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Abstract Evolutionary multi-objective optimization aims
to provide a representative subset of the Pareto front to deci-
sion makers. In practice, however, decision makers are usu-
ally interested in only a particular part of the Pareto front of
themulti-objective optimization problem.This is particularly
true when the number of objectives becomes large. Over the
past decade, preference-based multi-objective optimization
has attracted increasing attention from both academia and
industry due to its significance in both theory and practice.
Significant progress has been made in evolutionary multi-
objective optimization and multi-criteria decision communi-
ties, although many open issues still remain to be addressed.
This paper provides a concise review on preference-based
multi-objective optimization, including various preference
modeling methods and existing preference-based optimiza-
tion methods, as well as a brief discussion of the main future
challenges.
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Introduction

Most real-world optimization problems in science, engineer-
ing and even daily life need to take into account multiple and
often conflicting criteria [1,2]. Such problems are known as
multi-objective optimization problems (MOPs), which can
be formulated mathematically as follows:

min
x∈�

F(x) = { f1(x), . . . , fm(x)}, (1)

where m is the number of objectives, x is an n-dimensional
decision vector, and the feasible region is defined by �. For
two arbitrary solutions x1, x2 ∈ �, x1 is said to dominate
x2 (notated as x1 � x2), if fi (x1) ≤ fi (x2), and F(x1) �=
F(x2). A solution x∗ ∈ � that cannot be dominated by any
other feasible solutions in � is then called a Pareto optimal
solution [3]. Typically, a set of Pareto optimal solutions exists
for the MOP is descried in Eq. (1), the set of x∗ is called as
Pareto set (PS), and their corresponding objective vectors
F(x∗) are called as Pareto front (PF).

It is helpful for decision markers (DMs) to make their
decisions if the whole Pareto optimal set is already known,
because the whole set can provide an overall picture of the
distribution of Pareto optimal solutions. To obtain the entire
PF, or to be more exact, to obtain a representative subset of
the PF, a huge number of algorithms and methodologies in
both communities of traditional mathematical programming
and evolutionary computation have been designed in recent
decades. Traditional mathematical programming methods
such as the weighted aggregation methods [4] cannot iden-
tify the whole PF in one single run. Evolutionary algorithms
(EAs), as population-based search methods, are believed to
be well suited for solving MOPs in that they can achieve a
set of non-dominated solutions in one run. Multi-objective
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evolutionary algorithms (MOEAs) [5] have now become
a mature tool to solve MOPs. Generally speaking, exist-
ing MOEAs can be divided into three categories according
to their selection criteria, namely Pareto-, indicator-, and
reference-based MOEAs [6–8], even though a number of
MOEAs might fall into more than one category or employ
additional selection criteria.

Pareto-based MOEAs employ the Pareto dominance as
their main selection methodology for convergence. Differ-
ent diversity maintenance strategies are adopted in different
Pareto-based MOEAs, such as crowding distance in NSGA-
II [9] and environment selection in SPEA2 [10]. However,
it was shown that Pareto-based MOEAs fail to solve many-
objective optimization problems (MaOPs) that are defined to
beMOPs with more than three objectives [11], mainly due to
the fact that the dominance comparison becomes less effec-
tive when the number of objectives increases for a limited
population size [12].

Indicator-basedMOEAsuse a single indicator as the selec-
tion criterion to replace the Pareto dominance in Pareto-based
MOEAs. Iε+ [13,14], Hypervolume [15], and R2 [16] have
been applied in IBEA [13], HypE [17], and MOMBI [18],
respectively.

Reference-based MOEAs decompose an MOP into a set
of sub-problems according to the pre-assigned references,
such as weights [19], reference points [20], reference vec-
tors [21], and direction vectors [22,23].Different aggregation
functions have been suggested to convert an MOP into
a set of single-objective optimization problems, including
weighted sum [3], Tchebycheff approach [3], and penalty-
based boundary intersection (PBI) approach [24].

