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Abstract In this paper, the existence, uniqueness and
asymptotic behavior of mild solutions of stochastic neural
network systems driven by fractional Brownian motion are
investigated. By applying the Banach fixed point theorem,
the existence and uniqueness ofmild solution are analytically
proved in a Hilbert space. Based on the moment inequality
of wick-type integral analysis technique, the p-th moment
exponential convergence condition of the mild solution is
presented. Finally, two numerical examples are presented to
demonstrate the validity of the theoretical results.

Keywords Stochastic Hopfield neural networks · Mild
solution · Fractional Brownian motion · p-th moment
exponential convergence

Introduction

The research of Hopfield neural networks (NNs) has been
widespread in different fields because of their extensive
applications; for instance, image processing, pattern recog-
nition, associative memory and combinational optimization;
see [1–5]. When applying NNs to solve many practical prob-
lems in optimization,NNs are usually designed to be globally
asymptotically or exponentially stable to avoid spurious
responses or the problem of local minima. Hence, explor-
ing the convergence of NNs is of primary importance; see
[6–11], and references therein.

It is generally known that the external perturbations is
unavoidable in practical applications. A large class of nat-
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ural phenomena with time evolution behaviors cannot be
described by the classical Brownian motion. Nevertheless,
the fractional Brownian motion (fBm) has a strong nature
of memory, which can better simulate the noise from sur-
rounding environments. It is of great practical significance
to study fractional Brownian motion in the fields of physics,
financial, hydrology, telecommunications and random net-
work control; see [12–14]. Recently, an increasing number
of people are interested in exploring the dynamic behav-
ior for a variety of differential equation systems driven
by the fBm. In [15–19], the asymptotic behavior of solu-
tion for stochastic differential equations driven by the fBm
were investigated, and the conditions to ensure the existence
and uniqueness of solution were proposed. Boufoussi and
Hajji [20,21] considered the existence of a mild solution
for neutral stochastic functional differential equations driven
by the fBm in a Hilbert space. Furthermore, Boufoussi et
al. [22,23] investigated the existence and uniqueness of a
mild solution for time-dependent neutral stochastic func-
tional differential equations driven by the fBm. Ferrante
and Rovira [24,25] explored the convergence of stochastic
delay differential equations driven by the fBm with Hurst
parameter H > 1/2. Taniguchi et al. [26] discussed the
existence, uniqueness and asymptotic behavior of mild solu-
tions to stochastic functional differential equations in Hilbert
spaces. In [27], the existence and uniqueness of positive
solutions were considered for higher-order nonlocal frac-
tional differential equations by the fBm . Wei andWang [28]
investigated the existence and uniqueness of the solution
for stochastic functional differential equations with infinite
delay.

Very recently, a little work with respect to the dynamic
behavior of neural networked system driven by fBm have
been reported in [29–31]. In [29], the authors discussed the
exponential synchronization for stochastic NNs with delay
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driven by fBm and, by using ingenious mathematical trans-
formative technique and some well-known inequality, the
exponential synchronization condition was established. In
[30], by applying the numerical method, the authors consid-
ered the mean-square dissipativity of a class of stochastic
NNs with the fBm and jumps.

It should be pointed out that, in [29], under the assump-
tion of the existence of a solution, the authors addressed the
exponential synchronization results for stochastic NNs with
delay driven by fBm. In [30], the existence of a solution for
NNs with the fBm was not also considered. It is well known
that the system, which has the state solution, is only useful in
the real-world application. For all we know, in the literature,
very little attention has been paid to the investigation of the
the existence and uniqueness of the solution for stochastic
NNs systems driven by fBm.

Motivated by the previous discussion, in this paper, Based
on the analytical semi-groups theory and by means of the
moment inequality of wick-type integral, the p-th moment
exponential convergence condition of the mild solution is
developed. This researchmethod is different from themethod
of the general dynamics system, such as linear matrix
inequality approach and M-matrix technique. In addition,
the p-norm we give is different from the usual 2-norm, and
thus the conditions given are different. To the best of our
knowledge, the p-norm requires more stringent conditions.
Nowadays, few people have conducted a comprehensive
study of this aspect. The study of convergence problem is
meaningful and challenging for the stochastic neural network
with the memorial perturbation effect.

Notation. Rn and Rn×n denote n-dimensional Euclidean
space and the set of all n × n real matrices. If Bis a
symmetric matrix, B = BT , where the superscript T
denotes the transpose. Denote by λmax(B) and λmin(B)

the largest and smallest eigenvalues of B, respectively. Let

r = (r1, r2, . . . , rn)T ∈ Rn , denote by ‖r‖ = (
∑n

i=1 r
p
i )

1
p

the vector norm. For any matrix A = (ai j )n×m , the Hilbert–

Schmidt norm is defined as ‖A‖ = (
∑m

i=1
∑n

j=1 |ai j |2) 1
2 =

(tr(AT A))
1
2 . Diag{...} stands for the diagonalmatrix. (�,F ,

P) is a complete probability space with a filtration {Ft }t≥0

satisfying the usual conditions (i.e., the filtration contains
all P-null sets and is right continuous). The (·, ·) represents
the inner product. (U, ‖ · ‖, (·, ·)U ) and (K , ‖ · ‖, (·, ·)K )

denote the separable Hilbert spaces, and let L(K ,U ) be the
space of all bounded linear operators from K to U . Let
Q ∈ L(K , K ) be a non-negative self-adjoint operator and
denote by L p

Q(K ,U ) the space of all ξ ∈ L(K ,U ) such

that ξQ
1
2 is a Hilbert–Schmidt operator. If x(·) a measurable

function on F, then |x(·)|p ∈ L(F) . The E(·) stands for the
mathematic expectation operator with respect to the given
probability measure on R.

