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Abstract To control complex systems with limited res-
ources, critical nodes need to be identified for protection
or removal. Loss of critical nodes decreases or minimizes
a system’s ability to diffuse entities such as information,
goods, or diseases. We design three metrics to assess sys-
tem homogeneity, diffusion speed, and diffusion scale, and
investigate their performance over complex systems. Six
algorithms using the three metrics to identify critical nodes
are examined. The three nonpolynomial-time algorithms
identify the most critical nodes (global optimum). The
three polynomial-time algorithms identify critical nodes step
by step (local optima), but do not guarantee the global
optimum. The three polynomial-time algorithms are com-
pared to other critical nodes identification algorithms and
have better performance; they may be applied to practical
problems to efficiently identify critical nodes in complex
systems.

Keywords Complex system · Critical node · Diffusion ·
Graph theory · Identification for control

Introduction

Vulnerabilities to natural disasters and terrorist violence
require a better understanding of complex systems and new
methods of protection and prevention [4]. The objective of
this research is to apply informative performance metrics to
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identify critical nodes in complex systems such as smart grid,
social networks, information systems, and criminal organi-
zations. For example, to protect an electrical power grid,
most vulnerable transformers and stations whose failures
will cause large-scale blackouts (hence they are also crit-
ical nodes) need to be provided with backup capacity or
enhanced security. For another example, to ensure public
safety and security, key members of a criminal or terrorist
organization need to be neutralized (e.g., captured or iso-
lated).

Ideally, we would like to protect all nodes in an electrical
power grid or an information system. In reality, resources
are limited. To protect all nodes in a large system is not
affordable. Time to respond to a criminal activity or terror-
ist attack is short. It is necessary to apply limited resources
to the most critical nodes to maximize the effect of either
protecting a system or destroying a criminal or terrorist
organization. Previous research on critical nodes identifi-
cation (CNI) suggested a few metrics, but did not indicate
why and how they might be useful in practical problems.
Some metrics and related CNI algorithms (e.g., [23]) devel-
oped earlier can only be applied to systems with special
structures. In addition, previous research predominantly
studied different CNI algorithms in order to maximize or
minimize performance metrics. The characteristics of per-
formance metrics were not studied or used to identify critical
nodes.

This research investigates a set of informative perfor-
mance metrics and applies them to identify critical nodes
in complex systems. The main contributions of this research
include: (a) development of three new system performance
metrics that describe desired properties of complex systems;
(b) design of algorithms that use the metrics to identify crit-
ical nodes; and (c) analysis of characteristics of the metrics
and algorithm complexity.
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Background

Nodes in a complex system represent machines, equipment,
workstations, computers, generators, control units, operators,
and other components each of which is modeled as a separate
entity. Edges (links) between nodes represent the flow of
entities including products, services, and information. Nodes
are linked directly or indirectly. If a node j is linked to a
node j ′ directly, there is an edge between the two nodes.
When two nodes j and j ′ are linked indirectly, there is at
least one path between j and j ′ through other nodes so that
entities can be diffused from j to j ′ and/or from j ′ to j .When
two nodes are not linked, there is no path between the two
nodes. Entities may flow along both directions between two
nodes connected by an undirected edge [10,11,13]. Directed
edges are also called arcs; entities may flow along only one
direction between two nodes connected by an arc.

There have been many studies on CNI, and complex net-
works and complex systems in general [29]. Most recently,
Shen and Smith [23] used dynamic programming algorithms
to identify critical nodes in trees and series–parallel systems.
The performance metrics of interest were: (a) the number of
components, which was to be maximized; and (b) the largest
component order (i.e., the number of nodes in a component),
which was to be minimized. For systems which can be mod-
eled as trees and series-parallel graphs, the complexity of the
dynamic programming algorithms was at most O(n5 log n).
These algorithms may be extended to generalized connected
systems, which are interpreted as k-hole systems. The com-
plexity of the algorithms, however, increases exponentially
as k increases. The algorithms are not applicable to systems
with disconnected components.

Analysis of system vulnerability is related to CNI. Dinh
et al. [16] used dynamic programming to identify critical
nodes and links. The algorithms developed were approxima-
tion algorithms and the complexity was at most O(log1.5 n).
The performance metric of interest was pairwise connectiv-
ity. The pairwise connectivity between two nodes is one if
this pair is connected and zero otherwise. In an undirected
system, a pair of nodes is connected if and only if there exists
at least one path (in both directions) between the two nodes.
The system pairwise connectivity is the sum of pairwise con-
nectivity between any pair of nodes. For a given level of
degradation in pairwise connectivity, it was shown that to
find a minimum set of nodes or edges (called β-disruptor),
whose removal causes the specific level of degradation, was
an NP-complete problem for undirected systems.

CNI was also studied in the context of system reliability
[28]. A reliabilitymetric,�, was used to describe the average
reliability between every pair of nodes in a system. An evo-
lutionary algorithm was used to identify critical components
(nodes), the removal of which aimed to minimize both �

and the cost of incapacitating links (multiple-objective opti-

mization). The evolutionary algorithmprovidedgood-quality
solutions; its Pareto fronts (efficient frontiers) were close to
the real Pareto optimal solutions.

In the study of the Internet andWorldWideWeb [1,7] and
more generally complex systems such as airline routes, elec-
tric power grids, and disease propagation [8], the diameter
of a system, which is the average length of the shortest paths
between any two nodes in the system, was analyzed when
nodes were removed according to the number of links they
have; nodes with more links were removed first. Compared
to removing randomly selected nodes, the link-based node
removal increased the diameter faster, although the diameter
does not always increase when a node is removed.

Earlier studies on CNI focused on general systems and
algorithm complexity. For a fixed system property (i.e., a
value or a range of values for a performance metric), a node-
deletion problem aims to find the minimum number of nodes
which must be deleted from a given system so that the result
satisfies the property. It was shown that the node-deletion
problem for a system property is NP-hard or NP-complete if
the property is nontrivial and hereditary [19,25]. A system
property is nontrivial if it is true for infinitely many systems
and false for infinitelymany systems.Aproperty is hereditary
if for any system satisfying the property, all nodes-induced
subsystems also satisfy the property.

Results of recent studies on CNI validate the node-
deletion problem analyzed more than 30years ago. The
largest component order in a system [23] is nontrivial and
hereditary. Testing (certificate-checking) for the largest com-
ponent order can be performed in polynomial time. For
instance, a depth-first algorithm such as Tarjan’s algorithm
may be used to identify the largest component order with the
complexity of O(nodes + edges). A systemwith n nodes has
at most n(n−1)

2 edges. The certificate-checking is therefore
bounded by O(n2). When the largest component order is the
performance metric of interest, to identify the most critical
nodes, whose removal minimizes the largest component size,
is NP-complete according to Lewis and Yannakakis [19].

Similarly, the system pairwise connectivity [16] is non-
trivial and hereditary. Tarjan’s algorithm may be used to find
pairwise connectivity between any pair of nodes and fur-
ther calculate the pairwise connectivity. The CNI problem
is therefore NP-complete when the system pairwise connec-
tivity is of concern. Not all system performance metrics are
hereditary, however. The system diameter [1] is not heredi-
tary. Deleting a node may decrease the diameter although it
increases the diameter most of the time. The CNI problem
might belong to class P if the objective is to maximize the
system diameter.

Some other recent work is related to CNI. In physics
and engineering, research was focused on developing math-
ematical models and analyzing system properties [2,12,22].
In social science, many measures including centrality [17],
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complement [14], and reciprocal [5] were developed to
describe system properties. In industrial process monitor-
ing and control where multiple processes form a complex
manufacturing system, data-driven approaches were applied
for fault prognostics and diagnostics [26,27]. Borgatti [5]
defined two types of problems to assess the importance of
nodes. The Key Player Problem-Positive studied the extent
to which a node is embedded in the system. The Key Player
Problem-Negative studied the amount of reduction in cohe-
siveness of a systemafter elimination of a node. TheDynamic
Network Modeling (DNA) [4,9,20,24] was developed to
model and analyze complex systems. The DNA was suc-
cessfully applied to terrorist networks and used to identify
critical nodes through simulation experiments.