Although a representative subset of the overall PF can
be located using most MOEAs for two- or three-objective
optimization problems, selecting a few solutions to be imple-
mented is not trivial. The decision-making process will
become much harder for many-objective optimization prob-
lem, because human beings are believed to be able to
handle up to seven criteria [25–27]. Therefore, articulation
of preferences is essential for solving MOPs [28], which
can guide optimization algorithms to find the most pre-
ferred solutions rather than the whole PF. To incorporate
preferences intomulti-objective optimization algorithms, the
modeling and articulation of preferencesmust be considered.
Generally, preferences can be involved in different stages
of multi-objective optimization algorithms, and preference-
based optimization methods can be classified into three
categories: a priori, interactive, and a posteriorimethods [28].
However, it is unclear which preferences are able to effec-
tively incorporated into MOEAs, and in many cases the user
does not have a clear preference when little knowledge about
the problem is available.

This paper offers a brief survey on preference mod-
eling and articulation in multi-objective optimization. In

section “Preference modeling methods”, various preference
modeling methods are summarized. Section “Preference-
based optimization methods” gives an account of existing
preference-based optimizationmethods. Future challenges in
preference modeling and preference guided multi-objective
optimization are discussed in section “Challenges”. Section
“Conclusion” concludes this paper.

Preference modeling methods

Various preference models have been reported in the litera-
ture [29], which can be largely classified into goals, weights,
reference vectors, preference relation, utility functions, out-
ranking, and implicit preferences.

Goals

The most straightforward way to articulate preference is to
provide goal information [30], as shown in Fig. 1. Usually,
users have some targets for different objectives [31,32]. Thus,
goals act as the additional criteria in multi-objective opti-
mization to provide ranking with the preference information
[33,34]. In interactive approaches [35], DMs need to provide
a goal point for a tentative efficient solution in each itera-
tion. However, when DMs have no priori knowledge about
the problems, they might set unreasonable goals which may
mislead the search process [36].

Weights

DMscan assign different levels of importance to different cri-
teria by usingweightsw = {w1, ...wm}, which are a vector in
the weight space as Fig. 2 shows. With the weights, multiple
objectives can be converted into a single-objective function
using an aggregation function [37–39]. Two most popular

Fig. 1 Modeling preferences in terms of goals. In the figure, the star
denotes a goal specified by the DM, whereas the points illustrate the
optimal solutions that may be found by an optimization algorithm based
on the goal
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Fig. 2 Modeling preferences usingweights,wherew is aweight vector
and the dotted lines are contour lines of the aggregation function g.
The contour lines show the convergence tendency of an optimization
algorithm on the aggregation function g

aggregation functions are the weighted sum [40] as shown
in Eq. (2) and the Tchebycheff approach [3], as described in
Eq. (3),where fi is the i-th objective andwi is the i-thweight.
In Fig. 2, the dotted line is the contour of the aggregation
function g, which indicates the convergence tendency of the
search of g on the specific weightw. Authors in [41,42] have
modified the dominance by aweight vector. However, similar
to goals, it is hard for DMs to provide accurate weights with-
out a full understanding of the characteristics of the problem.

gws =
m∑

i=1

wi fi (2)

gte = max
1≤i≤m

{wi fi } (3)

Reference vectors

Reference vectors or points provide the expectation to or
importance of the objectives. Reference vectors and weights
are similar in their aggregation functionality, although they
do have different physical meanings, and consequently,
different influences on the search process. Usually, refer-
ence vectors represent the directions of the solution vector,
whereas weights indicate the importance of different objec-
tives. Reference vectors are in the objective space, whilst
weights are in the weight space. Because of the inherent con-
nection between reference vectors and weights, they can be
converted into each other. The reference vectors in RVEA
[21] and reference points in NSGA-III [20] are converted
from uniformly distributed weights.

