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Abstract
This research aimed to investigate the spatial autocorrelation and heterogeneity
throughout Bangladesh’s 64 districts. Moran I and Geary C are used to measure
spatial autocorrelation. Different conventional models, such as Poisson-Gamma and
Poisson-Lognormal, and spatial models, such as Conditional Autoregressive (CAR)
Model, Convolution Model, and modified CARModel, have been employed to detect
the spatial heterogeneity. Bayesian hierarchical methods via Gibbs sampling are used
to implement these models. The best model is selected using the Deviance Informa-
tion Criterion. Results revealed Dhaka has the highest relative risk due to the city’s
high population density and growth rate. This study identifies which district has the
highest relative risk and which districts adjacent to that district also have a high risk,
which allows for the appropriate actions to be taken by the government agencies and
communities to mitigate the risk effect.

Keywords COVID-19 · Bayesian hierarchical models · Spatial dependency ·
Conditional Autoregressive model · Convolution model · Modified CAR model

1 Introduction

COVID-19 is today considered a significant threat to the economy, social life, educa-
tion, and workplace; in short, to human lives. This deadly virus is an RNA virus with
a single strand and a thick envelope. The virus can spread through coughing droplets,
direct contact, or touching contaminated surfaces with filthy hands [1]. Immigrants’
unwillingness to follow social distancing and quarantine rules can be one of the pri-
mary causes of COVID-19 transmission within communities [2].
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Fig. 1 The study area (District-wise map of Bangladesh) for the research

The virus was initially detected on a limited scale in November 2019. Furthermore,
the following month, in December 2019, the first significant cluster was discovered in
Wuhan, China [3, 4]. The World Health Organization (WHO) called the outbreak an
international public health emergency on January 30, 2020 [5]. The WHO declared
the epidemic pandemic on March 12 of the same year [6]. The virus has now infected
about 1.19 million people in China, and about 5224 people have died. SARS-CoV-
2 spread within and outside China, affecting people who had never touched animals
means the virus can spread from one individual to another. According to [7], on June 7,
2022, 535,938,392 cases were identified worldwide. This infectious agent has caused
6,321,595 deaths. The first COVID-19 patient identified in Bangladesh was on March
8, 2020 [8]. The Center of Epidemiology, Disease Control and Research (IEDCR),
Bangladesh’s premier national institute for surveillance, outbreak investigation, and
research on existing, emerging, or undiscovered infectious illnesses, hired more than
80 personnel in June 2020 to increase COVID-19 surveillance and contact tracing.
This scheme was done with funding and technical support fromWHO [9]. As of June
7,2022, there were 1,953,700 cases identified and 29,131 deaths [10]. Due to cultural,
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political, socioeconomic, and environmental differences, it ismore important than ever
for people worldwide to work together to reduce the adverse effects [11].

Data science plays an increasingly essential role in finding solutions to societal and
economic issues resulting from the exponential development in the current amount
of data and the ongoing advancements in information technology [12]. Data sci-
ence has a significant presence in business data mining [12], which enables real-time
decision-making through the utilization of a mix of technologies that involve artificial
intelligence (AI) and the internet of things (IoT) [13]. Various challenges have been
described using data science methodologies, including crop harvesting, characteriza-
tion of epidemiological outbreak patterns, commercial data mining, and e-commerce
fraud [11–16]. Data science is also used in healthcare, especially since the COVID-19
pandemic started around the world at the beginning of 2020 [17]. In case to explain
the transmission pattern of the COVID-19 outbreak in China, numerous data science
tools have been used to analyze by undertaking retrospective and prospective investi-
gations based on age-specific social contact-base transmission [16, 17]. The field of
research known as epidemiology may be defined as the investigation of the incidence
and spread of illnesses to determine the factors that cause them [18, 19].

A study using ARIMA models predicts COVID-19 will fill ICUs in Italy, France,
and Spain. The number of instances will rise if the virus stays the same. Clinical and
societal difficulties may be intractable, leading to catastrophe [20]. Cluster analysis
was used by [14] to classify actual groups of COVID-19 datasets representingmultiple
states and union territories in India. Thiswork aimed to enhancemonitoring procedures
and improve government policy. Previous research investigated demographic aspects
important for COVID-19 transmission in Bangladesh using conventional statistical
models [21], but no research has examined the spatial dependency of COVID-19
cases across Bangladesh’s 64 districts. The traditional statistical methods assume that
the observations are independent and identically distributed. A cluster pattern violates
classical assumptions of independence and homogeneity (stationarity) and renders
classical methods inefficient or inappropriate.

