Skip to main content

Advertisement

Log in

Evidence-Based Approaches to Minimize the Risk of Developing Necrotizing Enterocolitis in Premature Infants

  • Pediatric Neonatology (T Thorkelsson, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of the Review

The purpose of the current review is to identify evidence-based strategies for the prevention of necrotizing enterocolitis (NEC), a devastating disease of premature infants.

Recent Findings

A growing body of evidence suggests that certain treatment strategies could decrease the incidence of NEC. These strategies include the administration of breast milk, the adoption of standardized feeding protocols, the administration of antenatal steroids, and the use of probiotics. Additional evidence suggests that the administration of immunonutrition based upon specific breast milk components—including immunoglobulins, lactoferrin, and human milk oligosaccharides—as well as essential amino acids including glutamine and arginine could also reduce NEC severity. The mechanism of action of these interventions is based in part upon their ability to inhibit the lipopolysaccharide receptor Toll-like receptor 4 (TLR4), whose activation is critical to NEC pathogenesis.

Conclusion

Despite the high morbidity and mortality of NEC, strong evidence supports the adoption of risk-reduction strategies that can protect premature neonates from the development of this disease.

Summary

Necrotizing enterocolitis (NEC) is a devastating surgical emergency that affects premature infants. NEC develops in part in response to the activation of the bacterial receptor Toll-like receptor 4 (TLR4) on the immature intestine by a dysbiotic microbiome in the setting of formula feeding. Given the rapid onset and often fulminant progression of NEC, prevention has the greatest potential to reduce its morbidity and mortality. Strong data suggests the utility of preventative strategies that include administration of a human milk-based diet, and standardized feeding strategies, while clinical evidence also supports the use of antenatal steroids and probiotics in certain circumstances. Pre-clinical and some clinical data support the administration of immunomodulatory compounds, including immunoglobulins, arginine, glutamine, and lactoferrin, which represent new directions for NEC prevention in vulnerable infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Alsaied A, Islam N, Thalib L. Global incidence of necrotizing enterocolitis: a systematic review and Meta-analysis. BMC Pediatr. 2020;20(1):344.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015;314(10):1039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holman RC, Stoll BJ, Curns AT, Yorita KL, Steiner CA, Schonberger LB. Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr Perinat Epidemiol. 2006;20(6):498–506.

    Article  PubMed  Google Scholar 

  4. Xu J, Murphy S, Kochanek K, Arias E. Deaths: Final Data for 2019. National Vital Statistics Reports (NVSS).70(8).

  5. Hamilton BE, Martin JA, Ventura SJ. Births: preliminary data for 2009. Natl Vital Stat Rep. 2010;59(3):1–19.

    PubMed  Google Scholar 

  6. Hamilton BE, Martin JA, Ventura SJ. Births: preliminary data for 2011. Natl Vital Stat Rep. 2012;61(5):1–18.

    PubMed  Google Scholar 

  7. Hamilton BE, Martin JA, Ventura SJ. Births: preliminary data for 2012. Natl Vital Stat Rep. 2013;62(3):1–20.

    PubMed  Google Scholar 

  8. Patel AL, Panagos PG, Silvestri JM. Reducing incidence of necrotizing enterocolitis. Clin Perinatol. 2017;44(3):683–700.

    Article  PubMed  Google Scholar 

  9. Talavera MM, Bixler G, Cozzi C, Dail J, Miller RR, McClead R, et al. Quality improvement initiative to reduce the necrotizing enterocolitis rate in premature infants. Pediatrics. 2016;137(5):e20151119.

  10. Patel AL, Trivedi S, Bhandari NP, Ruf A, Scala CM, Witowitch G, et al. Reducing necrotizing enterocolitis in very low birth weight infants using quality-improvement methods. J Perinatol. 2014;34(11):850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horbar JD, Edwards EM, Greenberg LT, Morrow KA, Soll RF, Buus-Frank ME, et al. Variation in performance of neonatal intensive care units in the United States. JAMA Pediatr. 2017;171(3):e164396.

    Article  PubMed  Google Scholar 

  12. Fundora JB, Binenbaum G, Tomlinson L, Yu Y, Ying GS, Maheshwari A, et al. Association of surgical necrotizing enterocolitis and its timing with retinopathy of prematurity. Am J Perinatol. 2021. https://doi.org/10.1055/s-0041-1733785.

