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Abstract
High dimensional data are rapidly growing in many different disciplines, particu-
larly in natural language processing. The analysis of natural language processing 
requires working with high dimensional matrices of word embeddings obtained 
from text data. Those matrices are often sparse in the sense that they contain many 
zero elements. Sparse principal component analysis is an advanced mathematical 
tool for the analysis of high dimensional data. In this paper, we study and apply 
the sparse principal component analysis for natural language processing, which can 
effectively handle large sparse matrices. We study several formulations for sparse 
principal component analysis, together with algorithms for implementing those for-
mulations. Our work is motivated and illustrated by a real text dataset. We find that 
the sparse principal component analysis performs as good as the ordinary principal 
component analysis in terms of accuracy and precision, while it shows two major 
advantages: faster calculations and easier interpretation of the principal components. 
These advantages are very helpful especially in big data situations.

Keywords Classification · Dimensionality reduction · Ensemble learning · High 
dimensional data · Natural language processing · Sparse principal component 
analysis

1 Introduction

High dimensional data are rapidly growing in many different disciplines due to the 
development of technological advances [1]. High dimensional data are particularly 
common is natural language processing (NLP). The analysis of NLP requires work-
ing with high dimensional matrices of word embeddings created from text data. 
Those matrices are often sparse in the sense that they include many zero elements. 
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Methods that can effectively handle such sparse matrices are therefore of great 
importance. In this paper, we study and apply sparse principal component analysis 
(SPCA) for natural language processing, which can effectively handle large sparse 
matrices. Unlike ordinary principal component (PCA) which has been extensively 
used for NLP, sparse PCA is not well investigated in this field.

Word embeddings resulting from NLP models are shown to be a great asset for a 
wide variety of NLP tasks [2]. However, such architecture is often time-consuming 
and difficult to train and implement when the word embeddings involve high dimen-
sional matrices of size thousands or larger. It is therefore important to simplify and 
accelerate the computations of word embedding matrices to facilitate NLP analysis 
in high dimensions. A traditional approach is PCA, however a main limitation of the 
ordinary PCA is that the principal components are essentially linear combinations of 
all of the original variables (see Sect. 2 for details). In other words, all the weights in 
the linear combinations (known as loadings) are typically non-zero, hence resulting 
in a dense matrix. In this paper, we will show that the computations will be acceler-
ated by applying sparse PCA which uses sparse principal components by setting the 
less important loadings to be zero. Furthermore, in many applications such as those 
explained in Sect. 2, the interpretation of principal components would be much eas-
ier if the principal components are sparse.

Dimensionality reduction techniques are frequently used for the analysis of high 
dimensional data from NLP. The curse of dimensionality reminds us the issues that 
emerge when working with data in higher dimensions which may not exist in lower 
dimensions (see, e.g., [1]). PCA and SPCA are two powerful tools for data analysis 
to carry out dimensionality reduction in large datasets. As mentioned above, the lat-
ter provides further dimensionality reduction by using sparse principal components, 
as detailed in Sect. 2.

As the number of features increases, mathematical models tend to become more 
difficult to work with. The more features we have, the larger sample we should have, 
in addition to all combinations of feature values to be representative for in the sam-
ple. It is well known that when the quantity of features expands, the models turn out 
to be progressively unpredictable (see Fig. 1, [3]). Also, a larger number of features 
could lead to higher chance of overfitting. A machine learning model that is trained 
on an enormous number of features would get progressively subject to the data it 
was trained on, and consequently overfitted, thereby defeating the purpose.

Feature selection is the process of recognising and choosing important fea-
tures from the data. Feature engineering is manually producing new features from 
existing features, by making some changes or performing some manipulations on 
them. Feature selection is done either manually or automatically. For instance, 
suppose that we attempt to build a model that predicts individuals’ weights and 
we have gathered a huge amount of data which depicts every individual com-
pletely. On the off chance that we had a column that depicted the colour of every 
individual’s apparel, would that be much help in anticipating their weight? No 
one may think so. That is something we should remove right away. Should not 
something be said about a column that portrays their heights? This is a positive 
yes. We can make such straightforward manual feature selections and reduce the 
dimensionality when the significance or unimportance of specific features are 
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evident or common knowledge. When that is not self-evident, there is a great deal 
of tools to carry out the feature selection (see, e.g., [4]).

