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Abstract
The aimof this study is to investigate the overdispersion problem that is rampant in eco-
logical count data. In order to explore this problem, we consider the most commonly
used count regression models: the Poisson, the negative binomial, the zero-inflated
Poisson and the zero-inflated negative binomial models. The performance of these
count regression models is compared with the four proposed machine learning (ML)
regression techniques: random forests, support vector machines, k−nearest neighbors
and artificial neural networks. The mean absolute error was used to compare the per-
formance of count regression models and ML regression models. The results suggest
that ML regression models perform better compared to count regression models. The
performance shown by ML regression techniques is a motivation for further research
in improving methods and applications in ecological studies.
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1 Introduction

The aim of this article is to investigate the problem of overdispersion in ecological
count data. Overdispersion is an existing and recurring problem that needs attention
when dealing with ecological count data. Ignoring overdispersion will cause difficul-
ties in analysis and the decision-making procedures of ecological studies.We approach
the problem of overdispersion by using machine learning (ML) regression techniques.
To the best of our knowledge an approach to overdispersion in ecological studies using
ML techniques has not been extensively researched thus far.

Bolker et al. [1] define overdispersion as the occurrence of more variance in the
data than predicted by a statistical model owing to missing observations. The reasons
for the existence of missing observations in ecological count data may be due to
structural errors (for instance, a bird or fish is not present because the habitat is not
suitable), observer error (species are present but cannot be detected) and design error
(poor experimental design or sampling surveys are thought to be the reason) [2]. The
literature discusses the source of zeros in ecological count data and defines them as
either ‘true zero counts’ or ‘false zero counts’ [3, 4]. False zero counts occur when
species are present at a site during the survey period, but the observer fails to detect
them and true zero counts occur when species do not occur at a site because of the
ecological process, that is, habitat unsuitability. This study focuses only on false zero
counts. In ecology, zero counts do not necessarily mean that there are no species
detected during the sampling survey [5]; rather it means that there were no species at
that particular sampling time (false zeros). The absence of species results in excess
number of zeros termed zero-inflation. The presence of zero-inflation in this study is
owing to observer error.

This study will provide an overview of various count regression models: the Pois-
son, the negative binomial (NB), the zero-inflated Poisson (ZIP) and the zero-inflated
negative binomial model (ZINB). The Poisson regression model has been widely used
to analyse count data under the assumption of equidispersion, that is, the mean of the
response variable is equal to the variance of the response variable [6, 7]. However, as
much as this is a naturally occurring property of the Poisson regression model, it is not
always true in real life ecological count data as counts may exhibit excess variability.
The fact that equidispersion is rarely found in real data has resulted in the development
of more general count models which do not assume equidispersion [8]. TheNB regres-
sion model has been used as an alternative model to the Poisson regression model (see
[9, 10]). NB regression models are more flexible than Poisson regression models even
though they do not provide exact predictions in certain situations [11]. The next alter-
native used for modeling count data with excess number of zeros is the ZIP model,
which has been applied in many areas of research such as insurance claims [12, 13],
education [11, 14], healthcare [15–17] animal ecology [18] and transport [19]. ZIP
was found to be inappropriate for data that are both zero-inflated and overdispersed
[20]. Furthermore, Minami et al. [20] and Rose et al. [21] propose the ZINB model as
another alternative to handle overdispersion. ZINBhas been shown to be appropriate to
some ecological situations even though the issue of overdispersion still remains [20].

From the empirical evidence provided above, the proposed methods still pose chal-
lenges in dealing with overdispersion. There are still numerous false zeros that are
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being observed or not accounted for. In other words, there is still room to improve the
reduction of overdispersion in count data, which this study proposes via a possible new
method. Most published studies in ecology sometimes fail to report on overdispersion
in respect of their best fitting models [22]. Failing to account for overdispersion can
lead to incorrect inferences [23]. There is also limited literature in ecological studies
about how overdispersion affects results as researchers would identify predictors as
having biologically meaningful effects when, in fact they do not [6].