  13. Carter BM, Holditch-Davis D. Risk factors for necrotizing enterocolitis in preterm infants: how race, gender, and health status contribute. Adv Neonatal Care. 2008;8(5):285–90.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Laughon M, O’Shea MT, Allred EN, Bose C, Kuban K, Van Marter LJ, et al. Chronic lung disease and developmental delay at 2 years of age in children born before 28 weeks’ gestation. Pediatrics. 2009;124(2):637–48.

    Article  PubMed  Google Scholar 

  15. Ganapathy V, Hay JW, Kim JH, Lee ML, Rechtman DJ. Long term healthcare costs of infants who survived neonatal necrotizing enterocolitis: a retrospective longitudinal study among infants enrolled in Texas Medicaid. BMC Pediatr. 2013;13:127.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roze E, Ta BD, van der Ree MH, Tanis JC, van Braeckel KN, Hulscher JB, et al. Functional impairments at school age of children with necrotizing enterocolitis or spontaneous intestinal perforation. Pediatr Res. 2011;70(6):619–25.

    Article  PubMed  Google Scholar 

  17. Robinson JR, Kennedy C, van Arendonk KJ, Green A, Martin CR, Blakely ML. Neurodevelopmental considerations in surgical necrotizing enterocolitis. Semin Pediatr Surg. 2018;27(1):52–6.

    Article  PubMed  Google Scholar 

  18. Hintz SR, Kendrick DE, Stoll BJ, Vohr BR, Fanaroff AA, Donovan EF, et al. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics. 2005;115(3):696–703.

    Article  PubMed  Google Scholar 

  19. Blakely ML, Tyson JE, Lally KP, Hintz SR, Eggleston B, Stevenson DK, et al. Initial laparotomy versus peritoneal drainage in extremely low birthweight infants with surgical necrotizing enterocolitis or isolated intestinal perforation: a multicenter randomized clinical trial. Ann Surg. 2021;274(4):e370–80.

    PubMed  Google Scholar 

  20. Blakely ML, Lally KP, McDonald S, Brown RL, Barnhart DC, Ricketts RR, et al. Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann Surg. 2005;241(6):984–9; discussion 9–94.

  21. Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R, et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol. 2006;177(5):3273–82. Bacteria and intestinal epithelium TLR4 receptors play significant roles in mouse models of NEC likely via interaction between intraluminal bacteria and overexpressed TLR4 in the intestine.

    Article  CAS  PubMed  Google Scholar 

  22. Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF, et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol. 2007;179(7):4808–20. Physiological stressors associated with the development of NEC sensitize the intestinal epithelium to LPS through the upregulation of TLR4. TLR4 mutant mice are protected from the development of NEC as compared to their wild-type littermate controls.

    Article  CAS  PubMed  Google Scholar 

  23. Sodhi CP, Shi XH, Richardson WM, Grant ZS, Shapiro RA, Prindle T, et al. Toll-like receptor-4 inhibits enterocyte proliferation via impaired beta-catenin signaling in necrotizing enterocolitis. Gastroenterology. 2010;138(1):185–96. TLR4 impairs enterocyte proliferation in NEC via inhibition of beta-catenin signaling. When inhibition of enterocyte beta-catenin signaling is reversed through adenoviral-mediated inhibition of TLR4 signaling in the small intestinal mucosa, enterocyte proliferation is restored.

    Article  CAS  PubMed  Google Scholar 

  24. Lu P, Sodhi CP, Hackam DJ. Toll-like receptor regulation of intestinal development and inflammation in the pathogenesis of necrotizing enterocolitis. Pathophysiology. 2014;21(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  25. Caplan MS, Simon D, Jilling T. The role of PAF, TLR, and the inflammatory response in neonatal necrotizing enterocolitis. Semin Pediatr Surg. 2005;14(3):145–51.

    Article  PubMed  Google Scholar 

  26. Hackam DJ, Sodhi CP. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell Mol Gastroenterol Hepatol. 2018;6(2):229-38.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hackam DJ, Good M, Sodhi CP. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch. Semin Pediatr Surg. 2013;22(2):76–82.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sodhi CP, Neal MD, Siggers R, Sho S, Ma C, Branca MF, et al. Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology. 2012;143(3):708-18.e5. First paper to show that TLR4 signaling on the intestinal epithelium is required for NEC development TLR4 and Notch signaling are increased in intestinal tissues of patients with NEC, is associated with reduced number of goblet cells. -Activation of TLR4 via Notch prevents goblet cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  29. He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A. 2011;108(50):20054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu T, Zong H, Chen X, Li S, Liu Z, Cui X, et al. Toll-like receptor 4-mediated necroptosis in the development of necrotizing enterocolitis. Pediatr Res. 2022;91(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  31. Gomart A, Vallée A, Lecarpentier Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front Pediatr. 2021;9:713344.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond). 2012;122(11):535–43.

