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Abstract
High dimensional data are rapidly growing in many domains due to the development
of technological advances which helps collect data with a large number of variables
to better understand a given phenomenon of interest. Particular examples appear in
genomics, fMRIdata analysis, large-scale healthcare analytics, text/image analysis and
astronomy. In the last two decades regularisation approaches have become themethods
of choice for analysing such high dimensional data. This paper aims to study the
performance of regularisationmethods, including the recently proposedmethod called
de-biased lasso, for the analysis of high dimensional data under different sparse and
non-sparse situations. Our investigation concerns prediction, parameter estimation and
variable selection. We particularly study the effects of correlated variables, covariate
location and effect size which have not been well investigated. We find that correlated
data when associated with important variables improve those common regularisation
methods in all aspects, and that the level of sparsity can be reflected not only from
the number of important variables but also from their overall effect size and locations.
The latter may be seen under a non-sparse data structure. We demonstrate that the de-
biased lasso performs well especially in low dimensional data, however it still suffers
from issues, such as multicollinearity and multiple hypothesis testing, similar to the
classical regression methods.
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1 Introduction

1.1 Background and Importance

“High dimensional” refers to the situations where the number of covariates or predic-
tors ismuch larger than the number of data points (i.e., p � n). Such situations happen
in many domains nowadays where the rapid development of technological advances
helps collect a large number of variables to better understand a given phenomenon
of interest. Examples occur in genomics, fMRI data analysis, large-scale healthcare
analytics, text/image analysis and astronomy, to name but a few.

In the last two decades regularisation approaches such as lasso, elastic net and ridge
regression have become the methods of choice for analysing such high dimensional
data. Much work has been done since the introduction of regularisation in tackling
high dimensional linear regression problems. Regularisation methods especially lasso
and ridge regression [10,31,40] have been applied to many applications in different
disciplines [1,15,23,26]. The theory behind regularisation methods often relies on the
sparsity assumptions to achieve theoretical guarantees in their performance, ideally
when dealing with high dimensional data. The performance of regularisation methods
has been studied by many researchers, however conditions other than sparsity, such as
the effects of correlated variables, covariate location and effect size have not been well
understood. We investigate this in high dimensional linear regression models under
sparse and non-sparse situations.

In this paper, we consider the high dimensional linear regression model

y = Xβ + ε, p � n, (1)

where y = (y1, . . . , yn) ∈ R
n is the response vector, X ∈ R

n×p is the designmatrix for
covariates x1, . . . , xn , the vectorβ ∈ R

p contains the unknown regression coefficients,
and ε ∈ R

n is the random noise vector. We assume, without loss of generality, that
the model does not have any intercept terms by mean-centring all the response and
covariates.

We assume no prior knowledge on β. It is well-known that the ordinary least square
(OLS) solution for estimatingβ is β̂OLS = (XT X)−1XT y [10].However,when p > n,
X is no longer full rank, and the OLS results in infinitely many solutions, leading to
over-fitting in the high dimensional case [14]. This kind of ill-posed problems arises
in many applications as discussed above. Regularisation methods that impose penalty
on the number of unknown parameters β is therefore a general and popular way to
overcome the issue of ill-posed problems.

Issues due to the curse of dimensionality become apparent in the case of p � n.
A particular example occurs in fMRI image analysis, where selection from a large
number of brain regions could lead to insensitive models on top of over-fitting [30].
Also, numerical results from utilising regularisation methods in high dimensional data
are unsatisfactory in terms of identifying one that performs the best most of the time
[7]. To tackle these issues, sparsity assumption utilises the idea of “less is more” [14],
referring to the phenomenon that an underlying data structure can mostly be explained
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by fewout ofmany features. Such assumptionwould help some regularisationmethods
to at least achieve consistent variable selection even when p � n [18].

Data structures are not necessarily sparse in real-world applications of high dimen-
sional data, and sparsity assumptions are difficult to hold in practice [3]. However,
regularisation methods are often applied to those applications despite their limita-
tions. In this paper, we mainly aim to study the following problems which have not
been well understood or never studied previously:

i. The effects of data correlation on the performance of common regularisation
methods.

ii. The effects of covariate location on the performance of common regularisation
methods.

iii. The impact of effect size on the performance of common regularisation methods.
iv. The performance of the recently developed de-biased lasso [33,37] in comparison

to the common regularisation methods.