As a result of the limitations in some statistical methods (for example, Poisson and
NB) and the diversity of data, new techniques of data science have been developed.
Data science has become an important and growing field as the Internet of Things
(IoT) expands worldwide [24]. Encompassing several techniques such as data mining
and machine learning, data science solves relevant problems and predicts results by
taking into account data quality [25]. The data science techniques have been applied in
various research fields such as healthcare [7] and education [26] and these techniques
are combined to consolidate statistical analyses.

This study proposes machine learning (ML) regression techniques; random forests
(RF), support vectormachines (SVM), k−nearest neighbors (kNN)and artificial neural
networks (ANN) to handle the problem of overdispersion in ecological count data.
Lately, ML methods have been cropping up in different areas of science. However,
to the best of our knowledge, there is limited empirical evidence showing the use of
ML regression techniques in estimating missing observations in population ecological
studies.MLmodelsmake nodistributional assumptions about the response or predictor
variables unlikemany statistical analysismethods. SomeML techniques accommodate
zeros both in the response and in the predictor variables: that is what makes them
unique andpowerful alternatives to statisticalmethods.We test the proposed estimation
techniques on a real life fisheries count data set,which usually hasmissing observations
due to structural, observer or design errors andwemake a comparison to the regression
count models to assess whether overdispersion can be reduced further.

The remainder of the study is organized as follows: Sect. 2 outlines the modeling
approach relevant in this study; Sect. 3 presents the methods used in this study and
in Sect. 4 we present the numerical test of the proposed methodology on the fisheries
data set. Section5 concludes this study and gives recommendations for future work.

2 Modeling Approach

In this section, we outline the modeling approach used in this study. ML regression
techniques are proposed as alternative models to the traditional count regression mod-
els.

2.1 Count RegressionModels

Suppose yi j represents species count data for all sites i = 1, . . . , n; for all visits
j = 1, . . . ,m. Let yi j follow a Poisson regression model with a conditional mean μi j
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and a set of predictor variables (xi j ). The Poisson regression model is expressed as:

P
(
Y = yi j

∣
∣xi j

) = exp
(−μi j

) × μ
yi j
i j

yi j !

where yi j is a non-negative integer [27]. We assume a log link function where μi j =
exp (β0, β1xi1, . . . , βk xik) is a linear combination of predictor variables. By definition,
the Poisson regression model cannot model overdispersed count data thus a gamma
mixture Poisson is often assumed in this case. The negative binomial (NB) distribution
is an alternative to the Poisson when data is overdispersed [8].

Suppose a random variable Y follows a Poisson distribution with a conditional
mean μi j and the parameter λ follows a gamma distribution with mean E(λ) = μi j

and variance Var(λ) = μ2
i jθ

−1. Let φ denote a dispersion parameter. The joint density
of Poisson and gamma distributions leads to the NB regression model

P
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Y = yi j
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(
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where μi j denote the mean and the dispersion parameter φ = 1 + μi jθ should be
greater than one. When Y follows a NB distribution, its expected value is E(Y ) = μi j

and the variance is Var(Y ) = μi j (1 + μi jθ) [10]. When false zeros are too many
to be modeled by a NB regression model, researchers consider the application of
zero-inflated models such as zero-inflated Poisson (ZIP) and zero-inflated negative
binomial (ZINB) models which are believed to be adequate.

The zero-inflated models, ZIP or ZINB, are a mixture of two distributions, which
models true zeros through the Poisson or NB distribution and a degenerate distribution
at zero, which models the true zeros [21]. The ZIP has two components, π which
represent 0 observations and (1 − π), which represents an observed Poisson random
variable [28]. The ZIP regression model for count i at visit j is defined by Rose et al.
[21] as:

P
(
Y = yi j

) =
⎧
⎨

⎩

πi j + (
1 − πi j

)
exp

(−μi j
)
, yi j = 0

(
1 − πi j

) exp(−μi j)μ
yi j
i j

yi j ! , yi j > 0

where 0 ≤ πi j < 1 denotes the probability of zero occurrence and μi j > 0 with the
mean E(Yi j ) = μi j (1 − πi j ) and the variance Var(Y ) = μi j (1 − πi j )(1 + πi jμi j ).
The dispersion parameter for the ZIP regression model is given by φ = μi jπi j + 1.
The ZIP regression model provides a way to model zero-inflation owing to an excess
number of zeros: furthermore, the ZINB regression model makes it possible to model
both zero-inflation and overdispersion.
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The ZINB regression model is defined by Rose et al. [21] and Aráujo et al. [14] as:

P
(
Y = yi j

) =

⎧
⎪⎨

⎪⎩

πi j + (
1 − πi j

) (
1

1+μi j θ

)1/θ
, yi j = 0

(
1 − πi j

) �
(
yi j+θ−1

)

�(yi j+1)�(θ−1)

(
1

1+μi j θ

)1/θ (
μi j θ

1+μi j θ

)yi j
, yi j > 0

where θ > 0 is a shape parameter which quantifies the amount of overdispersion,
πi j denotes the zero-inflation probability, yi j denotes the species count and μi j the
mean of count data. The mean and variance of the ZINB regression model are E(Y ) =
μi j (1 − πi j ) and Var(Y ) = μi j (1 − πi j )(1 + πi jμi j + θμi j ). The dispersion of the
ZINB regression model is given by φ = μiπi j + θμi j + 1.

2.2 Overdispersion for Count Data

The Pearson-based dispersion statistic as suggested by Hilbe [8] is to be used to assess
overdispersion in traditional count models. If the ratio of the estimator φ̂ = D

n−p ,
where D denotes the deviance and n − p (n is the total number of observations and p
is the number of parameters) denotes the degrees of freedom is greater than one, then
there is evidence of overdispersion [2, 29]. This study adopts this estimator as a check
for overdispersion.

2.3 Machine Learning Regression Techniques

Next, we discuss the machine learning (ML) regression techniques, considered in this
study. Our regression problem is of the form: yi j = f

(
xi j

)+εi j in the presence of zero

observations where (X,Y) =
{(
xi j ; yi j

)N
i=1

}
are data samples with yi j representing

the target variable, xi j denoting predictor variables and εi j the error term.
The aim is to investigate how ML regression techniques can reduce overdispersion

for a single species in ecological count data. ML techniques, particularly in fisheries,
have not been fully applied. This is due to lack of collaboration between the ML
research community and natural scientists, a lack of communication about successful
applications of ML in the natural sciences and difficulty in validating ML models [30,
31]. ML techniques have many algorithms and methodologies which are capable to
solving real-world problems.

2.3.1 Random Forests

Random forests (RF) is a ML model that is designed to produce accurate predictions
that do not overfit the data [32]. The RF model can be written in the form:

y(x) = f

{
K∑

k=1

wkφ (x, vk)

}
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where vk put into code the choice of variable to split on and the function f () depends
on whether a regression or classification tree is needed. Each tree is developed using
a subset of randomly chosen k features [33].

RF can be used for both regression and classification problems; however, in this
study we focus only on regression tasks. RF is commonly demonstrated by building
many decision trees from bootstrap samples of a data set. Since individual trees often
overfit the training data and result in noisy predictions, averaging is a way to reduce
the variance of the model and improve prediction accuracy. In the RF model, there
are three tuning parameters of interest: node size, number of trees and the number
of predictor variables sampled at each split. The focus in this study is on one tuning
parameter which is the number of predictor variables sampled at each split, (mtry).
The mtry is determined by the total number of predictor variables in the data set and
it controls for overfitting [34].

2.3.2 Support Vector Machines

For a given data D = {(xi , yi )}pi=1 ε R
n × {−1,+1}, the aim is to find a function

f (x) = y that correctly classifies the patterns of the data, where xi denote a n-
dimensional vector and yi is its label. The aim of support vector machines (SVM)
is to create a hyperplane function that separates the observations into classes. The
hyperplane can be defined as:

f (x) = (w. x) + b

wherew ε R
n; b ε R and the data is then linearly separable, if such a hyperplane exists

[35, 36]. SVM also solve non-linear problems bymapping the input vectors to a higher
dimensional space using kernel functions k

(
xi , x j

) = {
∅ (xi ) × ∅

(
x j

)}
[37]. Then,

the decision function can be written as:

f (x) = sign

{ p∑

i=1

(w. x) + b

}

The computational complexity of the SVM approach is one of its primary features.
For the SVM model, the Gaussian radial basis function kernel was used since our
count data was non-linear. This particular function relies only on one tuning param-
eter, which is the cost parameter (C). The cost parameter determines the possible
misclassifications of the model. It essentially forces a penalty to the model for making
an error. The higher the value of C , the less likely it is that the SVM will misclassify
a point.