In summary, previous research on CNI validated cer-
tain analytical results and alluded to their applications to
practical problems, but failed to design metrics that are
meaningful for practical problems. There are two types of
CNI problems: the optimization problem and the recogni-
tion problem. In the optimization problem, given limited
resources (i.e., a certain number of nodes need to be pro-
tected or removed), which nodes’ removal can minimize or
maximize a performancemetric? In the recognition problem,
given a desired property (e.g., ≥ the value of a performance
metric or ≤ the value of a performance metric), what is
the minimum number of nodes that need to be protected or
removed to satisfy the property? These two types of prob-
lems are equivalent in terms of algorithm complexity. This
research is focused on the optimization problem, namely, to
identify the most critical nodes. What was missing in pre-
vious research, which is the focus of this study, lies in two
areas:

(a) Which properties of a complex system need to be mea-
sured? A set of performance metrics must be designed to
assess the impact of removing a portion of nodes from
a complex system. Previous research suggested a few
metrics, but did not indicate why and how they might
be useful in practical problems. In addition, some met-
rics and related CNI algorithms (e.g., [23]) can only be
applied to systems with special structures. This research
designs three metrics that indicate a complex system’s
speed and scale of diffusing entities, which are useful in
many real-world application; and

(b) What are the characteristics of performance metrics?
Previous research predominantly studied different CNI
algorithms in order to maximize or minimize per-
formance metrics. The characteristics of performance
metrics affect the efficiency and effectiveness of CNI
algorithms. Moreover, performance metrics themselves
can be used to identify critical nodes. This research iden-
tifies the values for each of the three new performance
metrics and their corresponding network structures of a

complex system, which provide important insight into
how these metrics may be used to identify critical nodes.

Problem definition

Let G(V, E) represent a system of n vertices (nodes) and s
edges. n and s are the order and size ofG(V, E), respectively.
V is a set of all nodes in G(V, E) : v1, v2, . . . , vn . E is a set
of all edges in G(V, E) : e1, e2, . . . , es . A path from vi to
v j is a set of nodes and edges that connect vi and v j , with
which entities may be diffused from vi to v j . In an undirected
G(V, E), any edge is bidirectional, or undirected; a path from
vi to v j is also a path from v j to vi . A directed G(V, E) has
at least one directed edge (arc). An arc from vi to v j connects
vi and v j ; entities may be diffused from vi to v j , but not from
v j to vi . Since information is diffused in both directions in
most social and information networks, this research focuses
on CNI for undirected systems.

G(V, E)’s ability to diffuse entities such as information,
goods, or diseases [15] is reflected in homogeneity, diffusion
speed, and diffusion scale, all of which are performance met-
rics that describe the properties of G(V, E) [3]. In a system
with high homogeneity (i.e., a homogeneous network), rela-
tionships between nodes are the same or similar. In a network
with low homogeneity (i.e., a heterogeneous network), rela-
tionships between nodes are much different. Diffusion speed
indicates how fast entities are diffused between nodes. Diffu-
sion scale indicates how many nodes in G(V, E) diffuse (or
receive) entities to (or from) other nodes. This research inves-
tigates using performancemetrics to identify critical nodes in
G(V, E); removal of critical nodes minimizes homogeneity,
diffusion speed, and/or diffusion scale. When resources are
limited, CNI helps control systems in order to, for example,

(a) minimize the possibility and scale of criminal organiza-
tions or terrorist attacks by neutralizing the most critical
criminals or terrorists;

(b) maximize a computer network’s resilience to incidents
(e.g., cyber-attacks) and accidents (e.g., random com-
puter failures) by protecting the most critical nodes such
as routers and servers; and

(c) minimize disruptions in sensor or logistics networks by
providing backup capacity to the most critical nodes.

Performance metrics

Homogeneity: normalized expected geodesic distance

Nodes vi and v j are neighbors if an edge connects vi and v j .
The geodesic distance, dvi ,v j , is the distance of the shortest
path(s) between vi and v j . If vi and v j are neighbors, dvi ,v j =
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1. If there exists no path between vi and v j , dvi ,v j = 0.
Suppose vi diffuses entities to other nodes in a system with a
total of n nodes, the expected geodesic distance (EGD) from

vi to other nodes is
∑n

j=1, j �=i dvi ,v j
n−1 . Further, suppose all nodes,

v1, v2, . . . , vn , have equal probability, 1
n , to be the source

node that begins the diffusion of entities to other nodes, the

EGD of the network is EGD =
∑n−1

i=1
∑n

j=i+1 dvi ,v j
n(n−1)

2

.

At each step of diffusion, a node diffuses entities to all
its neighbors. The EGD indicates the expected number of
steps it takes to diffuse entities from the source node to
other nodes. If diffusion time is proportional to the num-
ber of steps, the larger the EGD is, the longer is the total
diffusion time and the lower is the diffusion speed. Since
0≤ dvi ,v j ≤ n − 1, 0 ≤ EGD ≤ n − 1. EGD = 1 for a
clique, which is a fully connected network (i.e., dvi ,v j = 1 for
∀vi , v j ). EGD = 0 for a fully disconnected network without
any edge (i.e., s = 0). In a connected network, dvi ,v j ≥ 1 for
∀vi , v j ; in a disconnected network, ∃vi , v j such that dvi ,v j =
0. Figure 1 depicts two systems 1(a) and 1(b). For 1(a),
EGD = (1+2+3+4)+(1+2+3)+(1+2)+1

5(5−1)
2

= 2. For 1(b), EGD =
(1+2+3+1+2+3)+(1+2+3+2+3)+(1+2+3+3)+(1+2+3)+(1+2)+1

7(7−1)
2

=
2. Both systems have the same EGD (i.e., on average, it takes
the same amount of time (two steps) to diffuse entities).

The EGD indirectly measures a network’s diffusion speed
and does not take into consideration the order of the network,
n. For instance, entities can be diffused to total five nodes in
1(a) (n = 5), whereas they can be diffused to total seven
nodes in 1(b) (n = 7). Moreover, 1(b) is more homogenous
than 1(a). The largest geodesic distance (LGD) of 1(b) is
three, whereas the LGD of 1(a) is four (the distance of the
shortest path between nodes 1 and 5). System 1(a) is less
homogenous than 1(b) because there is a larger difference
between the smallest geodesic distance and LGD in 1(a) than
in 1(b).

To accurately measure a system’s homogeneity, the nor-
malized expected geodesic distance (NEGD) is defined inEq.
(1) for n > 1. In essence, NEGD = EGD

LGD . NEGD = 0.500
for 1(a) and NEGD = 0.667 for 1(b). The larger the NEGD

1

2
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4

5

1
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45
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(a) A system of five nodes. (b) A system of seven nodes.

Fig. 1 Two systems with the same EGD

is, the more homogeneous is a system. NEGD = 1 for a
clique. For a fully disconnected system, it is defined that
NEGD = 0. Although such a system is homogeneous, it is
the most desirable case when the goal is to destroy a system
and the worst case when the goal is to protect a system. Let
θ(vi ) be the degree of vi , the number of edges that connect
vi and its neighbors. The NEGD of G(V, E) is summarized
in Proposition 1.

NEGD =
∑n−1

i=1
∑n

j=i+1 dvi ,v j

n(n−1)LGD
2

(1)

Proposition 1 Suppose G(V, E) has total n nodes. Let n f

(0 ≤ n f ≤ n) be the number of fully connected nodes vi s.
θ(vi ) = n − 1. Table 1 depicts the NEGD of G(V, E).
0≤ NEGD ≤ 1. NEGD ≤ c, 0≤ c ≤ 1, is a nontrivial
property of G(V, E). NEGD ≤ c, c = 0 or c = 1, is a
hereditary property of G(V, E). NEGD ≤ c, 0< c < 1, is a
nonhereditary property of G(V, E).

