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Abstract
Inflatedmodels are generally usedwhenever there is an excess number of frequencies at
particular count. In this study, a three-inflated Poisson (ThIP) distribution is proposed
by mixing the Poisson distribution and a distribution to a point mass at three. Some
of its distribution properties and reliability characteristics are studied. A simulation
study is carried out to see the performance of theMLEs. In IndiaCovid-19 implications
on mental health have been abysmal. Covid-19 related suicide data of India during
lockdown to the first gradual relaxation of the terms of the total lockdown (unlocking
1.0) are used to examine the appropriateness of the proposed distribution. Likelihood
ratio test is used for discriminating between Poisson and the proposed distribution.

Keywords Three-inflated Poisson distribution · Inflated · MLE · Health · Covid-19

Mathematics Subject Classification 60E05 · 60E10 · 62F10

1 Introduction

Statistical modelling is an essential part of data science in various areas of scien-
tific research or decision-making situations. To carry out this approach, selecting an
appropriate distribution is one of the significant tasks. Distributional properties are
quite important while dealing with huge data in data science (see [1–3] for example).
In medical and social sciences, modeling count variables is an everyday exercise [4].
Poisson distribution plays a foremost part in count data analysis. Count data such as
number of suicide attempts, number of heart attacks, number of unprotected sexual
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encounters, number of days of alcohol drinking, the number of days of missing pri-
mary activities, number of cigarettes smoked, number of hospitalizations, or number
of unhealthy days during a period are common in medical and psychological research
[5–7]. Poisson distribution is widely used to model such type of count data [6]. As
a matter of fact, what happens because of data clustering or certain other factors is a
kind of heterogeneity in study populations leading to the creation of extra variability
which in turn results in variance that is greater than the mean [6]. In such cases Poisson
distribution is inappropriate for data modelling. Medical and public health research
often used zero-inflatedmodelswhen there is a large proportion of zeros [5].Whenever
there is an excess number of frequencies at particular count, inflated models are used.
The following are the situations in which too many observed frequencies at particular
count data point may occur: (I) All the participants of the study area contemplated
are not affected by the Poisson process, so inflation occurs at a particular count; (II)
The increase or decrease of the participants of an area at a particular count into the
sample may be due to some certain unavoidable problem in the sampling, which leads
to inflation or deflation at that particular count; (III) There is no possibility that all
the participants in the sample would come into a particular count as an utmost case
of situation (II) and this is called truncation at that particular count; (IV) Leading to
the data generating procedure of Poisson distribution, we have a sub population as an
amalgamation of situations (I) and (III), whereas the part of the population out of this
subpopulation in contention not affected by the distribution process furnished excess
count in that particular count. Thus the inflated distribution is a mixture between a
distribution to a point mass at a particular count and any other count distribution
supported by non-negative integers [8].

In statistical literature, the issue of zero moderation in count data has a long history.
Neyman [9] and Feller [10] first introduced the concept of zero-inflation when there is
a problem of extravagant zeros in the data. Mullahy [11] introduced the zero-inflated
Poisson (ZIP) distribution as a mixture of Poisson distribution and a distribution to a
point mass at zero, with mixing probability γ , denoted by Z I P(λ, γ ) and the proba-
bility mass function of this distribution is given by

P(z; λ, γ ) �
{

γ + (1 − γ )e−λ; z � 0

(1 − γ ) e
−λλz

z! ; z > 0

where γ is a zero-inflation parameter (0 < γ < 1), λ ≥ 0 and if γ � 0, ZIP distribu-
tion reduces to Poisson distribution.

Using inflated Poisson distribution Pandey [12] narrates a situation of the number of
flowers of primulaveris and he exhibits the persistence of Poisson distribution inflated
at the point eight, not at zero with the extravagant number of plants with eight flowers.
Keeping this example in view, inflated discrete distribution should be studied at any
point say k, (k �� 0).

Johnson et al. [13] described the zero-inflated distribution as a mixture of any count
distribution hold up on non-negative integers and distribution at a point mass at zero
and is defined as follows: A random variable Z is said to be a zero-inflated distribution
if its probability mass function is given by
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g(z) �
{

γ + (1 − γ )h(z;�); z � 0
(1 − γ )h(z;�); z > 0

where γ is a zero-inflation parameter (0 < γ < 1) and h(z;�) is the pmf of Z with
a vector of parameter, � � {φ1, φ2, ..., φn}.

