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Abstract

In this article, we proposed a new extension of the Topp—Leone family of distribu-
tions. Some important properties of the model are developed, such as quantile function,
stochastic ordering, model series representation, moments, stress—strength reliability
parameter, Renyi entropy, order statistics, and moment of residual life. A particular
member called new extended Topp—Leone exponential (NETLE) is discussed. Max-
imum likelihood estimation (MLE), least-square estimation (LSE), and percentile
estimation (PE) are used for the model parameter estimation. Simulation studies were
conducted using NETLE to assess the MLE, LSE, and PE performance by examining
their bias and mean square error (MSE), and the result was satisfactory. Finally, the
applications of the NETLE to two real data sets are provided to illustrate the impor-
tance of the NETLG families in practice; the data sets consist of daily new deaths
due to COVID-19 in California and New Jersey, USA. The new model outperformed
many other existing Topp—Leone’s and exponential related distributions based on the
real data illustrations.
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1 Introduction

In life science and engineering studies such as medicine, biomedical sciences, bio-
statistics, communication, computer engineering, reliability, survival analysis, and life
testing, statistical models play an indispensable role in studying the natural phenomena
that occur in such fields of study. Probability models are used to model and character-
ize natural life phenomena. In probability studies, extending the classical probability
models becomes necessary due to the natural events that occur and require higher
dimensional data analysis and complex decisions. Whereas the traditional models can-
not efficiently model such natural phenomena, especially when the failure rates are
non-monotone. Thus, the practitioners proposed many ways of adding new param-
eter(s) to manipulate the existing traditional model and improve their quality and
flexibility to provide higher accuracy so that the exploration of lifetime data can be
assessed better. Data exploration in lifetime studies is one of the keys to analyzes
real-world, enabling us to measure, predict, and explain quantities of interest that
arise in the fields of artificial intelligence, big data analysis, data mining, biomedical
sciences, business studies, and communication with the aid of several powerful tools
in probability and statistical concepts, programming, optimization, algorithms, and
computational techniques; for more studies, one can see [1-4].

Topp Leone (TL) model was introduced in [5], the model is defined on finite support
w € (0, 1) with the cumulative distribution function (cdf),

Hw) =w*Q2—w)*, a>0.

TL possesses a bathtub failure rate and has only one parameter; it has a closed-
form of the cumulative distribution function, unlike beta distribution. This model has
received comprehensive study and applications in sciences and social sciences such
as biology, economics, ecology, etc. One can see [6] for the moments properties of
the TL. [7] provides some stochastic ordering results and reliability studies of the
TL. [8] discussed the Bayesian estimation of the TL under trimmed samples. [9]
provided the recurrence relations for the moments of order statistics from the TL
without any restrictions on the shape parameter and many relations when the shape
parameter is an integer. [ 10] derived some explicit algebraic expressions for the single
and product moments of order statistics from TL, and gave an identity about single
moments of the order statistics. [11] proposed the use of maximum likelihood and
uniformly minimum variance unbiased estimation procedures for the stress—strength
reliability parameter from TL for the problem on both complete and left censored data,
also considering the interval estimation of the reliability parameter. [12] develops a
Bayesian estimation in the context of non-informative priors for the shape parameter
of the mixture of TL distributions for a censored data set. Under the assumption of the
known scale parameter of the TL, [13] provided Bayes and empirical Bayes estimates
of the unknown parameter under non-informative and suitable conjugate priors and
under the assumption of squared and linear-exponential error loss functions, also
concluded that the proposed estimates are minimax and admissible. [14] constructed
the Bayesian point and interval estimation for the shape parameter of the TL under
lower k-record values. [15] discussed the moments of dual generalized order statistics
from TL-weighted Weibull and its characterization.
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Recently, [16] proposed a new inverted Topp—Leone distribution called the Kies
inverted Topp—Leone with its applications to COVID-19 mortality rates in the United
Kingdom and Canada. [17] introduced the odd Weibull inverted Topp—Leone distri-
bution with its application to COVID-19 mortality rates in the United Kingdom and
Canada. [18] introduced the type I half-logistic Nadarajah-Haghighi distribution and
illustrated its good performance in fitting the COVID-19 mortality rates data from
California, USA. [19] proposed exponentiated Gumbel-Weibull-Logistic and pro-
vided its application to Nigeria’s COVID-19 infections data. [20] estimated the daily
recovery cases from COVID-19 in Egypt using power-odd generalized exponential
Lomax distribution. [21] provided some statistical inferences based on the exponenti-
ated exponential model that aided in assessing covid-19 cases in Kerala. [22] compared
the performance of some lifetime models, including the Weibull model, using COVID-
19 data from Pakistan. Among others.