Proof of Proposition 1 When n = 1, NEGD = 0 per defini-
tion.
When n = 2, NEGD = 0 if there is no edge; NEGD = 1 if
there is one edge.
When n ≥ 3, let V f represent a set of nodes, each of which
is connected to other n− 1 nodes in G(V, E). θ(vi ) = n− 1
for ∀vi ∈ V f . θ(v j ) < n−1 for ∀v j /∈ V f . V f has n f nodes;
0 ≤ n f ≤ n.

(a) n f = n. G(V, E) is a clique and NEGD = 1;
(b) n f �= n − 1. If n f = n − 1, there is only one node, say

v j ∈ V , such that v j /∈ V f (i.e., θ(v j ) < n − 1). Since
all n − 1 nodes in V f have the degree of n − 1, all n − 1
nodes in V f must be connected to v j . This indicates that
θ(v j ) = n−1. This is contradictory to the condition that
v j /∈ V f . Therefore n f �= n − 1;

(c) 1≤n f ≤n−2.NEGD≤
n f (n f −1)

2 +n f (n−n f )+2
(n−n f )(n−n f −1)

2

2 n(n−1)
2

= 1 − n f (2n−n f −1)
2n(n−1) = 1

2n(n−1)

[
( 2n−1

2 − n f )
2

+ 4n2−4n−1
4

]
. Since 1 ≤ n f ≤ n − 2 < 2n−1

2 , NEGD ≤
n−1
n when n f = 1. Since limn→∞ n−1

n = 1,NEGD < 1.

NEGD >

n f (n f −1)
2 +n f (n−n f )+ (n−n f )(n−n f −1)

2

2 n(n−1)
2

= 1
2 .

1
2 <

NEGD < 1; and
(d) n f = 0. Three different situations can be analyzed:

LGD = n − 1, 1 ≤ LGD ≤ n − 2, and LGD = 0.

(i) LGD = n − 1. If n = 3, then n f = 1, which
is contradictory to n f = 0. Therefore n ≥ 4.
G(V, E) comprised a chain of n nodes. (An exam-
ple is shown in Fig. 1a)

∑n
i=1

∑n
j=i+1 dvi ,v j =

[1 + · · · + (n − 1)] + [1 + · · · + (n − 2)] + · · · +
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Table 1 NEGD of G(V, E) with total n nodes and n f fully connected nodes

G(V, E) NEGD

Value/range n → ∞
n = 1 0

n = 2 n f = n 1

n f = 0 0

n ≥ 3, n f �= n − 1 n f = n 1

1 ≤ n f ≤ n − 2
(
1
2 , 1 − n f (2n−n f −1)

2n(n−1)

] ( 1
2 , 1

)

n f = 0 LGD = n − 1, n �= 3 1
3 + 2

3(n−1)

(
1
3 , 5

9

]

1 ≤ LGD ≤ n − 2
[

(LGD+1)(LGD+2)
3n(n−1) , 1 − 2(LGD+1)(LGD−1)

3n(n−1)

)
(0, 1)

LGD = 0 0

[1 + 2] + 1 = n(n−1)
2 + (n−1)(n−2)

2 + · · · + 3×2
2 +

2×1
2 = 1

2

[
((n − 1)2 + (n − 2)2 + · · · + 22 + 12)

+((n − 1) + (n − 2) + · · · + 2 + 1)] = 1
2[

(n−1)n(2n−2+1)
6 + n(n−1)

2

]
= (n−1)n(n+1)

6 . NEGD=
∑n

i=1
∑n

j=i+1 dvi ,v j
n(n−1)

2 (n−1)
=

(n−1)n(n+1)
6

n(n−1)
2 (n−1)

= n+1
3(n−1) = 1

3 +
2

3(n−1) . NEGD is strictly monotonically decreasing.

When n = 4, NEGD = 5
9 . Since

limn→∞
[
1
3 + 2

3(n−1)

]
= 1

3 ,
1
3 < NEGD ≤ 5

9 ;

(ii) 1 ≤ LGD ≤ n − 2. There exists at least one chain
of nodes, say V1; the distance of the shortest path
between the two end nodes of the chain is LGD. V1

has LGD + 1 nodes. NEGD =
∑n

i=1
∑n

j=i+1 dvi ,v j
n(n−1)

2 LGD
=

LGD(LGD+1)(LGD+2)
6 +∑

i, j dvi ,v j
n(n−1)

2 LGD
≥

LGD(LGD+1)(LGD+2)
6

n(n−1)
2 LGD

=
(LGD+1)(LGD+2)

3n(n−1) ≥ 2
n(n−1) . Since limn→∞ 2

n(n−1) =
0,NEGD>0.Meantime,NEGD=

∑n
i=1

∑n
j=i+1 dvi ,v j

n(n−1)
2 LGD

=
LGD(LGD+1)(LGD+2)

6 +∑
i, j dvi ,v j

n(n−1)
2 LGD

<

LGD(LGD+1)(LGD+2)
6 +

[
n(n−1)

2 − LGD(LGD+1)
2

]
LGD

n(n−1)
2 LGD

= 1 −
2(LGD+1)(LGD−1)

3n(n−1) ≤ 1; and
(iii) LGD = 0. NEGD = 0 per definition.

The desired system property in the recognition problem
is NEGD ≤ c, where 0 ≤ c ≤ 1. This property is nontriv-
ial since it is true for infinitely many systems and false for
infinitely many systems for given c. NEGD ≤ 1 is heredi-
tary since the maximum of NEGD is one. NEGD ≤ 0 if and
only if G(V, E) does not have any edge; any subsystem of
G(V, E) does not have any edge. NEGD ≤ 0 is also hered-
itary. When 0 < c < 1, NEGD ≤ c is nonhereditary. The
proof is as follows.

For any value of c, 0 < c < 1, G(V, E) may be con-
structed such that it includes only one edge and NEGD =

2
n(n−1) ≤ c < 1, n ≥ 3. A subsystem of G(V, E), which has
two nodes and one edge that connects the two nodes, may be
produced by removing all nodes without any edge. For this
subsystem, NEGD = 1 > c. NEGD ≤ c, 0 < c < 1, is
therefore nonhereditary.

This concludes the proof of Proposition 1. ��
Proposition 1 reveals the homogeneity of G(V, E) (n ≥

3):

(a) If G(V, E) is a clique (i.e., n f = n), NEGD = 1. A
clique is the most homogeneous among all system struc-
tures. NEGD remains one regardless of which nodes
are removed from G(V, E) (hereditary). All nodes in
G(V, E) are equally critical;

(b) If G(V, E) has at least one node that is fully connected
but is not a clique (i.e., 1 ≤ n f ≤ n − 2), NEGD is
greater than 0.5 and less than one;

(c) IfG(V, E) does not have any node that is fully connected
(i.e., n f = 0), but comprised a chain of n nodes (i.e.,
LGD = n − 1), NEGD is described by a closed form,
NEGD = 1

3 + 2
3(n−1) . NEGD is strictly monotonically

decreasing as n increases. As a chain becomes longer, it
is less homogeneous;

(d) IfG(V, E) does not have any node that is fully connected
(i.e., n f = 0), and does not comprise a chain of n nodes
(i.e., 1 ≤ LGD ≤ n − 2), NEGD is greater than zero
and less than one. Most real-world networks follow this
structure (n f = 0 and 1 ≤ LGD ≤ n−2) andNEGDcan
be used to describe their homogeneity and help identify
critical nodes;

(e) If G(V, E) does not have any edge (i.e., LGD = 0),
NEGD = 0; and

(f) Compared to the NEGD (13 < NEGD ≤ 1
2 ) of G(V, E)

(n ≥ 5) that comprised a chain, the NEGD (12 <
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Table 2 NEMS of G(V, E)

with total n nodes and n f fully
connected nodes

G(V, E) NEMS

Value/range n → ∞
n = 1 0

n = 2 n f = n 1

n f = 0 0

n ≥ 3, n f �= n − 1 n f = n 1

1 ≤ n f ≤ n − 2 0.5

n f = 0 LGD = n − 1, n �= 3 1
n−1

(
0, 1

3

]

1 ≤ LGD ≤ n − 2
[
LGD+1
n(n−1) , n−2

n

]
(0, 1)

LGD = 0 0

NEGD ≤ 1) of G(V, E) that has at least one fully con-
nected node is higher. Systems with at least one fully
connected node are more homogeneous than those with
the chain structure.