Taking the PBI approach [24] in Fig. 3 as an example,
which is the fitness function in NSGA-III [20], the relation-
ship between a solution and a reference vector v is described
by two distances, where d1 is the projection distance and d2

Fig. 3 The PBI approach decomposes distance |d| to two orthogonal
distance d1 and d2, while the APD approach penalizes replaces the
distance with an angle α

is the perpendicular distance to a reference vector v. With d1
accounting for convergence and d2 promoting diversity, PBI
selects solutions based on Eq. (4), where θ is the penalty fac-
tor. The recently proposed angle penalized distance (APD)
in RVEA [21] adopts the acute angle between the reference
vector and solution vectors to replace the Euclidean distance
as shown in Eq. (5), where p(α) is a penalty function related
to the angle α. It has been shown that angles provide a more
scalable measure for diversity in high-dimensional spaces.

gPBI = d1 + θd2 (4)

gAPD = (1 + p(α))|d| (5)

Neither the Tchebycheff nor PBI method is suited to the
PFs in different shapes [43]. Recently, different aggrega-
tion functions are proposed for both preferences in reference
vectors andweights. For example, adaptive scalarizingmeth-
ods in [44–46] change the aggregation function during the
MOEA, the Tchebycheff method is used in a reversed form
for a convex PF [47], and the PBI method is inverted based
on a nadir point [48].

Preference relation

DMs have different preferences on different objectives; thus,
some objectives might be not equally important during the
process of decision making [49–51]. Table 1 lists the symbol
representation of the importance of objectives, and as a result,
objectives can be sorted with a preferred order as f1 ≥ f2 ≥
f3 ≈ f4. With that preference relation [52], the search can
be narrowed down by converting into weights, the method
in [2] is one example with the binary preference. The main
disadvantage is that the preference relation cannot handle
non-transitivity. During the process of decisionmaking,DMs

123



236 Complex Intell. Syst. (2017) 3:233–245

Table 1 Preference relation
Relation Meaning Relation Meaning

≺ Less important 
 More important

� Much less important � Much more important

≈ Equally important # Do not care

¬ Not important ! Important

gradually learn their preferences. Analytic hierarchy process
(AHP) [53] is a measurement using pairwise comparisons
to calculate priority scales based on the judgements from
DMs, which might be inconsistent. Various examples have
employed AHP for decision making.

Utility functions

Preferences can be characterized by utility functions [54–56],
where the preference information is implicitly involved in the
fitness function to rank solutions [57,58]. Unlike preference
relations, the utility function sorts solutions rather than objec-
tives in an order. For example, there are N solutions x1 to xN ,
DMs are required to input their preferences for those solu-
tions, x1 ≺pref x2 ≺pref . . . ≺pref xN , for instance. Then, an
imprecisely specifiedmulti-attribute value theory (ISMAUT)
formulation is employed to infer the relative importance of
objectives to modify the fitness function. However, utility
functions are based on a strong assumption that all attributes
of the preferences are independent, thereby being unable to
handle non-transitivity [59,60].

Outranking

Outranking [61] is a different ranking for objective prefer-
ences allowing non-transitivity, which is different from the
preference relation [62]. To construct an outranking [63], the
preference and indifference thresholds for each objective are
input by apreference rankingorganizationmethod for enrich-
ment evaluations (PROMETHEE) [64]. Every two solutions
are compared according to those thresholds. Then, a pref-
erence ranking is obtained for outranking-based methods to
search the preferred solutions [65]. However, the outranking-
based methods require too many parameter settings, which is
hard for DMs when the number of objectives increases [64].

Implicit preferences

In some cases, DMs have little knowledge to articulate any
sensible preferences. Nevertheless, there are some solutions
on the PF that are naturally preferred, even if no problem
specific preference can be proposed. Those solutions can be
detected based on the curvature of PF [66]. For example, a
knee point, around which a small improvement of any objec-

tive causes a large degeneration of others, is always of interest
to DMs as an implicit preferred solution [67–69]. Exam-
ples include model selection in machine learning [70,71]
and sparse reconstruction [72].

There is no widely accepted definition for knee points,
and specifying knee points are notoriously difficult in
high-dimensional objective spaces. Existing approaches to
identifying knee points can be divided into two categories:
angle- and distance-based approaches [68]. Angle-based
approaches measure the angle between a solution and its
two neighbors and search the knee point according to the
obtained angle [72]. Although angle-based approaches are
straightforward, they can be applied to bi-objective optimiza-
tion problems only. Distance-based approaches can handle
problems with more than two objectives, which search the
knee point according to the distance to a pre-defined hyper-
plane [73].