Preliminaries and model description

Preliminaries

If ST is a closed subset of a Banach space X and ψ : ST →
ST is a contraction on ST , then ψ has a unique fixed point
x̄ in ST . Also, if x0 in ST is arbitrary, then the sequence
{xn+1 = ψxn, n = 0, 1, . . .} converges to x̄ as n → ∞
and |x̄ − xn| ≤ λn|x1 − x0|/(1 − λ), where λ < 1 is the
contraction constant for ψ on ST .

BH = {BH (t), t ∈ R} on (�,F ,P) is called the normal-
ized (two sided) fBm with Hurst parameter H ∈ ( 12 , 1). B

H

is a centered Gaussian process with covariance function:

RH (s, t) = 1

2
(t2H + s2H − |t − s|2H ).

Moreover, BH has the followingWiener integral representa-
tion:

BH (t) =
∫ t

0
KH (t, s)dβ(s),

where β = {β(t) : t ∈ [0, T ]} is a Wiener process, and
KH (t, s) is the kernel given by

KH (t, s) = cH s
1
2−H

∫ t

0
(u − s)H− 3

2 uH− 1
2 du,

for t > s, where

cH =
√

H(2H − 1)

β(2 − 2H, H − 1
2 )

,

and β(·, ·) denotes the Beta function. We take KH (t, s) = 0
if t ≤ s.

We consider a U -valued stochastic process BH
Q (t) given

by the following series:

BH
Q (t) =

∞∑

n=1

βH
n (t)Q

1
2 en =

∞∑

n=1

√
λnβ

H
n (t)en, t ≥ 0,

where βH
n (t)(n = 1, 2, . . .) are a sequence of two-sided

one-dimensional, standard fBm mutually independent on
(�,F ,P). The en(n = 1, 2, . . .) is a complete orthonor-
mal basis in K , and Q ∈ L(K , K ) is a non-negative
self-adjoint operator defined by Qen = λnen with trace
tr Q = ∑∞

n=1 λn < ∞, where λn ≥ 0 (n = 1, 2, . . .) are
non-negative real numbers. BH

Q (t) is a U-valued Q-fractional
Brownian motion.

The followingwill introduce someconcepts about stochas-
tic integration of fBm.
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Lemma 1 [31] Let (σ (t), t ∈ [0, T ]) be a stochastic
process such that σ ∈ LP

Q(K ,U ). The following exist:

lim|π |→0
∑n−1

i=0 σπ(ti )♦(BH
Q (ti+1)− BH

Q (ti )), and this limit

is defined as
∫ T
0 σ(s)dBH

Q (s). Moreover, this integral satis-

fies E
∫ T
0 σ(s)dBH

Q (s) = 0 and

E

∣
∣
∣
∣

∫ T

0
σ(s)dBH

Q (s)

∣
∣
∣
∣

2

= E

{(∫ T

0
D∅

s σ(s)ds

)2

+ ∣
∣1[0,T ]σ

∣
∣2
∅

}

.

Remark 1 [31]To extend the theory of stochastic calculus for
the fractional Brownian motion, the Wick calculus for Gaus-
sian process (Gaussian measures) is used. The Wick product
of exponentials ε( f ) and ε(g) is defined as ε( f )♦ε(g) =
ε( f + g), where E = {∑n

k=1 akε( fk), n ∈ N, ak ∈ R, fk ∈
Rn for k ∈ {1, . . . , n}} is the linear span of the exponentials.
This definition can be extended to define the Wick product
F♦G of two functionals F and G of E .

Lemma 2 [31] Let P > 2. If there exists σ(s) : [0, T ] �−→
LP
Q(K ,U ) satisfing D∅

s σ = 0 and σ(s) ≥ 0 such that

E
∫ T
0 |σ(s)|pds < ∞, then

E

∣
∣
∣
∣

∫ T

0
σ(s)dBH

Q (s)

∣
∣
∣
∣

p

≤ (p(p − 1))
p
2 T

p−2
2

× E
∫ T

0

(

σ(s)
∫ s

0
φ(u, s)σ (u)du

) p
2

ds (1)

holds.

Proof We take 0 ≤ t ≤ T , x(t) = ∫ t
0 σ(s)dBH

Q (s). Accord-
ing to I t ô formula, we have

|x(t)|p = x(0) +
∫ t

0
p|x(t)|p−1σ(s)dBH

Q (t)

+
∫ t

0
P(P − 1)|x(t)|p−2σ(s)D∅

s x(s)ds.