2.3.3 k−nearest Neighbors

The k−nearest neighbors (kNN) are determined by calculating the Euclidean distance
between the input feature vector x and the data set [37]. The predictor f̂ (x) is computed
at point x when we first define a neighborhood Nk(x) corresponding to the set of the
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k− closest observations to x among learning sample inR
d . The predictor is the average

of the output over the kNN,

f̂ (x) = 1

k

∑

i ε Nk (x)

Yi

where Nk (x) is the neighborhood of x defined by the k closest points i in the training
sample [5]. To improve accuracy, weights on each neighbor can be added, such as a
weight inversely proportional to the Euclidean distance, effectively giving a greater
importance to neighbors that are closer.

2.3.4 Artificial Neural Networks

Artificial neural networks (ANNs) are generalizations of linear models inspired by
analogies with the biological brain. The architecture of an artificial neural network
(ANN) is based on the Multi-Layer Perceptron (MLP) [12]. A perceptron is a simple
unit which computes the following function:

h(α) = f (wi . αi )

where the activation function f is a non-linear function of its argument. Examples are
the function:

f (x) = sign

{
+1, if x ≥ 0,

−1 if x < 0

or the sigmoid function:

f (x) = 1

1 + e−x
.

ANNs are interconnected through a feed-forward propagation mechanism, where
each neuron recieves input from preceding neurons. The network starts from input
layers that are linked to each neuron in the one or many hidden layers that use a
backpropagation algorithm to maximize the weights placed at each neuron to improve
predictive power. This process is iterative, where the last hidden layer is met by an
output layer to produce a predicted response output [38].

3 Materials andMethods

This section discusses the methodologies used in this study; components, as well as
data preparation and processing. The performance evaluation measures used to assess
the model performance in this study are also discussed.
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Table 1 Descriptive statistics for the variables

Variables Mean Standard deviation Median Minimum Maximum

Individual count 18.82 32.11 6.00 0.00 282.00

Decimal latitude 0.59 0.61 0.46 − 0.65 1.85

Decimal longitude 28.11 11.87 33.13 0.00 34.02

3.1 Data Description

The data set used here is from “Fish Species Occurrence Records for Uganda Mobi-
lized Observation Archives” sourced from Uganda mobilized unpublished archives,
available at https://www.gbif.org. The data set was readily available and accessed in
October 2020. The data set chosen consists of 424 observations with 3 variables. This
data set presents fish species occurrence records for surveys which were gathered at
different periods in most of the aquatic ecosystems of Uganda. The experiment is
conducted on a single species, Lates niloticus. In the data set, counts of Lates niloticus
are utilized as the target variable. The fish were captured using fishing gears such as
gillnets, hooks and beach seines at specific sites of different waterbodies. The data
set had basic useful information for developing occurrences such as GPS co-ordinates
(latitude and longitude) on the actual locations or sites where the fish were captured.
The latitude and longitude co-ordinates were checked for errors by visualizing them
on Google Earth. The predictor variables, latitude and longitude, were used when
fitting the models since sampling was done to different sampling locations or sites.
Table 1 presents descriptive statistics of the variables for the Lates niloticus count
data set. We can observe that the large portion of the count data is between 0 and 50
as depicted in Fig. 1. Basically, Fig. 1 shows that there are many zero observations,
indicating the presence of overdispersion. Overdispersion in the Lates niloticus count
data was determined by computing the dispersion of the fitted models as discussed in
Sect. 2.2.