Diffusion speed: normalized expected minimum speed

G(V, E) comprises components. A component is discon-
nected from all other components in G(V, E); there are no
edges that connect nodes in one component and nodes in
another component. Nodes in the same component are con-
nected to each other directly or indirectly. G(V, E) has only
one component if it is a clique. A fully disconnectedG(V, E)

of n nodes comprised n components, each of which has one
node. At each step of diffusion, a node vi diffuses entities to
all its neighbors. After one ormore steps, entities are diffused
to all nodes in the component towhich vi belongs. Let LGDvi

be the largest geodesic distance of the component to which
vi belongs. LGDvi is the maximum number of steps required
for all nodes in the component to receive entities diffused
from a randomly selected node vi . Let nvi be the total num-
ber of nodes in the component to which vi belongs; nvi is the
order of the component. nvi − 1 is the total number of nodes

that receive entities diffused from vi .
nvi −1
LGDvi

is the expected

minimumnumber of nodes that receive entities diffused from
vi at each step.

nvi −1
LGDvi

is the minimum diffusion speed of the

component to which vi belongs. All nodes in the same com-

ponent have the same minimum diffusion speed.

∑n
i=1

nvi −1
LGDvi
n

is the expectedminimum speed,which indicates the expected
minimumnumber of nodes inG(V, E) that receive entities at

each step of diffusion. The maximum value of

∑n
i=1

nvi −1
LGDvi
n is

n− 1, which is for a clique. To compare systems of different
orders, the normalized expected minimum speed (NEMS) is
defined in Eq. (2) for n > 1. NEMS = 0 for a fully dis-
connected G(V, E) and NEMS = 1 for a clique. The larger
the NEMS is, the higher diffusion speed does G(V, E) have.
For the two systems in Fig. 1, NEMS = 0.250 for 1(a) and

NEMS = 0.333 for 1(b); system 1(b) has higher speed than
1(a).

NEMS =
∑n

i=1
nvi −1
LGDvi

n(n − 1)
(2)

Proposition 2 Suppose G(V, E) has total n nodes and n f

(0 ≤ n f ≤ n) fully connected nodes. Table 2 depicts the
NEMS of G(V, E). 0 ≤ NEMS ≤ 1.NEMS ≤ c, 0≤ c ≤ 1,
is a nontrivial property of G(V, E). NEMS ≤ c, c = 0 or
c = 1, is a hereditary property of G(V, E). NEMS ≤ c,
0< c < 1, is a nonhereditary property of G(V, E).

Proof of Proposition 2 When n = 1, NEMS = 0 per defini-
tion.
When n = 2, NEMS = 0 if there is no edge; NEMS = 1 if
there is one edge.
When n ≥ 3,

(a) n f = n. G(V, E) is a clique and NEMS = 1;
(b) n f �= n − 1 (see proof in Proposition 1);

(c) 1 ≤ n f ≤ n − 2. NEMS =
∑n

i=1
n−1
2

n(n−1) = 1
2 ; and

(d) n f = 0. Three different situations can be analyzed:
LGD = n − 1, 1 ≤ LGD ≤ n − 2, and LGD = 0.

(i) LGD = n − 1. n ≥ 4 (see proof in Proposition 1).
G(V, E) comprised a chain of n nodes. NEMS =
∑n

i=1
n−1
n−1

n(n−1) = 1
n−1 . NEMS is strictly monotonically

decreasing. When n = 4, NEMS = 1
3 . Since

limn→∞ 1
n−1 = 0, 0 < NEMS ≤ 1

3 ;
(ii) 1 ≤ LGD ≤ n − 2. There exists at least one chain

of nodes; the distance of the shortest path between
the two end nodes of the chain is LGD. Suppose
this chain of nodes belongs to a component V1,
which has n1 nodes. n1 ≥ LGD + 1. NEMS =
∑n

i=1
nvi −1
LGDvi

n(n−1) =
∑

V1
n1−1
LGD +∑

V−V1

nvi −1
LGDvi

n(n−1) . The minimum

value of
∑

V−V1
nvi −1
LGDvi

is zero; each node vi , vi /∈
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V1, is disconnected from other nodes.
∑

V1
n1−1
LGD =

n1(n1−1)
LGD ≥ LGD + 1. Therefore, NEMS ≥ LGD+1

n(n−1) .

When NEMS = LGD+1
n(n−1) , G(V, E) comprised n −

LGD components. One component has LGD + 1
nodes, which form a chain; the other n− (LGD + 1)
components each have one node. When LGD = 1,
limn→∞ LGD+1

n(n−1) = limn→∞ 2
n(n−1) = 0. When

LGD = n−2, limn→∞ LGD+1
n(n−1) = limn→∞ n−1

n(n−1) =
limn→∞ 1

n = 0. NEMS > 0.
To find themaximumofNEMS, note that

∑
V−V1

nvi −1
LGDvi

≤ ∑
V−V1(nvi − 1). When

∑
V−V1

nvi −1
LGDvi

=
∑

V−V1(nvi − 1), each node vi , vi /∈ V1, belongs to
a clique and LGDvi = 1. Since there are total n− n1
nodes v′

i s such that vi /∈ V1,
∑

V−V1(nvi − 1) =
∑

V−V1 nvi − (n − n1) ≤ (n − n1)2 − (n − n1).
∑

V−V1
nvi −1
LGDvi

≤ (n − n1)2 − (n − n1). When
∑

V−V1
nvi −1
LGDvi

= (n − n1)2 − (n − n1), not only

each node vi , vi /∈ V1, belongs to a clique, but all
v′
i s, vi /∈ V1, belong to the same clique.

∑
V1

n1−1
LGD +

∑
V−V1

nvi −1
LGDvi

≤ n1(n1−1)
LGD +(n − n1)2−(n − n1) =

n1[(1+LGD)n1−(2LGD·n+1−LGD)]+LGD(n−1)n
LGD . If n1 =

n,
∑

V1
n1−1
LGD + ∑

V−V1
nvi −1
LGDvi

≤ n(n−1)
LGD ; G(V, E)

has one component. If LGD = 1, G(V, E) becomes
a clique, which is contradictory to the condition that

n f = 0.
∑

V1
n1−1
LGD + ∑

V−V1
nvi −1
LGDvi

≤ n(n−1)
LGD ≤

n(n−1)
2 . If n = 3 and LGD = 2, LGD = n−1, which

is contradictory to the condition that LGD ≤ n − 2.
n ≥ 4 when LGD = 2. G(V, E) has a single com-
ponent of n (n ≥ 4) nodes with LGD = 2 when
∑

V1
n1−1
LGD + ∑

V−V1
nvi −1
LGDvi

= n(n−1)
2 .

If n1 < n,
∑

V1
n1−1
LGD +∑

V−V1
nvi −1
LGDvi

≤ n1(n1−
2n + 1) + n(n − 1) + n1(n1−1)

LGD . When LGD = 1,
∑

V1
n1−1
LGD + ∑

V−V1
nvi −1
LGDvi

≤ n(n − 1) − 2n1(n −
n1); G(V, E) comprised two cliques. To further

maximize
∑

V1
n1−1
LGD + ∑

V−V1
nvi −1
LGDvi

, note that

n(n − 1) − 2n1(n − n1)=n(n − 1)+2(n1− n
2 )2 −

n2
2 .When n1 = n−1, n(n − 1)+2(n1 − n

2 )2− n2
2 ≤

(n − 1)(n − 2).When
∑

V1
n1−1
LGD +∑

V−V1
nvi −1
LGDvi

=
(n − 1)(n − 2), G(V, E) comprised two compo-
nents: one is a clique with n − 1 nodes and the
other has one node. n(n−1)

2 = (n − 1)(n − 2) when

n = 4; n(n−1)
2 < (n − 1)(n − 2)whenn > 4. There-

fore,
∑

V1
n1−1
LGD + ∑

V−V1
nvi −1
LGDvi

≤ (n − 1)(n − 2).