    Article  CAS  Google Scholar 

  33. Panaro MA, Gagliardi N, Saponaro C, Calvello R, Mitolo V, Cianciulli A. Toll-like receptor 4 mediates LPS-induced release of nitric oxide and tumor necrosis factor-alpha by embryonal cardiomyocytes: biological significance and clinical implications in human pathology. Curr Pharm Des. 2010;16(7):766–74.

    Article  CAS  PubMed  Google Scholar 

  34. Deng S, Yu K, Zhang B, Yao Y, Wang Z, Zhang J, et al. Toll-like receptor 4 promotes NO synthesis by upregulating GCHI expression under oxidative stress conditions in sheep monocytes/macrophages. Oxid Med Cell Longev. 2015;2015:359315.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004;75(6):639–53.

    Article  CAS  PubMed  Google Scholar 

  36. Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, et al. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity. 1999;10(1):21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yazji I, Sodhi CP, Lee EK, Good M, Egan CE, Afrazi A, et al. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci U S A. 2013;110(23):9451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindberg TP, Caimano MJ, Hagadorn JI, Bennett EM, Maas K, Brownell EA, et al. Preterm infant gut microbial patterns related to the development of necrotizing enterocolitis. J Matern Fetal Neonatal Med. 2020;33(3):349–58.

    Article  CAS  PubMed  Google Scholar 

  39. La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci U S A. 2014;111(34):12522–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Good M, Sodhi CP, Egan CE, Afrazi A, Jia H, Yamaguchi Y, et al. Breast milk protects against the development of necrotizing enterocolitis through inhibition of Toll-like receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor. Mucosal Immunol. 2015;8(5):1166–79. Breast milk protects against NEC by inhibiting TLR4 within the intestinal epithelium via inhibition of glycogen synthase kinase-3β (GSK3β). This effect translates into inhibition of enterocyte apoptosis and restoration of enterocyte proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sodhi CP, Wipf P, Yamaguchi Y, Fulton WB, Kovler M, Niño DF, et al. The human milk oligosaccharides 2’-fucosyllactose and 6’-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr Res. 2021;89(1):91–101. The human milk oligosaccharides 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL)reduce NEC inflammation murine and piglet models, in part through inhibition of TLR4signaling.

    Article  CAS  PubMed  Google Scholar 

  42. Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O’Shea TM. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol. 2007;27(7):428–33.

    Article  CAS  PubMed  Google Scholar 

  43. Lucas A, Cole TJ. Breast milk and neonatal necrotising enterocolitis. Lancet. 1990;336(8730):1519–23.

    Article  CAS  PubMed  Google Scholar 

  44. Altobelli E, Angeletti PM, Verrotti A, Petrocelli R. The Impact of Human Milk on Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Nutrients. 2020;12(5):1322.

  45. Gartner LM, Morton J, Lawrence RA, Naylor AJ, O’Hare D, Schanler RJ, et al. Breastfeeding and the use of human milk. Pediatrics. 2005;115(2):496–506.

    Article  PubMed  Google Scholar 

  46. So B. Breastfeeding and the use of human milk. Pediatrics. 2012;129(3):e827–41.

    Article  Google Scholar 

  47. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013;60(1):49–74.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kurakevich E, Hennet T, Hausmann M, Rogler G, Borsig L. Milk oligosaccharide sialyl(α2,3)lactose activates intestinal CD11c+ cells through TLR4. Proc Natl Acad Sci U S A. 2013;110(43):17444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas PG, Carter MR, Atochina O, Da’Dara AA, Piskorska D, McGuire E, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J Immunol. 2003;171(11):5837–41.

    Article  CAS  PubMed  Google Scholar 

  50. Good M, Sodhi CP, Yamaguchi Y, Jia H, Lu P, Fulton WB, et al. The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. British J Nutr. 2016;116:1175–87. An abundant human milk oligosaccharide (HMO) in breast milk, 2'-fucosyllactose (2'FL), protects against NEC in part through maintaining mesenteric perfusion via increased eNOS expression. In support of this, administration of HMO-2'FL to eNOS-deficient mice or to mice that received eNOS inhibitors does not protect against NEC.