Gupta et al. [14] studied the structural properties and attained the MLEs of discrete
distributions inflated at the point zero. Murat and Szynal [15] studied the discrete dis-
tributions inflated at any point j, ( j ≥ 0), which was extended by the results of Gupta
et al. [14]. Najundan et al. [16] estimate the parameters of zero-inflated Poisson model
using the method of moments and compared with the maximum likelihood estimators.
Using some natural calamities data Beckett et al. [17] studied zero-inflated Poisson
model and juxtapose MLEs and MMEs regarding standardized bias and standard-
ized mean squared error. Zero-inflated Poisson distribution, Zero-inflated binomial
distribution, Zero-inflated negative binomial distribution and Zero-inflated geometric
distribution are characterized by Najundan et al. [18], Najundan et al. [19], Suresh
et al. [20] and Nagesh et al. [21].

Alshkaki [22] introduced zero–one-inflatedPoisson (ZOIP) distribution and defined
as: A random variable Z is said to be a zero–one inflated Poisson distribution, denoted
by ZO I P(λ, γ , ψ), if its probability mass function is given by

g(z) �

⎧⎪⎨
⎪⎩

γ + (1 − γ − ψ)e−λ; z � 0
ψ + (1 − γ − ψ)λe−λ; z � 1

(1 − γ − ψ) e
−λλz

z! ; z > 1

where γ and ψ are zero and one inflation parameter (0 < γ < 1, 0 < ψ < 1,
0 < γ + ψ < 1) and if ψ � 0 ZOIP reduces to ZIP and if γ � 0 and ψ � 0 ZOIP
reduces to Poisson distribution. He studied its structural properties and estimates its
parameters by method of maximum likelihood and method of moments. Using three
real data sets constituting, a stillbirths of rabbit’s data, an accident insurance claims
data and a heavy vehicle traffic accident data, he shows that the zero–one inflated
Poisson distribution gives better fitting than the zero inflated Poisson distribution and
also MLE provides better estimates than MME.

Singh et al. [23] introduced two-inflated binomial distribution to investigate the
mechanism of son preference through the modeling of the pattern of male children in
Uttar Pradesh, where family size and sex composition are dominated by strong son
reference.Mwalili et al. [24] studied a zero-inflated negative binomial model to gratify
extravagant zeros, an extension of negative binomial distribution.

For fitting a data set of excessive zeros, how a zero-inflated Poisson regression is
better than a Poisson regression was demonstrated by Lambert [25]. Lambert [25]
used a dataset of the number of manufacturing defects on writing boards to juxtapose
the models. Many extensions and implementations of zero-inflated Poisson regression
were described (for details see [26–30] and among others). Hall [31] procuring a zero-
inflated binomial model considered a situation of upper bound count data, altering
Lambert [25] methodology, with an example from horticulture. Famoye and Singh
[32] propounded a zero-inflated generalized Poisson regression model, an extension
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of generalized Poisson regression model. Mwalili et al. [24] studied a zero-inflated
negative binomialmodel to gratify extravagant zeros, an extensionof negative binomial
distribution.

In this paper, the researchers propose a Three-inflated Poisson (ThIP) distribution
along with its distributional properties, reliability characteristics and consider the
method of moment estimation (MM) and maximum likelihood estimation (MLE) to
estimate its parameters. A simulation study has been conducted to see the behavior
of the MLEs. In the application part a real-life data set of Covid-19 related suicides
during Lockdown to the first gradual relaxation of the terms of the total lockdown
(Unlocking 1.0) is used to examine the pertinence of the proposed distribution. The
proposed distribution is comparedwith PD, ZIPD andZOIPDusing log-likelihood, the
Akaike Information Criterion (AIC) [33], the Bayesian Information Criterion (BIC)
[34] for model selection and the Kolmogorov–Smirnov (K-S) test [35] P-values for
the goodness of fit. Likelihood ratio test is provided to discriminate between Poisson
distribution and our proposed distributions.

2 Three Inflated Poisson Distribution (ThIPD)

Definition 1 A random variable Z is said to be a three-inflated Poisson distribution,
denoted by ThI PD(λ, α) if its probability mass function is given by

P(z; λ, α) � P(Z � z) �

⎧⎪⎨
⎪⎩

α + (1 − α) e
−λλ3

3! ; z � 3

(1 − α) e
−λλz

z! ; z ∈ {0, 1, 2, 4, 5, 6, 7...}
(1)

where α is a three-inflation parameter (0 < α < 1) and λ ≥ 0.