Bayesian inference is used for disease mapping by estimating parameters based
on actual data and prior assumptions [22]. It is spatial modeling, a helpful tool for
investigating the relative risk of COVID-19 [23–26]. Hierarchical Bayesian methods
are often used to model the data’s overdispersion and spatial correlation. Models with
random effects, Poisson-Gamma and Poisson-Lognormal, are two classic solutions to
the problem. These two models account for Poisson error-caused data overdispersion
[27], called “uncorrelated heterogeneity” in disease mapping. Overdispersion can be
caused by a spatially unstructured covariate, many zero counts, or many counts far
from the mean. These models assume a gamma distribution or lognormal-distributed
random effect to deal with spread-out data. Early disease mapping was dominated
by them [28]. The Conditional Autoregressive (CAR) model investigates how data
are related spatially [29]. Because it can use many weighting schemes, the model is
widely used. It provides better solutions than unstructured alternatives. Convolution
(COV) models combine unstructured random effects and structured random effects
[30, 31]. Utilizing two independent sets of random effects, one of gamma and the
other of normal, the combined model takes into consideration both overdispersion and
clustering [32].
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In this manuscript, we performed research to find the answer to the following
research questions. Does the spatial patterning of the relative risk of COVID-19 give
rise to the conclusion that the locations and shapes of geographic features are clustered?
So, how do we measure the data’s spatial dependence and spatial heterogeneity? In
addition, how do we capture these by the statistical models? If there is a cluster, do
governments tend to compare their policies with those of district neighbours, or do
they behave independently?

Different types of spatial autocorrelationmeasures, includingMoran I andGearyC ,
are used to measure spatial dependency. The Bayesian hierarchical models via Gibbs
sampling are employed to assess the heterogeneity of spatial data. Complete methods
and materials regarding data source and Bayesian statistical models are presented
in Sect. 2. The most critical variables in the sequence of events that lead to the high
relative risk of COVID-19 inBangladesh have been found using spatial autocorrelation
and well-suited model results in Sect. 3. Finally, Sect. 4 highlighted that the study’s
results could give government agencies useful information for taking actions that will
reduce the prevalence of COVID-19.

2 Methods andMaterials

2.1 Spatial Data Source and Description

The Directorate General of Health Service (DGHS) (https://dghs.gov.bd/) was the
source of the information that was utilized in this article. From June 5, 2021 to May
14, 2022, data on the number of affected cases were collected from this source. Other
two variables, namely annual growth rate per district and per district population, are
obtained using data from the Bangladesh Bureau of Statistics (BBS)’s census of 2011,
which was carried out in 2011 (https://tinyurl.com/3dcspsfp). The projected popula-
tion of 2021 of all 64 districts has been taken from (https://tinyurl.com/3j4ff8r4). The
growth rate of 2022 is then calculated for the projected population of 2021 using the
geometric model. Calculation of growth rate uses the following formula :

r = n
√
P/P0 − 1

where, P0 is the population of 2021, P is the projected population of 2022, n is
the number of intercensal period and r is the growth rate. Also, the formula of the
prevalence rate is shown below:

Prevalence Rate = Affected No. of Cases

Annual Growth Rate × District Population
× 100, 000

It is necessary to determine the prevalence rate for each district individually. After
that, the results estimate how many individuals are affected out of a total population
of 100,000 in each district.
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2.2 Distribution of Response Variable

The Poisson distribution is a discrete probability distribution. This means that the
value of the variable can only be a whole number, like 0, 1, 2, 3, etc. It can’t be a
fraction or a decimal [33]. The probability mass function (pmf) is given below:

Pr(Y = y) = e−λλy

y! ; y = 0, 1, 2, . . .

where, e is Euler’s number (e = 2.71828 . . .), y is the number of occurrences, y! is
the factorial of y, λ is the rate of occurrence.