TL has tractable close form properties, but it is not flexible enough to cover a wide
range of practical applications, especially in lifetime data analysis. But, the demand
for flexible lifetime models in practice is increasing due to the inability of the classical
ones and rapid progress in applied statistical studies, biomedical sciences, engineering,
computer sciences, reliability, econometrics, etc. Thus, researchers are encouraged to
extend classical models to more flexible ones capable of modelling various failure rates
that occur in lifetime analysis. TL families of distributions have been extended to a gen-
erator of distributions by various authors, and their positive impact has been discussed
comprehensibly in the literature. For example, [23-25] proposed various Topp-Leone-
G (TLG) family, [26] introduced the generalized Topp—Leone-G (GTLG), [27] type
II Topp—Leone-G (TIITLG), [28] type II generalized Topp—Leone-G (TIIGTG), [29]
power Topp—Leone-G (PwWTLG), [30] Type II power Topp-Leone-G (TIIPTLG), [31]
extended Topp-Leone -G (ETLG), G—fixed—Topp-Leone (GFTL) [32], exponentiated
Generalized Topp Leone-G (EGTLG) [33], Marshall-Olkin Topp Leone-G (MOTLG)
[34], Topp—Leone odd log-logistic-G (TLOLLG) [35], and Topp—Leone Marshall-
Olkin-G (TLMOG) [36], among other.

In probability and statistical studies, the generators of probability models have sig-
nificantly contributed to the literature regarding distribution theory and led to numerous
useful tools in mathematical and statistical theory and practice. Here, we proposed a
new extension of the Topp—Leone generator of distributions (NETLG) as an additional
tool for statistical studies. This work aims to introduce another flexible generator of
distributions from the TL that can accommodate various failure rates and can be used
to model different kinds of skewed data. An additional parameter was employed to
the usual TLG by applying a function involving exponential and natural logarithm.
The additional power parameter allows the tuning of the model functions for better
flexibility and provides some new statistical viewpoints for modelling data. Any valid
baseline model can be chosen to propose a new flexible member of the NETLG model;
the new model can provide more flexible shapes of the density and failure rates in com-
parison to parent distribution; the new generator’s special models have the capability
to provide a better fit than some other existing alternative models. Moreover, different
probability models serve different purposes and represent different data generation
processes. In addition, we want to investigate some of the important mathematical and
statistical properties regarding the new model to present a closed-form and convenient
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Table 1 Some Topp-Leone-G families

Name CDF
Topp-Leone-G (TL-G) [23] H(x) =G%x;&)2 — G(x; &)Y, o > 0.
New Topp-Leone-G (NTL-G) [24] H(x) = (G9(x; £) (2 — GO, g)))a . a,0>0.

1 _ 1 )\*
Power Topp-Leone-G (PWTL-G) [29]  H(x) = eaﬁ(l G(Xf)) (2 — eﬁ(l GWE))) , a, B> 0.

Extended Topp-Leone-G (ETL-G) [31] H(x) = G¥(x;&)(2 — G(x; S))“’g, a>0BeR.

representation of the model properties with the aid of several mathematical techniques,
computational algorithms, and computer packages for numerical assessment. Finally,
two applications of the NETLG family to COVID 19 data are used to illustrate its
importance in practice.

In Sect. 2, we derived the new model and discussed some important properties. In
Sect. 3, maximum likelihood estimation (MLE), least-square estimation (SLE), and
percentile estimation (PE) are proposed for the parameter estimation and assessed by
simulation studies. Section 4 provides an application of the new model family for
illustration. In Sect. 5, the conclusion.

2 New Extension of the Topp-Leone-G Models (NETLG) and Its
Properties

Let G(x; &) be any valid baseline cumulative distribution function, x € R, and £ is a
vector of parameters, the cumulative distribution function (cdf) of some Topp—Leone-
G families are given in Table 1:

In this work, we proposed the new extended Topp—Leone generator of distribu-
tions (NETLG) due to the idea in [37]. The perspective of this model derivation is
innovative and will have broader academic value. No doubt, the studies related to this
model will provide tools for extending several mathematical results in probability and
mathematical statistics. The additional parameter provides more flexibility to the new
model than other existing TL families. It is a fact that different distributions serve
different purposes and represent different data generation processes; thus, our new
model provided a new means of data generating processes and a Monte Carlo simula-
tion process. The cumulative distribution function of the new extended Topp-Leone
generator of distributions (NETLG) is given by

F(x) = e—a(—logG(x;S))ﬁ (2 _ e—(—logG(x;é))ﬁ>a’ o, B> 0. (D

If B = 1 we have the Topp—Leone-G model [23]. The corresponding probability
density function (pdf) is given by
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o p 83 8) el —a(—log G(x:£)P —(~log G(x:£))?
F0) = 2ap s (log G ) e (1-e )
(2 _ e_(_ logG(M))’g)a_1 ; 2)

where g(x; &) is the corresponding pdf of the baseline cdf G(x; &). The survival
function and hazard rate function (hrf) of the NETLG for 8, « > 0 are given by

o
s(x) = 1 — ¢~ (- logG:e)’ (2 —e logGu;s))ﬁ) , 3)

and

g(x; &)
G(x; &)

(—log G (x; £))f~! ¢~ logGx:6)) (1 (= 1ogG<x;s>>f‘) <2 — o—(=log G(x;s»f‘)“‘l

] — e—a(~log G(x:£)” (2 _ e—(~log G<x;s>)f’>“

h(x) =2ap

“)

respectively.
The asymptotic properties of the NETLG model are discussed below.