NEMS ≤ (n−1)(n−2)
n(n−1) = n−2

n . limn→∞ n−2
n = 1.

NEMS < 1.

In summary, LGD+1
n(n−1) ≤ NEMS ≤ n−2

n . When

NEMS = LGD+1
n(n−1) , G(V, E) comprised a chain of

LGD + 1 nodes, and n − (LGD + 1) components
each have one node. When NEMS = n−2

n , G(V, E)

comprised a clique of n − 1 nodes and another com-
ponent of one node; and

(iii) LGD = 0. NEMS = 0 per definition.

The desired system property in the recognition problem is
NEMS ≤ c, where 0 ≤ c ≤ 1. This property is nontriv-
ial since it is true for infinitely many systems and false for
infinitely many systems for given c. NEMS ≤ 1 is heredi-
tary since the maximum of NEMS is one. NEMS ≤ 0 if and
only if G(V, E) does not have any edge; any subsystem of
G(V, E) does not have any edge. NEMS ≤ 0 is also hered-
itary. When 0 < c < 1, NEMS ≤ c is nonhereditary. The
proof is as follows:

For any value of c, 0 < c < 1,G(V, E) can be constructed
such that it is a chain system and NEGD = 1

n−1 ≤ c < 1,
n ≥ 4. A subsystem of G(V, E), which has two nodes and
one edge that connects the two nodes, may be produced by
removing nodes on either end of the chain until only two
nodes are left. For this subsystem,NEMS = 1 > c. NEMS ≤
c, 0 < c < 1, is therefore nonhereditary.

This concludes the proof of Proposition 2. ��
Proposition 2 reveals the diffusion speed ofG(V, E) (n ≥

3):

(a) If G(V, E) is a clique (i.e., n f = n), NEMS = 1. A
clique has the highest diffusion speed among all sys-
tem structures. Regardless of which source node that
diffuses entities, all other nodes in G(V, E) receive
the entities in one step. NEMS remains one regard-
less of which nodes are removed from G(V, E). All
nodes in G(V, E) are equally critical;

(b) IfG(V, E) comprised a single component, NEMS =
1

LGD .WhenG(V, E)has at least one node that is fully
connected (i.e., 1 ≤ n f ≤ n − 2), G(V, E) com-
prised a single component and LGD = 2; NEMS =
0.5. When G(V, E) does not have any node that is
fully connected (i.e., n f = 0), but comprised a chain
of n nodes (i.e., LGD = n − 1), G(V, E) com-
prised a single component and NEMS = 1

n−1 . In this
case, NEMS is strictly monotonically decreasing as
n increases. As a chain becomes longer, its diffusion
speed decreases;

(c) If G(V, E) does not have any node that is fully con-
nected (i.e., n f = 0), and does not comprise a chain
of n nodes (i.e., 1 ≤ LGD ≤ n−2), NEMS is greater
than zero and less than one. NEMS approaches zero
as n increases when G(V, E) comprised a chain of
LGD + 1 nodes, and n − (LGD + 1) fully discon-
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Table 3 NLCO of G(V, E)

with total n nodes and n f fully
connected nodes

G(V, E) NLCO

Value/range n → ∞
n = 1 0

n = 2 n f = n 1

n f = 0 0

n ≥ 3, n f �= n − 1 n f > 0 1

n f = 0 LGD = n − 1, n �= 3 1

1 ≤ LGD ≤ n − 2
[
LGD
n−1 , 1

]
(0, 1]

LGD = 0 0

nected nodes. In this case, NEMS = LGD+1
n(n−1) . Since

LGD is bounded by n − 2, limn→∞ LGD+1
n(n−1) = 0.

This result is intuitively correct. Fully disconnected
nodes have the lowest diffusion speed. For a com-
ponent, a chain structure has the lowest diffusion
speed. G(V, E) has the lowest diffusion speed if it
comprised a chain structure (with minimum com-
ponent size LGD + 1) and other fully disconnected
nodes.

NEMS approaches one as n increases when
G(V, E) comprised a clique of n − 1 nodes and a
fully disconnected node. In this case, NEMS = n−2

n
and limn→∞ n−2

n = 1. Since a clique has the high-
est diffusion speed and G(V, E) does not have any
fully connected node, G(V, E) has the highest diffu-
sion speed if it comprised a clique with themaximum
order n − 1, and a single fully disconnected node;

(d) If G(V, E) does not have any edge (i.e., LGD = 0),
NEMS = 0; and

(e) Compared to the NEMS (0 < NEMS ≤ 1
3 )

of G(V, E) that comprised a chain, the NEMS
(NEMS = 0.5 or 1) of G(V, E) that has at least one
fully connected node is higher.WhenG(V, E) repre-
sents the typical structure of most real-world systems
(n f = 0 and 1 ≤ LGD ≤ n − 2), 0 < NEMS < 1
andNEMS is a useful performancemetric to describe
how fast entities diffuse in G(V, E).

Diffusion scale: normalized largest component order

Suppose vi is the source node that diffuses entities to other
nodes in G(V, E). nvi − 1 is the number of nodes that
receive entities. Suppose ∀vi ∈ V might be the source
node, max(nvi ) − 1 is the maximum number of nodes that
receive entities if there is only one source node. max(nvi )

is the largest component order in G(V, E). The normalized
largest component order (NLCO; Eq. (3)) indicates the max-
imum scale of (a) terrorist or criminal activities by connected
terrorists or criminals; and (b) networked computers, com-
munication devices, and sensors.

NLCO = max(nvi ) − 1

n − 1
(3)

Proposition 3 Suppose G(V, E) has total n nodes and n f

(0 ≤ n f ≤ n) fully connected nodes. Table 3 depicts the
NLCO of G(V, E). 0 ≤ NLCO ≤ 1. NLCO ≤ c, 0≤ c ≤ 1,
is a nontrivial property of G(V, E). NLCO ≤ c, c = 0 or
c = 1, is a hereditary property of G(V, E). NLCO ≤ c,
0< c < 1, is a nonhereditary property of G(V, E).

Proof of Proposition 3 When n = 1, it is defined that
NLCO = 0.
When n = 2, NLCO = max(nvi )−1

n−1 = 1−1
2−1 = 0 if there is no

edge; NLCO = max(nvi )−1
n−1 = 2−1

2−1 = 1 if there is one edge.
When n ≥ 3,

(a) n f = n or 1 ≤ n f ≤ n−2, G(V, E) comprised a single

component. NLCO = max(nvi )−1
n−1 = n−1

n−1 = 1;
(b) n f �= n − 1 (see proof in Proposition 1); and
(c) n f = 0. Three different situations can be analyzed:

LGD = n − 1, 1 ≤ LGD ≤ n − 2, and LGD = 0.

(i) LGD = n − 1. n ≥ 4 (see proof in Proposition 1).
G(V, E) comprised a chain of n nodes. NLCO =
max(nvi )−1

n−1 = n−1
n−1 = 1;

(ii) 1 ≤ LGD ≤ n−2.Theminimum largest component

order,max(nvi ), is LGD+1.NLCO = max(nvi )−1
n−1 ≥

(LGD+1)−1
n−1 = LGD

n−1 ≥ 1
n−1 . Since limn→∞ 1

n−1 =
0, NLCO > 0. The maximum max(nvi ) is n when
G(V, E) comprised a single component. Systems
with n f = 0 and 1 ≤ LGD ≤ n − 2 may comprise
a single component. For example, G(V, E) com-
prised a chain of n − 1 nodes and another node that
is connected to one of the nodes on the chain other
than the two end nodes. NLCO ≤ 1; and

(iii) LGD = 0. NLCO = max(nvi )−1
n−1 = 1−1

n−1 = 0.