2.3 Spatial Autocorrelation

Getis [34] states that one of the essential parts of spatial analysis is the idea of spatial
autocorrelation. The use of spatial autocorrelation helps to determine whether or not
there is systematic spatial variation by instantaneously taking into account the feature
districts and associated values [35]. This correlation introduces a divergence from
the independent observation assumption that is used in conventional models [36].
The spatial autocorrelation method analyzes the spatial patterns of individual entities,
determining whether they are clustered, dispersed, or random [37].

2.3.1 Moran I Autocorrelation

Moran’s I is a correlation coefficient that measures a data set’s overall spatial auto-
correlation. In other words, it assesses how similar one object is to others around it.
If items are attracted to each other, it indicates that the observations are not indepen-
dent. Given a set of features and a related attribute, it determines whether the pattern
expressed is clustered, dispersed, or random. It has a wonderful utility of comparing
the value of a variable at any one point with other locations. Whether or if one site
is autocorrelated with others. Moran’s I statistic is not limited to being less than one.
Moran’s I values range roughly from +1 to −1, with an expected value of −1/(n−1)
[38]. The formula for Moran’s I statistic which is similar to the Pearson’s coefficient
[39] in Equation 1 is as follows:

I = n
∑

i
∑

j ωi j Zi Z j

(n − 1)
∑

i
∑

j ωi j
(1)

where n is the number of districts;ωi j indicates the quantification of the spatial weight
between two districts i and j ; z- scores are the transformation of the variables in which
we are interested; in the numerator, products of two different z-scores in adjacent
districts are being summed. Since the weights are row-standardized

∑
ωi j = 1, the

initial phase of the spatial autocorrelation study is to generate a spatial weight matrix
including information on the neighborhood structure for each site. Adjacency is the
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administrative districts closely adjacent to the district, including the district itself.
Administrative districts that are not adjacent to one another are given no weight [40].

Twodistrictswith larger scoreswill comeupwith positive components in the numer-
ator, contributing to a positive spatial autocorrelation. In contrast, negative spatial
autocorrelation can be found if two districts emerge with lower scores [41]. How-
ever, the p-value is what determines whether or not the clustering is significant. If the
absolute values of z-scores are high, then the clustering will be intense; however, the
significance of the clustering will be determined by the p-value. p-values less than
significance level (0.05) and very high z-values points that null hypothesis can not be
accepted. This suggests that there is clustering [42]. On the other hand, high p-values
and low z-values imply the null hypothesis’s acceptance. Consequently, Moran’s I
value of −1 shows perfect scattering, whereas zero suggests the spatial pattern of ran-
domness, and +1 proclaims a clustering pattern and perfect spatial autocorrelation.

The Global Moran’s I is an inferential statistic, which means that the investigation
findings are always understood in the context of its null hypothesis. Let,

H0 : 64 districts are randomly distributed i.e. there is no spatial dependency

between the neighboring districts (No spatial clustering exists);
H1 : 64 districts are positively autocorrelated (Spatial clustering exists).

2.3.2 Local Moran I

Various approaches to local spatial autocorrelation have been developed over the last
few decades [43–45]. Local Moran’s I is one of the most well-known indicators that
quantify the degree of similarity between two districts and their neighbors. Researchers
compute the local Moran’s I to find clusters and geographic outliers locally [46, 47].
According toAnselin [46], spatial statistics can find autocorrelation of specified orders
in the studied area. He develops LISA (Local Indicators of Spatial Autocorrelation),
which indicates on a map, for each observation, howmuch similar values are clustered
near that observation [44]. To calculate localMoran I , the formula is defined as follows

Ii = pi
∑

j

ωi j p j (2)

where, pi is the variation between i’s district relative risk and the mean; p j is the
weight of neighboring areas in the statistic, normalized for the number of neighbors.

2.3.3 Geary C

Geary’s C is a measure of spatial autocorrelation, which can also be thought of as an
attempt to assess whether or not neighboring observations of the same occurrence are
associated with one another [47]. The correlation in spatial autocorrelation is multi-
dimensional and works in both directions, making it a more complicated concept than
simple autocorrelation. The formula used for Geary C calculation, defined by [47] in
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this study, is expressed in Equation 3

C = (n − 1)
∑

i
∑

j ωi j (xi − x j )2

2ω
∑

i (xi − x)2
(3)

where, x is the variable of interest; x̄ is the mean of x ; ω is the sum of all ωi j .
The value of C can fall within the range [0,2]. If the obtained statistic is 0≤C<1,

then it is possible that there is a positive autocorrelation among the districts. C≥1
indicates of having little spatial autocorrelation. If 1≤C<2, then one can deduce that
there is negative autocorrelation between the districts as a whole.