In our investigations we evaluate the performance of the regularisation methods by
focusing on their variable selection, parameter estimation and prediction performances
under the above situations. We also use simulations to explain the curse of dimension-
ality with a fixed-effect Gaussian design.

1.2 RelatedWork

Lasso and ridge regression, which use L1 and L2 penalties respectively (see Sect. 2.1),
are the twomost common regularisationmethods.Many novelmethods have been built
upon them. For example, Zou and Hastie [40] developed the elastic net that uses a
combination of these two penalties. The elastic net is particularly effective in tackling
multicollinearity, and it can generally outperformboth lasso and ridge regression under
such situation. The study on elastic net had relatively low dimensions with the sample
size larger than the number of covariates [40]. Moreover, the number of covariates
associated with truly non-zero coefficients was smaller than the sample size. Studies
with similar kinds of settingswere also usedwhen developing other novelmethods [25,
36,39]. Other new approaches with variations of standard techniques have also been
investigated [13,22,26]. Also, reducing bias of estimators such as the lasso estimator
is recently used to tackle issues of 0 standard errors and biased estimates [2,37].
Beforehand, amethod called the bias-corrected ridge regression utilised the idea of bias
reduction by projecting each feature column to the space of their compliment columns
to achieve, with Gaussian noise, asymptotic normality for a projected ridge regression
estimator under a fixed design [4]. Regularisationmethodswere also evaluated in other
situations with classification purposes [1,12,13,23,24,26,35].

Statistical inference such as hypothesis testing with regularisation methods was
difficult for a long time due to the mathematical limitations and the highly biased
estimators in high dimensional models. Obenchain [27] argue that inference with
biased estimators could be misleading when they are far away from their least squares
region. The asymptotic theory has also shown that the lasso estimates can be 0 when
the true values are indeed 0 [21], which can explain why the bootstrap with lasso
estimators can lead to a 0 standard error [31]. Park and Casella [28] developed a
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Bayesian approach to construct confidence intervals for lasso estimates as well as
its hyperparameters. They considered a Laplace prior for the unknown parameters β

in the regression model (1) conditional on unknown variance of an independent and
identically distributed Gaussian noise, leading to conditional normality for y and β.
However, they did not account for the presence of bias in parameter estimators when
using regularisationmethods. The recent de-biased lasso (see Sect. 2.2) instead reduces
the bias of lasso and enables to make statistical inference about a low dimensional
parameter in the regression model (1). It is unknown whether or not the de-biased
lasso can outperform the lasso and other regularisation methods when increasing the
data dimension in sparse and non-sparse situations.

More recently, [6] conducted a theoretical study on the prediction performance of
the lasso. Their main finding was that the incorporation of a correlation measure into
the tuning parameter could lead to a nearly optimal prediction performance of the
lasso. Also, [29] proposed the spike-and-slab lasso procedure for variable selection
and parameter estimation in linear regression.

2 RegularisationMethods in High Dimensional Regression

2.1 Regularisation with aMore General Penalty

Given the high dimensional linear regression (1), the regularisation with Lq penalty
minimises

1

n

n∑

i=1

(yi − xiβ)2 + λ
( p∑

j=1

β
q
j

)1/q
, (2)

where the first term is the squared error loss from the OLS, and the second term is a
general Lq penalty on regression coefficients with λ ≥ 0 being a tuning parameter for
controlling the amount of shrinkage.

Two special cases of (2) are the lasso with L1 penalty (i.e., q = 1) and the ridge
regression with L2 penalty (i.e., q = 2). Also, the subset selection emerges as q → 0,
and the lasso uses the smallest value of q (i.e., closest to subset selection) that yields
a convex problem. Convexity is very beneficial for computational purposes [32].

Since the lasso provides a sparse solution (i.e., the number of non-zero parameter
estimates are smaller than the sample size n) [31,32], lasso regression requires the
sparsity assumption, that is, many of the covariates are assumed to be unrelated to
the response variable. It is appealing to be able to identify, out of a large number of
predictors, a handful of them that are main contributions to some desired predictions,
particularly in genome-wide association studies (GWAS) [2,5,35]. This leads to par-
simonious models from which the selected variables can be further examined, as well
as greatly reducing subsequent computational costs in predictions.