    Article  CAS  Google Scholar 

  51. Finamore A, Roselli M, Imbinto A, Seeboth J, Oswald IP, Mengheri E. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic Escherichia coli via modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants. PLoS ONE. 2014;9(4):e94891.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Villena J, Kitazawa H. Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front Immunol. 2014;4:512.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thompson FM, Catto-Smith AG, Moore D, Davidson G, Cummins AG. Epithelial growth of the small intestine in human infants. J Pediatr Gastroenterol Nutr. 1998;26(5):506–12.

    Article  CAS  PubMed  Google Scholar 

  54. Shulman RJ, Schanler RJ, Lau C, Heitkemper M, Ou CN, Smith EO. Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr Res. 1998;44(4):519–23.

    Article  CAS  PubMed  Google Scholar 

  55. Sodhi CP, Fulton WB, Good M, Vurma M, Das T, Lai CS, et al. Fat composition in infant formula contributes to the severity of necrotising enterocolitis. Br J Nutr. 2018;120(6):665–80. The expression level of the critical fat digesting enzyme carboxyl-ester lipase is lower in the newborn compared to older pups. This leads to the accumulation of fat droplets within the intestinal epithelium, resulting in the generation of reactive oxygen species and intestinal inflammation. A diet containing a predigested fat system may overcome the natural lipase deficiency of the premature gut, and help prevent NEC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burge D, Drewett M, Hall N. The temporal relationship between exposure to bovine milk products and surgical NEC in preterm infants. Infant. 2018;14(2).

  57. Nishiyama K, Nakazato A, Ueno S, Seto Y, Kakuda T, Takai S, et al. Cell surface-associated aggregation-promoting factor from Lactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni. Mol Microbiol. 2015;98(4):712–26.

    Article  CAS  PubMed  Google Scholar 

  58. Zuo F, Appaswamy A, Gebremariam HG, Jonsson AB. Role of Sortase A in. Front Microbiol. 2019;10:2770.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sharma K, Pooranachithra M, Balamurugan K, Goel G. Probiotic mediated colonization resistance against E.coli infection in experimentally challenged Caenorhabditis elegans. Microb Pathog. 2019;127:39–47.

    Article  PubMed  Google Scholar 

  60. Jasani B, Patole S. Standardized feeding regimen for reducing necrotizing enterocolitis in preterm infants: an updated systematic review. J Perinatol. 2017;37(7):827–33.

    Article  CAS  PubMed  Google Scholar 

  61. Patole SK, de Klerk N. Impact of standardised feeding regimens on incidence of neonatal necrotising enterocolitis: a systematic review and meta-analysis of observational studies. Arch Dis Child Fetal Neonatal Ed. 2005;90(2):F147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Berseth CL, Bisquera JA, Paje VU. Prolonging small feeding volumes early in life decreases the incidence of necrotizing enterocolitis in very low birth weight infants. Pediatrics. 2003;111(3):529–34.

    Article  PubMed  Google Scholar 

  63. Oddie SJ, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2021;8:CD001241.

    PubMed  Google Scholar 

  64. Bombell S, McGuire W. Early trophic feeding for very low birth weight infants. Cochrane Database Syst Rev. 2009(3):CD000504.

  65. Wang Y, Zhu W, Luo BR. Continuous feeding versus intermittent bolus feeding for premature infants with low birth weight: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2020;74(5):775–83.

    Article  PubMed  Google Scholar 

  66. Adams M, Bassler D. Practice variations and rates of late onset sepsis and necrotizing enterocolitis in very preterm born infants, a review. Transl Pediatr. 2019;8(3):212–26.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bauer CR, Morrison JC, Poole WK, Korones SB, Boehm JJ, Rigatto H, et al. A decreased incidence of necrotizing enterocolitis after prenatal glucocorticoid therapy. Pediatrics. 1984;73(5):682–8.

    Article  CAS  PubMed  Google Scholar 

  68. Crowley P, Chalmers I, Keirse MJ. The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol. 1990;97(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  69. Elimian A, Verma U, Canterino J, Shah J, Visintainer P, Tejani N. Effectiveness of antenatal steroids in obstetric subgroups. Obstet Gynecol. 1999;93(2):174–9.