The desired system property in the recognition problem is
NLCO ≤ c, where 0 ≤ c ≤ 1. This property is nontriv-
ial since it is true for infinitely many networks and false for
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infinitely many networks for given c. NLCO ≤ 1 is heredi-
tary since the maximum of NEGD is one. NLCO ≤ 0 if and
only if G(V, E) does not have any edge; any subsystem of
G(V, E) does not have any edge. NLCO ≤ 0 is also hered-
itary. When 0 < c < 1, NLCO ≤ c is nonhereditary. The
proof is as follows:

For any value of c, 0 < c < 1,G(V, E) can be constructed
such that it includes only one edge and NLCO = 1

n−1 ≤ c <

1, n ≥ 3. A subsystem of G(V, E), which has two nodes
and one edge that connects the two nodes, may be produced
by removing all nodes without any edge. For this subsystem,
NLCO = 1 > c. NLCO ≤ c, 0 < c < 1, is therefore
nonhereditary.

This concludes the proof of Proposition 3. ��
Proposition 3 reveals the diffusion scale of G(V, E) (n ≥

3):

(a) G(V, E) comprised a single component if n f > 0 or
LGD = n − 1. G(V, E) may comprise a single com-
ponent if n f = 0 and LGD < n − 1. When G(V, E)

comprised a single component, NLCO = 1;
(b) IfG(V, E) does not have any node that is fully connected

(i.e., n f = 0), and does not comprise a chain of n nodes
(i.e., 1 ≤ LGD ≤ n−2), NLCO is greater than zero and
less than or equal to one. NLCO approaches zero as n
increases if the LGD of G(V, E) is a constant. For large

systems, NLCO ≈ 0 if LGD ≤ c1; c1 is a constant and
c1 � n; and

(c) If G(V, E) does not have any edge (i.e., LGD = 0),

NLCO = max(nvi )−1
n−1 = 1−1

n−1 = 0.

CNI algorithms and complexity

All three performance metrics may be applied to identify
critical nodes. For example, the scale and complexity ofter-
rorist attacks are related to the size of terrorist groups;
smaller groups are less likely to launch coordinated large-
scale attacks. The NLCO may be used to identify critical

terrorists. For another example, to enhance information secu-
rity, it is important to slow down the spread of viruses in
a computer network. The NEMS may be used to identify
vulnerable computers. For engineered systems such as the
Internet and wireless sensor networks, the significance of
using the performance metrics is twofold. First, the perfor-
mance metrics may be applied to compare different system
designs. For instance, the NEMS may be used to gauge the
speed of information diffusion in a wireless sensor network,
and help select the best network designs. Second, the perfor-
mance metrics may be applied to identify critical nodes. In
a computer network, for instance, the NEGD may be used
to identify critical computers whose removal result in a het-
erogeneous network, which is vulnerable to targeted attacks
[1].

Propositions 1 through 3 summarize the performance of
the three metrics over generalized systems, and enable the
assessment and comparison of systems of different orders
and sizes. Algorithms are needed to apply the three metrics
to identify critical nodes.

Nonpolynomial-time CNI algorithms

Given that a maximum of m nodes may be removed from
a system of n nodes (0 < m ≤ n), Algorithm A uses the
NEGD to identify the most critical nodes (i.e., the global
optimal solution) in the system.

The NEGD in Algorithm A may be replaced with NEMS
or NLCO to identify the most critical nodes. Since any per-

formancemetricmust be calculated for
∑m

k=1(
n
k

) sets,which

cannot be completed in polynomial time, the algorithms
that identify the most critical nodes require nonpolynomial
time. For certificate-checking, suppose it is required that
NEGD ≤ c, where c is a constant and c ≥ 0, and a max-
imum of m nodes may be removed from a system of n
nodes (0 < m ≤ n). It takes O(m) time to verify that k
(0 < k ≤ m) nodes are removed from the system. Calcu-
lating NEGD requires O(n3) time. The certificate-checking
of NEGD is in time O(n3). When c ≥ 1, NEGD ≤ c is
always true since the maximum of NEGD is one. CNI can-
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not be performed if desired system property is NEGD ≤ c,
c ≥ 1.When c = 0, NEGD ≤ c is a nontrivial and hereditary
property ofG(V, E) according toProposition 1.CNI is there-
fore NP-complete if desired system property is NEGD ≤ 0.
When 0 < c < 1, NEGD ≤ c is a nontrivial and nonheredi-
tary property ofG(V, E). Theremight exist polynomial-time
CNI algorithms if desired system property is NEGD ≤ c,
0 < c < 1.

Similarly, calculating NEMS or NLCO requires O(n3)
time. The certificate-checking of NEMS or NLCO is in time
O(n3). According to Propositions 2 and 3, both NEMS ≤ 0
and NLCO ≤ 0 are nontrivial and hereditary; both NEMS ≤
c and NLCO ≤ c, 0 < c < 1, are nontrivial and non-
hereditary. CNI is NP-complete if desired system property is
NEMS ≤ 0 or NLCO ≤ 0. There might exist polynomial-
timeCNI algorithms if desired systemproperty isNEMS ≤ c
or NLCO ≤ c, 0 < c < 1.

Polynomial-time CNI algorithms

To reduce complexity, Algorithm B uses the NEGD to iden-
tify critical nodes in a system step by step.

Algorithm B identifies the local optimal solution at each
step and removes the node whose removal minimizes the
NEGD. This algorithm does not guarantee the global opti-
mum, which is achieved by the nonpolynomial-time CNI
algorithms (e.g., Algorithm A). Two algorithms similar to
Algorithm B may be written by replacing the NEGD with
NEMS or NLCO. Calculating NEGD, NEMS, or NLCO
requires O(n3) time. At each step, a performance metric
is calculated for n + 1 − k different systems. Since there
are m steps, the overall complexity of each of the three CNI
algorithms with local optima is O(mn4).

These three algorithms are applied to the network of 9/11
terrorists [18] to identify the critical nodes. Each square (Fig.
2) represents a terrorist and each link represents communi-
cations between two terrorists. There are total 63 nodes and
they form a connected network. Note that for coordinated
attacks, there cannot be disconnected components. None of
the 63 nodes is fully connected (i.e., n f = 0) and the net-
work is not a chain (i.e., LGD < n−1 = 62); this reflects the
structure of many criminal organizations and is designed for
practical purposes such as secrecy. Figures 3, 4 and 5 show
the results of applying Algorithm B to the 9/11 terrorist net-
work. Detailed results are included in Tables 4, 5 and 6 in the
Appendix. These results validate the three propositions. All
three performance metrics are between zero and one. Figure
5 also shows that NLCO ≤ c, 0 < c < 1, is nonhered-
itary because the NLCO does not decrease monotonically
and sometimes increases.

Figures 3 and 4 indicate that both the NEGD and NEMS
are close to zero after almost 30 nodes are removed or neu-
tralized,which are approximately 50%of all terrorists.When
NEGD is close to zero,most nodes are disconnected,whereas
the diffusion speed is almost zero when NEMS is close to

zero. The terrorist network cannot launch any large-scale
attacks after about 30 nodes are removed using Algorithm
B, which is an efficient, polynomial-time algorithm. Fig-
ure 5 shows that the NLCO reaches the minimum after about
30 nodes are removed and then increases slightly before it
becomes zero. This indicates that the portion of nodes that
form a connected group and may launch terrorist attacks is
the smallest after 30 nodes are removed. Removing addi-
tional nodes does not further decrease the portion until almost
all nodes are removed. Overall, the 9/11 terrorists network
is destroyed or neutralized after about 30 critical nodes are
removed using Algorithm B.
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Fig. 2 September 11 terrorist network (adapted from [18])

Fig. 3 NEGD of the 9/11 terrorist network using Algorithm B for CNI

Comparative analysis of CNI algorithms

To further validate Algorithm B, three CNI algorithms,
including degree-based node removal, betweenness-based
node removal, and random node removal, are applied to the
9/11 terrorist network. These three algorithms have been
widely used to identify critical nodes in complex systems.
The degree-based node removal identifies critical nodes
based on their degree [1,21]. The node degree, θ(vi ), is an
indicator of vi ’s connections with other nodes in a system.
Nodes with a larger degree are more critical and are removed

or neutralized first. The betweenness-based node removal
identifies critical nodes based on their betweenness, which
measures the frequency with which a node falls on the short-
est paths connecting pairs of other nodes [17]. Betweenness
indicates the potential of a node in controlling communica-
tions in a system. Nodes with a larger betweenness are more
critical and are removed or neutralized first. Equation (4) cal-
culates the betweenness, Bet (vk), of node vk , where bi j (vk)
(Eq. 5) is the portion of the shortest paths connecting nodes
vi with v j that contain node vk . gi j in Eq. (5) is the total
number of shortest paths connecting vi and v j and gi j (vk)
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Fig. 4 NEMS of the 9/11 terrorist network using Algorithm B for CNI

Fig. 5 NLCO of the 9/11 terrorist network using Algorithm B for CNI

is the number of shortest paths that connect vi and v j and
contain vk .