Lemma 1 Let X ~NETLG; then we have the following asymptotic.
F(x) ~2e—@Cl0eG@o)’ o6 0 )
s(x) ~ a (1 - e—(—“’gc“f”‘g)z ~a(—logGx; €D as G — 1,
F () ~20Bg(x; §) (—log G(x; £)P 7! (1= ™ C126wO) g5 G 1,

2Bg(x; §) (—log G(x; )7
(1 _ efelogG(x;s))ﬂ)

g(x;§)
G(x;8)

h(x)

as G — 1,

f(x) ~4dap (—log G(x; £))P~! e—e(—log 6w oG 0,

(6)

The quantile of distribution has many uses in theoretical studies and statistics appli-
cations. Quantile function serves as a tool for parameter estimation and simulation.
The quantile function of the NETLG can be derived as

)

Ow)=G™! 0<uc<l. @)

In particular, Q(%) is the median. The skewness and kurtosis of the NETLG can be
discussed by the Bowley’s skewness (B), and Moor’s kurtosis (M) defined respectively
as
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03)-2035H+0)
B = 3 1
o) -0k

and

= 2B - 2R +0G) ~ 0(p)
() -0}

2.1 Stochastic Ordering

Stochastic ordering is another aspect of probability theory that allows us to discuss
some of the relative characters of distributions. There are various means by which we
might say that a random variable X is smaller than a random variable Y. However,
in stochastic ordering, we say that X is stochastically smaller than Y denoted as
X <4 Y. There are many other stochastic orders such as likelihood, hazard, etc., for
details one can see [38] among others. Here, we obtained the likelihood ordering result
for NETLG under some possible conditions. Let a random variable X with pdf f;(x)
and X, having pdf f>(x), then X is said to be smaller than X» in the likelihood ratio
order (denoted X1 < X»2) if f1(x)/ f2(x) is decreasing in x.

Proposition 1 Ler X1 be a random variable having NET LG (1, B, ) and random
variable X, having NET LGy (a2, B, &), then, X1 < X2 if a1 < a.

Proof We show that f(x)/f2(x) is decreasing.

—fl (o 1, B, €) — ﬂe—(ﬂll—Olz)(—logG()c;E))‘3 (2 — ¢ (=log G(x;é))ﬂ)mﬂ)t2 ,
fr(xsaz, B,6)

and

9 fikva, B.8) g(x; §)
ax falx; a, B, §) G(x; &)

% (1 _ p—(—log G<x:s>>ﬂ) (2 _ o (—log G(x;s»ﬁ)

2%’3(0" —) (—log G (x; £))P~! e~(@1—a2)(logGx:£)”

a)—ar—1

0 filx;a1,8.6) ;
thus,ﬁm §Olfot1 < ). [m}

2.2 Series Representation of the pdf

The series representation of the NETLG could make it easier for us to compute some
properties of the NETLG. But we need the following expansions. For |z| < I and
b > 0 real and non integer,

o]

el (EDTO)
(-2 _gi!l“(b—i)z' ®
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Also, for a power series to the power of n € N we need:

Lemma 2 ([39]) For a given power series of the form Y - arxk, let n be a positive
integer, then,

00 n 00
(Z akxk> = chxk,
k=0 k=0

where co = ag, ¢y = m+10 Zle(kn —m + k)agcy—i form > 1.
Form the (2); the following expressions can be presented in a series form by using
(8) as
o~ (~log G(x:6))P (1 _ efelogG(x;s))f‘) (2 _ o (~log G(x;s»ﬁ>°“1

oo i+l

=Y > wijx (—logGlx; £)FF, ©

i k=0 j=0

(et (@ ()

where, w; j r = AT @=T) , therefore, (2) can be presented as
oo i+l g(x_%_)
X) = ¥ ’ —log G (x; &))Pk+D-1
f(x) Z_ Z_) Fik G (TlogGxie)
i,k=0 j=0
oo i+l
=Y ) o i B.6), (10)
i k=0 j=0
_ 20B(=D kDRI (@) i+ ) _ glxf)
where, o}, = : i!k!l"a(ail) < (lj) and 7 (x; B, &) = é(’;;g)(—log

G(x; & ))’8(7‘+1>_1. Further, for an integer 8(k + 1) — 1 we can proceed and simplify
(—log G(x; é))ﬁ(k“)_1 in (10) by some algebra as

Bk+1)—1
(—log G(x; £)PEDT = N~ (PEEDT) (—1og G(x: 6) — 1),
1=0
Bk+1)—1 o l
—14 Y (P (Z (G lx: £) - 1)") ,
=1 n=0
where wg = —1, and w, = %, therefore, we can apply the lemma 2 in above to
get
Blk+1)—1 00
(—log GG )PFDT =14 N (PEDH XN e (Gxi ) — 1),
=1 n=0
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1

where ¢p = wyj, and ¢, = T

Yo (n —m 4+ n)wy, ¢;u—p, hence,

(—log G(x; £)PEFD=T — | .y PEFD=T S5m0 L n GV E), (1)

where di pn = Y u_p (ﬁ(kﬁl) l)( )en(—1)" 1, thus, by putting (11) in (10) we have

v=|

oo i+l oo Plk+1)—1i+1

fo) = ZZ,,ké((’;?) 3 Z Zw,,kdkungus)a“ Lx:8),
Jj=

i,k=0 j=0 i,k,n=0 =

(12)

2.3 Moments

Let X follow the NETLG distributions, the /" moment of X can be obtained from
wr = E[X"] = ffooo x" f(x)dx. The moments can be computed directly from the
(10) as

oo i+l

wr= 3 Zw;k,j,k/ x" e (x; B, &) dx, (13)

i k=0 j=0

where w;" ik and i (x; B, &) are given previously in (10). In other way, we can compute
the moment from (12) given by

oo i+l oo Bk+1)—1i+1

ZZwl,k/m rg(x s)d +>Y ¥ Zv Vo ;4 dion Eo[XT],

i,k=0 j=0 i,k,n=0 I=I =l

where o ., givenin (12), d y , in (11), and E,[X"] is the r'" moment of the expo-
nentlated basehne distribution GV (x; &) distribution.