    CAS  PubMed  Google Scholar 

  70. Kemp MW, Schmidt AF, Jobe AH. Optimizing antenatal corticosteroid therapy. Semin Fetal Neonatal Med. 2019;24(3):176–81.

    Article  PubMed  Google Scholar 

  71. Koldovský O, Sunshine P. Effect of cortisone on the developmental pattern of the neutral and the acid beta-galactosidase of the small intestine of the rat. Biochem J. 1970;117(3):467–71.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Villa M, Ménard D, Semenza G, Mantei N. The expression of lactase enzymatic activity and mRNA in human fetal jejunum. Effect of organ culture and of treatment with hydrocortisone. FEBS Lett. 1992;301(2):202–6.

    Article  CAS  PubMed  Google Scholar 

  73. Costalos C, Gounaris A, Sevastiadou S, Hatzistamatiou Z, Theodoraki M, Alexiou EN, et al. The effect of antenatal corticosteroids on gut peptides of preterm infants–a matched group comparison: corticosteroids and gut development. Early Hum Dev. 2003;74(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  74. Berseth CL. Gastrointestinal motility in the neonate. Clin Perinatol. 1996;23(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  75. Black HE. The effects of steroids upon the gastrointestinal tract. Toxicol Pathol. 1988;16(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  76. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA. 1995;273(5):413–8.

  77. NIH. NIH Consensus Statement: Antenatal Corticosteroids Revisited. 2000;17(2):1–18.

  78. ACOG committee opinion. Antenatal corticosteroid therapy for fetal maturation. Number 147--December 1994. Committee on Obstetric Practice. American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet. 1995;48(3):340–2.

  79. ACOG Committee Opinion No 475. antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol. 2011;117(2 Pt 1):422–4.

    Google Scholar 

  80. Leviton LC, Goldenberg RL, Baker CS, Schwartz RM, Freda MC, Fish LJ, et al. Methods to encourage the use of antenatal corticosteroid therapy for fetal maturation: a randomized controlled trial. JAMA. 1999;281(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  81. Nolan LS, Parks OB, Good M. A review of the immunomodulating components of maternal breast milk and protection against necrotizing enterocolitis. Nutrients. 2019;12(1):14.

  82. Kelleher SL, Lönnerdal B. Immunological activities associated with milk. Adv Nutr Res. 2001;10:39–65.

    CAS  PubMed  Google Scholar 

  83. Thurl S, Munzert M, Henker J, Boehm G, Müller-Werner B, Jelinek J, et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr. 2010;104(9):1261–71.

    Article  CAS  PubMed  Google Scholar 

  84. Autran CA, Kellman BP, Kim JH, Asztalos E, Blood AB, Spence ECH, et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut. 2018;67(6):1064–70. Concentration of disialyllacto-N-tetraose (DSLNT), a human milk oligosaccharide (HMO) which prevents NEC in neonatal rats, is lower in most milk samples of NEC cases compared with controls. The abundance of certain HMOs in human milk could potentially identify NEC cases prior to onset.

    Article  CAS  PubMed  Google Scholar 

  85. Yu ZT, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013;23(11):1281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin AE, Autran CA, Szyszka A, Escajadillo T, Huang M, Godula K, et al. Human milk oligosaccharides inhibit growth of group B. J Biol Chem. 2017;292(27):11243–9. HMOs function as an alternative substrate to modify a group B strep component in a manner that impairs bacterial growth independent of host immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res. 2006;59(3):377–82.

    Article  CAS  PubMed  Google Scholar 

  88. Bode L. Human Milk Oligosaccharides: Structure and Functions. Nestle Nutr Inst Workshop Ser. 2020;94:115–23.

    Article  PubMed  Google Scholar 

  89. Gopalakrishna KP, Macadangdang BR, Rogers MB, Tometich JT, Firek BA, Baker R, et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat Med. 2019;25(7):1110–5. In a double-blind randomized trial with 90 newborns, no difference between strains of probiotics used was found on NEC incidence or in the increase of faecal sIgA levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gómez-Rodríguez G, Amador-Licona N, Daza-Benítez L, Barbosa-Sabanero G, Carballo-Magdaleno D, Aguilar-Padilla R, et al. Single strain versus multispecies probiotic on necrotizing enterocolitis and faecal IgA levels in very low birth weight preterm neonates: a randomized clinical trial. Pediatr Neonatol. 2019;60(5):564–9.