Bet(vk) =
n∑

i=1

n∑

j=i+1

bi j (vk) (4)

bi j (vk) = 1

gi j
× gi j (vk) (5)

The random node removal randomly selects a node as the
most critical node and removes it from the system. The ran-

dom node removal is expected to have the worst performance
in minimizing the three performance metrics. Figures 6, 7,
and 8 compare the performance of the four CNI algorithms,
Algorithm B, degree-based node removal, betweenness-
based node removal, and random node removal, which are
applied to the 9/11 terrorist network. Figure 6 shows that
AlgorithmB decreases NEGD faster than degree-based node
removal and random node removal. The betweenness-based
node removal has smaller NEGD compared to Algorithm B
between 2 and 24 nodes are removed (Table 4 in the Appen-
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Fig. 6 Comparison of NEGD with different CNI algorithms (Table 4 in the Appendix)

Fig. 7 Comparison of NEMS with different CNI algorithms (Table 5 in the Appendix)

dix). Starting from the 25th node, however, Algorithm B
performs better than the betweenness-based node removal
with smaller NEGD. Overall, Algorithm B has the best per-
formance among all four CNI algorithms and consistently
decreases NEGD.

Figure 7 shows a similar trend observed in Fig. 6. Algo-
rithm B performs the best in minimizing NEMS. Figure 8
shows that Algorithm B decreases NLCO faster than the
random node removal. The degree-based node removal and
betweenness-based node removal have smaller NLCO than
Algorithm B at the beginning, but larger NLCO when there
are a few nodes left in the system. Overall, Algorithm B
should be used to minimize the three performance metrics,
whereas degree-based node removal and betweenness-based

node removal may be used to decrease NLCO more effi-
ciently.

As discussed in Sect. “CNI algorithms and complexity”,
the computational complexity of Algorithm B is O(mn4),
where m is the number of critical nodes and n is the total
number of nodes in a system. The computational complexity
of the degree of a node is O(n). To compute the degree of
all n nodes, the complexity is O(n2). The complexity of the
degree-based node removal is therefore O(mn4), which is
the same as that of Algorithm B. Using Brandes’ Algorithm
[6], calculating the betweenness of a node requires O(ns)
time, where s denotes the number of edges in a system. Since
there are at most n(n−1)

2 edges, the complexity of calculating
betweenness is O(n3). The complexity of the betweenness-
basednode removal isO(mn5). Thebetweenness-basednode
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Fig. 8 Comparison of NLCO with different CNI algorithms (Table 6 in the Appendix)

removal is the second best algorithm among the four CNI
algorithms, but requires more computation time compared to
Algorithm B. The complexity of the random node removal
is O(mn) because the complexity of removing a randomly
selected node at each step is O(n).

Conclusions and future research

Three new performancemetrics, NEGD,NEMS, andNLCO,
are designed to assess a system’s ability of diffusing entities
such as information, goods, or diseases. All three metrics are
normalized and are between zero and one. The higher their
value is, the more capable is a system to diffuse entities.
Characteristics of the three metrics are analyzed for gen-
eralized systems. All three metrics are nontrivial; they are
nonhereditary except for extreme cases (e.g., NEGD ≤ 1 or
NEGD ≤ 0).

These three performance metrics may be used to iden-
tify critical nodes in complex systems. Three nonpolynomial
algorithms (Sect. “Nonpolynomial-time CNI algorithms”)
use the three metrics to identify the most critical nodes (i.e.,
global optimum). CNI isNP-complete if any of the threemet-
rics is required to be less than or equal to zero. There might
exist polynomial-timeCNI algorithms if any of the threemet-
rics is required to be less than or equal to a constant that is
between but exclusive of zero and one. In Sect. “Polynomial-
time CNI algorithms”, three polynomial-time algorithms are
designed to identify critical nodes step by step (i.e., local
optima). These three algorithms with local optima do not
guarantee the identification of the global optimum, but their
algorithm complexity is O(mn4), which is in class P, where
m is the number of critical nodes to be identified and n is the
number of nodes in the system (i.e., system order; m ≤ n).
These polynomial-time algorithms are compared to three

other widely used CNI algorithms, including degree-based
node removal, betweenness-based node removal, and random
node removal. The polynomial-time algorithms developed in
this article have the best performance.

CNI is important in controlling complex systemswith lim-
ited resources. Future research may focus on three areas:

(a) Study the relationship between the three performance
metrics and determine whether they can be integrated or
additionalmetrics are needed to assess desired properties
of complex systems;

(b) Apply the six algorithms to other real-world complex
systems to further validate and compare their perfor-
mance and complexity;

(c) Design other exact or heuristic optimization algorithms
to identify critical nodes. Since the three performance
metrics are nontrivial but nonhereditary properties in
most cases, there might exist exact optimization algo-
rithms that belong to class P; and

(d) Integrate theDNAand the performancemetrics and algo-
rithms developed in this research, and apply them to
systems whose properties, e.g., topology or structure,
change over time.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

See Tables 4, 5 and 6.
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Table 4 Comparison of NEGD
with different CNI algorithms

Number of
nodes removed

NEGD

Algorithm B Degree-based
node removal

Betweenness-based
node removal

Random
node removal

0 0.492063 0.492063 0.492063 0.492063

1 0.403264 0.440508 0.440508 0.495417

2 0.297814 0.436248 0.248306 0.494171

3 0.255618 0.425863 0.197902 0.476083

4 0.201117 0.367167 0.183285 0.480421

5 0.181791 0.330174 0.154467 0.481650

6 0.168603 0.282373 0.128133 0.479845

7 0.157674 0.147774 0.141558 0.545195

8 0.148092 0.090348 0.081145 0.543569

9 0.137965 0.092243 0.078092 0.540741

10 0.130209 0.087083 0.065856 0.561538

11 0.105688 0.073823 0.046456 0.571493

12 0.082241 0.069356 0.048628 0.571137

13 0.069551 0.065539 0.024163 0.573388

14 0.057483 0.047862 0.020068 0.385326

15 0.046809 0.031788 0.019504 0.386525

16 0.038668 0.030924 0.016420 0.387340

17 0.021643 0.023465 0.017069 0.386197

18 0.018182 0.015354 0.012795 0.403752

19 0.015222 0.012156 0.010923 0.416641

20 0.012625 0.011628 0.012182 0.415124

21 0.012195 0.0100658 0.010453 0.331010

22 0.011585 0.00894309 0.008537 0.298984

23 0.010897 0.00769231 0.007051 0.252137

24 0.010122 0.0062978 0.009447 0.241970

25 0.008535 0.00711238 0.009957 0.232639

26 0.007508 0.00600601 0.010511 0.224543

27 0.007143 0.0047619 0.011111 0.217749

28 0.006723 0.00336134 0.011765 0.214515

29 0.006239 0.00178253 0.012478 0.165107

30 0.005682 0 0.011364 0.156487

31 0.004032 0 0.010081 0.084274

32 0.002151 0 0.010753 0.094086

33 0 0 0.011494 0.092529

34 0 0 0.012315 0.084360

35 0 0 0.013228 0.085979

36 0 0 0.011396 0.092593

37 0 0 0.012308 0.088462

38 0 0 0.013333 0.095833

39 0 0 0.014493 0.103261

40 0 0 0.015810 0.087945

41 0 0 0.012987 0.049784

42 0 0 0.014286 0.038095

43 0 0 0.015790 0.042105

44 0 0 0.017544 0.046784

45 0 0 0.019608 0.029412
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Table 4 continued
Number of
nodes removed

