weeks) of reference to be used
when updating beliefs. All agents will use the same history
length in their belief learning. The number of locations, the
overall duration of the case study, and the duration of the
directed patrolling will vary depending on the case study.

To evaluate simulated results, root-mean-square error
(RMSE) is applied to compare belief learning to Q-learning.
RMSE is usedwhenmeasuring the difference betweenmodel
predicted values and observed values. RMSE assesses the
accuracy of models by comparing error at an aggregate level.
The smaller the value of RMSE, the less difference there is
between the modeled results and the observed values. RMSE
is computed using the observed empirical crime proportions
compared to the modeled proportion of crimes for each time
period for each location. RMSE is calculated in Eq. (13)

RMSEm =
√∑n

x=1

(
yx,m − ŷx,m

)2
n

(13)

where yx,m is the observed crime proportion at study area m
during time period x , ŷx,m is the modeled crime proportion
for study area m during time period x , and n is the number
of time periods. Following the concerns of Andresen and
Malleson [6] regarding the study areas having varying sizes,
prior to calculating the RMSE, all crime counts for each time
period are standardized by the area (km2) of the study areas.
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The relative proportion of crime for each time period is then
computed across the study areas to derive observed crime
proportions.

Case study 1

In 2010 the Seattle, WA Police Department (SPD) executed
an initiative called “Safer Union” in attempt to disrupt an
open air drug market and to reduce overall crime between
20th and 25th Ave on East Union Street (centered around
23rd and Union) in SPD’s East Precinct [48]. “Safer Union”
was carried out over a 90-day period starting in October
2010. The study areas of interest comprised of the response
area centered around 23rd and Union Street, five concentric
one-block buffers around the response area, and a control
area all within the East Precinct. The case study is setup
with k = 7 locations (Response area, five x 1 block buffer
areas, and a control area). The case study is played over 270
stages, with 1 stage representing 1 day. The initiative lasted
3months (90days) and follow on affects where assessed
during the subsequent 6months (180days). The case study
starts at stage t = 0 with guardian agents having a directed
patrol in the Response Area for 25% of their time for 90
stages ending at stage t = 90. Data was pulled from Seat-
tle’s Open Data site [49]. 911 incident response data was
queried for four time periods: three months prior to the ini-
tiative (July–Sept 2010), three months during the initiative
(Oct–Dec 2010), 3months post-initiative (Jan–Mar 2011)
and 3–6months post-initiative (Apr–Jun 2011).

The box plots in Fig. 6 show simulated proportions of
crime for each time period across the study areas by learning
method. An initial observation to note is the spread of the
results for the belief learning scenario compared to the Q-

Table 2 “Safer Union” Average RMSE of the Study Areas for each
learning method

Study area Belief learning Q-learning

Response area 0.1237 0.1393

Control 0.0267 0.0625

Buffer 1 0.0855 0.0970

Buffer 2 0.0327 0.0710

Buffer 3 0.0330 0.0649

Buffer 4 0.0354 0.0681

Buffer 5 0.0316 0.0665

learning scenario. The belief learning results are tight and
compact around the median while the Q-learning results
are widely spread and skewed with many outliers present.
This graphically shows belief learning has a smaller vari-
ance around its results than that of Q-learning. We can see
that both scenarios do in fact reduce crime during the ini-
tiative in the response area. After the directed patrolling
ends, the proportion of crime in the response area increases
while the proportion of crime in the other study areas show a
slight decrease, shifting lower on the plot. This observation
is supported by Sorg’s finding [7] that the positive effect of
reducing crime during an initiative does not endure long after
the directed patrolling ending.

The box plots in Fig. 6 do not showwhich learningmethod
is a closer fit to the observed empirical data. RMSEwas com-
puted on each replication across the time periods for both
learning methods. The average RMSE for each study area
by learning method is in Table 2. In general, both learn-
ing methods have low RMSE values across each study area.
However, there is difference between the learning methods.
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Fig. 6 “Safer Union” box plots of simulated crime proportions (by time period and across study areas) for each learning method
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Belief learning has lower average RMSE values (meaning a
closer fit) than Q-learning for all the study areas. This indi-
cates that belief learning is a closer fit to the observed data
than Q-learning. The box plots of the distribution of RMSE
values by learning method in Fig. 7 show the variance in
the belief learning results are much smaller. The box plots
graphically show the mean and median RMSE values for
belief learning are lower than Q-learning. Paired t-tests com-
paring these RMSE distributions for each study area confirm
the RMSE for belief learning is statistically significant lower
than Q-learning for all study areas at 99% confidence. F-tests
comparing RMSE variances also confirm belief learning is
statistically significant lower than Q-learning for all study
areas at 99% confidence.