Next, we consider the incomplete moments used in computation the mean devia-
tions, income inequalities, and moments of residual life. The incomplete moment of
X defined as I, (t) = fioo x" f(x)dx from (10) can take the following form

oo i+l

L= Zw,jk/ X7 (x; £) dx, (14)

i,k=0 j=0

where ti(x; &) is given in the equation (10). The first incomplete moment 7 (t), i.e
when r = 1, is a tool for computing the mean deviations about the mean 81 (X) and
the mean deviations about median 6, (X) defined by

01(X) =2 F(u) =25 () and 62(X) = g —2L(M),

where g1 is the firs moment of X i.e, u1; M = Q(0.5) from (7); and F(.) is the cdf
in (1).
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The Lorenz and Bonferroni curves are computed using /1 (¢). For a random variable
X and a given probability p, the Lorenz and Bonferroni curves are defined by L(p) =

(1)~ (q) and B(g) = (p1)~'I1(g) respectively, and g = Q(p) from (7).
Moreover, I1(t) can be used to compute the two mean of residual life, i.e, the
mean residual life defined by M(t) = E(X —t|X > t), or, M(t) = fooo SCAD e,

s(t)
where s(¢) is the survival function of X, and the mean reverse residual life defined by
m(t) = E(t — X|X < 1), orm(t) = [ %dx, where F(.) is the cdf of X. These
measures are applied in the determination of the distributions of the extreme values.

2.4 Stress-Strength Reliability

In practice, a good design of a system is so that the system can resist the assumed
stress to be applied. Assume that a component possesses stress X and is subjected
to a strength Y, then parameter R = P(Y < X) discusses the system performance.
It is called the stress—strength parameter in reliability studies. The system will fail
when the applied stress is higher than the assumed system strength. We can find some
applications of R in various fields in [40, chap. 7]. R has been discussed by many
researchers in the literature through various perspectives. For example, let X and Y be
an independent random variables, then: normal distribution (N) [41, 42], Weibull (W)
[43-45], exponential (E) [46], generalized exponential (GE) [47], beta-Erlang trun-
cated exponential (BETE) [48], Poisson-odd generalized exponential family (POGE)
[49], generalized logistic (GL) [50], Poisson-generalized half logistic (PGHL) [51],
generalized exponential Poisson (GEP) [52], Poisson half logistic (PHL) [53], expo-
nentiated sine Weibull (ESW) [54], extended cosine Weibull (ECSW) [55], among
others.

Let X and Y be independent random variables, having the density f(x; o1, B, §)
and Y with cdf F>(y; a2, B8, &) from NETLG, then, the stress—strength reliability
parameteris R = P(Y < X) = f_oooo f1(x) F>(x)dx. Therefore,

R = / 20 EEE) (L jog G(x; )1 e tarte - log Gl
oo G(x;§)

« (1 _ e—(—logG(x;s»") (2 _ (o G<x:§))ﬂ>°“+"‘2’l dx.

hence,

o] o1

- / friar +an, B E)dx =

al + o ar+ap’
2.5 Entropy
Entropy is the degree of disorder or randomness in a system. Here, we computed the

Renyi entropy of the NETLG families defined by Re(p) = (1 — p)~'log [ [, 7 (x)dx],
where p > 0 and p # 1. We started by simplify the expression of f*(x) as:
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_ 87 (x; §) (B=1) y—on(~log G(x:6)
fPx) =2 pﬂpm(—logG(x £))° pi=iog
pla—1)

x (1 e 1ogG<x;s>>ﬁ)" (2 _ e—(—logG(x;s»ﬂ) , (15)
we can simplify the following expression obtained from the above equation as

e—ap(—10g G(x:)) (1 _ e—(—logG(x;s»ﬁ)" (2 _ o—(—log G(x;g))/g)p(a_l)

D $ijk (—logGlx; )P, (16)

i,j,k=0

. ik Sk
where, ¢; j r = (P(Oli—l)) (lﬂ;ﬂ) (*1)”#, thus, by substituting the above series in
(15) we get

gP(x; &)

— . £\ Blk+p)—p
i g (Tl G ,

fP(x) =200l B’ Z ik

i,j,k=0

hence, the Renyi entropy of the NETLG families can be obtained from

Re(p) = (1 - p)~log [Z‘Wﬂp > ik f T EGE) (g G gy Pt dx}.

e T e Gr )