In this paper, we focus on SPCA and consider an important application in 
natural language processing (NLP), which requires analysing high dimensional 
matrices, often of size thousands or larger. As mentioned above, PCA has already 
been used for text mining, however SPCA is not well understood for NLP. Our 
main contribution would be to study and apply SPCA for NLP, and understand 
and compare it with the ordinary PCA.

2  Formulations of PCA and Sparse PCA

In this section, we review the main formulations of PCA and sparse PCA. Ning-
min and Jing [5] provide a comprehensive treatment of the formulations for PCA 
and its sparse variations. PCA basically aims to find direct mixes of the factors, 
which are linear combinations of the original variables and known as principal 
components, that lead to the directions of maximal discrepancy in the data. This 
process can be performed by applying the singular value decomposition (SVD) 
method to a data matrix A, or via an eigenvalue decomposition if A is a covari-
ance matrix. The general idea is as follows.

Suppose that there are n iid data points X1,… ,Xn on p variables. Since p 
may be very large, we wish to use PCA for dimensionality reduction on p . Let 
Σ = �

(
XXT

)
 be the population covariance matrix with �(X) = 0 . The eigenvalue 

decomposition of � is as follows:

Fig. 1  The curse of dimensionality and classification performance [3]
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with the “optimal” d-dimensional projection X → ΠdX,

The sample covariance matrix is defined as:

We estimate (�̂�j, v̂j) by the eigenvalue decomposition of �̂� where

The importance of PCA is due to the use of a fewer number of components. 
Firstly, by catching bearings of most extreme difference in the information in the 
dataset, the important segments (i.e., main principal components) provide the 
opportunity to reduce and compress the data so minimum information is lost. Sec-
ondly, the important segments (main principal components) are uncorrelated, which 
can help understanding factual examination. Of course, PCA has a few well-reported 
disadvantages too. A specific limitation, which is our main motivation here, is that 
the principal components are essentially linear combinations of all of the original 
variables (see, e.g., [6]). In Other words, all the weights in the linear combination 
(known as loadings) are typically non-zero. However, in many applications, the 
coordinate axes have a physical interpretation; for example, in biology each axis may 
correspond to a specific gene. Also, in certain applications, for example in financial 
asset procedures based on principal components techniques, the sparsity of the load-
ings has significant outcomes, since the fewer non-zero loadings implies less fixed 
transaction costs. In such applications, understanding and interpreting the principal 
components would be much easier if the principal components are sparse and do not 
include many non-zero loadings. This can be achieved by SPCA as explained in the 
sequel.

2.1  Formulation of PCA

Suppose that the input data matrix is denoted by X = [x1, x2,… , xn]
T ∈ Rn×d , where 

n is the size of the observed data, and further d represents the dimensionality of the 
data. Assume all the variables are centred, that is, Σixi = 0 and Σ =

1

n
XTX ∈ Rd×d be 

the data covariance matrix. PCA seeks to find a number of p ≪ d linear combina-
tions of the n variables in the projected linear space as z̃k = XTuk = 𝛴d

i=1
uk,ixi , where 

z̃k is the k-th principal component (PC) and uk is the corresponding unit-length load-
ings vector. As mentioned above, PCA can be performed by either an eigenvalue 
decomposition of the covariance matrix or by SVD. The formulation of PCA can be 
derived from the data-variance-maximisation viewpoint. The goal is to find u where 

Σ = �1�1v
T
1
+ �2�2v

T
2
+⋯ + �p�pv

T
p
,

�1 ≥ �2 ≥ �p ≥ 0, (eigenvalues),

�T
i
vj = �ij, (eigenvectors),

Πd = VdV
T
d
,Vd = (v1, v2,… , vd).

�̂� = n−1
(
X1X

T
1
+⋯ + XnX

T
n

)
.

V̂d =
(
v̂1,… , v̂d

)
, �̂�d = V̂dV̂

T
d
.
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the input data variance is maximised. This leads to the following optimisation prob-
lem: (see also [5])

2.2  Formulation of Sparse PCA

The main objective of sparse PCA is to force a number of less important loadings 
to be zero, resulting in sparse eigenvectors. In order to achieve such sparsity on the 
extracted components, most of the available methods find the PC’s of the covariance 
matrix through adding a constraint or penalty term from the PCA formulation (1). A 
constrained l0-norm minimisation problem is usually considered as the basic sparse 
PCA problem as follows: (see also [5])

where k is the number of non-zero loadings. The SPCA problem in (2) is non-convex 
and NP-hard. All the formulations and algorithms can be categorised into three main 
classes: the data-variance-maximisation, minimal-reconstruction-error and probabil-
istic modelling viewpoints [5]. When moving from PCA to SPCA, there are two 
interrelated issues that should be examined: (1) the presence of relationship amongst 
scores and/or loadings in various components, and (2) the variation of components 
from the row-space characterised by the first data.