3.2 Pre-processing of Data Set

The pre-processing approaches have been used to train ML regression techniques
which, might be taken to increase model performance. Models were fit using species
observation count data. Prior tomodel building, the datawere scaled to avoid numerical
stability in the fitted models. The results were generated using k-fold cross validation
(CV) with the hyperparameter optimization performed on every iteration. The data
intended for modeling was split into 70% training for building a predictive model and
30% testing for evaluating the model. Splitting of data helps to reduce the possibilities
of overfitting on the training set. All the work was conducted using R version 3.6.2
[39] and ML models were trained with caret package using the models’ relevant
functions.
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Fig. 1 Graphical representation of count data

Table 2 Mathematical formulas for performance metrics

Metrics Formulas

Mean squared error (MSE) MSE = 1
n

n∑

i=0

(
yi − ŷi

)2

Root mean squared error (RMSE) RMSE =

√
1
n

n∑

i=0

(
yi − ŷi

)2

Mean absolute error (MAE) MAE = 1
n

n∑

i=0

∣
∣yi − ŷi

∣
∣

3.3 Performance EvaluationMeasures

Three common evaluation measures suitable for comparison of both count regression
models andML regressionmodels are mean squared error (MSE), mean absolute error
(MAE) or root mean squared error (RMSE). Table 2 presents the formulas for these
metrics, where yi and ŷi are the observed and predicted values, respectively. The best
model, selected on the performance of different evaluation metrics, is the one with
the least MSE or RMSE or MAE value. In this study, we consider the MAE as our
benchmark for assessing model performance for count regression and ML regression
models. This metric was chosen because it is suitable for a data set that has outliers
[40, 41].
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Table 3 Results for count
regression models

Model Dispersion MAE

Poisson GLM 47.718 19.709

NB 1.397 19.651

ZIP – 19.716

ZINB 0.561 19.651

4 Experimental Results and Discussions

In this section, we evaluate the performance of the proposed ML regression models
in the presence of zero-inflation and overdispersion for Lates niloticus count data.
We compare the performance of the proposed ML regression techniques with count
regression models and present the empirical insights/findings.

4.1 Count RegressionModel Results

Table 3 displays the results of the count regression models. The Poisson regression
modelwas fitted inRusing the glm function.After fitting the Poisson regressionmodel,
we tested for overdispersion using the dispersion test function from AER package
in R software. The Poisson regression model estimates the dispersion parameter as
47.718, which is an indication of overdispersion since it is greater than one. The
dispersion parameter in the NB and ZINB models were estimated at 1.397 and 0.561,
respectively. Since the dispersion parameter for the ZINB regressionmodel was 0.561,
we observe that ZINB works better in comparison to the Poisson regression model
when the data is both zero-inflated and overdispersed. All our count regression models
exhibit overdispersion regardless ofwhether they accommodate both zero-inflation and
overdispersion. This study confirms that the presence of overdispersion has an impact
on the performance of count regression models. The Poisson regression model is the
most commonly used model; however, the findings confirm that it is poor in dealing
with either zero-inflation or overdispersion.

As highlighted in Sect. 3.3, RMSE andMSE are sensitive to the data set that consists
of outliers. Therefore, we concentrate on the comparison ofMAE to be able to compare
traditional count regression models to ML regression models. Comparison of the
MAE results shows that the NB (MAE = 19.651) and ZINB (MAE = 19.651) had the
lowest MAE values. In this case, ZIP had the highest MAE of 19.716. Amongst the
count regression models, NB and ZINB performed better compared to the Poisson
and ZIP models. The reason is the extra dispersion parameter that accommodates
overdispersion. The count regression model findings support Minami et al. [20] and
Rose et al. [21] suggestion about the ZINB model. The performance metrics of our
count regression models improve that of Buyrukoğlu et al. [40].
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Table 4 Summary of results on
ML regression models

Model Optimized parameters MAE

RF mtry = 2 17.525

SVM C = 1 13.670

kNN k = 3 14.850

ANN Size = 3 19.716

Decay = 1e-04

4.2 Machine Learning RegressionModels Results

The RF, SVM, kNN andANNwere selected asML regressionmodels and their results
are presented in Table 4. We used observations of single species count data to estimate
model performances. The RF regression model showed that mtry = 2 resulted in
a better MAE value of 17.525. Multiple studies [32, 40] have demonstrated that RF
models often perform well in comparison to other methods for ecological modeling.
However, the SVM in this study provided better performance when compared to RF
the model. For instance, when using the Gaussian radial basis procedure, the optimum
SVMmodel with the smallest MAE value of 13.670 was selected. As SVM are stable
algorithms that can deal with large sets of predictors at once, they proved particularly
useful in this study. This gives us confidence to say that SVM (owing to flexibility)
can catch the information in the data set, even with overdispersed data.