2.6 Order Statistics

Let X1, X2,--+, X, n > 1, be an ordered sample obtained from NETLG families
with cdf F(x) and pdf f(x), then, the density function of the i"h —order statistics is
represented by f;.,(x) and define by

n—i

= SIS iy i piti
fin(x) = B(l.’n_l.H);)(,-)( 1 P ),

Simplifying F/*/~1(x) in above, we have

Fiti1(x) = g~ali+i—D(~log G(xi&))” (2 _ e—(—logG(x;s))ﬁ)“("“*” ,

thus, the density function of the i th _order statistics be comes the mixture of the
NETLG(x(i + j), B, &) as

1 n—i - ) ' .
fion () = (i—l—j)B(i,n—i—l—l)jXZ(:)( D)V fasat+ ). 8.6, (D)
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The " moments of the ;" —order statistics can be computed from (17) by considering
(13) as

1 n—i ] .
E[X! 1= YD EIX o s
[ 1.n] (i + ]) B(i,n—i—+1) ]2_(:)( J )( ) [ ]f[a(zﬂ),ﬁf]
where E[X"] £, ;4. 1S the expectation of NETLG families with respect to the den-

sity f(x; ai + ), B, &).

The asymptotic distributions for the extreme order statistics X1., and X,., from
NETLG families can be discussed according to the details in [56, chap. 8], among
others.

2.7 A Special Member of the NETLG Families

A special member of the NETLG is derived and discussed in this subsection, namely
the new extended Topp—Leone exponential (NETLE) distributions.

2.7.1 New Extended Topp-Leone Exponential (NETLE)

Let the baseline density in (2) be exponential distribution with parameter 1 > O,
having cdf and pdf given by G(x; 1) = 1 — e™** and g(x; 1) = Ae " respectively,
x > 0. The density (f(x)) and the hazard (h(x)) functions of the NETLE are given
by

fx) = % (—log(1 — e‘”))ﬁf1 e—a(—log(l—e**“))ﬁ (1 — g—(—log(l—e*—*))'g)
—e

X (2 - 67(71"g(176ﬂc))ﬂ)a_1 , (18)
2afre M S Bl o loa(1—e—+))P
M) = (e (loa(l = )Tl loxti=e)

(1 - e’(*“’g(‘*f’“))ﬁ) (2 - e*(flogafeﬂf))ﬁ)“_1

X
1 — ef(flog(lfe—“))ﬁ (2 _ ef(flog(lfe—«*))ﬁ>a

Figures 1 and 2 show the plots of the density and hazard functions of the NETLU
for some parameter values.

Let be arandom variable X follow NETLE, then the quantile function of X is given
by

OnerLe@) = —2""log(l — qu, o, B)), 0<u<l,
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X
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0.0

Fig. 1 Plots of the density and hazard rate function of the NETLE distribution

1.00
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6
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ssoumads — 9

sisouny — N

Fig.3 Plots of the B-skewness and M-kurtosis of the NETLE distribution

1/8
where g (u, o, B) = ei[ilog(]imﬂ .

Figure 3 illustrated that the B-skewness and M-kurtosis of the NETLE; notice that
both the B skewness and M kurtosis are independent of A. The skewness decreases in
o and unimodal in 8, while the kurtosis decreases in « and increases in .

Proposition 2 Let X ~NETLE with pdfin (18), then,

1. For averylarget > 0, i.e, as t — 00 the asymptotic of the mean residual life is
given by

1
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2. Foravery smallt > 0, i.e, as t — 0 the asymptotic of the mean reverse residual

life for p = 1is

1) ~ :
m(t) o

Proof 1. The asymptotic of the survival function of NETLE can be obtained from (6)
as s(x) ~ o (—log (1 — e_)"‘))z’3 ~ e ™ 4s x — o0, therefore, as ¢ — 00
we have M = fooo %dx ~ fooo e X gy = ﬁ

2. Asx — 0 the cdf of NETLE from (5) for 8 = 1 become: F(x) ~ 2 (1 — e )" ~

20%x%, therefore, as t — 0, m(x) = fot 1;(();))dx ~ 1% fot x%dx = o#l

]

Proposition3 Ler X| < Xy <,...,< X,, be from NETLE with pdf in (18), let
B, = (Xy:n — an) /by, then, B, “4 B implies that

lim P(B, <x)=G(x)=¢° ,
n—oo

for every valid x € R of G(x). a, = F~'(1 —n™ ") and b, = E[X — a,|X > a,]
from theorem 8.3.4 of [56].

Proof From theorem 8.3.2 of [56], we used lim;_, o %&tlxw)), based on the
theorem 2 number 1., M (1) ~ ﬁ as t — oo, thus, lim;_, w

. —2)»;3(&%)
llmtﬁoo egT =e " O

Proposition4 Let X1 < Xy <,...,< X,, be from NETLE with pdf in (18), let
B = (X1.n —a}) /b, then, for p =1, B} < B is implies that

~

lim P(B¥ <x)=G*(x;0)=1—e"°,
n—oo

for every valid x € W of G*(x), thus, a} = F_l(%) and b} = E(a} — X|X < a))
from the theorem 8.3.6 of [56].