2.4 Spatial RegressionModels

Spatial regression is a component of regression models that incorporate spatial posi-
tion. The presence of a dependent relationship among a set of observations, known
as spatial dependence, indicates that the model follows an autoregressive process [48,
49].

2.4.1 Poisson-GammaModel

A negative binomial model can readily be used to model additional variation as an
alternative to the Poisson model. Consider that a negative binomial distribution can be
seen as amixedmodel with gamma random-effects for each area which is alternatively
known as the Poisson-gamma model [50]. This model assumes that the number of
affected cases within each district is independent and follows a Poisson distribution
with mean eiθi i.e., yi ∼ Poisson(eiθi ), with the assumption that

λi = eiθi ; i = 1, 2, 3, . . . , 64

is constant within each district. The parameter of interest in the model is the relative
risk (θi ), and to account for unobserved heterogeneity, it is assumed that θi follows a
gamma prior distribution with parameters a and b , and when combined with a Poisson
likelihood, gives a gamma posterior. Then, the relative risk has a gamma posterior,
that is

θi ∼ Gamma(a + yi , b + ei ).

The Poisson-Gamma model assumes that the observations are independent. When
most spatial data are correlated, it does not take into account the spatial correlation
between risk in nearby areas; it does not also allow an easy adjustment for spatial
covariates. For this reason, PLN, CAR, and Convolution models were considered.

2.4.2 Poisson-Lognormal Model

The Poisson-lognormal (PLN) model is an alternative that can be considered in place
of the Poisson-gamma model. It connects the relative risk, denoted by θi , to a linear

123



Annals of Data Science

predictor that includes a normally distributed random effects component, denoted by
vi [50]. The log-normal model for the relative risk is defined as:

yi ∼ Poisson(eiθi )

with

log(θi ) = α + vi ; i = 1, 2, 3, . . . , 64

where, vi ∼ N(0, σ 2
v ), is the district-specific random effects, capturing extra Poisson

variability in the log-relative risk of COVID-19 in area i , i = 1, 2, . . . , 64 and α

is the overall level of the relative risk. In the Poisson-Gamma model, we consider
θi ∼ Gamma(a, b) whereas we consider evi ∼ Lognormal(0, σ 2

v ) with precision
τ 2v = 1/σ 2

v where, σ 2
v follows gamma prior distribution.

2.4.3 Conditional Autoregressive Model

In this model, the district-specific random effect component takes into account the
effects that vary in a structured manner in space, i.e., the correlated heterogeneity. The
model was introduced by [28] in an empirical Bayes setting and developed by [29] in
a fully Bayes implementation. The model is defined as follows:

yi ∼ Poisson(eiθi )

with

log(θi ) = α + ui ; i = 1, 2, 3, . . . , 64

where, α is an overall level of the relative risk, correlated heterogeneity denotes by
ui , which means the values of the district-specific random effects, u j in "neighboring
areas". The model uses a spatial correlation structure to estimate the risk in any area
which depends on neighbouring areas [50]. It is presumable that the correlated het-
erogeneity terms will behave in accordance with an intrinsic CAR model, such as the
one presented by [51], the random impact caused by the CAR follows a normal distri-
bution, and its mean and variance are weighted following the averages and variances
of the adjacent areas i.e.

