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Abstract
Covid-19 has become an important topic this days, because of its bad effect in many 
fields such as Economics, industrial and commerce. In this paper, Covid-19 will 
be studied statistically point of view depending on the recovery cases in the Arab 
Republic of Egypt in the interval of (20 March to 20 August 2020). A power odd 
generalized exponential Lomax distribution has been considered. Some mathemati-
cal properties of the distribution are studied. The method of maximum likelihood 
and maximum product of spacings are used for estimating the model parameters. 
Also 95% asymptotic confidence intervals for the estimates of the parameters are 
derived. A simulation study was conducted to evaluate the numerical behavior of 
the estimates. The proposed methods are utilized to find estimates of the parameters 
of power odd generalized exponential Lomax distribution for the recovery cases of 
corona virus in Egypt.

Keywords COVID-19 · Power odd generalized exponential Lomax distribution 
(POGEL) · Maximum likelihood estimation (ML) · Maximum product spacings 
(MPS)

1 Introduction

Coronavirus disease (COVID-19) is an infectious disease caused by a newly discov-
ered coronavirus. Most people infected with the COVID-19 virus will experience 
mild to moderate respiratory illness and recover without requiring special treatment. 
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Older people and those with underlying medical problems like cardiovascular dis-
ease, diabetes, chronic respiratory disease, and cancer are more likely to develop 
serious illness.

Data science is a concept to unify statistics, data analysis, informatics, and their 
related methods in order to understand and analyze actual phenomena with data.. 
Several researchers concerned with finding many ways to study different types of 
data [1, 2]. This paper is introducing a statistical technique to study the COVID-19 
[3, 4] which appeared at the end of 2019 in China, and in a few weeks, it spread 
in other countries worldwide, including Europe, USA and Africa [5, 6]. Some stat-
isticians have been studying COVID-19 in some ways, among of them studying 
the COVID-19 time series to understand the growth behavior of COVID-19 cases 
series [7], Using generalized logistics regression to forecast population infected by 
Covid-19 [8]. In this paper, the reported COVID-19 number of recovery cases in 
Egypt, for the period 20March 2020 to 20 August 2020, is modeled using statistical 
distributions.

In recent years there are several new families of probability distributions which 
are proposed by several authors. Such families have great flexibility and generalize 
many well-known distributions. So several classes have been proposed, in the sta-
tistical literature, by adding one or more parameters to generate new distributions. 
Among this literature exponential Lomax [9], exponentiated Weibull- Lomax [10], 
the odd Lomax generator [11], the generalized odd inverted exponential-G family 
[12], the odd log-logistic Lindley-G [13] and the odd Dagum family of distributions 
[14].

The generalized exponential and Lomax distributions are two important distri-
butions in studies and practice. These distributions have several important statisti-
cal properties [15]. Introduced the generalized exponential distribution and derived 
some properties of this distribution [16]. The Lomax distribution is introduced as an 
important model for lifetime analysis, it is also called Pareto type II distribution. The 
distribution is widely used in several fields such as business and econometrics [17]. 
[18] Proposed a new generalized family of distributions called T–X family. The T–X 
family consists of many sub-families of distributions. Based on this technique, one 
can develop new distributions that may be very general and flexible or for fitting 
specific types of data distributions such as highly left-tailed, right-tailed, thin-tailed, 
or heavy-tailed distributions as well as bimodal distributions.

Using the generalized exponential and Lomax distribution, the odd generalized 
exponential Lomax distribution (OGEL) based on the T−X family can be obtained 
[19].

A random variable X has the odd generalized exponential Lomax distribution 
with four parameter λ, γ, β and θ if it has the pdf and cdf given by:
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The rest of the paper is unfolded as follows: organized as follows: In Sect. 2 The 
density function of the POGEL distribution is derived. The main descriptive proper-
ties are introduced in Sect. 3. In Sect. 4 some of the special cases are obtained. The 
ML and the MPS of the parameters are discussed in Sect.  5. A simulation study 
is tabulated and discussed in Sect. 6. A real life application is presented in Sect. 7 
while some concluding remarks are given in Sect. 8.

2  The Power Odd Generalized Exponential Lomax Distribution

[20] introduced an extension of Lindley distribution by using this transformation 
x = tδ hence; it is of interest to know what would be the distribution of similar 
power transformation of odd generalized exponential Lomax distribution by using 
the transformation.

Based on the transformation x = tδ family, the proposed distribution is derived by 
replacing x = tδ  in (1) as follows

The resulting distribution will be referred to as the power odd generalized expo-
nential Lomax distribution (POGEL).