    Article  PubMed  Google Scholar 

  91. Kerr MA. The structure and function of human IgA. Biochem J. 1990;271(2):285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sterlin D, Gorochov G. When therapeutic IgA antibodies might come of age. Pharmacology. 2021;106(1–2):9–19.

    Article  CAS  PubMed  Google Scholar 

  93. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2020;1:CD000361.

    PubMed  Google Scholar 

  94. Yang Y, Pan JJ, Zhou XG, Zhou XY, Cheng R, Hu YH. The effect of immunoglobulin treatment for hemolysis on the incidence of necrotizing enterocolitis - a meta-analysis. Eur Rev Med Pharmacol Sci. 2016;20(18):3902–10.

    CAS  PubMed  Google Scholar 

  95. Su X, Li Y, Zhang Y, Han S. Efficacy of alanyl glutamine in nutritional support therapy for patients with sepsis: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2021;100(11):e24861.

    Article  CAS  Google Scholar 

  96. Hall JC, Dobb G, Hall J, de Sousa R, Brennan L, McCauley R. A prospective randomized trial of enteral glutamine in critical illness. Intensive Care Med. 2003;29(10):1710–6.

    Article  PubMed  Google Scholar 

  97. Andreasen AS, Pedersen-Skovsgaard T, Mortensen OH, van Hall G, Moseley PL, Pedersen BK. The effect of glutamine infusion on the inflammatory response and HSP70 during human experimental endotoxaemia. Crit Care. 2009;13(1):R7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Luiking YC, Poeze M, Deutz NE. A randomized-controlled trial of arginine infusion in severe sepsis on microcirculation and metabolism. Clin Nutr. 2020;39(6):1764–73.

    Article  CAS  PubMed  Google Scholar 

  99. Wallace C, Keast D. Glutamine and macrophage function. Metabolism. 1992;41(9):1016–20.

    Article  CAS  PubMed  Google Scholar 

  100. Yaqoob P, Calder PC. Glutamine requirement of proliferating T lymphocytes. Biochem Soc Trans. 1996;24(1):78S.

    Article  CAS  PubMed  Google Scholar 

  101. Ardawi MS, Newsholme EA. Glutamine metabolism in lymphocytes of the rat. Biochem J. 1983;212(3):835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J. 1986;239(1):121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yaqoob P, Calder PC. Glutamine requirement of proliferating T lymphocytes. Nutrition. 1997;13(7–8):646–51.

    Article  CAS  PubMed  Google Scholar 

  104. Ogle CK, Ogle JD, Mao JX, Simon J, Noel JG, Li BG, et al. Effect of glutamine on phagocytosis and bacterial killing by normal and pediatric burn patient neutrophils. JPEN J Parenter Enteral Nutr. 1994;18(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  105. Furukawa S, Saito H, Fukatsu K, Hashiguchi Y, Inaba T, Lin MT, et al. Glutamine-enhanced bacterial killing by neutrophils from postoperative patients. Nutrition. 1997;13(10):863–9.

    Article  CAS  PubMed  Google Scholar 

  106. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185(2):1037–44.

    Article  CAS  PubMed  Google Scholar 

  107. Wilmore DW, Shabert JK. Role of glutamine in immunologic responses. Nutrition. 1998;14(7–8):618–26.

    Article  CAS  PubMed  Google Scholar 

  108. Marc Rhoads J, Wu G. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids. 2009;37(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  109. Ma C, Tsai H, Su W, Sun L, Shih Y, Wang J. Combination of arginine, glutamine, and omega-3 fatty acid supplements for perioperative enteral nutrition in surgical patients with gastric adenocarcinoma or gastrointestinal stromal tumor (GIST): A prospective, randomized, double-blind study. J Postgrad Med. 2018;64(3):155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ockenga J, Borchert K, Stüber E, Lochs H, Manns MP, Bischoff SC. Glutamine-enriched total parenteral nutrition in patients with inflammatory bowel disease. Eur J Clin Nutr. 2005;59(11):1302–9.

    Article  CAS  PubMed  Google Scholar 

  111. Li K, Xu Y, Hu Y, Liu Y, Chen X, Zhou Y. Effect of enteral immunonutrition on immune, inflammatory markers and nutritional status in gastric cancer patients undergoing gastrectomy: a randomized double-blinded controlled trial. J Invest Surg. 2020;33(10):950–9.