Without loss of generality, let x(0) = 0; by Lemma 1, it
obtains

E |x(t)|p = E
∫ t

0
p(p − 1)|x(s)|p−2σ(s)D∅

s x(s)ds

= E
∫ t

0
p(p − 1)|x(s)|p−2σ(s)

×
(

D∅

s

∫ s

0
σ(u)dBH

Q (u)

)

ds

= E
∫ t

0
p(p − 1)|x(s)|p−2σ(s)

×
(

D∅

s

∫ ∞

0
σ(u)1[0,s]dBH

Q (u)

)

ds

= E
∫ t

0
p(p − 1)|x(s)|p−2σ(s)

×
(∫ ∞

0
φ(u, s)σ (u)1[0,s]du

)

ds

=
∫ t

0
p(p − 1)|x(s)|p−2σ(s)

(∫ s

0
φ(u, s)σ (u)du

)

ds

= p(p−1)E
∫ t

0
|x(s)|p−2σ(s)

(∫ s

0
φ(u, s)σ (u)du

)

ds.

Noting that σ(s) > 0, then E |x(t)|p regarding t is non-
decreasing which implies that

E |x(t)|p ≤ p(p − 1)E

(∫ t

0
|x(s)|pds

) p−2
p

×
[

E
∫ t

0

(

σ(s)
∫ s

0
φ(u, s)σ (u)du

) p
2

ds

] 2
p

≤ p(p − 1)(t E |x(t)|p) p−2
p

×
[

E
∫ t

0
(σ (s)

∫ s

0
φ(u, s)σ (u)du)

p
2 ds

] 2
p

.

Furthermore, we can obtain

(E |x(t)|p) 2
p ≤ p(p − 1)t

p−2
p

×
[

E
∫ t

0

(

σ(s)
∫ s

0
φ(u, s)σ (u)du

) p
2

ds

] 2
p

.

It is obvious that

E |x(t)|p ≤ (p(p − 1))
p
2 t

p−2
2 E

∫ t

0

(

σ(s)
∫ s

0
φ(u, s)σ (u)du

) p
2

ds.

Finally, by substituting t with T, we can get the inequality
(1). This completes the proof.

Remark 2 [31] Suppose that σ(s) : [0, T ] �−→ LP
Q(K ,U ) is

a stochastic process. The processσ is said to be∅-differentia-
ble, if for each t ∈ [0, T ], σ (t, ·) is ∅-differentiable and
D∅

s Ft is jointly measurable. It is worth noting that one of
the properties of the ∅-differentiable is

D∅

s

∫ ∞

0
σ(u)dBH

Q (u) =
∫ ∞

0
∅(s, t)σ (u)du,

where∅ : R+ × R+ −→ R+ is given by∅(s, t) = H(2H −
1)|s − t |2H−2.

Lemma 3 [31] Let p > 2, if there exists σ(s) : [0, T ] �−→
LP
Q(K ,U ) satisfing σ(s) ≥ 0 and σ(s) is nondecrescent,

such that E
∫ T
0 |σ(s)|pds < ∞. Then
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E

∣
∣
∣
∣

∫ T

0
σ(s)dBH

Q (s)

∣
∣
∣
∣

p

≤ (p(p − 1)H)
p
2 T pH−1E

∫ T

0
|σ(s)|pds (2)

holds.

Proof According to Lemma 2, we can derive that

E

∣
∣
∣
∣

∫ T

0
σ(s)dBH

s

∣
∣
∣
∣

p

≤ (p(p − 1))
p
2 T

p−2
2

× E
∫ T

0

(

σ(s)
∫ s

0
φ(u, s)σ (u)du

) p
2

ds

≤ (p(p − 1))
p
2 T

p−2
2

× E
∫ T

0
|σ(s)|p

(∫ s

0
φ(u, s)du

) p
2

ds

≤ (p(p − 1))
p
2 T

p−2
2 E

∫ T

0
|σ(s)|p

× H
p
2 s

2Hp−p
2 ds

≤ (p(p − 1)H)
p
2 T

p−2
2 E

∫ T

0
|σ(s)|pds.

At last, we can get the inequality (2). This proof can be com-
pleted.

Lemma 4 (Hölder’s inequality) Let p > 1, 1
p + 1

q =
1, x(·) ∈ Lp(F), y(·) ∈ Lq(F), then x(·)y(·) ∈ L(F), and

∫

F
|x(t)y(t)|dt ≤

(∫

F
|x(t)|pdt

) 1
p
(∫

E
|y(t)|qdt

) 1
q

holds.

Model description

Consider the stochastic HNNs driven by fractional Brownian
motion of the form

dx(t) = [−Cx(t) + B f (x(t)) + D]dt + σ(t, x(t))dBH
Q (t),

(3)

where x(t) = (x1(t), x2(t), . . . , xn(t))T is the vector of
neuron states at time t; C = diag(c1, c2, . . . , cn) is a
diagonal matrix with entries ci > 0(i = 1, . . . , n);
B = (bi j )n×n is an n × n interconnection matrix; D =
(D1, . . . , Dn)

′
is a constant vector of neural networks;

f (t) = ( f1(t), f2(t), . . . , fn(t))T (i = 1, . . . , n) are the
neuron activation functions; σ(·): R+ × Rn → Rn×n is the
noise intensity matrix, which can be regarded as a result

from the occurrence of stochastic perturbation. The noises
BH (t) ∈ Rn are an n-dimensional fBm with Hurst index
1
2 < H < 1.