Some particular cases: When.
(i) α → 0, ThI PD(λ, α) reduces to Poisson(λ).
(ii) α → 0 and λ → ∞, ThI PD(λ, α) reduces to Normal distribution.

Theorem 1 The probability of three in ThIPD is larger than that of a general PD.

Proof We know that α + (1 − α) e
−λλ3

3! > 0 and e−λλ3

3! > 0.

Hence 1 − e−λλ3

3! > 0 ⇒ e−λλ3

3! < 1.
Now multiplying −α and adding α to both sides, we get

α − α
e−λλ3

3!
> 0

Finally, adding both sides by e−λλ3

3! , we get

α + (1 − α)
e−λλ3

3!
>

e−λλ3

3!
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Fig. 1 Shapes of ThI PD (λ, α) with different choices of parameter

Hence proved.
The pmf plots of ThI PD (λ, α)with different choice of parameters values of λ and α

to study the variety of shapes are provided in Fig. 1.
It is observed from the plots of ThI PD (λ, α) in Fig. 1 that as α increases the

curve is peak at z � 3 and as α decreases and λ increases the curve tends to normal
curve.

3 Distributional Properties

3.1 Moments

Theorem2 If Z ∼ ThI PD (λ, α), then its r thorder moments about zero is as follows

μ′
r � E

(
zr

) � 3rα + (1 − α)

r∑
j�0

S(r , j)λ j (2)

Proof If Z ∼ ThI PD (λ, α), then the r th order moments about zero is
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μ′
r � E

(
Zr

)
�

∑
z

zr p(λ, α)

� 3rα + (1 − α)
∑
z

zr
e−λλz

z!

� 3rα + (1 − α)

r∑
j�0

S(r , j)λ j

⎡
⎣∵

∑
z

zr
e−λλz

z!
�

r∑
j�0

S(r , j)λ j for details see [13]

⎤
⎦

where S(r , j) is the second kind of Stirling number. Hence proved.

In particular

μ′
1 � E(Z) � 3α + (1 − α)λ (3)

μ′
2 � E

(
Z2

)
� 9α + (1 − α)

(
λ2 + λ

)
(4)

μ′
3 � E

(
Z3

)
� 27α + (1 − α)

(
λ3 + 3λ2 + λ

)
(5)

μ′
4 � E

(
Z4

)
� 81α + (1 − α)

(
λ4 + 6λ3 + 7λ2 + λ

)
(6)

Therefore,

V (Z) � (1 − α)
[
α(λ − 3)2 + λ

]
(7)

The plots of mean and variance of the proposed distribution with different choice of
parameters to study their variations are shown in the Figs. 2 and 3. From the Figs. 2
and 3 it is clear that as α tends to 0, the mean and variance of the proposed distribution
tends to λ, which is the mean and variance of general Poisson distribution.

Fig. 2 Plots of mean against λ for different values of α
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Fig. 3 Plots of variance against λ for different values of α

3.1.1 Coefficient of Skewness

If Z ∼ ThI PD (λ, α), then the Pearson’s β1 coefficient is as follows

β1 � μ2
3

μ3
2

�
[
μ′
3 − 3μ′

2μ
′
1 + 2μ′3

1

]2
[
μ′
2 − μ′2

1

]3

�
[
λ + α(λ − 3)

(
2α(λ − 3)2 − (λ − 9)λ

) − 9
]2

(1 − α)
(
α(λ − 3)2 + λ

)3 (8)

The plots of coefficient of skewness of the proposed distribution for different choice
of parameters are shown in the Fig. 4

From the Fig. 4 it is observed that β1 increases as α increases and β1 tends to zero
as λ decreases and increases for 0 < α < 1.

Remark 1 As α → 0 and λ → ∞, the coefficient of skewness β1 → 0 i.e. the
proposed distribution tends to symmetric distribution.