[ui | u j , i �= j, τu2] ∼ N (ui , σi 2)

ui = 1∑
j ωi j

∑
j u jωi jσi

2 = σu
2

∑
j ωi j

where, ui is smoothed towards the mean rate in the set of neighbouring areas; mean
ui which means it is the average of the spatial random effects of these neighbors and
variance parameter σ 2

u with precision τ 2u = 1/σ 2
u . Here, σ 2

u follows gamma prior
distribution.
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2.4.4 Convolution Model

Convolution models do not, however just include a random effect to correct for
overdispersion; rather, they also include a random-effects term that controls for spa-
tial autocorrelation. This is because convolution models take into consideration both
[50]. In this model, district-specific random effects are decomposed into a component
that takes into account the effects that varies in a structured manner in space, i.e., the
correlated heterogeneity defined by ui and a component vi that models the effects
that vary in an unstructured way between areas i.e., the uncorrelated heterogeneity.
Like the CAR model, this model was equally introduced by Clayton and Kaldor [28]
in an empirical Bayes setting and developed by Besag et al. [29] in a fully Bayes
implementation. The model is defined as:

yi ∼ Poisson(eiθi )
log(θi ) = α + ui + vi ; i = 1, 2, 3, . . . , 64

The model uses a spatial correlation structure to estimate the risk in any area which
depends on neighbouring areas. This is assumed to be normally distributed i.e.

[ ui | u j , i �= j, τu2] ∼ N (ui , σi 2)

ui = 1∑
j ωi j

∑
j u jωi j , σi

2 = σu
2

∑
j ωi j

.

2.4.5 Modified CARModel

The Poisson model, in particular, is convenient and sophisticated from a mathematical
perspective, but the extension is required due to the model’s restrictive nature. Firstly,
the model does not accurately describe data variation, and secondly, hierarchies are
frequently accounted for by including random effects that are assumed to be normally
distributed. The modified CAR model takes into account both overdispersion and
clustering by employing two distinct sets of random effects, one of gamma and the
other of normal [32]. This model is also named as “Combined model” explained in
Neyens et al. [50]. This is what the model is defined to be :

yi ∼ Poisson(eiθi )

log(θi ) = log(gi ) + α + ui

where gi terms, which are assumed to follow a gamma distribution, are used to model
uncorrelated heterogeneity

gi ∼ Gamma(a, b)
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whereas the modeling of correlated heterogeneity is accomplished through the accu-
mulation of CAR random effects ui .

[ ui | u j , i �= j, τu2] ∼ N (ui , σi 2)

ui = 1∑
j ωi j

∑
j u jωi j , σi

2 = σu
2

∑
j ωi j

.

In contrast to the convolution model, the modified CARmodel models uncorrelated
heterogeneity with a gamma distribution instead of a lognormal distribution [50]. The
research conducted by [32] demonstrates that the gamma distribution can accurately
model extra-variance. They provide a more detailed theory for multiple data types,
which is useful for the combined model.

When overdispersion random effects are present alongside normal ones, [32] mod-
ified conjugacy to account for them. The goal of this property is to ensure that strong
conjugacy holds even in the presence of random effects that follow a normal distri-
bution. That is to say; we will only take conjugacy into account if the random effect
ui follows a normal distribution. Hence, the Poisson and gamma distributions are
conjugate. The posterior distribution is defined as

θi |ui , yi ∼ Gamma(a + yi , b + eiκi )

with κi = exp(α + ui ). As a result, the conditional mean of θi is (a + yi )/(b+ eiκi ),
and this can be rewritten as a weighted average of the prior mean, which is a/b.

2.5 Deviance Information Criterion

For the purpose of model comparison, the deviance information criterion (DIC) and
a related measure, pD , which counts the number of model parameters that are most
important [52]. How to define the effective number of parameters in a Bayesian frame-
work, particularly for complicated models, is a crucial subject. A DIC difference
greater than 10 eliminates the model with the higher DIC, while a DIC difference less
than 5 does not indicate a statistically significant result. Since DIC depends onMCMC
output, it’s sensitive to sampling fluctuations [53].

To demonstrate that DIC is additive using models and priors that are independent
of one another, let the vector of parameters be θ associated with y. And f (y|θ) and
f (y) denote the conditional and marginal distributions of y. Then,

DIC = D + pD

where, D is the posterior expected value of the deviance function, posterior deviance
is defined as :

pD = D − D(θ̄)

θ = E [θ |y]
D = E [D (θ) |y]
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are the posterior means of θ and the Bayesian deviance

D (θ) = −2ln { f (y|θ)} + 2ln { f (y)} (4)

Suppose, y and θ be partitioned as (y1, . . . , yk) for K collision categories and
(θ1, . . . , θk). Defining DICk = Dk + pk , pk = Dk −Dk

(
θk

)
, Dk = E [Dk (θk) |yk],

θk = E[θk |yk], Dk (θk) = −2ln { f (yk |θk)} + 2ln { f (yk)} .
Under priors and independent models, it is found f (y|θ) = ∏k

k=1 f (yk |θk) and
f (y) = ∏k

k=1 f (yk). These multiplicative conditional and marginal distributions of
y contribute additively to the Bayesian deviation Equation 4, resulting in y’s extreme
value DIC = ∑K

k=1 DICk [51]. A small D corresponds to a well-fitted model. If
DIC differences were borderline, less complex models with lower pD were used [50].