A limitation of the lasso is that when there are contributing variables in a correlated
group, lasso tends to select only few of them in a random manner. Yuan and Lin
[36] proposed the group lasso method for performing variable selection on groups
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of variables to overcome the issue, given prior knowledge of the underlying data
structure. Also, the choice of λ in lasso may not satisfy the oracle properties, which
can lead to inconsistent selection results in high dimensions [9,39]. As discussed in the
introduction, Zou [39] developed the adaptive lasso to allow weighted L1 penalty on
individual coefficients, and showed that the new penalty satisfies the oracle properties.
Further issues arise with high dimensional data, which can be summarised as curse of
dimensionality. Roughly speaking, curse of dimensionality is a phenomenon at which
ordinary approaches (in this case regularisation approaches) to a statistical problem are
no longer reliable when the associated dimension is drastically high. We particularly
investigate this in Sect. 3.

2.2 The De-Biased Lasso

De-biased lasso [33,37] is a lasso-based method that aims to reduce the bias of the
lasso estimator. Also, unlike the original lasso, the de-biased lasso enables us to make
statistical inferences, for example, to conduct component-wise hypothesis testing in
high dimensional models [33]. It is known that the lasso estimator β̂ lasso fulfils the
Karush–Kuhn–Tucker (KKT) conditions: [33,37]

−1

n
XT (y − X β̂ lasso) + λ(∂||β̂ lasso||1) = 0p, (3)

where 0p ∈ R
p is the zero vector and ∂||β||1 denotes the sub-differential of the l1-norm

of β with

(∂||β||1) j = sign(β j ), β j �= 0,

(∂||β||1) j ∈ [−1, 1], β j = 0.

The sub-differential at β j = 0 for any j = 1, 2, . . . , p is a convex set of all possible
sub-gradients since the l1 norm is not differentiable at that point.

Substituting y = Xβ +ε andG = 1
n X

T X into Eq. (3) and using the strong sparsity
assumption, we get the following estimator [33]

β̂debiased = β̂ lasso + 1

n

∼
GXT (y − X β̂ lasso) + R, (4)

where
∼
G is an inverse matrix approximation of G, and R is a residual term from

using an approximated inverse matrix [33, for details see]. One can view the second
term on the right side of (4) as a bias correction to the lasso estimator [37]. Together

with linear Gaussian setting and some restrictions in choosing an optimal λ, β̂debiased

yields a statistic that asymptotically follows a multivariate Gaussian distribution [33],
reaching the same result from Zhang and Zhang’s work [37].

The de-biased lasso is feasible when there is a good approximation of
∼
G. To do

so, a method called the lasso for node-wise regression has been suggested. Details
regarding the node-wise regression and the theoretical results of asymptotic normality
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for de-biased lasso can be found in [33]. Note that the residual term R is asymptotically

negligible under some additional sparsity conditions when approximating
∼
G.

It is shown that the de-biased lasso is very effective in making statistical inference
about a low dimensional parameter when the sparsity assumption holds [33,37]. In
Sect. 5, we investigate whether or not the de-biased lasso can outperform the lasso and
other regularisation methods when increasing the data dimension in sparse situations.

3 Curse of Dimensionality with a Fixed-Effect Gaussian Design

In this section, we demonstrate, via simulations, that how the curse of dimension-
ality could yield undesirable and inconsistent feature selection in high dimensional
regression. We generated 100 datasets from the high dimensional linear regression
model (1) with standard Gaussian noise. We considered a range of different values
from 100 to 5000 for the dimension p, and for each value of p we generated the
design matrix X ∈ R

150×p from the standard Gaussian distribution. Also for the true
vector of coefficients β0 ∈ R

p, we generated its first 100 entries from the standard
Gaussian distribution and set all the rest to 0. We fitted the lasso with L1 penalty to
each generated dataset with 10-fold cross validation using the glmnet package in R
[11].