Fig. 4 Plots of β1 against λ for different values of α
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Fig. 5 Plots of β2 against λ for different values of α

3.1.2 Coefficient of Kurtosis

If Z ∼ ThI PD (λ, α), then the Pearson’s β2 coefficient is as follows

β2 � μ4

μ2
2

�
[
μ′
4 − 4μ′

3μ
′
1 + 6μ′

2μ
′2
1 − 3μ′4

1

]
[
μ′
2 − μ′2

1

]2
� α(λ − 3)

(
3α2(λ − 3)3 − 3α(λ − 3)(9 + (λ − 8)λ) + λ(31 + (λ − 9)λ) − 27

)
+ λ2

(
3 + 1

λ

)
(1 − α)

(
α(λ − 3)2 + λ

)2 (9)

The plots of coefficient of Kurtosis of the proposed distribution for different choice
of parameters are shown in the Fig. 5.

From the Fig. 5 it is observed that β2 > 3 as α increases.

Remark 2 As α → 0 and λ → ∞, the coefficient of kurtosis β2 � 3 i.e. the proposed
distribution tends to normal.

3.2 Probability Generating Function

Theorem 3 If Z ∼ ThI PD (λ, α), then its Probability Generating Func-
tion(p.g.f),Pz(S)is as follows

Pz(S) � αs3 + (1 − α)eλ(s−1) (10)

Proof If Z ∼ ThI PD (λ, α), then the probability generating function Pz(S) is

Pz(S) � E
(
Sz

)
�

∞∑
z�0

P(z, λ, α)sz

� αs3 + (1 − α)

∞∑
z�0

sz
e−λλz

z!

� αs3 + (1 − α)eλ(s−1)
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Hence proved.

Remark 3 Putting S � et in Eq. (10), theMoment Generating Function (m.g.f), Mz(t)
of Z ∼ ThI PD (λ, α) is as follows

Mz(t) � αe3t + (1 − α)eλ(et−1) (11)

Remark 4 Putting S � eit in Eq. (10), the Characteristic Function, ϕz(t) of Z ∼
ThI PD (λ, α) is as follows

ϕz(t) � αe3i t + (1 − α)eλ
(
eit−1

)
(12)

3.3 Cumulative Distribution Function (CDF)

Theorem 4 If Z ∼ ThI PD (λ, α), then its CDF of Zis as follows

F(z) � P(Z ≤ z) � α + (1 − α)

(z + 1, λ)


(z + 1)
(13)

Proof If Z ∼ ThI PD (λ, α), then its CDF is as follows

F(z) � P(Z ≤ z)

�
z∑

t�0

P(Z � t)

� α +
z∑

t�0

(1 − α)
e−λλz

z!

� α + (1 − α)

(z + 1, λ)


(z + 1)

[
z∑

t�0

e−λλz

z!
� 
(z + 1, λ)


(z + 1)
for detail see [36]

]

where 
(z + 1, λ) and 
(z + 1) is an upper incomplete gamma function.

Hence proved.
The plots of CDF of ThI PD (λ, α) with different choice of parameters λ and α

are provided in Fig. 6.

4 Reliability Characteristics

4.1 Survival Function (SF)

Theorem 5 If Z ∼ ThI PD (λ, α), then its Survival Function (SF) of Zis as follows

S(z) � P(Z > z) � α + (1 − α)
γ (z + 1, λ)


(z + 1)
(14)
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Fig. 6 Shapes of CDF with different choices of parameter λ and α

Proof If Z ∼ ThI PD (λ, α), then its Survival Function (SF) is as follows

S(z) � P(Z > z)

�
∞∑

t�z+1

P(Z � t)

� α +
∞∑

t�z+1

(1 − α)
e−λλz

z!

� α + (1 − α)
γ (z + 1, λ)


(z + 1)

[ ∞∑
t�z+1

e−λλz

z!
� γ (z + 1, λ)


(z + 1)
for detail see [36]

]

where γ (z + 1, λ) a lower incomplete gamma is function and 
(z + 1) is an upper
incomplete gamma function.

Hence proved.
The plots of Survival Function (SF) of ThI PD (λ, α) with different choice of

parameters λ and α are provided in Fig. 7.

Fig. 7 Shapes of SF with different choices of parameter λ and α
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Fig. 8 Shapes of FR with different choices of parameter λ and α

4.2 Failure Rate (FR)

Let z1, z2, z3, ..., zn be a random sample from three inflated Poisson distribution as
given by Eq. (1)

Define Y be the number of Z
,

i s taking the value three. Then Eq. (1) can be inscribed
as follows

P(Z � zi ) �
[
α + (1 − α)

e−λλ3

3!

]Y[
(1 − α)

e−λλzi

zi !