Then the cdf of the distribution is as follows:

3  Some Descriptive Properties of the POGEL Distribution

This Section provides some properties of the POGEL distribution.

 I. Main properties of the POGEL

a. The survival function denoted by S(t) , is given by:

(2)F(x;λ, γ, β, θ) =
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(3)

f (t;𝜆, 𝛾 , 𝛽, 𝛿, 𝜃) =
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, t > 0, 𝜆, 𝛽, 𝛾 , 𝛿 > 0, 𝜃 > 1.
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, t > 0, 𝜆, 𝛽, 𝛾 , 𝛿 > 0, 𝜃 > 1.
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b. The hazard rate function, h(t), is given by:

c. The reversed hazard rate function, r(t), is given by:

d. The cumulative hazard rate function, H(t), is given by:

e. Quantiles and median of the POGEL distribution
  The quantile function 

(

tq
)

, is given by:

  In particular when q = 0.5 the median of the POGEL distribution is given 
by:

  And the Inter-Quantile Range (IQR) which is defined as the difference 
between the third quartile and the first quartile can be expressed as:
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f. Some useful expansion for POGEL distribution
  An expansion for pdf is derived.

  Since 0 < 
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g. The rth moment is given by:
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  Then, the rth moment of POGEL under the condition (𝛽j + r + 1) < 𝛽(k + 1) 
is derived as follows:

  Depending on Eq. (16), the basic statistical properties of POGEL are.
  The mean and the variance, of the POGEL distribution are, respectively, 

given by:

  And

h. The moment generating function is given by:

i. Order statistics
  Let T(1∶n), T(2∶n),… , T(n∶n) denote the order statistics obtained for a random 

sample t1, t2,… , tn from POGEL distribution with cdf (4) and pdf (3). The 
pdf of rth order statistics is defined by:

  Using binomial expansion

  Substituting (3) and (4) in (20), as follows:
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  Then

  In particular, the pdf of the smallest order statistics is obtained by substitut-
ing r = 1 in (22) as follows:

  Also, the pdf of largest order statistics is obtained by substituting r = n in 
(22) as follows:
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Fig. 1  pdf of POGEL distribution. (I) (λ = 3, γ = 3, β = 3, δ = 2, θ = 2) , (II) 
(λ = 2, γ = 2.5, β = 1.5, δ = 1, θ = 2.5) , (III) (λ = 0.3, γ = 0.25, β = 1.2, δ = 1, θ = 1.5) , (IV): 
(λ = 1.5, γ = 1.5, β = 2, δ = 3, θ = 1.5)
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 II. Graphical description

The pdf curves of POGEL distribution are plotted in Fig.  1 for some 
selected values of the parameters. (λ = 3, γ = 3, β = 3, δ = 2, � = 2), 
(λ = 2, γ = 2.5, β = 1.5, δ = 1, θ = 2.5), (λ = 0.3, γ = 0.25, β = 1.2, δ = 1, θ = 1.5), 
(λ = 1.5, γ = 1.5, β = 2, δ = 3, θ = 1.5).

Figure 1 shows that:

• The f(t) curves of the POGEL are more flexible for changing values of the 
parameters.

• The f(t) curves take various shapes such as symmetrical, right-skewed, reversed 
J-shaped and unimodal.

The h(t) curves of two POGEL populations are plotted in Fig.  2. The 
first population is when 𝛾 < 1, (λ = 0.25, γ = 0.25, β = 2, δ = 1, θ = 1.5), 
(λ = 0.25, γ = 0.25, β = 1.2, δ = 1, θ = 1.5), The second population is when γ > 1 , 
(λ = 2, γ = 3, β = 1.3, δ = 2, θ = 3),(λ = 2, γ = 3, β = 0.9, δ = 1.5, θ = 3).

Figure 2 show that:

• The h(t) curves of the POGEL are more flexible for changing values of the 
parameters.

• The h(t) curves take different shapes such as constant, increasing, decreasing, 
and reversed J shape.

This fact implies that the POGEL can be very useful for fitting data sets with 
various shapes.