For the kNN model, the number of neighbors (k) is the key parameter. Multiple
k-values were used to determine the optimum model. The kNN model with k = 3
revealed an optimal model with a lower MAE value of 14.850. The kNN showed a
better performance for this study; hence this technique can be used when modeling
ecological count data.

For the ANNmodel, the performancewas determined by the number of units within
the hidden layers. ANN had the highest MAE value of 19.716 compared to other ML
regression models. The highest performance of ANNwas observed with three neurons
in the hidden layer. The rule of ANNs are that the number of hidden layer neurons
should range between 70% and 90% of the size of the input layer and that the number
of hidden layer neurons should be less than twice that of neuron numbers in the
input layer. ANN is the least performing ML model in this study; hence, we do not
recommend it in reducing overdispersion in ecological count data.

4.3 Model Performance Comparison

As stated in Sect. 3.3, MAE was chosen as a benchmark for model performance since
it enables us to have a comparison of count regression and ML regression models.
Table 5 shows model comparison for both count regression and ML regression mod-
els arranged in ascending order for MAE. SVM has the least MAE whereas ANN
has the highest MAE. The count regression models presented poor performance in
reducing overdispersion. These models presented high MAE values. This is an indi-
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Table 5 Model comparison Model MAE

SVM 13.670

kNN 14.850

RF 17.525

NB 19.651

ZINB 19.651

Poisson GLM 19.709

ANN 19.716

cation that count regression models are not capable enough of modeling zero-inflated
overdispersed count data.

The ML results showed that SVM outperforms all other ML regression techniques.
In comparison to the count regression models, the ML regression models showed the
best performance based on MAE values. This signifies that ML regression models
have a capacity to reduce the overdispersion problem. These finding concurs with
the previously reported results by Cutler et al. [32]; Kampichler et al. [42] and Olaya-
Marín et al. [30]which found thatML regression techniqueswork better in comparison
to count regression models in ecological count data. The comparison of different ML
regression techniques should be considered as recommended by Olaya-Marín et al.
[30], as this would be helpful in interpreting the quality of the results.

We urge that individual researchers select techniques that are consistent with the
specific problem, the nature of the questions being addressed and the availability of
the data set. The use of ML techniques in ecological research is motivated by a range
of research questions, the type of the available data and the expected outcomes of
modeling. This makes ML techniques a very dynamic approach for predictive and
exploratory modeling with many user-defined parameters to be considered for each
objective [38].

5 Conclusion

The main aims of this study were to investigate the overdispersion problem that is
rampant in ecological count data and propose possible methods for reducing it. This
study compared the performance of count regression models with ML regression
techniques in order to evaluate their capabilities in reducing overdispersion and to
assess their conformity in terms of performance metrics through the MAE values.
For the traditional count regression models, Poisson GLM, NB, ZIP and ZINB were
considered. ZINB performed better compared to the other count regression models.

Four ML regression techniques were implemented: RF, SVM, kNN and ANN as
well as their performances were compared to traditional count regression models.
The results indicated that, generally, the SVM, kNN and RF models used in this study
provide better performanceswhen compared to theNB,ZINB, PoissonGLMandANN
models. The SVM model performed better in reducing overdispersion in comparison
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to the otherML regressionmodels. Themost prominent findingwas that overall, SVM,
kNN and RF models provide better performances comparing to the traditional count
regression models based on MAE values.

ML regression techniques appear to be an attractive route towards tackling the
overdispersion problem, particularly in areas where a lack of knowledge exists regard-
ing the implementation of effectivemodels. The comparative study shows the potential
of ML regression techniques in reducing overdispersion in ecological count data.
The strong performance shown by ML regression techniques should motivate further
research, resulting in the improvement of methods and applications in ecological stud-
ies. In future, the application of ML regression techniques in ecology will become an
increasingly attractive tool for ecologists. Moreover, we conclude that the effect of
overdispersion in ecological count data is largely dependent on the dispersion param-
eter of the fitted model.
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