Assumption 1 There exist L0, L1, L2, L3 > 0, such that,
for all t ∈ [0,∞) and x(t), y(t) ∈ Rn

‖σ(t, x(t))‖ ≤ L0‖x(t)‖, ‖ f (x(t))‖ ≤ L1‖x(t)‖,
‖ f (x(t)) − f (y(t))‖ ≤ L2‖x(t) − y(t)‖,
‖σ(t, x(t)) − σ(t, y(t))‖ ≤ L3‖x(t) − y(t)‖.

Assumption 2 Let Dom(N):⊂ U → U be the infinitesimal
generator of an analytic semigroup S(·) on U, that is, there
exists a constant M > 0 such that

‖S(t)‖ ≤ Me−at t ≥ 0, a > 0. (4)

Remark 3 [29] In this remark, we give exemplification for
the existence of infinitesimal generator of an analytic semi-
group by example as follows:

S(t)x =
∞∑

n=1

e−n2t < x, en > en, ∀x ∈ H, t > 0,

where en(t) =
√

2
π
sin(nt)(n = 1, 2, . . .) are orthogonal

eigenvectors. And ‖S(t)‖ ≤ e−π2t , t > 0.

Existence and uniqueness of a mild solution

In this section, we study the existence and uniqueness ofmild
solutions for Eq. (3). To do so, we assume that the following
conditions hold.

(H.1) (S(t))t≥0, of bounded linear operators on H, and sat-
isfied

‖S(t)‖ ≤ M, for M > 0.

(H.2) Let P > 2, σ ∈ L p
Q(K ,U ), Dφ

s σ = 0, and σ(s) is
nondecreasing, such that

E
∫ T

0
|σ(s)|pds < ∞, ∀T > 0.

We give the following definition of mild solutions for Eq.(3).

Definition 1 [29]AU -valued process x(t) is said to be amild
solution of Eq. (3) based on the space of Hilbert–Schmidt
operator if the above assumptions and the lemma established,
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corresponding to the initial function φ(x) ∈ L p(�,U ), for
all t ∈ [0, T ] such that

x(t) = S(t)φ(0)+
∫ t

0
S(t − s)[−Cx(s)+B f (x(s))+D]ds

+
∫ t

0
S(t − s)σ (s)dBH

Q (s).

Theorem 1 Suppose that Assumption 1, (H.1) and (H.2)
hold. Let λC = λmax (C), λB = λmax (

BT +B
2 ), where C is

a diagonal matrix and B is an n × n matrix. Then for all
T > 0, Eq. (3) has a unique mild solution on [0, T ].
Proof Let �T := L p

F0
([0, T ], L p(�,U )) be the Hilbert

space of all continuous functions from [0, T ] into L p(�,U ),
equipped with the supremum norm ‖ξ‖�T = supv∈[0,T ]
(E‖ξ‖P )

1
P and let us consider the set ST is a closed subset

of �T provided with the norm ‖ · ‖�T . Define the operator ψ

on ST by ψ(x)(t) = φ(t) for t ∈ [0, T ]

ψ(x)(t) = S(t)φ(0) − C
∫ t

0
S(t − s)x(s)ds

+ B
∫ t

0
S(t − s) f (x(s))ds

+
∫ t

0
S(t−s)Dds+

∫ t

0
S(t−s)σ (s, x(s))dBH

Q (s),

then it is clear that the proof of the existence ofmild solutions
to Eq. (3) is equivalent to find a fixed point for the operator
ψ .

Next, by using Banach fixed point theorem, we show that
ψ has a unique fixed point. We divide the subsequent proof
into two steps.

Step 1 For arbitrary x ∈ ST , let us prove that t → ψ(x)(t)
is continuous on the interval [0, T ] . Let 0 ≤ t ≤ T and |h|
be sufficiently small. Then for any fixed x ∈ ST , we have

‖ψ(x)(t + h) − ψ(x)(t)‖ ≤ ‖(S(t + h) − S(t))(φ(0))‖

+ C ×
∥
∥
∥
∥

∫ t+h

0
S(t + h − s)x(s)ds −

∫ t

0
S(t − s)x(s)ds

∥
∥
∥
∥

+ B ×
∥
∥
∥
∥

∫ t+h

0
S(t + h − s) f (x(s))ds

−
∫ t

0
S(t − s) f (x(s))ds

∥
∥
∥
∥ +

∥
∥
∥
∥

∫ t+h

0
S(t + h − s)Dds

−
∫ t

0
S(t − s)Dds

∥
∥
∥
∥ +

∥
∥
∥
∥

∫ t+h

0
S(t + h − s)σ (s, x(s))dBH

Q (s)

−
∫ t

0
S(t − s)σ (s, x(s))dBH

Q (s)

∥
∥
∥
∥ =

∑

1≤i≤5

Ii (h),

where Ii stands for every item of a polynomial, i =
(1, 2, 3, 4, 5).

By the strong continuity of S(t),wehave limh→0 (S(t+h)

−S(t)) φ(0) = 0. The condition (H.1) assures that ‖(S(t
+h) − S(t))φ(0)‖ ≤ 2M‖φ(0)‖, then, by the Lebesgue
dominated theorem, we conclude that first item

lim
h→0

E |I1(h)|p = 0.