]1−Y

and using S(z) from Eq. (14)
The failure rate of ThI PD (λ, α) is given by

R(z) � P(z)

S(z)
�


(z + 1)

[(
α + (1 − α) e

−λλ3

3!

)Y(
(1 − α) e

−λλzi

zi !

)1−Y
]


(z + 1)α + (1 − α)γ (z + 1, λ)
(15)

The plots of FailureRate (FR) of T hI PD (λ, α)with different choice of parameters
λ and α are provided in Fig. 8.

5 Parameter Estimation

5.1 Method of Moment Estimation (MM)

The parameters λ and α of (1) can be obtained using method of moments as follows:
Considering the first two moments from Eqs. (3) and (4)

α̂ � μ′
1 − λ

(3 − λ)
(16)

μ′
2 − 3μ′

1 � (1 − α)
(
λ2 − 2λ

)
(17)
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Putting the value of α from Eq. (16), the Eq. (17) reduces to

μ′
2 − 3μ′

1 �
(
1 − μ′

1 − λ

(3 − λ)

)(
λ2 − 2λ

)

μ′
2 − 3μ′

1

3 − μ′
1

� λ2 − 2λ

3 − λ
� M (say) (18)

Then

M � λ2 − 2λ

3 − λ

λ2 − λ(2 − M) − 3M � 0 (19)

Solving the quadratic Eq. (19), we can estimate the value of λ, which has been used
in Eq. (16) to estimate the value of α.

5.2 Maximum Likelihood Estimation (MLE)

The parameters λ and α of Eq. (1) can be obtained using method of maximum likeli-
hood as follows:

Let z1, z2, z3, ..., zn be a random sample from three inflated Poisson distribution
as given by Eq. (1) and let for i � 1, 2, 3, ..., n

ai �
{

1, i f zi � 3
0, otherwise

Then for i � 1, 2, 3, ......, n, Eq. (1) can be described as follows

P(Z � zi ) �
[
α + (1 − α)

e−λλ3

3!

]ai [
(1 − α)

e−λλzi

zi !

]1−ai

Hence the likelihood function, L � L(λ, α; z1, z2, z3, ......, zn) will be

L �
n∏

i�1

[
α + (1 − α)

e−λλ3

3!

]ai [
(1 − α)

e−λλzi

zi !

]1−ai

�
[
α + (1 − α)

e−λλ3

6

]n0 n∏
i�1

[
(1 − α)

e−λλzi

zi !

]ki

where ki � 1 − ai , n0 �
n∑

i�1
ai . Note that n0 represents the number of three’s in the

sample.
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Therefore,

log L � n0 log

[
α + (1 − α)

e−λλ3

6

]
+ (n − n0) log (1 − α)

− (n − n0) λ +
n∑

i�1

ki zi log λ −
n∑

i�1

ki log (zi !)

∂ log L

∂α
� n0

(
6 − e−λλ3

)
6α + (1 − α)e−λλ3

− (n − n0)

(1 − α)
(20)

Similarly,

∂ log L

∂λ
� n0

(
3e−λλ2 − e−λλ3

)
(1 − α)

6α + (1 − α)e−λλ3
+

n∑
i�1

ki zi

λ
− (n − n0) (21)

Let,

p � α + (1 − α)
e−λλ3

6
(22)

Now, let ∂ log L
∂α

� 0. Then from Eq. (20) and using Eq. (22)

1 − α � 6(n − n0)
n0
p

(
6 − e−λλ3

) (23)

And letting ∂ log L
∂λ

� 0 from Eq. (21) and using Eq. (22)

n0
6p

(
3e−λλ2 − e−λλ3

)
(1 − α) +

n∑
i�1

ki zi

λ
− (n − n0) � 0 (24)

Now, if we replace p by their sample relative frequencies, i.e. by their sample
estimates, the proportion of three’s in the sample, i.e. p̂ � n0

/
n and then Eqs. (23)

and (24) reduces to

1 − α � 6(n − n0)

n
(
6 − e−λλ3

) (25)

and

n

6

(
3e−λλ2 − e−λλ3

)
(1 − α) +

n∑
i�1

ki zi

λ
− (n − n0) � 0 (26)
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Using Eq. (25), Eq. (26) reduces to

n∑
i�1

ki zi
(
6 − e−λλ3

)
+ (n − n0)

(
3e−λλ3 − 6λ

)
� 0

C(λ) � 0 (27)

where C(λ) �
n∑

i�1
ki zi

(
6 − e−λλ3

)
+ (n − n0)

(
3e−λλ3 − 6λ

)
.