The primary point makes the customary method of computing scores, residuals 
and caught variance utilised in PCA not relevant in SPCA. The caught variance is 
regularly considered as a standard criterion for model quality and examination of 
model variations. In this manner, its exact calculation is essential. The subsequent 
point influences the interpretability, notably for multi-part models.

Most SPCA calculations would change the old style PCA by including sparse-
inducing constraints or penalties with the L0 or L1 standards. Jolliffe et al. [7] built 
up the simplified component technique-LASSO known as the SCoTLASS algo-
rithm, which uses the least total shrinkage and selection operator [8], where the L1 
standard (absolute value) of the loadings is penalised. The SCoTLASS criterion is as 
follows:

where P̂SL is the resulting sparse loading with superscript SL alluding the subse-
quent sparse loading. To get progressive components, the SCoTLASS optimisa-
tion forces the second and further sparse loadings to be orthogonal to the rest. The 
SCoTLASS criterion (3) could be computationally demanding [9], which makes its 
utilisation eccentric for information investigation. Likewise, the number of non-zero 
components in P̂SL is upper-limited by the quantity of observation in the data, which 
is a basic impediment of the lasso constraint.

(1)max
u

uT�u s.t. ||u|| = 1.

(2)u = argmax
u

uT�u s.t. ||u||2 = 1, ||u||0 ≤ k,

(3)P̂SL = argmax
p

||Xp||2
F

s.t. ||p||1 ≤ c, ||p||2
2
= 1,
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3  Sparse PCA for NLP

Natural language processing is a field concerned with the ability of computer to under-
stand, analyse, manipulate, and potentially generate human language. This could be 
any type of communication with and between humans. In this context, one has to con-
vert each word to a numerical value that the computer language can understand. How-
ever, vectorising text would lead to high dimensional matrices, which are often highly 
sparse. Sparse PCA can thus be applied to the vectorised text in order to effectively 
handle those sparse metrics for machine learning classifier models by which one can 
analyse text data. From a business point of view, this is important for dealing with high 
dimensional text with labels than can predict what class they belong to.

Our paper is motivated by a text dataset on the spam filter problem, which is an 
important application of NLP in real life. Emails are filtered into inbox and spam, and 
when collecting data we can class the labels as spam or ham. Based on the heading 
and text of the email, we can find patterns of what would attribute to an inbox or spam 
email. The dataset considered here contains a class of ham and spam labels, which are 
associated with emails received by a person from different sources (see Table 1 for a 
small picture of the data structure).

Recent work in high dimensional statistics has focused on sparse PCA since ordi-
nary PCA estimates can become inconsistent in very high dimensional situations. In 
SPCA, the principal components are restricted to be sparse in the sense that there are 
only a few non-zero entries in the original basis. This has the advantage, amongst oth-
ers, that the components are more interpretable [10], while components may no longer 
be uncorrelated.

The sparse PCA model we use here is as follows:

(4)

� =

⎛
⎜⎜⎜⎝

s

⏞⏞⏞

UDUT

p−s

⏞⏞⏞
0

0 0

⎞
⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
signal

+

�
�1 �12

�21 �2

�

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
noise

,

�d =

�
UUT 0

0 0

�
,

Table 1  The structure of the ham-spam dataset

Label body_text body_len Punct %

0 spam Free entry in 2 a wkly comp to win FA Cup fina… 128 4.7
1 ham Nah I don’t think he goes to usf, he lives aro… 49 4.1
2 ham Even my brother is not like to speak with me … 62 3.2
3 ham I HAVE A DATE ON SUNDAY WITH WILL!! 28 7.1
4 ham As per your request ‘Melle Melle (Oru Minnamin … 135 4.4
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in which U ∈ ℝ
s×d is the non-zero block of Vd , D = diag(�1,… , �d) , “sig-

nal” = �1�1vT1 +⋯ + �d�dv
T
d
 , “noise” = �d+1�d+1vTd+1 +⋯ + �p�pv

T
p
.