The results, presented in Fig. 1, show that the average identification rate tends to
decrease when the dimension p increases. In other words, the number of selected
variables that are correctly identified over the number of selected variables decreases
as p gets larger. Since statistical inference is not feasible with lasso regression [21] as
already discussed, one may rely on the fitted model which associates with the smallest
prediction mean square error (MSE). From Figure 1, it can be seen that the proportion

Fig. 1 Lasso becomes less effective in feature selection when p increases
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Fig. 2 The lasso regression prediction error increases with p

Table 1 The number of selected variables by lasso for different values of p in the first 10 trials

p Trial

1 2 3 4 5 6 7 8 9 10

100 64 71 59 67 73 68 72 72 67 72

200 88 92 104 59 73 109 73 92 51 80

300 51 61 74 70 93 30 68 54 46 23

400 45 54 32 59 53 28 49 40 34 37

500 105 41 85 94 60 83 91 82 122 93

1000 45 44 0 36 35 29 58 19 9 10

2000 57 104 61 76 75 83 55 52 47 89

3000 1 0 66 0 107 6 8 48 115 4

4000 44 85 80 27 30 1 1 3 3 22

5000 100 48 90 53 36 6 27 29 61 34

of non-zero variables correctly identified by lasso regression over those which are
selected essentially decreases from 100% to 18.2% when moving from p = 100
towards p = 5000. This is also reflected by the increasing MSE as shown in Fig. 2.
Table 1 provides more details regarding the first 10 trials where we can see that the
number of variables selected by lasso regression seems to be consistent from p = 100
to p = 500, but deteriorates as p becomes much larger. All these suggest feature
selection inconsistency of lasso regression in high dimensional situations with very
large p.

The choice of λ during cross-validation is crucial since λ governs the threshold
value below which the estimated coefficients are forced to be 0. In our simula-
tions, we used the default cross-validation values in the glmnet package. Figure 3
shows the MSE for different values of λ from a 10-fold cross-validation in a single
trial when p = 5000. Here the grid used to determine an optimal choice of λ is
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Fig. 3 Cross validation plot for optimising λ in the lasso regression, with associated number of variables
selected on the top with each candidate of λ. The left vertical dashed line refers to the candidate associated
with the minimum MSE, and the right vertical dashed line refers to the largest candidate which is within 1
standard deviation away from the minimum MSE

{0.05, 0.1, 0.15, . . . , 0.95, 1, 1.05, . . . , 1.95, 2, . . . , 10} instead of the default ones.
In this case, the one associated with the minimum MSE is 1.65. Compared to Fig. 4
which uses the default values in glmnet, Fig. 3 reveals another aspect of the curse of
dimensionality: the error bars are too large for every cross-validated values of λ that
even 1.65 may not be a good choice for optimal λ after all, and this is mainly due to
the lack of sufficient observations compared to the number of covariates or features.
One may choose a wider range for the grid, however substantial standard errors would
be unavoidable.

The cross-validation result presented in Fig. 3 may not alone reveal all aspects of
the situation. Figure 5 presents a more general result on the cross validation from the
first 20 trials with the same simulation setting and with p = 5000. It can be seen that
there are different cross-validation patterns, all with substantial standard errors. We
recall that in our example the sample size is 150 (in accordance with the common
applications of high dimensional data) with the number of truly non-zero coefficients
being 100. With the vast number of covariates, the lasso may still lead to inconsistent
variable selection when there is a large number of truly non-zero coefficients [38].

4 Performance of RegularisationMethods in Sparse and Non-sparse
High Dimensional Data

In this section, we investigate the performance of three common regularisation meth-
ods (lasso, ridge regression and elastic net) in estimation, prediction and variable
selection for high dimensional data under different sparse and non-sparse situations.
In particular, we study the performance of these regularisation methods when data
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Fig. 4 A similar cross validation plot to Fig. 3 with the default grid for comparisons

correlation, covariate location and effect size are taken into account in the high
dimensional linear model (1), as explained in the sequel.

We assume the true underlying model is

yi = xTi β0 + εi , εi ∼ N (0, σ 2 = 1), (5)

where β0 ∈ R
p is the vector of true regression coefficients.

Also, we define the following notations:

– β̂ ∈ R
p: estimator of coefficients in the fitted model,

– ŷ = X β̂ ∈ R
n : vector of predicted values using the fitted model,

– S0: active set of variables of the true underlying model,
– Sfinal: active set of the fitted model,
– Ssmall ⊂ S0: active subset of variables with small contributions in the true under-
lying model,

where the active set refers to the index set representing the covariates in the regres-
sion model. We use the following performance measures to assess the accuracy of
prediction, parameter estimation and identification rates for each method:
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Fig. 5 Cross-validation plots of the first 20 trials with p = 5000

Mean Square Error (MSE) = 1

n

n∑

i=1

(ŷi − yi )
2

Mean Absolute Bias (MAB) = 1

|Sfinal ∩ S0|
∑

j∈Sfinal∩S0

|β̂ j − β0
j |

Power (P) = |Sfinal ∩ S0|
|S0|

Small Power (Psmall) = |Sfinal ∩ Ssmall|
|Ssmall| .