Hence Eq. (27) can be solved by any numerical procedure, say, Newton Rapson

method, to obtain λ̂ numerically, i.e.C
(
λ̂
)

� 0.

Similarly using Eqs. (22) and (25), α can be estimated as

α̂ � 1

n

[
n0 − (n − n0)e−λλ3

6 − e−λλ3

]
(28)

Therefore, the maximum likelihood estimates (MLE) of the parameter λ and α can
be estimated by solving (27) numerically to find λ̂, and Eq. (28) gives α̂ respectively.

For the reckoning of the asymptotic variance–covariance matrix of the estimates
the second order differentiations of the log-likelihood function are furnished here

∂2 log L

∂α2 � − n0
(
6 − e−λλ3

)2
[
6α + (1 − α)e−λλ3

]2 − (n − n0)

(1 − α)2

∂2 log L

∂λ2

� n0 (1 − α)

[
3λe−λ (2 − λ)

6α + (1 − α) e−λλ3
− λ2e−λ (3 − λ)

[
6α + (1 − α) 3λ2e−λ

]
(
6α + (1 − α) e−λλ3

)2
]

−

n∑
i�1

ki zi

λ2

∂ log L

∂λ∂α
� 6n0e−λλ2(λ − 3)(

6α + (1 − α)e−λλ3
)2

The asymptotic variance–covariance matrix of the maximum likelihood estimates
of λ and α for ThI PD (λ, α), can be acquired by inverting the Fisher information
matrix (I), given by

I �
⎡
⎣ E

(
− ∂2 log L

∂α2

)
E

(
− ∂2 log L

∂α∂λ

)
E

(
− ∂2 log L

∂λ∂α

)
E

(
− ∂2 log L

∂λ2

)
⎤
⎦
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The ingredient of the above Fisher information matrix can be acquired as.

E
(
− ∂2 log L

∂α2

)
�

(
− ∂2 log L

∂α2

)∣∣∣
α�α̂,λ�λ̂

, and so on.

The asymptotic distribution of the maximum likelihood estimator
(
λ̂, α̂

)/

is given

by

√
n

(
λ̂

α̂

)
MLE

L−→ AN

((
λ̂

α̂

)
, I−1

)
, as n → ∞

6 Simulation Study

In this section a simulation study has been conducted to see the performance of the
estimated parameters. Here, to generate random numbers Z from ThI PD (λ, α) we
have applied acceptance rejection sampling [37]. By applying this method random
samples are generated of size n � 30, 50, 100 and 200 with different combinations
of true values of parameters λ and α and finally, MLEs are computed using optim
function of R software. Bias and MSE of the parameters given in the Table 1 are
calculated using the following formulae.

Bias
(
θ̂
)

� E
(
θ̂
)

− θ

MSE
(
θ̂
)

� E
(
θ̂ − θ

)2
θ̂ � estimated parameter and θ � true parameter

θ � (λ, α),θ̂ �
(
λ̂, α̂

)
Here r(� number of replication) � 1000.
From the values of the MSE and biases of the simulation study given in Table 1, it

is observed that the bias and MSE of the estimators are small and as the sample size
increases the estimated bias and MSE also gradually decreases which is as expected.

Furthermore we have checked the normality of the MLEs by normal Q-Q plot for
all the parameters of each run. One such Q-Q plot is presented here obtained for the
case when (λ, α) � (5, 0.3) as a demonstration (Fig. 9). From the Fig. 9 it is observed
that the MLEs of all the parameters follow approximately normal distribution.

7 Real-life Applications

Covid-19 virus started fromWuhan, China and has blazed the trail of a newworld order
[38]. This new world order necessitated that the global community drop and dissolve
all culture differences and brainstorms to locate mitigating measures especially in
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Fig. 9 Q-Q plots of different parameter estimates

respect of providing sustenance to the economy (for details see [39–41]). Something
that came as a bolt from the blue, India was unprepared to defend the onslaughts of
Covid-19. In India, the first case of Covid-19 was reported on 30th January, 2020 [42].
The disease accelerated to such a level that is prompted the Govt. of India to enforce
and clamp an emergency like Lockdown (lockdown denotes a clamp down on almost
all human transactions and activities in an emergency), the fallouts of which have
been discernible in an emphatic manner [43]. The Lockdown in India starts from 25th