In addition to knee points, extreme points or the nadir
point canwork as a special form of preferences [74]. Extreme
points are the solutions with the worst objective values on
the PF. A nadir point is a combination of extreme points.
With extreme points or the nadir point, DMs can acquire the
knowledge on the range of the PF to input their preferences
more accurately [75–77].

Discussions

The above formulations of preferences share several similari-
ties. For example, althoughweights and reference vectors are
different concepts, weights are sometimes used as references,
and vice versa. All the existing preference formulations are
scalable to many objectives, but their complexity signifi-
cantly increases. Although different preference models may
have very different properties, they all describe the objective
importance or priority in their own ways, except that utility
functions sort the importance of solutions rather than objec-
tives.

DMs might articulate preferences with uncertainty. To
model uncertainty in preferences, small perturbations can
be introduced into goals, weights, or reference vector-based
methods. Thus, fuzzy logic can be used as a natural means
for handling uncertainty in preferences [78,79], such as ref-
erence points [35], weights [80], preference relation [81,82],
and outranking [63]. Preference relation, utility function, and
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outranking are not strictly based on objective importance in
values, which allow uncertainty to a certain degree. DMs
might have inconsistent preferences during the search. In
these such cases, goal-, weight-, and reference vector based
methods might fail, because they focus on the previous pref-
erences too much and may lose diversity. Also, preference
relation and utility function based methods cannot handle
preference inconsistency. Only outranking allows inconsis-
tency in preferences to some degree. Furthermore, DMs can
introduce inappropriate preferences, which might lead to
infeasible solutions. There has not been any specific research
dedicated to handling inappropriate preferences, and fuzzy
preferences might provide a solution to this problem.

Preference-based optimization methods

The existing preference-based optimization methods can be
classified into three categories according to the time when
preferences are incoporated, i.e. a priori, interactive, and a
posteriori methods [28]:

– A priori methods In these methods, DMs need to input
their preferences before optimization starts. In suchmeth-
ods, themain difficulty lies in the fact that DMsmay have
limited knowledge about the problem and their prefer-
ences may be inaccurate or even misleading.

– A posteriori methods In a posteriori methods, a set of
representative Pareto optimal is obtained using an opti-
mization algorithm, from which DMs choose a small
number of solutions according to their preferences. In
comparison with the a priori methods, DMs are able
to better understand the trade-off relationships between
the objectives in the a posteriori methods. Most existing
multi-objective evolutionary algorithms (MOEAs) [83]
belong to this category. It should be noted, however,
that it becomes increasingly hard to obtain a represen-
tative solution set as the number of objectives increases
[84].

– Interactive methods Interactive methods [85,86] enable
DMs to articulate their preferences in the course of opti-
mization. In interactive methods, DMs are allowed to
modify their preferences, typically based on the domain
knowledge acquired during the optimization [32,38,87].
With the increasing understanding of the problem as
the optimization proceeds, DMs are able to fine tune
their preferences according to the obtained solutions in
each iteration. With the revised preference, the interac-
tive methods search for new preferred solutions, which
usually needs less computational cost compared with the
a posteriori methods. In the existing interactive meth-
ods, only one single preference model is adopted, such as

reference vectors [88–91], weights [92–95], preference
relation [96–98], and utility functions [99].

Non-evolutionary preference-based optimization
methods

Traditional multiple criteria decision making (MCDM)
methodologies are non-evolutionary and usually involve in
a certain type of preference information. During the MCDM
processes, the following assumptions hold [4,100–102]:

– Parts of non-dominated solutions are expected to be
found.

– DMs are expected to understand the problem and are able
to provide reasonable preferences.

– Satisfactory optimal solutions are expected to be output
finally.

According to [103], classical MCDM approaches can be
divided into two types: aggregation procedures and synthe-
sizing criteria.

The aggregation-based MCDM approaches are based on
weights [104]. Thus, decision making is mathematically
defined by Eq. (2), where m is the number of criteria, w is
the weight. For those approaches, DMs need to have a clear
idea about how to set the weights. However, it is very hard
for human beings to provide precise quantitative importance
levels for different objectives. In some cases, good solutions
cannot be easily distinguished from the poor solutions by
Eq. (2).