Fig. 2  h(t) of the POGEL distribution. (I) (λ = 1, γ = 0.5, β = 1, δ = 0.1, θ = 0.2) , (II) 
(λ = 0.25, γ = 0.25, β = 1.75, δ = 0.2, θ = 1.5) , (III) (λ = 0.1, γ = 2, β = 3, δ = 2, θ = 1), , (IV) 
(λ = 2, γ = 3, β = 0.9, δ = 1.5, θ = 3)
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4  Some Special Cases

The importance of POGEL distribution is that it contains several special cases 
(sub-models), by using (3) as follows:

(I) Odd generalized exponential Lomax distribution
  The odd generalized exponential Lomax (OGEL) introduced by [19] is a spe-

cial case from POGEL distribution, when � = 1 which is given in Eq. (1).
(II) Odds generalized exponential power Lomax distribution
  The odds generalized exponential power Lomax distribution (OGEPL) intro-

duced by [21] when � = 1 in (3) is a special case from POGEL with the following 
pdf:

(III) Odd exponential Lomax distribution
  Odd exponential Lomax distribution (OEL) introduced by [9] when � = � = 1 

in (3) is a special case from POGEL with the following pdf:

(IV) Exponential distribution
  The exponential distribution (E) with two parameters introduced by [15] when 

� = � = � = 1 in (3) is a special case from POGEL with the following pdf:

(V) Generalized exponential distribution
  The generalized exponential distribution (GE) introduced by [16] when 

y =

[

(

1 +
t�

θ

)β

− 1

]

 in (3) is a special case from POGEL with the following pdf:

5  Parameter Estimation

In this Section, the ML and the MPS methods are discussed to obtain the estimator 
of parameters of the POGEL under complete samples.
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5.1  Maximum Likelihood Estimation

The ML is used to estimate the unknown parameters of the POGEL distribution 
based on complete samples [22].

Let t1, ..., tn be a random sample of size n from POGEL, with parameters 
� = (�, � , �, �, �) , the likelihood function of the density is given by,

Then, the log likelihood function, denoted Ln�

The log-likelihood (30) can be maximized numerically using the R (optim func-
tion), for interval estimation of the model parameters, it requires the 4 × 4 observed 
information matrix I(ω) =

{

�
}

 for � = (λ, γ, β, δ, θ) . Under standard regularity con-
ditions, the multivariate normal Nm(ω)

(

0, (ω)−1
)

 distribution can be used to con-
struct approximate confidence intervals for the parameters. Here, I(�̂�) is the total 
observed information matrix evaluated at �̂� . [see “Appendix A”].

5.2  Maximum Product of Spacing Estimation Method

One of the most common methods for estimating the parameters of a distribution 
is the ML method. Although this method is consistent, asymptotically efficient, it 
was found to be unbounded and inefficient in the estimation in various cases, such 
as involving certain mixtures of continuous distributions, heavy-tailed distributions 
and J-shaped distributions [23].

The MPS method was introduced by [24] as an alternative to ML for the estima-
tion of parameters of continuous univariate distributions. The MPS estimators are 
consistent, asymptotically normal and efficient.

Suppose that an ordered random sample t1, ..., tn drawn from POGEL distribution 
with parameters � = (�, � , �, �, �) and cdf (8) the spacing is constructed as:
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where 
∑n

i=1
Di = 1.

To estimate the unknown parameters, the product spacings is defined and the geo-
metric mean of spacings is maximized as follows:

Then, by taking the logarithm of G:

In this study the maximization of the quantity in (33) is defined as:

Substitute (4) in (33) the function H is given by:

Taking the partial derivative of (35) with respect to � = (�, � , �, �, �) and equat-
ing to zero
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where,

[23] Showed that maximizing H as a method of parameter estimation is as effi-
cient as ML estimation, and the MPS estimators are consistent under more general 
conditions than the ML estimators.

The MPS method shows asymptotic properties like the ML estimators [23]. Intro-
duced the variance covariance matrix of the MPS estimators. Therefore, the asymp-
totic properties of MPS can be used to construct the asymptotic confidence intervals 

for the parameters [25]. Let I
(
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_

)

  is the observed Fishers information matrix it can 

be defined as:
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So on the basis of these derivatives the information matrix I
(

�̂
)

 can be obtained. 
The approximate (1 − b) 100% confidence intervals for the parameters λ, γ, β, δ and 
θ are given.

6  Simulation Study

In this Section a simulation study is introduced to illustrate the theoretical results 
considering ML and MPS methods on the basis of generated data from POGEL dis-
tribution by taking the parameter θ as known for all methods of estimation.