March 2020 to 7th June 2020 [44] in a phased manner. The first phase of lockdown
in India starts from 25th March 2020 for a period of twenty one days [45]. After the
first lockdown, the next three phases are announced with conditional relaxations and
restrictions- the second phase with effect from 15th April 2020 to 3rd May 2020, the
third phase from 4th May 2020 to 17th May 2020 and the fourth phase from 18th
May 2020 to 31st May 2020 [45]. The fourth phase of lockdown extended to 7th
June 2020.The hardest hit because of the clamping of lockdown/s have been those
living on the edge and on the margins like the daily wage earners, private job seekers
who lost their job, the farmers who could not locate markets to sell their agricultural
produce, the migrant workers who were left stranded like anything, the large chunks
of underprivileged students and those who opted for reverse migration [43, 46]. The
most discernible corollary has therefore, been the conditions of poverty and starvation
which in turn have sapped the vitality and jolted the psychological and cognitive get-
up of the hugely dense Indian populace [43]. Billed as a biomedical disease with
negative cognitive responses, it has been unfortunate that Asian countries have been
facing the brunt in terms of the exponential growth of the transmission of Sars-Cov-
2 in densely populated areas of internal migrants. There have alarming instances of
socially irresponsible behavior and panic attacks among internal migrant workers who
are in desperate need of psycho-social support [47].

After completion of the fourth phase of lockdown, the Government of India started
unlocking (unlocking denotes relaxations on the imposed lockdown in the event of any
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emergency) the nation in a phased manner with restriction to containment zones from
8th June, 2020 [48]. The first phase of unlocking i.e. unlocking 1.0 starts from 8th
June 2020 to 30th June 2020 [48]. Covid-19 has a diverse array of effects. The worst
being that of committing suicides primarily triggered by uncertainty regarding living
from hand to mouth in all aspects of life. Given the circumstances, the situation has
come to such a pass that suicides, more often than not have occasionally hogged the
limelight. The first Indian suicide related to Covid-19 took place on February 12, 2020
[49], followed by two more such suicides [50]. In addition, the first Covid-19 related
Student Suicide case was reported on June 2, 2020 [51]. The reasons being financial
distress, fear of infection, freezing of employment opportunities, lack of freedom of
movement, withdrawal etc. the major cause of occurrences of suicide [47, 49, 50].

The data set of 298 Covid-19 pandemic related suicide cases during Lockdown to
Unlocking 1.0 in India are collected from the web portal https://www.kaggle.com/..
The age and sex distribution of the individuals who committed Suicides during Lock-
downandUnlocking1.0 are presented in (Fig. 10)whichmanifest that, throughout both
lockdown and unlocking1.0, the highest percentage of suicides has been committed by
individuals of the age group 21–40 and male individuals. The causes of suicide during
Lockdown and Unlocking 1.0 are presented in (Fig. 11), where it can be observed
that due to financial distress and fear of infection maximum suicide occurred during
lockdown and unlocking 1.0. The occupation of the individuals who committed sui-
cide during Lockdown and Unlocking 1.0 are presented in (Fig. 4), where it can be

Fig. 10 Age and Sex of the individuals who Suicides during Lockdown and Unlocking 1.0

Fig. 11 Causes of suicide during Lockdown and Unlocking 1.0
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Fig. 12 Occupation of the individuals who suicides during Lockdown and Unlocking 1.0

observed that maximum individuals who committed suicides during lockdown and
unlocking1.0 are migration workers, worker and private sector service (Fig. 12).

In order to study the pattern of the suicide cases, Poisson distribution is used.
Since during lockdown to unlocking 1.0 the proportion of three (3) deaths per day is
inflated than the others, so we used three-inflated Poisson distribution ThI PD (λ, α)

for fitting the real life data set of Covid-19 related suicides along with zero inflated
Poisson distribution Z I PD (λ, γ ) [11], and zero–one inflated Poisson distribution
ZO I P(λ, γ , ψ)[22] and standard Poisson distribution PD (λ). The values of the
MLEs of the parameters for different distributions are estimated using optim func-
tion of R language. The log-likelihood, Akaike information criterion (AIC), Bayesian
information criterion (BIC) and the Kolmogorov–Smirnov test (KS test) with p-values
are summarized in Table 2 for the number of suicides cases during the 98 days of lock-
down and Unlocking 1.0 in India during Covid-19 pandemic.