Proof From theorem 8.3.6 of [56] we can consider lim;_, FUAxEG=XIX=D) Baged

130)
on the Theorem 2 number 2., the asymptotic of E(t — X|X < ¢) for § = 1 as

. . ¢ . F(t+xE(t—X|X<t . 20% (14 )

lim;_q is m(t) ~ P thus, lim,_,¢ % ~ lim;_q Tﬁ‘;’ =
o

(1—}—‘;‘?) — &' as a — oo. O

3 Model Parameter Estimation
The parameters of the NETLG are estimated using the method of maximum likelihood

estimation (MLE), least-square estimation (SLE), and percentile estimation (PE). The
performance of the techniques is examined by simulation studies using NETLE.
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3.1 Maximum Likelihood Estimation (MLE)

Let X1, ..., X, be arandom sample of size n from the NETLG. Let ® = (a, B, S)T
be a vector of parameters, with the MLEs as ©® = (&, S, E)T. The ® can be computed
by the maximization of the log-likelihood function (¢(®)) in Eq. (19).

n n
€©) =nlog2+nloga +nlogB+ Y logg(xi: ) — Y log G(x;; £)
i=1 i=1

+(B—1) log(—logGx;; ) —a Y (—log G(xi; §))

i=1 i=1

n n
+ log (1 - e—(—l"gc(xff))ﬂ) +@—1 log (2 _ e—(—logc(x,-;@)ﬁ)
i=1

i=1

(19)
In other way, by solving the nonlinear system given below in (20) to (22).
a¢ n —— RPANY:
T _ (—log G(x;:§))
== Z( log G (x;; £)) —l—az;log( —e ) (20)
a¢ P
% ﬂ+Zlog< logG<x,,s>>—aZ< log G (xi; §))” log (—log G (xi; )
i=1
iyt o2 G0iE)" (— log G (xi: §))” log (— log G (i3 )
P 1 — e—(—logG(x;:6)f
e~ (108 GG (_1og G (x;: £))F log (— log G (xi;
(a_l)z g G(xi; §))" log (—log G(xi; §)) @1

2 _ g—(—logG(x;;:6)”

0 g i d) ZGS(xi;s) G-1 WZ( log G(xi; )P~ G5 (xi; §)

9% girk) G(xis §) o (—1ogG(xi: 6)F Gxis §)
logG<xl,s>>ﬂ ' GE iz )
b Z G ©)
By eraouor (—log Gxi: €))7 GExiz §)
pr (1 — e—(—IOgG(xl-:é‘))ﬂ) G(xi; &)

( B i e—(—logG(xﬁé))ﬂ (—log G (x;: S))ﬁ_l Gs(x,-; £)
— (o — .
i=1 (2 — e*(*logG(xi;E))ﬂ) G(x;: &)

(22)

Where g (x;; &) and G¢ (x;; &) are the partial derivative with respect to £. Under the
usual condition for the parameters in the interior of the («, 8, &) space but not on the
boundary, The asymptotic distribution of (@ —®) asn — ooisthe multivariate normal
distribution with zero means and covariance matrix I~!(®). The asymptotic behavior

@ Springer



Annals of Data Science (2023) 10(1):225-250 239

is also valid as I(©) = lim,_, o0 1~ J,,(®), where J,,(©) is a unit information matrix
evaluated at ©, and J(©) = (3%£(©)/00907).

3.2 Least Square Method (LSE)

Let X1 <, ..., < X, be an ordered random sample of size n from NETLG fam_ilies
of distributions. The LSEs for the vector of parameters ©® = («, B, T, ie ® =
(@, B, &)T can be obtained by minimizing L(®) given by,

n . 2
. . @ l
L©)=>)" <eo‘(10gG(xi»§))ﬁ (2 _ ef<flogG<x,~,s>>’*) - 1) ’

i=1

or by the solution of the following nonlinear equations, which can be done numer-
ically using R software, among others.

" .

oL _ 2y (eamogG(xi;f))ﬁ (2 _ e*(*IOgG(Xilg))ﬁ)a _ ’_>

da P n+1
X F(x) [log (2 = ™ 71E00") — (—log Gxi; £))F

n .
0oy <e_“(—10gG(xi;E))ﬁ (2— e ese YT _ )
op i=1 n+1

e~ (—log Gxiz§)

(2 _ e*(flogG(xf;E))ﬁ)

x F(x;) (—log G(x;; £))P log (—log G (x;; £))

n .
B_L =2ap Z (g—a(—logG(x,-;S))ﬁ (2 —e (= logG(x,';é))ﬁ>a _ ! )
9% i=1 n+1
L GE(xi ©) e~ (—logG(xi:6)”
x F(x;) (—log G (x;; )P 1 —— 1—
G(xi; §) (2 _ p—(—log G(xi;s»”)

3.3 Percentile Estimation (PE)

The quantle of the NETLG in (7) can be used for parameter estimation. Let
X1, X2, ..., X;, be an ordered random sample of size n from NETLG families of
distributions, the unknown parameters ® = (a, 8, £)” can be estimated by equating
the sample percentile points to the population percentile points. Let u; denotes an
estimate of F(x;.,), then the percentile estimators O = (a ﬁ & )T can be obtained by

minimizing (23) or by the solution of the %—5 = %—g = a_ =0.
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3.4 Simulation Studies

Simulation studies are conducted to examine the performances of the different param-
eter estimation techniques by discussing their bias and mean square error (MSE) of
the estimators. A moderate sample size of N = 1000 is generated each of sizes
n = 30, 60, 90, - - - 300, from the NETLE for some chosen parameters values. The
computations ware perform using the R3.5.3-software [57]. The resulting sim-
ulation studies is given in Fig. 4, 5, 6 and 7. The results from the figures indicated that
both the MLE, LSE, and PE performed consistently as expected, and an increase in
the sample sizes decreases the MSE, the bias appears negative in some cases. Thus, we
can conclude that these three techniques can be enough for the parameter estimation
of the NETLE and the other NETLG distributions.