Unlike the aggregation-based MCDM approaches which
are based on explicit mathematical formula as a fixed
preference, the synthesizing criterion-based approaches are
based on implicit rules. For example, outranking and util-
ity function are two implicit and flexible preference models.
Outranking sorts the objective preferences, and utility func-
tion sorts the solution preferences. So far, the elimination
and choice expressing reality (ELECTRE) [105] and prefer-
ence rankingorganizationmethod for enrichment evaluations
methods (PROMETHEE) [106] are two main outranking
approaches; utilities additives (UTA) methods [107] are util-
ity function-based approaches [108].

In addition to the abovementioned aggregationprocedures
and synthesizing criteria, fuzzy logic [109], decision rules
[110],multi-objectivemathematical programming [111], and
objective classification [112] have been employed to improve
the performance of the MCDM approaches.

Evolutionary preference-based optimization methods

While non-evolutionary methods pay much attention to pref-
erence handling, most MOEAs focus on obtaining the whole
solution set as the a posteriori methods. In this section, we
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discuss the a priori methods in MOEAs, which embed pref-
erences into their fitness functions for narrowing down the
selection [113]. So far, goals, weights reference and utility
functions have been used to integrate preferences in MOEAs
[29].

As mentioned in section “Preference modeling methods”,
goals are straightforward preferences for MOEAs. Different
formulations have been used to incorporate preferences in
existing MOEAs. For example, the algorithm in [114] con-
siders goal preferences as constraints by Eq. (6), where gi is
the goal for the i-th objective. One issue with this approach is
that no solution can be achieved if the goals are set unreason-
ably by DMs for MOPs with a discontinuous PF. To address
this issue, an algorithm is proposed in [115] that divides the
constraints into hard and soft constraints according to the
priority of objectives.

fi (x) < gi (6)

In fact, existing reference-based MOEAs can naturally
be seen as preference-based MOEAs, which assign pref-
erences uniformly distributed in the whole objective space
and decompose one MOP into a number of single-objective
optimization problems. Preferences in those algorithms are
presented in different models, such as weights in MOEA/D
[19], direction vectors in DVCMOA [22] and MOEA/D-
M2M [23], reference vectors in RVEA [21], and reference
points in NSGA-III [20]. So far, a majority of preference-
based MOEAs are based on weights [37,38,116–120]. The
secondmost widely-used preferencemodel inMOEAs is ref-
erence vectors. The algorithms reported in [20,21,76] model
preferences by reference vectors or points. Most recently,
preference articulation methods based on reference points,
reference vectors, andweights have been examined and com-
pared on a hybrid electric vehicle control problem [121].

Another popular type of preferences adopted in MOEAs
is the achievement scalarizing function (ASF) [28,122–124].
The formulation of ASF is shown in Eq. (7), where w is a
weight and z is a reference point. The light beam search
[125,126] projects a beam of light from a reference point
onto the PF, resulting in a small neighborhood on the PF.
To increase the robustness of the preference-based MOEAs
to DMs, the light beam is used [127] to replace the refer-
ence point in the achievement scalarizing function [128].
Moreover, the achievement scalarizing function has been
employed to approximate hypervolume [34,129,130]. Based
on ASF, an interactive MOEA termed I-SIBEA [131] is pro-
posed by selecting new solutions according to a weighted
hypervolume.

gASF = max
1≤i≤m

(wi fi − zi ) (7)

Several utility function-based MOEAs have also been devel-
oped. For example, an algorithmwas presented in [58],which
might be the first MOEA that implicitly involves the prefer-
ences in the fitness function using a utility function. To guide
MOEAs toward preferred solutions, robust ordinal regression
is employed to approximate the utility in [97].

Challenges

Even though preferences have recently gained increasing
attention and have been studied for decades, many issues
remain to be addressed in the future.