    Article  PubMed  Google Scholar 

  112. Luiking YC, Poeze M, Ramsay G, Deutz NE. The role of arginine in infection and sepsis. JPEN J Parenter Enteral Nutr. 2005;29(1 Suppl):S70–4.

    CAS  PubMed  Google Scholar 

  113. Wijnands KA, Castermans TM, Hommen MP, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients. 2015;7(3):1426–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wijnands KAP, Meesters DM, Vandendriessche B, Briedé JJ, van Eijk HMH, Brouckaert P, et al. Microcirculatory function during endotoxemia-A functional citrulline-arginine-NO pathway and NOS3 complex is essential to maintain the microcirculation. Int J Mol Sci. 2021;22(21).

  115. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    Article  CAS  PubMed  Google Scholar 

  116. Castillo L, Beaumier L, Ajami AM, Young VR. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling. Proc Natl Acad Sci U S A. 1996;93(21):11460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goldsmith SR, Francis GS, Cowley AW, Goldenberg IF, Cohn JN. Hemodynamic effects of infused arginine vasopressin in congestive heart failure. J Am Coll Cardiol. 1986;8(4):779–83.

    Article  CAS  PubMed  Google Scholar 

  118. Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tapiero H, Mathé G, Couvreur P, Tew KDI. Arginine. Biomed Pharmacother. 2002;56(9):439–45.

    Article  CAS  PubMed  Google Scholar 

  120. Wu G, Jaeger LA, Bazer FW, Rhoads JM. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem. 2004;15(8):442–51.

    Article  CAS  PubMed  Google Scholar 

  121. Sevastiadou S, Malamitsi-Puchner A, Costalos C, Skouroliakou M, Briana DD, Antsaklis A, et al. The impact of oral glutamine supplementation on the intestinal permeability and incidence of necrotizing enterocolitis/septicemia in premature neonates. J Matern Fetal Neonatal Med. 2011;24(10):1294–300.

    Article  CAS  PubMed  Google Scholar 

  122. Akisu M, Baka M, Huseyinov A, Kultursay N. The role of dietary supplementation with L-glutamine in inflammatory mediator release and intestinal injury in hypoxia/reoxygenation-induced experimental necrotizing enterocolitis. Ann Nutr Metab. 2003;47(6):262–6.

    Article  CAS  PubMed  Google Scholar 

  123. Bober-Olesińska K, Kornacka MK. Effects of glutamine supplemented parenteral nutrition on the incidence of necrotizing enterocolitis, nosocomial sepsis and length of hospital stay in very low birth weight infants. Med Wieku Rozwoj. 2005;9(3 Pt 1):325–33.

    PubMed  Google Scholar 

  124. Zhou W, Li W, Zheng XH, Rong X, Huang LG. Glutamine downregulates TLR-2 and TLR-4 expression and protects intestinal tract in preterm neonatal rats with necrotizing enterocolitis. J Pediatr Surg. 2014;49(7):1057–63.

    Article  PubMed  Google Scholar 

  125. Bührer C, Fischer HS, Wellmann S. Nutritional interventions to reduce rates of infection, necrotizing enterocolitis and mortality in very preterm infants. Pediatr Res. 2020;87(2):371–7.

    Article  PubMed  Google Scholar 

  126. Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG, et al. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr. 2002;140(4):425–31.

    Article  CAS  PubMed  Google Scholar 

  127. Shah PS, Shah VS, Kelly LE. Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst Rev. 2017;4:CD004339.

    PubMed  Google Scholar 

  128. van den Elsen LWJ, Garssen J, Burcelin R, Verhasselt V. Shaping the gut microbiota by breastfeeding: the gateway to allergy prevention? Front Pediatr. 2019;7:47.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Actor JK, Hwang SA, Kruzel ML. Lactoferrin as a natural immune modulator. Curr Pharm Des. 2009;15(17):1956–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dierick M, Van der Weken H, Rybarczyk J, Vanrompay D, Devriendt B, Cox E. Porcine and bovine forms of lactoferrin inhibit growth of porcine enterotoxigenic Escherichia coli and degrade its virulence factors. Appl Environ Microbiol. 2020;86(24).