For the second term I2(h), suppose h > 0 (Similar esti-
mates hold for h < 0), we obtain

I2(h) ≤ λC

∥
∥
∥
∥

∫ t

0
(S(h) − I )S(t − s)x(s)ds

∥
∥
∥
∥

+ λC

∥
∥
∥
∥

∫ t+h

t
S(t + h − s)x(s)ds

∥
∥
∥
∥

= I21(h) + I22(h),

where I21(h) and I22(h) represent the first and second terms
of the polynomial, respectively. Using Hölder’s inequality,
one has that

E |I21(h)|p ≤λ
p
c t

p
2 E

( ∫ t

0
‖(S(h)− I )S(t−s)x(s)‖2ds

) p
2

.

By using the strong continuity of S(t), for each s ∈ [0, t],
we have

lim
h→0

((S(h) − I )S(t − s)x(s)) = 0.

By using condition (H.1), one obtains ‖(S(h) − I )S(t − s)x
(s)‖ ≤ (M + 1)M ‖x(s)‖ , and by the Lebesgue dominated
theorem, we conclude that limh→0 E |I21(h)|p = 0.

By conditions (H.1) and Hölder’s inequality, we get

E |I22(h)|p ≤ λ
p
CM

Ph
p
2

(∫ t

0
‖x(s)‖2ds

) p
2

≤ λ
p
CM

Ph
p
2

∫ t

0
‖x(s)‖pds,

then limh→0 E |I2(h)|p = 0.
Third item:

I3(h) ≤ λB

∥
∥
∥
∥

∫ t

0
(S(h) − I )S(t − s) f (x(s))ds

∥
∥
∥
∥

+λB

∥
∥
∥
∥

∫ t+h

t
S(t + h − s) f (x(s))ds

∥
∥
∥
∥

= I31(h) + I32(h).

Owing to Hölder’s inequality, one has that

E |I31(h)|p ≤ λ
p
B t

p
2 E

( ∫ t

0
‖(S(h) − I )S(t − s) f (x(s))‖2ds

) p
2

.
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For each s ∈ [0, t], it is clear that limh→0((S(h) − I )S(t −
s) f (x(s))) = 0. Besides, ‖(S(h) − I )S(t − s) f (x(s))‖ ≤
(M + 1)M ‖ f (x(s))‖ , we conclude that

lim
h→0

E |I31(h)|p = 0.

We use conditions (H.1) and Hölder’s inequality to derive

E |I32(h)|p ≤ λ
p
BM

Ph
p
2

(∫ t

0
‖ f (x(s))‖2ds

) p
2

≤ λ
p
BM

Ph
p
2

∫ t

0
‖ f (x(s))‖pds,

after that, limh→0 E |I3(h)|p = 0.
Fourth item:

I4(h) ≤
∥
∥
∥
∥

∫ t

0
(S(h) − I )S(t − s)Dds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t+h

t
S(t + h − s)D)ds

∥
∥
∥
∥ = I41(h) + I42(h).

By Hölder’s inequality, one has E |I41(h)|p ≤ t
p
2 E

( ∫ t
0 ‖(S

(h) − I )S(t − s) × D‖2ds) p
2 , and limh→0(S(h) − I )S(t −

s)D = 0, next, ‖(S(h) − I )S(t − s)D‖ ≤ (M + 1)M‖D‖,
that is, limh→0 E |I41(h)|p = 0. Moreover, E |I42(h)|p ≤
MPh

p
2 (

∫ t
0 ‖D‖2ds) p

2 , at last limh→0 E |I4(h)|p = 0.
In addition, the fifth item is

I5(h) ≤
∥
∥
∥
∥

∫ t

0
(S(h) − I )S(t − s)σ (s, x(s))dBH

Q (s)

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t+h

t
S(t + h − s)) × σ(s, x(s))dBH

Q (s)

∥
∥
∥
∥

= I51(h) + I52(h).

Utilizing Lemma 3, we obtain

E |I51(h)|p ≤ E

∥
∥
∥
∥

∫ t

0
(S(h) − I )S(t − s)L0x(s)dB

H
Q (s)

∥
∥
∥
∥

p

≤ L p
0 (p(p − 1)H)

p
2 t pH−1E

∫ t

0
‖(S(h) − I )S(t − s)x(s)‖pds

≤ L p
0 M

P (p(p − 1)H)
p
2 t pH−1E

∫ t

0
‖(S(h) − I )x(s)‖pds.

By Lemma 3, we get

E |I52(h)|p ≤ E

∥
∥
∥
∥

∫ t+h

0
‖S(t + h − s)σ (s, x(s))dBH

Q (s)

∥
∥
∥
∥

p

≤ L p
0 M

P (p(p−1)H)
p
2 h pH−1E

∫ t

0
‖x(s)‖pds.

That is to say limh→0 E |I52(h)|p = 0, then limh→0 E
|I5(h)|p = 0. The above arguments show that

lim
h→0

E ‖ψ(x)(t + h) − ψ(x)(t)‖p = 0.

Hence, we conclude that the function t → ψ(x)(t) is con-
tinuous on [0, T ] in L p-sense.

Step 2 We will show that ψ is a contraction mapping in ST1
with some T1 ≤ T to be specified later.