The decomposition is unique when 𝜆d > 𝜆d+1 . Sparsity assumptions play an 
important role in a variety of other problems in high dimensional statistics, particu-
larly linear regression analysis. Regression analysis is ill-posed in high dimensional 
situations, so by imposing sparsity on the regression parameters vector one can 
recover tractability [8].

When moving from a traditional PCA model to any of its sparse variations there 
are several ramifications that are crucial to assess, particularly regarding the under-
standing and interpretation of data. We discuss them in the following.

3.1  Moving Outside the Row‑Space

Sparse loadings can be outside the data row-space because of the constraints/penal-
ties applied. In actuality, there is no sparse arrangement inside the row-space in the 
existence of noise. On the off chance that the penalties are sensible, we can improve 
the model quality with it. A prominent case of this are the non-negative constraints, 
which are helpful to model non-negative information in the data. The withdrawal of 
a sparse component can be helpful.

3.2  Correlation of Loadings

Correlation of loadings is an important issue, specifically when scatter plots of 
scores are used for translation. The representation in scatter plots expects orthogonal 
axes in the first variable space. This holds for the standard PCA components, how-
ever it does not fundamentally hold for sparse components. Again, care ought to be 
taken when calculating the caught variance with associated or correlated loadings. 
Note that assessing and testing a significant variance in correlated models is a non-
standard testing problem [11–14].

3.3  Correlation of Scores

The scores obtained by ordinary PCA are uncorrelated as an outcome of expanding 
variance in each component, but the scores of the SPCA model are correlated. This 
correlation convolutes appropriate visualisation yet in addition takes into account a 
progressively flexible modelling. Witten et al. [15] provide an answer for this corre-
lation issue, however it is not evident whether it should be used. More critically, care 
ought to be taken when computing the caught variance with correlated scores.

3.4  Loss of Captured Variance per Principal Component

The use of main principal components is ideal when the caught variance is maxim-
ised. This is a property that makes PCA helpful for data clarification, because a huge 
segment of variance/information is captured by a much smaller set of components. 
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This in turn rearranges the visualisation of the data, since a decreased number of 
PCs need to be visualised to represent a specific level of variance. However, some 
portion of the caught variance probably would not be of intrigue and could even 
entangle clarification. As an example, all PCs incorporate a specific measure of 
installed noise [16]. When we move to the sparse settings, we rearrange the under-
standing of loadings, yet in addition require more components to catch a similar 
measure of variance.

4  Analysis

4.1  The Data Description

The dataset we use contains texts, with two columns for “label” and “body_text” 
respectively. The data has 5568 rows and 2 columns and, out of 5568 rows, 746 are 
spam whilst 4822 are ham. The head and tail of the data are reported in Tables 2 and 
3, respectively. There are no missing observations in the dataset.

4.2  Pre‑processing the Text Data

Cleaning up the text data is usually a necessary step to prepare and highlight attrib-
utes that are required to be processed by the machine learning system. Cleaning or 

Table 2  The dataset head

Label body_text

0 ham I ‘ve been searching for the right words to thank you for this breather. I promise I won’t 
take yo…

1 spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 
to…

2 ham Nah I don’t think he goes to usf, he lives around here though…
3 ham Even my brother is not like to speak with me. They treat me like aids patent…
4 ham I HAVE A DATE ON SUNDAY WITH WILL!!

Table 3  The dataset tail

Label body_text

5663 spam This is the 2nd time we have tried 2 contact u. U have 
won the £750 Pound prize. 2 claim is easy…

5664 ham Will u be going to esplanade fr home?
5665 ham Pity, * was in mood for that. So… any other suggestions?
5666 ham The guy did some bitching but I acted like I’d be inter-

ested in buying something else next week…
5667 ham Rofl. Its true to its name…
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pre-processing text data typically consists of a number of steps, such as removing 
punctuation, tokenising, removing stop words and stem. We needed to apply these 
steps to our text dataset.

4.3  Vectorising Text

After cleaning up the text dataset, we now need to understand how to get the text 
into a form that a machine learning model and software (we use Python) can under-
stand and use to comprehend and train a model. The procedure which is used to con-
vert the text into a form that Python and machine learning models can understand is 
called vectorising. This is characterised as the process of encoding text as integers to 
create feature vectors. A feature vector is an n-dimensional vector of numerical fea-
tures that represent some object. So in this situation, that implies we take a singular 
text message and convert it to a numeric vector that speaks to that text message.