NEGD

Algorithm B Degree-based
node removal

Betweenness-based
node removal

Random
node removal

46 0 0 0.022059 0.022059

47 0 0 0.025000 0.020833

48 0 0 0.019048 0.023810

49 0 0 0.021978 0.027473

50 0 0 0.025641 0.032051

51 0 0 0.030303 0.030303

52 0 0 0.036364 0.036364

53 0 0 0.022222 0.044444

54 0 0 0.027778 0.055556

55 0 0 0.035714 0.071429

56 0 0 0.047619 0.095238

57 0 0 0.066667 0.133333

58 0 0 0.100000 0.100000

59 0 0 0.166667 0

60 0 0 0.333333 0

Table 5 Comparison of NEMS
with different CNI algorithms

Number of
nodes removed

NEMS

Algorithm B Degree-based
node removal

Betweenness-based
node removal

Random
node removal

0 0.216931 0.216931 0.216931 0.216931

1 0.147961 0.147961 0.147961 0.216398

2 0.117892 0.132310 0.117892 0.216667

3 0.097892 0.127841 0.097892 0.209171

4 0.088012 0.115838 0.089022 0.209322

5 0.078507 0.103247 0.079653 0.208631

6 0.069737 0.090989 0.068912 0.208777

7 0.061254 0.066786 0.060758 0.213377

8 0.053335 0.050595 0.057205 0.213603

9 0.043528 0.047391 0.054158 0.213836

10 0.038818 0.043581 0.043541 0.222061

11 0.035168 0.036295 0.036890 0.221531

12 0.031909 0.032383 0.032216 0.221941

13 0.028659 0.031318 0.027075 0.221388

14 0.026044 0.026680 0.023101 0.152288

15 0.023569 0.022511 0.023271 0.151348

16 0.021587 0.020715 0.021508 0.150370

17 0.019648 0.018479 0.021176 0.150013

18 0.018014 0.016919 0.019950 0.156831

19 0.016737 0.016737 0.017970 0.154888

20 0.015319 0.015319 0.017165 0.153888

21 0.014131 0.014518 0.015679 0.144541

22 0.013008 0.012805 0.014024 0.135935

23 0.011966 0.010897 0.011539 0.085108

24 0.009897 0.008772 0.009447 0.077553

25 0.008535 0.007112 0.009957 0.069949
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Table 5 continued
Number of
nodes removed

NEMS

Algorithm B Degree-based
node removal

Betweenness-based
node removal

Random
node removal

26 0.006006 0.006006 0.000277 0.069371

27 0.004762 0.004762 0.000300 0.068554

28 0.003361 0.003361 0.000327 0.067071

29 0.001783 0.001783 0.000357 0.067177

30 0 0 0.000334 0.065956

31 0 0 0.000305 0.059140

32 0 0 0.000336 0.062097

33 0 0 0.000371 0.061782

34 0 0 0.000411 0.060140

35 0 0 0.000456 0.057319

36 0 0 0.000407 0.061728

37 0 0 0.000456 0.068974

38 0 0 0.000513 0.074722

39 0 0 0.000580 0.077597

40 0 0 0.000659 0.050066

41 0 0 0.000565 0.043290

42 0 0 0.000649 0.036905

43 0 0 0.000752 0.040790

44 0 0 0.000877 0.045322

45 0 0 0.001032 0.032680

46 0 0 0.001225 0.029412

47 0 0 0.001471 0.025000

48 0 0 0.001190 0.028571

49 0 0 0.001465 0.032967

50 0 0 0.001832 0.038462

51 0 0 0.002331 0.030303

52 0 0 0.003030 0.036364

53 0 0 0.002020 0.044444

54 0 0 0.002778 0.055556

55 0 0 0.003968 0.071429

56 0 0 0.005952 0.095238

57 0 0 0.009524 0.133333

58 0 0 0.016667 0.100000

59 0 0 0.033333 0

60 0 0 0.083333 0
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Table 6 Comparison of NLCO
with different CNI algorithms

Number of
nodes removed

NLCO

Algorithm B Degree-based
node removal

Betweenness-based
node removal

Random
node removal

0 1 1 1 1

1 0.950820 0.967742 0.967742 1

2 0.900000 0.967213 0.590164 1

3 0.864407 0.950000 0.583333 0.983333

4 0.775862 0.898305 0.457627 0.983051

5 0.684211 0.844828 0.431034 0.982759

6 0.642857 0.789474 0.403509 0.982456

7 0.618182 0.517857 0.392857 0.964286

8 0.592593 0.363636 0.363636 0.963636

9 0.528302 0.351852 0.277778 0.962963

10 0.442308 0.339623 0.283019 0.981132

11 0.411765 0.346154 0.288462 0.980769

12 0.400000 0.352941 0.274510 0.980392

13 0.387755 0.340000 0.140000 0.980000

14 0.375000 0.285714 0.122449 0.918367

15 0.361702 0.229167 0.125000 0.916667

16 0.347826 0.234043 0.127660 0.914894

17 0.333333 0.195652 0.130435 0.913043

18 0.318182 0.133333 0.088889 0.933333

19 0.279070 0.113636 0.090909 0.931818

20 0.261905 0.116279 0.093023 0.930233

21 0.243902 0.095238 0.095238 0.809524

22 0.225000 0.097561 0.097561 0.780488

23 0.179487 0.100000 0.075000 0.750000

24 0.105263 0.102564 0.051282 0.743590

25 0.108108 0.052632 0.052632 0.736842

26 0.111111 0.054054 0.054054 0.729730

27 0.114286 0.055556 0.055556 0.722222

28 0.117647 0.057143 0.057143 0.714286

29 0.121212 0.058824 0.058824 0.588235

30 0.125000 0.030303 0.060606 0.575758

31 0.129032 0.031250 0.062500 0.343750

32 0.133333 0.032258 0.064516 0.322581

33 0.137931 0.033333 0.066667 0.333333

34 0.107143 0.034483 0.068966 0.310345

35 0.111111 0.035714 0.071429 0.321429

36 0.115385 0.037037 0.074074 0.333333

37 0.120000 0.038462 0.076923 0.346154

38 0.125000 0.040000 0.080000 0.360000

39 0.130435 0.041667 0.083333 0.375000

40 0.136364 0.043478 0.086957 0.391304

41 0.142857 0.045455 0.090909 0.227273

42 0.150000 0.047619 0.095238 0.190476

43 0.157895 0.050000 0.100000 0.200000

44 0.166667 0.052632 0.105263 0.210526

45 0.176471 0.055556 0.111111 0.166667
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Table 6 continued
Number of
nodes removed

NLCO

Algorithm B Degree-based
node removal

Betweenness-based
node removal

Random
node removal

46 0.187500 0.058824 0.117647 0.176471

47 0.200000 0.062500 0.125000 0.187500

48 0.214286 0.066667 0.133333 0.200000

49 0.230769 0.071429 0.142857 0.214286

50 0.250000 0.076923 0.153846 0.230769

51 0.181818 0.083333 0.166667 0.250000

52 0.200000 0.090909 0.181818 0.272727

53 0.222222 0.100000 0.200000 0.300000

54 0.250000 0.111111 0.222222 0.333333

55 0.285714 0.125000 0.250000 0.375000

56 0.166667 0.142857 0.285714 0.428571

57 0.200000 0.166667 0.333333 0.500000

58 0 0.200000 0.400000 0.400000

59 0 0.250000 0.500000 0.250000

60 0 0.333333 0.666667 0.333333
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