Case study 2

In 2013, the city of Austin, TX received grant funding for
an initiative called “Restore Rundberg”. This was an area of
the city that accounted for a large proportion of their crime.
The whole “Restore Rundberg” initiative comprised of both
community oriented projects to restore this area of the city
along with focused policing efforts at three hot spots. One
hot spot was centered around Rundberg Lane and the Interre-
gional Highway. “Restore Rundberg” policing efforts were
carried out over 15months, starting April 2014 thru June
2015. The study areas of interest consist of the response area
centered around Rundberg Lane and the Interregional High-
way, 4 buffer areas around the response area, and a control
area. The case study is setup with k = 6 locations (Response
Area, 4 buffer areas, and the control area). The case study is
run over 640 stages, with 1 stage representing 1day. The ini-
tiative lasted 15months (456days) and follow on affectswere
assessed for the subsequent 6months (stages 457–640). The
case study starts at stage t = 0 with guardian agents having
a directed patrol in the Response Area for 25% of their time

Table 3 “Restore Rundberg” Average RMSE of the Study Areas for
each learning method

Study area Belief learning Q-learning

Response area 0.1068 0.1818

Control 0.1923 0.2546

Buffer 1 0.0662 0.1695

Buffer 2 0.1102 0.1825

Buffer 3 0.0891 0.1659

Buffer 4 0.0453 0.1605

for 456 stages ending at stage t = 456. Data was pulled from
Austin’s Open Data site [50]. 911 incident response data was
queried for four time periods: three months prior to the ini-
tiative (Jan-Mar 2014), 15 months during the initiative (Apr
2014–Jun 2015), 3months post-initiative (Jul–Sep 2015) and
3–6months post-initiative (Oct–Dec 2015).

Table 3 contains the average RMSE for each study area
by learning method. Similar to the “Safer Union” case study,
belief learning has lower average RMSE values (meaning a
closer fit) than Q-learning for all the study areas. This indi-
cates that belief learning is a closer fit to the observed data
of “Restore Rundberg” than Q-learning. The box plots of the
distribution ofRMSEvalues by learningmethod inFig. 8 also
shows that the variance in the belief learning results aremuch
smaller. The box plots graphically show themean andmedian
RMSE values for belief learning are lower than Q-learning.
Again, similar to “Safer Union” results, paired t-tests com-
paring these RMSE distributions for each study area confirm
the RMSE for belief learning is statistically significant lower
than Q-learning for all study areas at 99% confidence. F-tests
comparing RMSE variances again confirm belief learning is
statistically significant lower than Q-learning for all study
areas at 99% confidence.

Fig. 7 “Safer Union” Box plots
for RMSE of simulated crime
proportions across study areas
for belief learning and
Q-learning. Solid lines in
boxplots represent the median
and the * represents the mean of
distributions. (differences in
mean and variance are
statistically significant at 99%
confidence for all study areas)
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Fig. 8 “Restore Rundberg”
Box plots for RMSE of
simulated crime proportions
across study areas for belief
learning and Q-learning. Solid
lines in boxplots represent the
median and the * represent the
mean of distributions.
(differences in mean and
variance are statistically
significant at 99% confidence
for all study areas)
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Case study 3

Starting in 2014, the city ofMinneapolis, MN started a recur-
ring summertime initiative within its wards called JET (Joint
Enforcement Teams) to have directed patrolling and enforce-
ment to high crime areas. In 2015, one targeted area was in
NorthMinneapolis covering the blockswithin LowryAve.N.
to 35th Ave. N. and Bryant Ave. N. to James Ave. N. The ini-
tiative was carried out over 90days, starting in June 2015 and
ending inAugust 2015. The study areas of interest comprised
of the response area, 3 concentric one-block buffers around
the response area, and a control area all within the North
Ward. The case study is setupwith k = 5 locations (Response
area, 3 × 1 block buffer areas, and a control area). The case
study is played over 270 stages, with 1 stage representing
1 day. The initiative lasted 3months (90days) and follow
on affects where assessed during the subsequent 6months
(180days). The case study starts at stage t = 0 with guardian
agents having a directed patrol in the Response Area for 25%
of their time for 90 stages ending at stage t = 90. Data was
pulled from Minneapolis’ Open Data site [51]. 911 incident
response data was queried for four time periods: 3months
prior to the initiative (Mar–May 2015), three months during
the initiative (Jun–Aug 2015), 3months post-initiative (Sept–
Nov 2011), and 3–6months post-initiative (Dec 2015–Feb
2016).