We start with crude text and tokenise the text. Then we carry out the vectorisation 
process. Fundamentally, what we do when we vectorise text is we take the dataset 
that has one line for each document with the cell entry as the genuine text message 
and then we convert it to a matrix that still has one line per document. Note that each 
word is utilised over all documents as the columns of our matrix, and then inside 
every cell is counting the number of times that a certain word showed up in the 
document. This is called document term matrix (see Table 4 for a sample matrix).

Once we have this numeric representation for every text message, we can con-
tinue down the pipeline and fit and train a desired model. Thus, we vectorise the text 
to create a matrix that just has numeric entries. We check how often each particular 
word appears in every text message. The machine learning algorithm comprehends 
these counts.

So in the event that it sees a one or a two or a three of a cell, then that model can 
start to correlate with whatever we are attempting to predict. In our case study, that 
would be spam. In this specific circumstance, it can utilise how frequently those cer-
tain words seem to decide whether the singular instant message is spam or not.

To better understand the spam-ham data as a text dataset, let us look at a small 
part of the data where we just have 10 text messages and we need to order them each 
as either spam or ham. Let us simply state there are 400 special words across those 
10 text messages. That would mean our matrices, after vectorising, would still have 
10 rows, one per text message. It would have 400 columns, one for every unique 
word. Every cell entry would check the number of times that word was utilised in 

Table 4  A sample document 
term matrix

body_text Call Claim Free Text Label

Free entry in … 0 0 1 1 spam
Nah I don’t tl … 0 0 0 0 spam
HAVE A DA … 1 0 0 0 ham
As per your r … 0 2 1 0 ham
I’m gonna be … 1 0 0 0 spam
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every text message (word embedding). Note that the outcome of this part, which is 
reported in Table 5, is just a small subset of the entire archive term matrix.

We simply concentrate on two words utilised here in content messages, offer and 
lol, alongside the name of either spam or ham. But once more, as a general rule, this 
“…” here would speak to the next 398 words that were utilised over these content 
messages. So, that is what this resembles after vectorising.

4.4  Applying TF‑IDF Vector Technique

The “term frequency-inverse document frequency” method, known as the TF-IDF 
method, is a popular technique for text vectorising (see, e.g., [17]). The TF-IDF vec-
tor technique creates a document-term matrix where the columns represent single 
unique terms (unigrams) while each cell represents a weighting which indicates how 
important a word is to a document, as defined below [17]:

where tfi,j = number of times i occurs in j divided by total number of terms in j , 
dfi = number of documents containing i , N = total number of documents.

We start with the TF expression in (5), which is the number of times that term i 
occurs in text message j, divided by the quantity of terms in text message j. It is sim-
ply the percentage of terms in this given text message that are this particular word. 
For example, on the off chance that we use “I like NLP”, and the word we are cen-
tred around is NLP, then this term would be 1 separated by 3, or 0.33. Then, the sec-
ond piece of this equation measures how as often as possible this word occurs across 
all other content messages. It ascertains the quantity of text messages in the dataset 
divided by the quantity of text messages that this word shows up in. That takes the 
log of the majority of that. Let us simply state that we have 20 text messages, so that 
is going to represent N in this case, and just one of those contains NLP. That will be 
df. The second piece of this equation would then be log of 20 isolated by 1. As this 

(5)wi,j = tfi,j × log
N

dfi

Table 5  A sample document 
matrix

id lets lol … Label

1 0 2 … ham
2 1 0 … ham
3 0 0 … spam
4 2 1 … spam
5 0 4 … ham
6 0 1 … spam
7 1 1 … ham
8 0 0 … ham
9 0 0 … spam
10 4 0 … ham
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division inside the log gets larger, the log of that part likewise gets larger. Now sup-
pose that we have 40 text messages instead of 20, however NLP still just happens in 
one of them, so the denominator here will again be 1. Now, this division is 40 over 
1. The term NLP is less continuous, and this term collectively will be larger.

Basically, the rarer the word is, the higher that its worth is going to be (i.e., higher 
wi,j ). If a word happens most of the time inside a particular text message, yet very 
infrequently elsewhere, that will be the second term. Then an exceptionally enor-
mous number will be assigned, and it will be thought to be very important to sepa-
rating that instant message from the others. In rundown, this strategy encourages us 
to pull out the important words.