Preference adaptation for various formulations

As mentioned before, different preference models have
been developed and existing preference-based MOEAs are
designed according to a specific preference model. However,
preferences provided by DMs might be in different forms,
thus no single MOEA is able to deal with various types of
preferences, making them less flexible to be used in practice.
Thus, it would be very desirable if various preference mod-
els can be converted into a single preference so that they can
be incorporated into a preference-based MOEA. So far, not
much work has been reported on converting one preference
model into another, with a few exceptions, e.g., preference
relations are converted into weights in [2] and fuzzy prefer-
ences are turned into weights in [82]. Thus, it is necessary to
develop a general framework for converting different pref-
erence models so that the advantages and disadvantages of
the existing methods can be properly compared in terms of
their ability to handle uncertainty, conflicts, as well as the
robustness in obtain preferred solutions.

Preference learning

Learning user preferences

Preferences play a very important role in MCDM. Pref-
erences given by DMs are consistent to a certain degree,
notwithstanding that the fact that DMs might change their
preferences in interacting with the optimizer. Thus, the sys-
tem should be able to learn the preferences of DMs based
on history data. Although there are many mature techniques
in machine learning [132] and data mining [133] that can
help learn preferences of DMs, little attention has been paid
to this research topic with a few exceptions [134], where
preferences of DMs are learned by training a single or multi-
ple surrogate models [135] using a semi-supervised learning
algorithm. As the work in [134] indicated, a proper learning
algorithm should be chosen and attention should be paid to
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the fact that the learned preferences are able to be incorpo-
rated in MOEAs.

Handling preference violation

Without sufficient information about the problem, it is likely
for DMs to provide less reasonable or even misleading pref-
erences. In some cases, no solutions can be found for some
preferences, for example when the Pareto front is discontin-
uous.

In case there are a group of DMs, it should be taken into
account that the preferences given by different group mem-
bers might be conflicting to each other [136]. As pointed out
in [36], priority, independence, and unanimity of individual
preferences need to be taken into account in using prefer-
ences from multiple DMs.

Psychological study

Decision making can be seen as a psychological construct
in the selection of several alternative actions [137]. In some
cases, the processing capacity of DMs is limited due to the
overwhelmed results from decision making systems [138].
To ensure that decision making systems are compatible with
the psychology of DMs, attention should be paid to theory
of decision making in the psychological level [139]. Exper-
iments reported in [140] indicate that the improvement of
the forecasting performance can be achieved with the help
of a psychological model. Therefore, we believe that a fur-
ther understanding of the psychology of DMs would build a
proper bridge between decision making systems and DMs,
which can further improve the efficiency of the preference-
based methods [25,26,57,112].

Analysis of relationships between decision variables and
objectives

Relationship between objectives

The conflict between two objectives means that the improve-
ment on one objective would deteriorate the other. The
conflict might be global or local [141–143]. For locally
conflicting objectives, they are conflicting with each other
in some regions but not in other regions. However, the
existing research on objective reduction focuses on global
redundancy between objectives [144–146], but little work
has been conducted on locally conflicting objectives. The
search on locally redundant objectives wastes computational
cost, and the results in [141] indicate that objective reduc-
tion approaches for some problems with globally conflicting
objectives can still improve the performance of MOEAs
on the problems with locally redundant objectives. There-
fore, detecting locally conflicting objectives, reducing locally

redundant objectives, and analyzing the effects of locally
conflicting objectives on the PFs are of great interest. More-
over, analysis of the correlation between objectives can help
group objectives into a number of groups to simplify the rep-
resentation to DMs, because human beings can only handle
around seven objectives.

Several approaches can be used to helpDMs to understand
the relationship between objectives. In [147], objectives are
divided into five classes to help DMs understand the trade-
off. Self-organizing maps (SOMs) [148] have been shown to
be promising in revealing the tradeoff relationships between
objectives [149,150]. Correlation is another effective tool
for analyzing the relationship between objectives. Differ-
ent metrics have been proposed to measure the degree of
correlation (both linear and non-linear), covariance, mutual
information entropy [151], and non-linear correlation infor-
mation entropy (NCIE) [152,153], for instance. Based on
these relations, many mature data mining techniques can be
employed to choose a subset of conflicting objectives to sim-
plify the original problem, such as feature selection [146],
principal component analysis (PCA) [154], and maximum
variance unfolding (MVU) [155]. The Pareto corner search
evolutionary algorithm (PCSEA) [145] is a newly proposed
objective reduction approach. It only searches the corners
on PFs. Then, it uses the obtained solutions to analyze the
relationship between objectives and identify a subset of non-
correlated objectives.