Let x, y ∈ ST ; by using the inequality (a + b + c)p ≤
3p−1a p + 3p−1bp + 3p−1cp, we can derive the following
inequality for any fixed t ∈ [0, T ],

‖ψ(x)(t) − ψ(y)(t)‖p

≤ 3p−1λ
p
C

∥
∥
∥
∥

∫ t

0
S(t − s)(x(s) − y(s))ds

∥
∥
∥
∥

p

+ 3p−1λ
p
B

∥
∥
∥
∥

∫ t

0
S(t − s)( f (x(s)) − f (y(s)))ds

∥
∥
∥
∥

p

+ 3p−1
∥
∥
∥
∥

∫ t

0
S(t − s)(σ (s, x(s)) − σ (s, y(s)))dBH

Q (s)

∥
∥
∥
∥

p

≤ 3p−1λ
p
CM

p
∥
∥
∥
∥

∫ t

0
(x(s) − y(s))ds

∥
∥
∥
∥

p

+ 3p−1λ
p
BM

pL p
2

∥
∥
∥
∥

∫ t

0
(x(s) − y(s))Pds

∥
∥
∥
∥

p

+ 3p−1λ
p
BM

pL p
3

∥
∥
∥
∥

∫ t

0
(x(s) − y(s)) dBH

Q (s)

∥
∥
∥
∥

p

,

then

E‖ψ(x)(t) − ψ(y)(t)‖p

≤ 3p−1λ
p
CM

P E

∥
∥
∥
∥

∫ t

0
(x(s) − y(s))ds

∥
∥
∥
∥

p

+3p−1λ
p
BM

P L p
2 E

∥
∥
∥
∥

∫ t

0
(x(s) − y(s)) ds

∥
∥
∥
∥

p

+3p−1MPL p
3 E

∥
∥
∥
∥

∫ t

0
(x(s) − y(s))dBH

Q (s)

∥
∥
∥
∥

p

≤ 3p−1λ
p
CM

p
∫ t

0
E ‖(x(s) − y(s))‖p ds

+3p−1λ
p
BM

pL p
2

∫ t

0
E ‖x(s) − y(s)‖p ds

+3p−1MpL p
3 (p(p − 1)H)

p
2 t pH−1

×E
∫ t

0
‖x(s) − y(s)‖p ds.

Hence,

sup
s∈[0,t]

E‖ψ(x)(s) − ψ(y)(s)‖p

≤ δ(t) sup
s∈[0,t]

E‖x(s) − y(s)‖p,
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where δ(t) = 3p−1λ
p
CM

Pt+3p−1λ
p
BM

P L p
1 t+3p−1MpL p

2

(p(p − 1)H)
p
2 t pH .

We have δ(0) = 0 < 1. Then there exists 0 < T1 < T
such that 0 < δ(T1) < 1 and ψ is a contraction mapping on
ST1 and has a unique fixed point, which is a mild solution of
Eq. (3) on [0, T1].

This procedure can be repeated to extend the solution to
the entire interval [0, T ] in finitely many steps. This com-
pletes the proof.

Exponential convergence of solution

Now, we are in a position to present the stability results of
the solution to Eq. (3). To establish some sufficient condi-
tions ensuring the pth moment exponentially stable for mild
solution of Eq. (3), we further assume:

(H.3) There exist non-negative real numbers Q1 ≥ 0 and
continuous functions ξ(t) : [0,∞) → R+ such that

E ‖ f (x(t))‖p ≤ Q1E ‖x(t)‖p + ξ(t), t ≥ 0,

and there exist nonnegative real numbers ξ1 ≥ O such
that |ξ(t)| ≤ ξ1e−apt.

Theorem 2 Suppose that the conditions (H.1)–(H.3), Assu-
mption 1 and 2 hold. Let p > 2, λC = λmax (C), λB =
λmax (

BT +B
2 ), where C is a diagonal matrix and B is an n ×

n matrix. Then the solution of Eq. (3) is the pth moment
exponentially stable.

Proof Let x0 = φ(0), it has

E ‖x(t)‖p ≤ 5p−1E‖S(t)φ(0)‖p

+ 5p−1λ
p
C E

∥
∥
∥
∥

∫ t

0
S(t − v)x(v)dv

∥
∥
∥
∥

p

+ 5p−1λ
p
B E

∥
∥
∥
∥

∫ t

0
S(t − v) f (x(v))dv

∥
∥
∥
∥

p

+ 5p−1E

∥
∥
∥
∥

∫ t

0
S(t − v)Ddv

∥
∥
∥
∥

p

+ 5p−1E

∥
∥
∥
∥

∫ t

0
S(t − v)σ (v)dBH

Q (v)

∥
∥
∥
∥

p

=
5∑

i=1

Ii .

It is obvious that I1 ≤ 5p−1Mpe−pat E‖φ(0)‖p ≤ 5p−1Mp

e−at E‖x0‖p.On the other hand, by the Hölder inequality we
derive that

I2 ≤ 5p−1λ
p
CM

pE

(∫ t

0
e− a

q (t−v)e− a
p (t−v)‖x(v)‖dv

)p

≤ 5p−1λ
p
CM

p
(∫ t

0
e−a(t−v)dv

) p
q

∫ t

0
e−a(t−v)

× E‖x(v)‖pdv

≤ 5p−1λ
p
CM

p
(
1 − e−at

a

) p
q

e−at
∫ t

0
eavE‖x(v)‖pdv.