We apply the TF-IDF vectoriser, and then we use this analyser parameter and 
pass it for the sake of our cleaning function. Then, we can store this all as tfidf_vect. 
Now that we have that put away, we can call the tfidf_vect and utilise the fit_trans-
form capacity, and run that on data [‘body_text’] column. Next, we store that vec-
torised data in X_tfidf. Just as we did previously, we can print out the X_tfidf shape, 
and we also print out the highlight names from tfidf_vect. We go ahead and run that. 
We observe that the shape is actually the same as it was for the tally vectoriser, 5567 
pushes by 8104 columns. Here is the Python code for the TF-IDF vectoriser:

The vectorisers output a “sparse matrix” whose most entries are 0 (see Table 6 for 
a small part of this large sparse matrix). In the interest of storage efficiency, a sparse 
matrix will then be used by storing only the locations of the non-zero elements.

4.5  Cross Validation

Cross validation involves model training based on a training dataset and testing the 
trained model on a holdout test dataset which has not been touched during the model 
training process. One can use k-fold cross validation to assess the performance of a 
machine learning model for classification (see, e.g., [18]). In this general procedure, 
the full informational index is k-subsets and the holdout strategy is repeated k times. 
That is, in every cycle one of the k-subsets is treated as the holdout test set and the 
other k-1 subsets are assembled to train the model. We here use fivefold cross vali-
dation to comprehend the potential execution results. In our case study, we start with 
a full informational index of 10,000 models and then run 5 overlay cross approvals. 
The initial step is to split the 10,000 model informational indexes into 5 subsets. 
There would be 5 subsets of information and everyone has 2000 models. So this is 
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inspecting without substitution, each of the 10,000 models are still represented and 
it is significant that these subsets would continue as before throughout the whole 
procedure. Therefore, a model in subset one will stay in subset one entirely through 
the part of the bargain approval.

4.5.1  Evaluation Metrics

Since the spam-ham informational collection is a classification problem, we use 
three primary evaluation metrics defined below:

The first metric is accuracy which is the number that is anticipated accurately 
over the absolute number of perceptions. For example, in the event that we have 
10,000 perceptions and we have 800 of them named effectively then the precision 
would be 80%. The second metric is precision which is the number that the model 
anticipated as spam accurately partitioned by the absolute number that the model 
anticipated as spam. The last evaluation metric is recall which is the number antici-
pated by the model to be spam that are really spam, so again that is a similar numer-
ator as precision however now it is simply separated by the complete number that 
are really spam rather than the absolute number that are anticipated as spam.

4.6  Machine Learning Classifier Ensemble Methods

Ensemble learning methods refer to the techniques that create multiple models and 
then combine them to produce better results than any of the single models indi-
vidually. We here utilise two ensemble learning methods for our text classification 
problem.

4.6.1  Random Forest

Random forest is an ensemble learning method that constructs a collection of deci-
sion trees and then aggregates the predictions of each tree to determine the final 
prediction. So in this case, the weak models are the individual decision trees, and 
then those are combined into a powerful model that is the aggregated random forest 
model. This can be used for both classification and regression. It can handle outli-
ers, missing values, skewed data, and the data do not have to be on the same scale. 
It can also accept various types of inputs (e.g., ordinal or continuous data) as well. 

Accuracy =
# predicted correctly

total # of observations

Precision =
# predicted as spam that are actually spam

total # predicted as spam

Recall =
# predicted as spam that are actually spam

total # that are actally spam
.
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Random forest is less likely to overfit compared to some of the other machine learn-
ing models.

4.6.2  Gradient Boosting

Gradient boosting is another ensemble learning method that takes an iterative 
approach to combining weak learners to create a powerful learner by focusing on 
the mistakes of prior iterations. It has some similarities with random forest, however 
there are some key differences. Gradient boosting uses decision trees as well, but 
they are incredibly basic, like a decision stump. Gradient boosting evaluates what it 
gets right and what it gets wrong on that first tree, and then with the next iteration 
it places a heavier weight on those observations that it got wrong focusing on the 
examples it does not quite understand yet until it has minimised the error as much as 
possible. Gradient boosting is one of the most powerful machine learning classifiers. 
It also works with various types of inputs like random forest, making it very flex-
ible. A main drawback however is that it takes longer to train because it cannot be 
parallelised, so it is more likely to overfit because it obsesses over those ones that it 
got wrong, and it can get lost pursuing those outliers that do not really represent the 
overall population.