  131. Elass-Rochard E, Roseanu A, Legrand D, Trif M, Salmon V, Motas C, et al. Lactoferrin-lipopolysaccharide interaction: involvement of the 28–34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem J. 1995;312(Pt 3):839–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA. 2009;302(13):1421–8.

    Article  CAS  PubMed  Google Scholar 

  133. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–16.

    Article  PubMed  Google Scholar 

  134. Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact. 2020;19(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yunes RA, Poluektova EU, Vasileva EV, Odorskaya MV, Marsova MV, Kovalev GI, et al. A Multi-strain Potential Probiotic Formulation of GABA-Producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with Antidepressant Effects. Probiotics Antimicrob Proteins. 2020;12(3):973–9.

    Article  CAS  PubMed  Google Scholar 

  136. Mondanelli G, Orecchini E, Volpi C, Panfili E, Belladonna ML, Pallotta MT, et al. Effect of Probiotic Administration on Serum Tryptophan Metabolites in Pediatric Type 1 Diabetes Patients. Int J Tryptophan Res. 2020;13:1178646920956646.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE. 2012;7(2):e31951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164–74.

    Article  PubMed  Google Scholar 

  139. Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2020;10:Cd005496.

    PubMed  Google Scholar 

  140. Morgan RL, Preidis GA, Kashyap PC, Weizman AV, Sadeghirad B, McMaster Probiotic PE, Synbiotic Work Group. Probiotics reduce mortality and morbidity in preterm, low-birth-weight infants: a systematic review and network meta-analysis of randomized trials. Gastroenterology. 2020;159(2):467–80.

    Article  CAS  PubMed  Google Scholar 

  141. Poindexter B, Cummings J, Hand I, Adams-Chapman I, Aucott SW, Puopolo KM, et al. Use of Probiotics in Preterm Infants. Pediatrics. 2021;147(6):e2021051485.

    Article  PubMed  Google Scholar 

  142. Kulkarni T, Majarikar S, Deshmukh M, Ananthan A, Balasubramanian H, Keil A, et al. Probiotic sepsis in preterm neonates—a systematic review. Eur J Pediatr. 2022.

  143. Viswanathan S, Lau C, Akbari H, Hoyen C, Walsh MC. Survey and evidence based review of probiotics used in very low birth weight preterm infants within the United States. J Perinatol. 2016;36(12):1106–11.

    Article  CAS  PubMed  Google Scholar 

  144. Janik JS, Ein SH, Mancer K. Intestinal stricture after necrotizing enterocolitis. J Pediatr Surg. 1981;16(4):438–43.

    Article  CAS  PubMed  Google Scholar 

  145. Choudhry MS, Grant HW. Small bowel obstruction due to adhesions following neonatal laparotomy. Pediatr Surg Int. 2006;22(9):729–32.

    Article  PubMed  Google Scholar 

  146. Moss RL, Das JB, Raffensperger JG. Necrotizing enterocolitis and total parenteral nutrition-associated cholestasis. Nutrition. 1996;12(5):340–3.

    Article  CAS  PubMed  Google Scholar 

  147. Goulet O, Baglin-Gobet S, Talbotec C, Fourcade L, Colomb V, Sauvat F, et al. Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children. Eur J Pediatr Surg. 2005;15(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  148. Warner BB, Deych E, Zhou Y, Hall-Moore C, Weinstock GM, Sodergren E, et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet. 2016;387(10031):1928–36. An abundance of gram-negative facultative bacilli and a paucity of strict anaerobic bacteria precedes the development of necrotizing enterocolitis in very low birthweight infants.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Hackam MD PhD.

Ethics declarations

Conflicts of Interest

Carla M. Lopez declares that she has no conflict of interest and is funded by T32 DK007713. Jennine H. Weller declares that she has no conflict of interest and is funded by T32 DK007713. Chhinder Sodhi declares that he has no conflict of interest. DJH is funded by the National Institutes of Health (T32 DK007713, R01 DK117186, R01 DK121824, R35 GM141956) and receives research grants from Noveome and Abbott Nutrition to explore the role of immunomodulatory agents in the prevention of NEC in pre-clinical models.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Neonatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, C.M., Weller, J.H., Sodhi, C.P. et al. Evidence-Based Approaches to Minimize the Risk of Developing Necrotizing Enterocolitis in Premature Infants. Curr Treat Options Peds 8, 278–294 (2022). https://doi.org/10.1007/s40746-022-00252-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-022-00252-z

Keywords

Navigation