Knee points show the conflicting degree and are interest-
ing to DMs if they do not have specific preferences [68].
Knee point detection is based on the different definition for
2 or 3-objective problems [73]. The definition of knee point
in MaOPs is not yet well-established, because the conflict-
ing degree might vary with different pairs of objectives. The
sensitivity to changes in individual objectives may exist in
some particular regions on the PF, which can be considered
as partial knee points that are of interested to DMs.

Functional maps from decision variables to objectives

For the real-world applications, noises or uncertainties are
inevitable. In such situations, DMs prefer solutions that are
robust against small changes in decision variables [156–158].
There have been some discussions on robust multi-objective
optimization [159–164], but little research has studied the
robustness in decision making, except for measuring attrac-
tiveness by a categorical based evaluation technique (MAC-
BETH) [165]. The analysis of the mapping relationship from
decision variables to objectives [166] helps searching robust
solutions in the preference-based methods.

To analyze the mapping relationship from decision vari-
ables to objectives, artificial neural network (ANN) [167,
168], Bayesian learning [169,170], and the estimation of dis-
tribution algorithm (EDA) [171,172] have been employed.
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Benchmark design

So far, several MOP test suites have been proposed, such
as ZDT [173], DTLZ [174], and WFG [175] problems.
However, no benchmark problems have been proposed to
test preference-based optimization methods. Thus, it is very
desirable to design MOP test suites tailored for evaluating
the performance of preference based MOEAs. To design
preference-based MOP benchmarks, following aspects need
to be considered.

– Preference simulation It is necessary to simulate the pref-
erences with artificial functions [176], where uncertainty
and the response to the algorithm should also be taken
into account.

– Objective correlation Both global and local conflicts
should be designed in the benchmark.

– Ground truth The true optimal solutions should be pro-
vided for assessing the performance.

Performance assessment

Several performance indicators for measuring the perfor-
mance of MOEAs have been proposed, such as generational
distance (GD) [177], inverted generational distance (IGD)
[173], and hypervolume [15]. However, not many perfor-
mance indicators exist that are dedicated to evaluation of
preference-based methods with few exceptions [178], which
considers both dominance and the distance to the pref-
erences. In addition, an ideal metric for preference-based
methods should evaluate whether the obtained solutions truly
reflect the preferences, regardless of their preference model-
ing types.

Visualization

Visualization plays an important role in interactions between
DMs and preference-based optimization methods. When the
number of objectives equals or larger than four, visualization
becomes a challenge. Existing approaches can be divided
into three classes, namely parallel coordinate, mapping, and
aggregation tree [179].

The approaches based on parallel coordinates provide the
visualization of individual solutions by a parallel coordi-
nate system. In that system, there are parallel axes that can
describe values of all objectives. Parallel coordinates [1] use
a polyline with vertices on the parallel axes, while heatmap
[180] uses color to present the values on the parallel axes.
Those approaches can only show the trade-off between two
adjacent objectives.

Other approaches include those adopt dimension reduc-
tion techniques that can preserve the Pareto dominance
relationship among individuals in both global and local areas,

such as Sammon mapping [181], neuroscale [182], radial
coordinate visualization (RadViz) [183], SOM [149,184],
and Isomap [185]. These approaches are not as straightfor-
ward as the parallel coordinate-based approaches in analyz-
ing the tradeoff relationships between the objecitves and are
time-consuming.

Approaches based on aggregation tree [186,187] mea-
sure the harmony between objectives to visualize the relation
between objectives. However, this kind of approaches cannot
show individual solutions.

Most existing visualization tools are not straightforward
for DMs to understand. Ideally, both dominance and pref-
erence relationship should be presented in the visualization.
Moreover, DMs should be able to zoom in interesting regions
to get more detailed information.

Scalable multi-objective optimization test problems. In:
Proceedings of the 2002 Congress on Evolutionary Compu-
tation,CEC2002, vol 1. IEEEComputer Society, pp 825–830

Conclusion

Since preference-based multi-objective optimization is
stronglymotivated from the real-world applications, research
interests in this area have increased in recent years. Indeed,
preference modelling is also a common need in many areas
of artificial intelligence in which decisionmaking is involved
[188–190]. It becomes thus clear that preference modelling
and learning are important not only for decision making and
evolutionary optimization, but also for artificial intelligence
research.