Similarly,

I3 ≤ 5p−1λ
p
BM

pE

(∫ t

0
e− a

q (t−v)e− a
p (t−v)‖ f (x(v))‖dv

)p

≤ 5p−1λ
p
BM

p
(∫ t

0
e−a(t−v)dv

) p
q

∫ t

0
e−a(t−v)

× E ‖ f (x(v))‖p dv

≤ 5p−1λ
p
BM

p
(
1 − e−at

a

) p
q

e−at
∫ t

0
eav

× E ‖ f (x(v))‖p dv

≤ 5p−1λ
p
BM

p
(
1 − e−at

a

) p
q

e−at
∫ t

0
eav

× (
Q1E‖x(v)‖p + ξ(v)

)
dv

≤ 5p−1λ
p
BM

p
(
1 − e−at

a

) p
q

Q1e
−at

∫ t

0
eav

× (E‖x(v)‖pdv + 5p−1λ
p
BM

p
(
1 − e−at

a

) p
q

ξ1e
−at .

The same truth,

I4 ≤ 5p−1M2pE

(∫ t

0
e−a(t−2v)e−av‖D‖dv

)p

≤ 5p−1M2p
(∫ t

0
e− a

2 q(t−2v)dv

) p
q

×
∫ t

0
e−apvE‖D‖pdv≤5p−1M2p

[

e
aqt
2

(1−e−aqt )

qa

] p
q

× e−apt E‖D‖p

= 5p−1M2p
(
1 − e−aqt

a

) p
q

e− ap
2 t E‖D‖p.

By virtue of Lemma 3, we can deduce

I5 ≤ 5p−1E

∥
∥
∥
∥

∫ t

0
S(t − v)σ (v)dBH (v)

∥
∥
∥
∥

p

≤ 5p−1LP
0 M

pE

∥
∥
∥
∥

∫ t

0
e−a(t−v)x(v)dBH (v)

∥
∥
∥
∥

p

≤ 5p−1LP
0 M

p(p(p − 1)H)
p
2 t pH−1
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× E
∫ t

0

∥
∥eavx(v)

∥
∥p dv · e−apt .

≤ 5p−1LP
0 M

p(p(p − 1)H)
p
2 e

−apt
2 t pH−1

×
∫ t

0
eavE‖x(v)‖pdv · e−apt

2

≤ 5p−1LP
0 M

p(p(p − 1)H)
p
2 e

−apt
2 t pH−1

×
∫ t

0
eavE‖x(v)‖pdv · e−at

Note that
(
1−e−aqt

a

)
≤ 1

a , suppose that

M0 = 5p−1MpE‖x0‖p, M1 = 5p−1λ
p
CM

p
(
1

a

) p
q

M2 = 5p−1λ
p
BM

p
(
1

a

) p
q

Q1, M
′
2 = 5p−1λ

p
BM

p
(
1

a

) p
q

ξ1

M3 = 5p−1Mp
(
1

a

) p
q

E‖D‖p,

where Q1 and ξ1 are given in (H.3), and condition (H.2)
ensures the existence of a positive constant M4 such that

5p−1L p
0 M

p(p(p − 1)H)
p
2 e

−apt
2 t pH−1 ≤ M4.

Then we have

E‖x(t)‖p ≤ M0e
−at + M1e

−at
∫ t

0
eavE‖x(v)‖pdv

+ M2e
−at

∫ t

0
eavE‖x(v)‖pdv + M

′
2e

−at

+ M3e
−at + M4

∫ t

0
eavE‖x(v)‖pdv · e−at .

That is to say,

E‖x(t)‖p ≤ (M0+M
′
2+M3)e

−at + (M1+M2 + M4)e
−at

×
∫ t

0
eavE‖x(v)‖pdv; (5)

therefore, for arbitrary ε ∈ R+ with 0 < ε < a − (M1 +
M2 + M4) and T > 0 large enough, we have

∫ T

0
eεt E‖x(t)‖pdt ≤ (M0 + M

′
2 + M3)

∫ T

0
e−at+εtdt

+ (M1 + M2 + M4) ×
∫ T

0
eεt−at

∫ t

0
eavE‖x(v)‖pdvdt.

(6)

On the other hand,

∫ T

0
eεt−at

∫ t

0
eavE‖x(v)‖pdvdt =

∫ T

0

∫ T

v

eav

× E‖x(v)‖pe(ε−a)tdtdv

=
∫ T

0
eavE‖x(v)‖pdv

(
e−(a−ε)v

a − ε
− e−(a−ε)T

a − ε

)

≤ 1

a − ε

∫ T

0
eεv−aveavE‖x(v)‖pdv; (7)

therefore, combining (6) with (7) yields

∫ T

0
eεt E‖x(t)‖pdt

≤ (M0 + M
′
2 + M3)

∫ T

0
eεt−atdt

+ (M1 + M2 + M4)

a − ε

∫ T

0
eεt E‖x(t)‖pdt. (8)

Accordingly,

(

1 − (M1 + M2 + M4)

a − ε

) ∫ T

0
eεt E‖x(t)‖pdt

≤ (M0 + M
′
2 + M3)

∫ T

0
eεt−atdt. (9)

Since a > M1 + M2 + M4, it is probable to choose a suit-
able ε ∈ R+ with 0 < ε < a − (M1 + M2 + M4) so that
(M1+M2+M4)

a−ε
< 1. Let T > 0 tend to infinity and using (9)

immediately yields

∫ ∞

0
eεt E‖x(t)‖pdt

≤ 1

1 − M1+M2+M4
a−ε

[

(M0 + M
′
2 + M3)