The averageRMSE for each study area by learningmethod
is shown in Table 4. The average values are slightly higher
than the RMSE results seen for “Safer Union” and “Restore
Rundberg” case studies. However, there is still a difference
between the learningmethods.Belief learninghas lower aver-
ageRMSEvalues thanQ-learning for all the study areas. This
indicates that belief learning is a closer fit to the observed data
than Q-learning. The box plots of the distribution of RMSE
values by learning method in Fig. 9 shows, again, the vari-
ance in the belief learning results are much smaller. The box
plots show the mean and median RMSE values for belief

Table 4 Minneapolis, MN Case Study Average RMSE of the Study
Areas for each learning method

Study area Belief learning Q-learning

Response area 0.0927 0.1106

Control 0.1725 0.1869

Buffer 1 0.131 0.1397

Buffer 2 0.1513 0.1772

Buffer 3 0.1256 0.1344

learning are lower than Q-learning. Paired t-tests comparing
these RMSE distributions for each study area again con-
firm the RMSE for belief learning is statistically significant
lower than Q-learning for all study areas at 99% confidence
except for Buffer 1 and Buffer 3 which are slightly less at
90% confidence. F-tests comparing RMSE variances show,
again, belief learning is statistically significant lower than
Q-learning for all study areas at 99% confidence.

Discussion

As this new approach demonstrates in the case studies,
belief learning fits the observed empirical data better and
produces results with lower variance when compared to a
Q-learning approach. These results offer evidence that using
belief learning within an ABM to model crime dynamics
produces tighter and more accurate results than Q-learning.
This finding is due to the dynamic environment of the model
and the agents’ goals as prescribed by RAT. The learning
goals for offender, target, and guardian agents is to commit
crime, avoid victimization, and to prevent crime, respec-
tively. The attributes of the locations are changing every stage
of the model given the feedback of information and agent
interaction with the environment. Q-learning only looks at
the reward reinforcement received in the locations. These
rewards are dependent on what agents occupy a given loca-
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Fig. 9 Minneapolis, MN Case
Study Box plots for RMSE of
simulated crime proportions
across study areas for belief
learning and Q-learning. Solid
lines in box plots represent the
median and the * represent the
mean of distributions.
(differences in mean and 0.1
variance are statistically
significant at 99% confidence
for all study areas except Buffer
1 and Buffer 3 at 90%)
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tion.Byonly responding topreviously earned rewards, agents
are ignoring the dynamic nature of how rewards are generated
in each location during each stage of themodel. This can lead
to wildly varying results as seen by the spread and variance
of the results in Figs. 7, 8, 9. In contrast, the belief learning
approach put forth in this paper looks at a moving average
history of beliefs of what locations are selected by opposing
agents. As a byproduct of learning where opposing agents
choose to occupy, if motivated offenders occupy the same
location as targets without a guardian present, then crimes
may occur. If a guardian occupies a location with offenders,
then crimes are deterred and targets are protected.

Conclusions

This paper introduces an original model for using ABM and
game-theoretic belief learning to explore RAT’s offender,
target, and guardian dynamics and potential displacement
behaviors. Agents learn and adapt given observation of other
agents’ actions without knowledge of the payoffs that drove
the other agents’ choices. This differs from previous research
that has mostly explored statistical processes or reinforce-
ment learning for crime modeling. Based on the dynamics of
RAT, it is the presence of the different agent types that pro-
vides opportunity for crime to occur, and not the potential for
reward. With an implementation of the model to represent an
actual “hot spot” initiative, belief learning generated results
that fit the empirical data of the case study. The RMSE results
of the belief learning approach are statistically significant
with less variance when compared to a Q-learning approach.
Additionally, the collection of crime counts for during and
after “hot spot” directed patrolling supported displacement
observations and the inverse displacement of crime return-
ing to the response area after the directed patrol ended. The
game-theoretic belief learning approach presented in this
paper offers a method to interdict opportunity, deter offend-

ers and protect the public. It is believed that application of
this new approach supports law enforcement in planning for
the effects of displacement to other locations and assists in
developing responses to maintain displacement from certain
locations.

Future research should be done in applying this approach
in different agent environments, for example in a GIS envi-
ronment or a transportation network. This would enrich the
versatility of the approach beyond using a set of alternatives.
Last, follow-on work should examine differing inputs, such
as restricting the information used by the agents to compute
the best responses. For example, using bounded rationality to
investigate seemingly irrational choices by agents. This study
provides a set of equations and steps for agent interaction as
a starting point to explore these questions further.
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