From the Table 2 it is seen that the value of AIC and BIC of ThIPD is smaller
than PD, ZIPD, ZOIPD and highest P-value of the KS statistics of ThIPD and also the
expected frequencies of ThIPD are closer to the observed frequencies.

In Fig. 13 the observed histogram and estimated pmf’s of PD, ZIPD, ZIOPD and
ThIPD are plotted which also validate our findings and in Fig. 14 the observed Ogive
and estimated cdf’s of PD, ZIPD, ZOIPD and ThIPD are plotted for visual compar-
isons.

The proposed three-inflated Poisson distribution (ThIPD) provides better fit to the
data set under consideration of all criteria.

8 Likelihood Ratio Test

Since Poi(λ) and ThI PD(λ, α) are nested models, the likelihood ratio (LR) test is
used to discriminate between them. The LR test is carried out to test the hypothesis:
H0 : α � 0, that is the sample is drawn from Poi(λ); against the alternative H0 : α ��
0, that is the sample is drawn from ThI PD(λ, α). The value of LR test statistic for
the above dataset is given below in Table 3.

The value of the LR test statistic for the dataset is respectively 28.542which exceeds
the critical value at 5% level of significance for one (1) degrees of freedom, i.e., 3.841.
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Table 2 Distribution of number of suicides per day during Lockdown to Unlocking 1.0 in 98 observed Days
of India

Number of
suicides
per day
during
Lockdown
to
Unlocking
1.0

Observed
Number
of Days

P(λ) Z I PD(λ , γ ) ZO I PD(λ , γ , ψ) ThI PD(λ , α)

0 8 4.684 8.003 7.958 3.143

1 6 14.243 12.487 12.497 9.615

2 8 21.656 19.807 19.820 14.710

3 46 21.950 20.945 20.956 45.999

4 23 16.686 16.611 16.618 11.476

5 2 10.148 10.540 10.543 7.023

6 2 5.143 5.573 5.574 3.581

7 1 2.234 2.526 2.526 1.565

8 1 0.849 1.001 1.001 0.599

9 1 0.287 0.353 0.353 0.204

Estimated parameters λ̂ � 3.041 λ̂ � 3.172 λ̂ � 3.172 λ̂ � 3.059

γ̂ � 0.042 γ̂ � 0.041 α̂ � 0.316

ψ̂ � 7.044×10−12

Log L − 182.313 − 181.061 − 181.061 − 168.042

K S test 0.190 0.187 0.184 0.061

p -value 0.029 0.032 0.036 0.694

AIC 366.626 366.122 368.122 340.084

BIC 369.211 371.282 375.877 345.254

Fig. 13 Plots of observed
histogram and estimated pmf of
PD, ZIPD, ZOIPD and ThIPD
for the number of suicides cases
during the 98 days of lockdown
and Unlocking 1.0 in India
during Covid-19 Pandemic
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Fig. 14 Plots of observed Ogive
and estimated cdf’s of PD,
ZIPD, ZOIPD and ThIPD for the
number of suicides cases during
the 98 days of lockdown and
Unlocking 1.0 in India during
Covid-19 Pandemic

Table 3 The value of the LR test statistic for the Covid-19 related suicide dataset

Dataset Degrees of freedom Critical value

LR test statistic 28.542 1 3.841

Thus the evidence is in support of the alternative hypothesis that the sample data comes
from ThI PD(λ, α) and not from Poi(λ).

9 Conclusion

A three-inflated Poisson distribution (ThIPD) is proposed and we studied its distribu-
tional properties and reliability characteristics. A simulation study has been conducted
to see the behavior of the MLEs. The appropriateness of fitting the distribution is car-
ried out based on the goodness of fit test and some information criteria. The usefulness
of the proposed distribution is exemplified by the data of number of suicides occurred
during lockdown to unlocking 1.0 in India. The real life data set of Covid-19 related
suicides considered here has shown that the proposed three-inflated Poisson distribu-
tion (ThIPD) provides better fit in comparison to the other known distributions viz.
ZIPD, ZOIPD and general PD under considerations in terms of model selection crite-
ria, namely AIC and BIC and goodness of fit test, namely KS-test. The plots presented
above also validate our findings.Moreover from the LR test it is observed that the sam-
ple comes from ThIPD, not from PD. Thus our proposed distribution provide better
fitting in comparison to the other competitor distributions.
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