2.6 Computational Procedure

RStudio version 4.2.0 uses moran.test and geary.test (available in spdep
package) to measure spatial autocorrelation. Before computing these two statistics,
poly2nb compiles a list of districts that share adjacent boundaries. nb2listw adds
weights to a neighbor’s list. By usingmoran.test p-value is calculated analytically,
not by MC. This isn’t always significant. A function moran.mc can test significance
using MC simulation. Local Moran I provides I value, variance, p-value, predicted
I , and variation for each district using localmoran function.

RStudio’s maptools package was used to visualize affected cases. For read-
ing shape files readShapePoly function is used. Two functions moran.test
and geary.test are used to measure spatial autocorrelation. Before computing
two statistics, poly2nb function compiles a list of districts that are neighbors
based on their adjacent boundaries, meaning they share one or more boundary
points. nb2listw function adds spatial weights to an existing neighbors list. p-
value of moran.test is calculated analytically, not by MC. This doesn’t always
indicate importance. moran.mc can test significance using MC simulation. Using
localmoran function, local Moran I provides its own I value, variance, p-value,
predicted I , and variation of I for each district. In this instance, GeoDa with version
1.20.0.10 is put to use in order to track down significant areas of relative risk via a
LISA cluster map that employs 999 simulations at a significance level of 10%.

WinBUGS, a statistical software for Bayesian analysis using Markov Chain Monte
Carlo (MCMC), is used to perform Bayesian models and spatial data analysis. This
software is based on the BUGS (Bayesian inference Using Gibbs Sampling). and it
also offers a goodness-of-fit measure called the deviance information criteria, which
can be used to comparemodels [54]. For eachmodel, two separate chains starting from
different arbitrary initial values were used to calculate the realized value of posterior
estimators in the Bayesian hierarchical model. The dynamic trace plots were used to
check the good mixing of two chains with 100000 iterations taken in which 20000
were excluded as a burn-in sample using WinBUGS. In case to improve convergence
and reduce the effect of autocorrelation, thin values of 5 were used for testing the
convergence of the estimator in spatial modeling.
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Fig. 2 a District-wise affected number of cases; and b District-wise prevalence rate

3 Data Analysis

From 2021 to 2022, Dhaka district, Bangladesh’s capital city, had the highest num-
ber of cases with 498,171 (see, Fig. 2). The districts surrounding Dhaka have fewer
reported incidences. Maintaining adequate safety precautions in a small, densely pop-
ulated city is impossible. Two districts, Chattogram ranks second and Khulna third
for infected cases, correspondingly. Ports, business advantages, improved communi-
cation, education, and other amenities drive Chattogram’s population growth. As it is
the second-largest city, the number of affected cases is also higher. The least number of
COVID-19 cases are in Lalmonirhat. Fewer people are affected when there are fewer
people in an area. Few people got sick with a virus in the hilly parts of Bandarban.
Mountain dwellers can tolerate low oxygen levels and have a virus-free environment,
say, researchers. Dry mountain air, high levels of UV radiation, and low barometric
pressure combine to create an inhospitable habitat; these conditions, taken together,
lower the survival rate of airborne viruses. Those who live in the mountains may
benefit from it [54].