5  Evaluation of the Empirical Results

We apply both sparse PCA and ordinary PCA to our text dataset before implement-
ing the two ensemble classifiers random forest (abbreviated here by rf) and gradient 
boosting (abbreviated here by gb). In addition to the evaluation metrics defined in 
Sect. 4.5, we also consider another criterion that is the run time. This enables us to 
track and understand how long it does take for each model to train and predict.

Table 7 presents the empirical results on accuracy, precision and recall, as well as 
the fit time and prediction time for the SPCA and PCA dimensionality reduction and 
machine learning methods. The results suggest that SPCA performs as good as PCA 
in terms of accuracy and precision, while it tends to be generally faster to train and 
predict compared to PCA. In addition to faster computations, SPCA also results in 
sparse principal components so it would be easier to interpret those sparse principal 
components compared to PCA, and the interpretability is indeed desirable as dis-
cussed in Sect. 2. It can also be seen that the number of components used is impor-
tant too, as previously discussed in Sect. 1. The accuracy of both SPCA and PCA 
improves when the number of principal components is increased, probably because 
more information is used with more components.

We note that unlike the accuracy and precision performances, SPCA does not 
perform well in terms of the recall performance, compared to PCA. One possible 
reason for this could be due to the use of zero weights for some of the loadings, 
however this problem requires further research.
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6  Conclusions

In this paper, we studied several formulations for sparse PCA, together with some 
algorithms for implementing those formulations. We applied sparse PCA to an 
application from natural language processing. The analysis required working with 
high dimensional sparse matrices obtained from such text data, and we used sparse 
PCA to handle and analyse those sparse matrices. Our empirical results showed that 
sparse PCA did perform as good as PCA in terms of accuracy and precision, whilst 
it showed two main advantages over PCA. First, sparse PCA results in sparse prin-
cipal components so it is much easier to interpret those sparse principal components 
compared to PCA, and indeed interpretability is desirable. Second, the computa-
tional time is generally faster for sparse PCA because it uses sparse principal com-
ponents. Faster calculation is important especially for big data situations.

Unlike the accuracy and precision performances, sparse PCA did not perform 
well in terms of the recall performance, compared to PCA. This is a topic to further 
research for natural language processing using sparse PCA.

The move from PCA to sparse PCA is interesting and advantageous, as discussed 
above. The text data that was vectorised into sparse matrices indeed showed the 
need for dimensionality reduction as a feature selection process for selecting the 
components used in the machine learning classifiers.

Finally, there are other problems to be studied when using sparse PCA. For 
example, outside of the locally merged calculation in [19], not many techniques 
can handle the issue of finding a few driving scanty head segments. Furthermore, 
most techniques even some basic ones perform all around ok on simple “nor-
mal” informational collections while just the costliest semidefinite relaxations 
appear to deliver great limits on the arbitrary lattices utilised in packed detecting 

Table 7  The empirical performance of SPCA and PCA. Note that dr-ml is the abbreviation of dimension-
ality reduction and machine learning

Also, random forest and gradient boosting are abbreviated by rf and gb, respectively

dr-ml method Number of 
components

Accuracy Precision Recall Fit time (min) Prediction 
time (min)

PCA rf 2 0.899 0.628 0.449 6.92 0.53
SPCA rf 2 0.893 0.610 0.214 6.15 0.50
PCA rf 4 0.919 0.745 0.650 7.97 0.89
SPCA rf 4 0.898 0.713 0.312 5.72 0.74
PCA rf 6 0.956 0.802 0.704 10.55 1.22
SPCA rf 6 0.930 0.785 0.371 7.46 0.96
PCA gb 2 0.885 0.536 0.385 11.28 0.90
SPCA gb 2 0.880 0.521 0.114 9.52 0.82
PCA gb 4 0.914 0.729 0.619 20.23 1.24
SPCA gb 4 0.892 0.697 0.301 17.44 1.02
PCA gb 6 0.950 0.786 0.680 32.05 1.51
SPCA gb 6 0.927 0.769 0.292 27.61 1.33
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applications, or when just a couple of tests are accessible for instance. Portraying 
what makes “normal” informational indexes simpler than arbitrary ones remains 
an open problem now. It is likewise not clear yet how to expand the measur-
able optimality explanations of Amini and Wainwright [20] to more extensive, 
for example deterministic, classes of frameworks. It is also desirable to apply the 
sparse PCA to other areas of text analysis and data mining [21–24] and particu-
larly big data [25].
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