4 Real Data lllustration

We illustrated the advantages and flexibility of the NETLG families using NETLE
distribution and compared its performance with some other popular models using
two real data set. We estimated the competing models by maximum likelihood and
compared fit using the Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), and Consistent Akaike Information Criterion (CAIC), Kolmogorov
Smirnov (KS), Anderson-Darling (AD), and Cramer-von Mises (CvM) measures. The
model with the smallest value of these measures fitted the data better. The competing
models are the extended Topp—Leone exponential (ExXTLE) [31], extended Erlang-
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truncated exponential (EXETE) [58], Poisson Topp—Leone exponential (PTLE) [59],
generalized exponential Poisson (GEP) [60], Topp—Leone exponential (TLE) [23],
Topp—Leone generalized inverted exponential (TLGIE) [61], generalized exponential
(GE) [62], beta exponential (BE) [63], beta Erlang-truncated exponential (BETE) [48],
and exponential (E) distribution.

4.1 Datal

The first data consist of the daily new deaths due to COVID-19 in New Jersey, USA,
from March 12, 2020 to July 25, 2021, extracted from https://www.worldometers.
info/coronavirus/usa/new-jersey/. The data: 1, 1, 2,5, 2,6, 5, 8, 19, 21, 22, 31, 37, 24,
42,79, 100, 206, 124, 226, 81, 98, 259, 308, 222, 263, 284, 189, 106, 409, 398, 409,
365, 260, 150, 198, 425, 352, 413, 214, 279, 86, 121, 449, 372, 518, 352, 231, 162,
74,386,318, 297, 171, 150, 165, 88, 226, 210, 248, 231, 126, 121, 94, 161, 176, 120,
151, 111, 64, 18, 48, 162, 81, 141, 115, 84, 24, 58, 139, 114, 87, 73, 80, 87, 88, 112,
97,56, 108, 42, 56, 63, 62, 41, 38, 29, 14, 36, 55, 52, 33, 45, 34, 27,5, 17, 41, 52, 24,
22,23, 50, 64, 106, 31, 50, 6, 30, 23, 43, 31, 20, 20, 5, 2, 2, 23, 33, 18, 13, 17, 16, 18,
15,9,10,6,3,6,3,13,3,10,11,2,5,4,15,2,31,9,7,9,1,2,2,7,2,6,8,4,3,7,5,
15,9,6,5,3,22,7,11,5,9,4,4,5,8,9,4,5,4,2,1,3,9, 10, 3,5,4, 13,7, 3, 3, 3, 4,
3,7,57,3,7,2,1,17,12,4,4,2,4,3,18, 16,17, 8, 12,2, 10, 17, 15, 10,6, 9, 1, 2,
16, 23, 16, 10, 12, 4, 10, 22, 12, 19, 25, 28, 15, 14, 38, 36, 36, 24, 32, 17, 16, 46, 59,
36,27, 38, 11, 20, 84, 56, 62, 45, 42, 23, 15, 87, 111, 77, 59, 61, 29, 24, 86, 125, 66,
51, 50, 28, 26, 106, 139, 81, 47, 23, 19, 39, 115, 188, 82, 106, 32, 34, 38, 120, 124,
110, 99, 86, 173, 113, 34, 113, 87, 24, 16, 51, 136, 86, 109, 59, 17, 22, 132, 115, 81,
82,72, 29, 30, 70, 109, 100, 93, 77, 24, 23, 93, 147, 79, 64, 47, 13, 13, 31, 135, 89,
62,50, 24, 17, 104, 99, 69, 46, 46, 14, 21, 48, 128, 42, 30, 36, 16, 17, 45, 133, 46, 40,
34,15,22,41,79,31, 27,31, 40, 7, 61, 50, 38, 28, 24, 7, 15, 82, 75, 30, 24, 11, 9, 14,
51,49, 34,42, 33, 12, 25, 50, 59, 47, 43, 40, 9, 18, 45, 65, 30, 27, 39, 13, 19, 61, 49,
20, 25, 34, 12, 16, 42, 49, 33, 27, 22, 11, 10, 28, 43, 25, 26, 20, 9, 14, 23, 32, 23, 17,
14,7,9,25,34, 14,12, 16,6,5,7,28,6,12,8,6,5,1,31,6,2,2,3,5,11, 12,7, 4, 4,
2,3,15,18,6,12,4,3,3,6,13,5,5,5,1,4,13,3,3,5,4,4,7,11,2,2,5,3,6, 12, 5,
2,4,5,2,4,6,3,2,5,7,3,1,8,11,4,7,5,5,4,9,6,7, 9.