For each method of estimation, initial parameter values and sample sizes, the 
estimates, mean square error (MSE), relative bias (RB) and asymptotic confidence 
intervals (ACI) are calculated using the following formulae:

(1) 

(2) 

(3) 

(4) The ACI of the ML estimation for the multivariate normal of the parameters 
�̂
_
= (�̂, �̂ , �̂, �̂, �) can be used to compute the asymptotic 100(1 − 𝜗)%, 0 < 𝜗 < 1, 

for the parameters as follows:

(5) The ACI of MPS estimation for the parameters �̂� =
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 can be used to 
compute the asymptotic 100(1 − b)%, 0 < b < 1, for the parameters as follows
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 percentile of the standard normal distribution.
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Table 1  The Estimates, MSEs, 
RB and ACI for MLE and MPS 
for the parameters (λ = 0.5, 
γ = 1.5, β = 1.5, δ = 1.5, θ = 1.5) 
for POGEL distribution for 1000 
repetitions and different sample 
sizes

n Methods Parameters Estimates MSE RB ACI

LI UI

50 ML λ 1.09 5.65 1.19 0.05 5.03
γ 2.24 8.75 0.49 0.39 8.85
Β 1.25 0.73 0.16 0.25 3.61
δ 1.77 1.30 0.18 0.63 4.84

MPS λ 0.78 0.64 0.30 0.04 5.71
γ 1.71 2.02 0.14 0.54 4.17
β 1.41 1.65 1.82 0.20 4.79
δ 1.60 1.37 0.07 0.54 4.51

100 ML λ 0.74 0.43 0.47 0.09 2.24
γ 1.84 1.51 0.22 0.50 4.83
β 1.29 0.66 0.14 0.37 3.50
δ 1.66 0.98 0.10 0.65 4.22

MPS λ 0.77 0.60 0.55 0.01 2.64
γ 1.44 0.61 0.04 0.55 3.41
β 1.56 1.30 0.04 0.31 4.40
δ 1.75 0.76 0.17 0.61 3.72

150 ML λ 0.73 0.28 0.45 0.14 1.84
γ 1.82 0.88 0.21 0.59 3.85
β 1.29 0.54 0.13 0.37 3.27
δ 1.54 0.65 0.03 0.66 3.53

MPS λ 0.73 0.41 0.46 0.10 2.17
γ 1.47 0.59 0.02 0.59 3.40
β 1.47 1.03 0.02 0.36 3.96
δ 1.71 0.56 0.14 0.57 3.30

200 ML λ 0.72 0.19 0.43 0.16 1.52
γ 1.73 0.54 0.15 0.61 3.33
β 1.24 0.49 0.17 0.43 2.97
δ 1.53 0.50 0.02 0.75 3.48

MPS λ 0.72 0.25 0.46 0.12 1.82
γ 1.47 0.47 0.02 0.59 3.25
β 1.38 0.83 0.07 0.38 3.77
δ 1.70 0.42 0.14 0.67 3.04

300 ML λ 0.67 0.11 0.35 0.18 1.30
γ 1.74 0.41 0.16 0.67 3.30
β 1.30 0.46 0.13 0.47 3.21
δ 1.45 0.40 0.03 0.68 3.14

MPS λ 0.69 0.16 0.38 0.14 1.49
Γ 1.39 0.36 0.07 0.62 2.92
β 1.41 0.71 0.05 0.45 3.69
δ 1.75 0.35 0.16 0.77 2.88
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Table 2  The Estimates, MSEs, 
RBs and ACI for MLE and 
MPS for the parameters (λ = 0.8, 
γ = 1.8, β = 1.2, δ = 1.5, θ = 1.5) 
for POGEL distribution for 1000 
repetitions and different sample 
sizes

n Methods Parameters Estimates MSE RB ACI

LI UI

50 ML λ 1.47 14.03 0.84 0.03 6.12
γ 2.95 20.77 0.64 0.33 11.37
β 1.24 0.66 0.03 0.20 3.54
δ 1.91 2.15 0.28 0.66 6.02

MPS λ 1.99 22.65 1.37 0.05 9.37
γ 2.68 53.64 0.49 0.42 10.11
β 1.26 1.23 0.05 0.15 4.25
δ 1.84 1.64 0.23 0.61 4.85

100 ML λ 1.06 1.53 0.33 0.11 3.77
γ 2.25 3.26 0.25 0.46 5.94
β 1.18 0.42 0.02 0.27 3.02
δ 1.77 1.27 0.18 0.74 4.67

MPS λ 1.06 1.24 0.32 0.12 3.81
γ 1.88 1.83 0.04 0.56 5.10
β 1.22 0.77 0.02 0.25 3.62
δ 1.78 1.05 0.03 0.66 4.20