∫ ∞

0
eεt−atdt

]

= K
′
(p, ε, φ) < ∞. (10)

By virtue of (5), (9) and (10), we can easily deduce (note
0 < ε < a − (M1 + M2 + M4))

E‖x(t)‖p ≤ (M0 + M
′
2 + M3)e

−εt

+ (M1 + M2 + M4)e
−εt

∫ ∞

0
eεvE‖x(v)‖pdv

= (M0 + M
′
2 + M3)e

−εt

+ (M1 + M2 + M4)e
−εt K

′
(p, ε, φ)

≤
[
(M0 + M

′
2 + M3) + (M1 + M2 + M4)K

′

×(p, ε, φ)
]
e−εt

:= K (p, ε, φ)e−εt ; (11)
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consequently,

E‖x(t)‖p ≤ K (p, ε, φ) · e−εt .

Numerical examples

In this section, we can provide the following examples to
illustrate the effectiveness and feasibility for the results we
obtained.

Example 1 Consider the two- dimensional neural system
driven by fBm with Hurst index H = 0.65. The correspond-
ing parameters are as follows:

C =
(−1 0

0 −1.5

)

, B=
(

4 −0.5
−4.5 6.5

)

, D=(4.1,−11.1)T .

Neuron activation function f (x(t)) is as follows: f (x(t)) =
|x(t)+1|−|x(t)−1|

2 . Take t ∈ [0, 10] and set the initial state
as x1(t) = (−1, 1)T , x2(t) = (−6, 8)T . Select the noise
intensity matrix σ(t) as follows:

σ(t) =
(
0.6 −0.8
0.8 0.6

)

×
(
exp(−t)
exp(−t)

)

.

By calculating, we derive that

λC = −1.0000, λB = 7.2026.M0 = 70.7107,

M1 = −0.25, M2 = 0.0934,

M
′
2 = 0.0934, M3 = 414.2250, M4 = 5.2237 × 10−5.

Let a = 10, and satisfied that a > M1 + M2 + M4, we can
derive that 0 < ε < 10.1565. Let ε = 5. It can be computed
that

K
′
(p, ε, φ) = 96.8797 < ∞.

K (p, ε, φ) = 469.8674.

It is easy to verify that the conditions of Theorem 2 are
satisfied. Therefore, the system (3) with respect to fBm is the
pth moment exponentially stable (see Fig. 2). To understand
the content of the paper thoroughly, we give a graph of the
fractional Brownian motion; see Fig. 1.

Example 2 Consider a three-dimensional system driven by
fractional Brownian motion with Hurst index H = 0.6. The
network parameters are as follows:

C =
⎛

⎝
−2 0 0
0 −1.5 0
0 0 −1.5

⎞

⎠, B=
⎛

⎝
−2 0.5 2
−0.5 1.5 0.5
2 1.5 2

⎞

⎠,

D = (0, 0, 0)T .

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

FB
M

Fig. 1 Fractional Brownian motion when H = 0.6

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

t

x(
t)

x1
x2

Fig. 2 The curves of stochastic HNNs system with Fractional Brown-
ian motion

Neuron activation function f (x(t)) is as follows:

f (x(t)) = tanh(x(t)) = exp(x(t)) − exp(−x(t)

exp(x(t)) + exp(−x(t)
.

Take t ∈ [0, 10] and set the intitial state as

x1(t) = (4,−1, 9)T , x2(t) = (3, 7, 10)T ,

x3(t) = (−5, 2, 9)T , x4(t) = (−3, 1, 5)T .

Select the noise intensity matrix σ(t) as follows:

σ(t) =
⎛

⎝

1
8 − 8

9 − 5
9

− 8
9

1
8 − 5

9
− 5

9 − 5
9

7
8

⎞

⎠ ×
⎛

⎝
exp(−t)
exp(−t)
exp(−t)

⎞

⎠ .

123



28 Complex Intell. Syst. (2018) 4:19–29

0 2 4 6 8 10
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8

10

t

x(
t)

x1
x2
x3

Fig. 3 The curves of the stochasticHNNs systemwith fractionalBrow-
nian motion

By calculating, we derive that

λC = −1.5000, λB = 3.0976. M0 = 129.9050,

M1 = −3.3750, M2 = 0.0297, M
′
2 = 29.7219, M3 = 0,

M4 = 0.0944.

Let a = 5, and satisfied that a > M1 + M2 + M4, we can
derive that 0 < ε < 8.2509. Let ε = 2. It can be computed
that

K
′
(p, ε, φ) = 98.8306 < ∞.

K (p, ε, φ) = 60.7963.

System (3) with respect to fBm meets the conditions of
Theorem 2. Figure 3 shows the pth moment exponentially
stable of the stochastic HNNs driven by fractional Brownian
motion.

Conclusion

In this paper, the existence, uniqueness and asymptotic
behavior of mild solutions have been discussed for stochas-
tic neural networked systems driven by fractional Brownian
motion. The proof of existence and uniqueness of mild
solution has been analytically given in a Hilbert space. In
addition, the p-th moment exponential convergence condi-
tion of the mild solution has been presented.

It would be interesting to extend the results here obtained
to more general neural networked models incorporating the
presence of a delay in neuron interconnections. This topic
will be a challenging issue for future research.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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