The results obtained from these measures and the estimators are provided in the
Table 2. The results show that NETLE has the smallest value of the AIC, BIC, CAIC,
KS, AD and CvM; thus NETLE provides a good representation of the data better
than the other competing TL families and extensions exponential. Thus, NETLE can
be recommended as a good model for modeling COVID-19 data and other studies in
various fields of applied statistics. Figure 8 shows the plots of the (a) histogram with
the fitted NETLE, PTLE, and TLE densities and (b) empirical cdf with fitted NETLE,
PTLE, and TLE cdfs for the New Jersey data. Figure 9 is quantile-quantile plots of
the NETLE, PTLE, and TLE for the New Jersey data set, it can be seen from the
quantile-quantile plots that NETLE has more quantiles laying on the straight line.

s
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Fig. 8 Plots of the a histogram with the fitted NETLE, PTLE and TLE densities, and b empirical cdf with
fitted NETLE, PTLE and TLE cdfs for the New Jersey data
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Fig.9 Plots of the quantile-quantile plots of the NETLE(left), PTLE(middle) and TLE(right) for the New
Jersey data set

4.2 Datall

The second data is the daily new deaths due to COVID-19 in California, USA, collected
from March 12,2020 to September 30, 2020. The data was extracted from https://www.
worldometers.info/coronavirus/usa/california/. The data: 1, 1, 1, 5, 4, 3, 4, 1, 10, 6,
11, 14, 17, 12, 25, 12, 14, 35, 30, 24, 41, 44, 28, 33,54, 64, 61, 25, 46, 44, 53, 55, 80,
86, 89, 105, 28, 48, 73, 120, 103, 71, 91, 32, 58, 85, 75, 89, 80, 75, 24,71, 92, 74, 81,
91, 64, 26, 61, 97, 89, 80, 104, 55, 79, 32, 103, 86, 106, 69, 71, 31, 19, 43, 102, 82,
97,174,217, 47, 72, 61, 63, 72, 66, 29, 23, 95, 97, 71, 47, 72, 27, 30, 85, 79, 74, 65,
67,24, 48, 69, 96, 79, 64, 33, 32, 42, 104, 82, 98, 63, 29, 19, 75, 118, 150, 137, 102,
73, 26, 46, 138, 125, 127, 121, 91, 12, 57, 119, 155, 156, 134, 90, 27, 92, 169, 175,
113, 191, 136, 38, 108, 196, 169, 148, 188, 103, 67, 87, 182, 160, 186, 151, 75, 19,
98, 179, 164, 134, 166, 146, 18, 104, 149, 142, 140, 144, 67, 35, 80, 144, 157, 167,
152, 65, 22, 33, 72, 154, 99, 172, 71, 52, 75, 152, 105, 90, 99, 73, 31, 53, 123, 117,
88, 132, 51, 21, 34, 150, 107.

Table 3 provide the resulting test of the competing models. The NETLE provides a
better fit to the data set than the other models because NETLE has the smallest values
of all the measures. Figure 10 shows the plots of the (a) histogram with the fitted
NETLE, PTLE, and TLE densities and (b) empirical cdf with fitted NETLE, PTLE,
and TLE cdfs for the California data set. Figure 11 is quantile-quantile plots of the
NETLE, PTLE, and TLE for the California data set. In addition, Fig. 11 displayed that
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Fig. 10 Plots of the a histogram with the fitted NETLE, PTLE and TLE densities, and b empirical cdf with
fitted NETLE, PTLE and TLE cdfs for the California data
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Fig. 11 Plots of the quantile-quantile plots of the NETLE (left), PTLE (middle), and TLE (right) for the
California data set

the quantiles of the NETLE are laying on the straight line better than the PTLE and
TLE, which indicates the good performance of our new model.

5 Conclusion

This paper proposes and studies a new extension of the Topp-Leone family of dis-
tributions. The model’s important mathematical and statistical properties are derived
such as stochastic ordering, model series representation, moments, stress—strength
reliability parameter, Renyi entropy, order statistics, and the moment of residual life.
A new member of NETLG called new extended Topp-Leone exponential (NETLE)
is derived; we study its skewness and kurtosis, quantile, residual life, reverse residual
life, and extreme value distributions. The model parameter estimation is conducted by
maximum likelihood estimation (MLE), least-square estimation (LSE), and percentile
estimation (PE). The performance of the MLE, LSE, and PE is examined by simula-
tion studies from the NETLE by discussing the estimators’ bias and mean square error
(MSE), and the result was very good, as their MSE decreased with the increase in the
sample size. In the end, we compare the performance of the NETLE in practice with
some other popular models using two sets of daily new deaths due to COVID-19 data
from California and New Jersey, USA, and our new model performs better than the
other existing models as measured by some model selection criteria and goodness of fit
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statistics. For further studies, several special models can be derived and investigated,
and different methods of estimation of the models can be considered, such as Bayesian
analysis under various prior, regression analysis, survival analysis, the stress—strength
reliability estimation under various viewpoints, and other applied studies due to the
flexibility of the proposed family. However, the properties and characterizations of
some special members of the model may require some complicated mathematical
ideas such as special integrals and series representations which may lead to many
useful mathematical tools. We hope that the new model will attract wider applications
in various fields of studies.
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