Figure 2 demonstrates that Dhaka district has the highest prevalence rate. COVID-
19 prevalence varies within districts. Rajshahi district, on the west side of the country,
has a lower prevalence rate than Dhaka. The disease is highly prevalent in Khulna
district, which is also situated in the south. Although Khulna has a population five
times smaller than that of Chattogram, Chattogram has more people affected by the
COVID-19 virus than Khulna. Due to the population of Khulna being theoretically
disproportionate to relative risk, the calculated relative risk for this city is greater than
that of Chattogram. In Faridpur, Gopalganj, and Rajbari districts, prevalence rates are
lower than in Dhaka. As the virus evolved and underwent mutations, an increasing
number of people contracted the disease and perished. Dhaka has the most people
affected by the outbreak, and its dense population makes it vulnerable. Lower preva-
lence rates have been observed inBangladesh’s northern (Sunamganj) and northeastern
(Habiganj) districts. The northern district of Gaibandha has the lowest prevalence.
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Table 1 Moran I & Geary C
Statistic are calculated under
randomization

Summary statistics Moran I Geary C

Statistic 0.0846 0.8786

Expectation −0.0161 1.0000

Variance 0.0019 0.0286

Standard deviate 2.2866 0.7172

Fig. 3 Density Plot of Global Moran I

The result forMoran I ofCOVID-19 relative risk is 0.0846,which indicates positive
spatial autocorrelation between districts (Table 1). The obtained p-value of 0.0111,
less than 0.05, and the corresponding z-value of 2.54 also show that the null hypothesis
should be rejected. Using MC simulation of 599 global Moran I depicts the same p-
value of 0.0111 at a significance level of 5%. In both cases, the null hypothesis should
not be accepted. A further demonstration of how likely the observed test statistic
is is provided by a density plot (Fig. 3) of the Monte Carlo permutation outcomes.
Moreover, the obtained value of the Geary C statistic is 0.8786, which falls within the
interval [0,1), indicating the existence of positive autocorrelation between districts.
Both of the spatial autocorrelation analysis procedures indicate the existence of clusters
between the district of COVID-19 relative risk.

Taking into account the effect of spatial lag and the spatial weights of the districts
next to each other, the LISA cluster map in Fig. 4. shows the important districts with
weighted spatial homogeneity at a 90% confidence level. This popular choropleth map
sorts places with a significant local Moran statistic value from Equation 2 by type of
spatial correlation.Abright red color indicates a spatial cluster that isHigh-High,while
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Fig. 4 Spatial Clustering (local Moran’s I ) of COVID-19 Relative Risk

a bright blue color indicates a spatial cluster that is Low-Low. A light blue color indi-
cates a spatial outlier that is Low-High, while a light red color indicates a spatial outlier
that is High-Low. Dhaka,Munshiganj, Narayanganj, and Faridpur are the four districts
that are shown to form a statistically significant High-High spatial cluster. It shows that
the relative risk of COVID-19 is high in these districts, and it also shows that the rela-
tive risk is high in the adjacent districts. The districts that meet the criteria for statistical
significance and are located in the Low-Low spatial cluster are as follows: Nilphamari,
Lalmonirhat, Rangpur, Kurigram, Gaibandha, Dinajpur, Bogura, Joypurhat, Jamalpur,
Sherpur, Mymensingh, Netrokona, Sunamganj, Kishoreganj, Habiganj, and Sylhet. It
would appear that there is a low relative risk of COVID-19 in these districts, and it
would also appear that there is a low relative risk in the districts adjacent to them.
Even though Chattogram has a population five times larger than Khulna, Khulna has
a lower number of people whom COVID-19 has impacted than Chattogram. The cal-
culated relative risk for Khulna is more significant than that of Chattogram because
the population in Khulna is theoretically disproportionate to relative risk. In addition,
the districts of Tangail, Gazipur, Manikganj, Khagrachari, Bandarban, Madaripur, and
Satkhira are categorized as Low-High spatial outliers. These seven districts give off
the impression of having a low relative risk, whereas the districts that surround them
typically show a high relative risk.

Table 2 displays the summary statistics of posterior estimators including the 95%
credible intervals. Whereas, a credible interval implies that the true parameter would
lie within the lower limit and upper limit and we can be 95% confident about that.
Figures 6, 9, 12, 15, and 18 (in “Appendix”) that the data has a normal distribution
for the overall mean. On the other hand, the presence of variance and precision is
suggestive of a chi-square distribution.
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According to [55] autocorrelation plot in any figure can “indicate dimensions of the
posterior distribution that are mixing slowly, where slow mixing is often associated
with high posterior correlations between parameters”. Figures 7, 13 (in “Appendix”)
demonstrates estimators are mixing well and autocorrelation is rapidly disappearing
before each case is considered. Hence, no autocorrelation is present here. In contrast,
Figs. 10, 16, 19 (in “Appendix”) exhibits poor mixing for α and that autocorrelation
is not significantly decreasing before each case is evaluated. Therefore, substantial
autocorrelation exists for α in this case.