150 ML λ 0.90 0.43 0.14 0.16 2.30
γ 2.09 1.79 0.16 0.54 5.30
β 1.17 0.34 0.02 0.34 2.80
δ 1.72 0.99 0.15 0.77 4.38

MPS λ 0.97 0.42 0.12 0.16 2.81
γ 1.85 1.57 0.03 0.58 4.27
β 1.17 0.33 0.02 0.31 2.78
δ 1.77 0.92 0.14 0.69 4.08

200 ML λ 0.90 0.27 0.13 0.22 2.05
γ 2.05 1.40 0.14 0.58 4.26
β 1.16 0.27 0.03 0.30 2.40
δ 1.65 0.72 0.10 0.68 3.84

MPS λ 0.95 0.33 0.11 0.20 2.03
γ 1.76 0.65 0.01 0.56 3.77
β 1.09 0.25 0.01 0.28 2.35
δ 1.77 0.70 0.09 0.66 3.77

300 ML λ 0.89 0.14 0.12 0.21 1.78
γ 2.03 0.87 0.13 0.56 4.12
β 1.14 0.21 0.04 0.29 2.32
δ 1.59 0.52 0.06 0.64 3.57

MPS λ 0.91 0.12 0.11 0.19 1.74
γ 1.74 0.51 0.04 0.53 3.43
β 1.04 0.19 0.02 0.26 2.09
δ 1.76 0.50 0.04 0.61 3.52
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The following steps are used to compute the ML and MPS estimates for POGEL 
distribution for different sample sizes [n = 50, 100, 150, 200,300].

1. Generate random samples of size n from POGEL distribution [n = 50, 100, 150, 
200,300] by using (9).

2. Obtain the ML estimates.
3. Obtain the MPS estimates by solving Eqs. (36–40).
4. Compute the MSE, RB and ACI for each estimate and for the ML and MPS 

methods using Eqs. (47), (48), (49) and (50).
5. Repeat the above steps for all methods of estimation and different sample sizes 

with 1000 repetitions.

All the above steps 1–5 are calculating using R Studio program version 
(1.3.1073).

The results of the simulation study are illustrated in Tables 1 and 2. From these 
tables, it is noticeable that:

• As expected the MSE, RB and ACI decreased when n increased.
• The MSE of the MPS estimates is less than the MSE of the ML estimates for 

all parameters and sample sizes except for the parameters β and δ at n = 50 in 
Table 1 and for the parameters λ and β at n = 50 in Table 2.

Table 3  Descriptive Statistics for the COVID-19 data set

Mean Median Mode St.D Variance Skewness Kurtosis 25th P 75th P

411.9 397.5 402 417.0 173,900.7 1.24 0.97 59.5 550.8
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Fig. 3  The recovery cases for the COVID-19 data set
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• The RB of the MPS estimates is less than the RB of the ML estimates for all 
parameters and sample sizes except for the parameters β at n = 50 in Table 1 and 
for the parameter λ at n = 50 in Table 2.

• As expected the performance of the MPS estimates is appropriate than the ML 
estimates.

7  Data Analysis

In this Section, the COVID-19 data set is analyzed to illustrate the flexibility of 
POGEL distribution. The data set is taken from the MINISTRY of HEALTH reports 
in EGYPT referred to daily recovery cases of a random sample of 154 days in the 
interval of (20 March to 20 August 2020) of coronavirus patients in the ARAB 
REPUBLIC of EGYPT these data are given as.

11 2 15 12 12 13 9 14 5 11 18 7 22 22 15 25 6 12 17 29 43 36 42 21 41 26 39 43 
50 55 31 89 49 65 69 71 39 62 60 68 31 46 79 62 40 70 98 85 72 58 57 73 97 154 
160 140 173 151 222 268 302 252 223 157 254 179 93 127 178 154 152 182 344 
410 380 523 406 402 380 423 414 411 503 402 417 421 402 398 401 411 387 400 

Fig. 4  The TTT plot and the Empirical cdf of the POGEL distribution for the COVID-19 data set

Table 4  The ML and MPS 
Estimates, SEs, ACI of the 
model parameters (�, � , �, �, �) 
for the 154 daily recovery cases 
(in months) of COVID- 19 
patient’s data

Methods Parameters Estimates SEs ACI KS

LI UI

ML λ 1.06 1.53 0.81 1.30 0.67
γ 0.61 0.36 0.54 0.66
β 2.41 2.75 1.98 2.85
δ 1.05 0.56 21.86 22.04
θ 21.95 57.91 12.81 31.10

MPs λ 0.43 0.88 0.28 0.56 0.66
γ 0.52 0.33 0.46 0.57
β 1.33 1.05 1.17 1.50
δ 1.19 0.71 1.08 1.30
θ 6.87 14.37 4.60 9.14
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399 409 397 402 400 403 399 402 400 412 509 421 407 402 413 623 512 480 523 
512 521 602 543 556 569 591 556 611 566 512 544 549 602 991 904 933 928 1007 
1121 1066 1211 1402 1499 1318 1611 1503 1613 1716 1655 1119 1006 1101 1109 
1013 989 968 977 908 908 911 991 909.