In this paper, we provide a concise review of research
on preference modelling and preference-based optimization
methods.We discuss the open issues in preference modelling
and preference based optimization. It is emphasized that the
importance of preference-based multi-objective optimiza-
tion is of paramount practical significance and preferences
must be incorporated in many-objective optimization, where
obtaining a representative subset of the entire Pareto front is
less likely.

Acknowledgements This work was supported in part by an EPSRC
Grant (No. EP/M017869/1) on “Data-driven surrogate-assisted evolu-
tionary fluid dynamic optimisation”, in part by the Joint Research Fund
for Overseas Chinese, Hong Kong and Macao Scholars of the National
Natural Science Foundation of China (No. 61428302), and in part by
the Honda Research Institute Europe.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex Intell. Syst. (2017) 3:233–245 241

References

1. Fleming P, Purshouse R, Lygoe R (2005) Many-objective opti-
mization: An engineering design perspective. In: Evolutionary
multi-criterion optimization. Springer, New York, pp 14–32
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60. Cvetković D, Parmee IC (2002) Preferences and their applica-
tion in evolutionarymultiobjective optimization. IEEETrans Evol
Comput 6(1):42–57

61. Rekiek B, De Lit P, Pellichero F, L’Eglise T, Falkenauer E,
Delchambre A (2000) Dealing with user’s preferences in hybrid
assembly lines design. IFAC Proc Vol 33(17):989–994

62. Waegeman W, De Baets B (2011) On the ERA ranking repre-
sentability of pairwise bipartite ranking functions. Artif Intell
175(7):1223–1250

63. Siskos J, Lombard J, Oudiz A (1986) The use of multicriteria
outranking methods in the comparison of control options against
a chemical pollutant. J Oper Res Soc 37(4):357–371

64. Brans JP, Vincke P, Mareschal B (1986) How to select and how
to rank projects: the PROMETHEE method. Eur J Oper Res
24(2):228–238

65. Massebeuf S, Fonteix C, Kiss LN, Marc I, Pla F, Zaras K (1999)
Multicriteria optimization and decision engineering of an extru-
sion process aided by a diploid genetic algorithm. In: Proceedings
of the 1999 congress on evolutionary computation, CEC 99, vol
1. IEEE, pp 14–21

66. Shukla PK, Emmerich M, Deutz A (2013) A theoretical analysis
of curvature based preference models. In: International Con-
ference on Evolutionary Multi-Criterion Optimization. Springer,
New York, pp 367–382

67. Rachmawati L, Srinivasan D (2009) Multiobjective evolutionary
algorithmwith controllable focus on the knees of the Pareto front.
IEEE Trans Evol Comput 13(4):810–824

68. Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees
in multi-objective optimization. In: International Conference on
Parallel Problem Solving from Nature. Springer, New York, pp
722–731

69. Deb K, Gupta S (2011) Understanding knee points in bicriteria
problems and their implications as preferred solution principles.
Eng Optim 43(11):1175–1204

70. Jin Y, Bernhard S (2008) Pareto-based multi-objective machine
learning: An overview and case studies. IEEE Trans Syst Man
Cybern Part C Appl Rev 38(3):397–415

71. Smith C, Jin Y (2014) Evolutionary multi-objective generation
of recurrent neural network ensembles for time series prediction.
Neurocomputing 143:302–311

72. Li L, Yao X, Stolkin R, Gong M, He S (2014) An evolution-
ary multiobjective approach to sparse reconstruction. IEEE Trans
Evol Comput 18(6):827–845

73. Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolution-
ary algorithm for many-objective optimization. IEEE Trans Evol
Comput 19(6):761–776

74. Wang H, He S, Yao X (2017) Nadir point estimation for many-
objective optimization problems based on emphasized critical
regions. Soft Comput 21(9):2283–2295

75. Branke J, Deb K,Miettinen K, Slowiński R (2008)Multiobjective
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