The twomain features desired in the trace plots are stationarity andwell mixing. For
the path to be considered stationary, it must remain inside the posterior distribution.To
be more explicit, all of the traces congregate around an extremely consistent central
trend. Figures 5, 8, 11, 14, and 17 (in “Appendix”) show stable stationarity. The second
characteristic of a chain is called “goodmixing” whichmeans that each sample in each
parameter is not strongly related to the sample that came before it. As the trace moves
across the posterior distribution without getting tangled in any one place, each path
can be seen to move in a zigzag pattern. The second trait is evident in experimental
trace plots. Red and blue chains used both features.

Table 2 shows DIC values for four different models, two of which are non-spatial
and two of which are spatial. Rules say that the model with the lowest DIC value
provides a superior fit. The modified CAR model has the lowest DIC value compared
to the other models, which are almost identical. Even the D and pD values are of
a relatively low magnitude. So, the modified CAR model significantly outperformed
most other models.

4 Discussion and Conclusions

This research aims to ascertain the degree to which COVID-19 cases differ in their
spatial distribution across 64 districts. Four Bayesian hierarchical models, both spatial
and non-spatial, were used to verify the heterogeneity of the spatial data. Spatial
models help explain geographical differences. These models show that the model’s fit
is not the same everywhere. The examination of spatial autocorrelation performed at
the district level gives data regarding districts’ embeddedness and spatial dependency,
which conveys that the districts are significantly clustered. Since the number of affected
cases is proportional to the relative risk, it is reasonable to expect that there will be
fewer affected cases if the relative risk is low. Dhaka was found to have the highest
relative risk compared to other districts in Bangladesh. Additionally, there is evidence
that Khulna has a high risk, but one that is lower than that of capital. The results of this
study show that the risk is also higher in districts with many people, like Chattogram.
Overpopulation is a cause of a higher risk, along with fast transmission, lack of safety,
and not taking precautions.

This research looks at the overall situation of COVID-19 in each district. The
government should spread information and make safety materials available. Keep the
cost of preventive measures at a reasonable level. A vaccination campaign must be
started to make antibodies in the body. If the disease can be stopped from spreading
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in areas with many people, then the number of people who are adversely affected can
also be reduced.

In this research, we focused on one response variable without considering other
covariates except for the district population’s density. The results will be more gen-
eralized if we use other related risk factors in the model. Further research will be
performed using a Bayesian hierarchical spatial model with other related covariates.
The results of this investigation will have led to the discovery of further significant
information.
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See Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.
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Fig. 5 Dynamic Trace plots for posterior distribution obtained by Poisson-Gamma model

Fig. 6 Kernel Density plots for posterior distribution obtained by Poisson-Gamma model
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Fig. 7 Auto-correlation plots for posterior distribution obtained by Poisson-Gamma model

Fig. 8 Dynamic Trace plots for posterior distribution obtained by Poisson-Lognormal model
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Fig. 9 Kernel Density plots for posterior distribution obtained by Poisson-Lognormal model

Fig. 10 Auto-correlation plots for posterior distribution obtained by Poisson-Lognormal model
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Fig. 11 Dynamic Trace plots for posterior distribution obtained by CAR model

Fig. 12 Kernel Density plots for posterior distribution obtained by CAR model
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Fig. 13 Auto-correlation plots for posterior distribution obtained by CAR model

Fig. 14 Dynamic Trace plots for posterior distribution obtained by COV model
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Fig. 15 Kernel Density plots for posterior distribution obtained by C.O.V. model

Fig. 16 Autocorrelation plots for posterior distribution obtained by COV model
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Fig. 17 Dynamic Trace plots for posterior distribution obtained by Modified CAR model

Fig. 18 Kernel Density plots for posterior distribution obtained by Modified CAR model
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Fig. 19 Autocorrelation plots for posterior distribution obtained by Modified CAR model
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