It can be noticed from Table 3 that the data set is also right-skewed and platykur-
tic. Figure 3 presents the sequence time for the recovery cases of COVID-19.

Figure 3 show that.

• The curve take various shapes such as increasing, fixed and highly increasing.
• As expected increasing in injuries cases lead to increasing in recovery cases.

Before analyzing this data set, the scaled- TTT plot can be used to verify our 
distribution validity [26]. It allows identifying the shape of the h(t) graphically. The 
empirical scaled-TTT plot of the COVID-19 data set is shown in Fig. 4. This Figure 
indicates that the TTT plot is convex then concave which indicates an upside down 
bathtub hazard rate. It verifies our distribution validity.

This data will be studied from two ways, firstly comparing the two methods of 
estimation. Secondly illustrate the importance and flexibility of the POGEL distribu-
tion with its sub-models [Generalized Exponential (GE), Odd Exponential Lomax.

(OEL), Odd Generalized Exponential Lomax (OGEL) and Odd Generalized 
Exponential Power Lomax (OGEPL) distributions)]. The plot of empirical cdf 
of the COVID-19 data set is displayed in Fig. 4 for the ML and MPS methods of 
estimations.

Table 4. Presents the parameter estimation for the ML and MPs methods with its 
standard errors (SEs).

Table  5 give the ML estimates and the corresponding standard errors (SEs) in 
parentheses of the parameters for all fitted models and the numerical values the 
Akaike information criterion (AIC), the consistent Akaike information criterion 
(CAIC), Bayesian Information Criterion (BIC), Anderson Darling (A) and Cramer- 
von Mises (C) for POGEL and its sub models OEPL, OGEL, OEL and GE. For the 
COVID-19 data set, the -2ln L statistic for GE and OEL against POGEL is (4.48, 
6.13) respectively. Therefore, there is a significant difference between GE, OEL and 
POGEL. Moreover, the values of the statistics AIC, CAIC and BIC are smaller for 

Fig. 5  The pdf with the value of the estimated parameters and cdfs of the POGEL model and other fitted 
models for the COVID-19 data set
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the POGEL distribution which mean that the POGEL distribution is a “appropriate” 
fit for the COVID-19 data, however a comparison of POGEL, OEPL and OGEL 
distributions shows that no significant difference between this distributions based on 
the values of AIC, CAIC and BIC which mean that the POGEL, OEPL and OGEL 
distributions are slightly appropriate for the COVID-19 data. The fitted cdfs for the 
COVID-19 data which supported this results are displayed in Fig. 5.

8  Conclusions

In this paper, Covid-19 studied statistically point of view depending on a prob-
ability distribution called Power Odd Generalized Exponential-Lomax distribution 
(POGEL). Some of its statistical properties were introduced. The estimation of the 
unknown model parameters was done with the maximum likelihood and maximum 
product spacing methods, with numerical guarantees on their behavior via a simu-
lation study. The POGEL and some of its sub models are good fit for the ARAB 
REPUBLIC of EGYPT COVID- 19 data. From the estimated parameters of the 
POGEL it can predict that the curve of the daily recovery cases will be decreasing 
compared to daily cases which is consistent with the curve of the POGEL which 
takes the reversed J-shape. The POGEL distribution with an increasing but concave 
hazard rate best describes statistically how the cases respond to treatment. The con-
cave shape is encouraging in the sense that the increase is happening at a decreasing 
rate. This points to a somewhat success in the interventions by government. The 
hazard rate is still increasing, and the number of recovery cases has not been stopped 
yet despite the number of the patients are on the way to decrease.

Appendix A

1. The first-order partial derivatives and the derivation of the elements of the fisher 
information matrix of ML

Calculating the first-order partial derivatives with respect to � = (�, � , �, �, �) and 
equating them to zero, we get the following nonlinear equations:
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Taking the second partial derivatives for  I(�, � , �, �, �) as follows:
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where
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