(6)

In the simulations, we generate X and β0 from a zero-mean multivariate Gaussian
distribution with covariance matrices ΣX and Σβ0 chosen under different scenarios.
Σβ0 is chosen as the identity matrix when generating β0, however we change the
diagonal entries from 1 to 0.1 when coefficients of small effects are considered in the
simulations. We use the identity matrix for ΣX when no data correlation is present,
and we consider ΣX = V3 when inducing correlated data in X , where Vi is defined,
for any positive integer i ∈ Z

+, as follows
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ΣX = Vi :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A 0
. . . 0

0 A

0 I

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, with A =

300 columns, same for rows︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0.8 . . . . . . 0.8

0.8 1 0.8 . . .
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0.8
0.8 . . . . . . 0.8 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

in which the top-left block of Vi contains i matrices of A, which are aligned diagonally.
Also, the bottom-right block is an identity matrix to fulfil the required dimension p.

In a sparse situation, where the underlying data structure is truly sparse, we choose
n = 150, p = 10,000, and p∗ = 200. Recall that p∗ > n means it is impossible
to identify all of the important features without over-fitting. Given p can be much
larger with the same n in practice [2], such identification may not be possible even in
a sparse situation, thus β0

j is set to be 0 for any j = n + 1, n + 2, . . . , p unless stated
otherwise. In a non-sparse situation, we change p∗ to 1000. In this case, we either use
ΣX = V5 or ΣX = V20 to account for data correlation.

Each simulation is repeated 100 times and the average values are calculated for
each performance measure in (6). We use the R-package glmnet for implementing the
regularisation methods considered here.

We also include the principal component regression (PCR) [10,19] in our com-
parisons. PCR is becoming a popular technique in different fields, especially in
bioinformatics [22]. By performing principal component analysis (PCA) on X whose
columns are centred, one obtains an orthonormal basis with k principal components
(called the loading matrix B ∈ R

p×k), which are used to transform X to a new design
matrix X

′ = XB, X
′ ∈ R

n×k . One can then perform the OLS on X
′
by considering

y = X
′
γ + ε,

where y is mean-centred and γ ∈ R
k×1 is the vector of unknown transformed param-

eters to be estimated. With the estimator γ̂ = (X
′T X

′
)−1X

′T y, one can find β̂ by
reverting the transformation as follows

β̂ = Bγ̂ .

In high dimensional situations, when p > n, there can be at most n − 1 principal
components, which means the OLS with X

′
does not face the ill-posed problem. PCR

exists for a long time [19,20], but it did not attract much attention before partly because
it could be seen as a hard thresholding version of ridge regression from the perspective
of singular value decomposition [10]. The magnitude of eigenvalues associated to
each principal component corresponds to the amount of information not redundant
from X . To find the optimal number of principal components, we perform 10-fold
cross-validation on each candidate by successive inclusion of principal components
in decreasing order of their associated eigenvalues. We use the R-package pls [34] for
implementation of PCR in our simulations.
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4.1 Data Correlation

The complete simulation results for all the four methods under the sparse and non-
sparse situations are reported in Tables 2 and 3 below. Regarding the prediction
performance, a part of the simulation results presented in Fig. 6 shows that, when
important covariates are associated with correlated data, the prediction performance
of lasso and elastic net are better than both the ridge regression and PCR under the
sparse situation. Another part of the simulation results shown in Fig. 7 suggests that,
for the non-sparse situation, the prediction performance of the lasso and elastic net is
very similar to the ridge regression, however PCR outperforms all of these methods.

Regarding the parameter estimation accuracy, the simulation results in Figs. 6 and 7
indicate that parameter estimation by ridge regression and PCR are largely unaffected
by correlated data, with both having smaller average MAB compared to the lasso and
elastic net, and this performance is mainly because of their dense solutions.

Regarding the variable selection performance, Fig. 7 shows that elastic net performs
better than lasso in the case of correlated data, which can be justified by the presence
of the grouping effect. Note that the data correlation associated with nuisance and
less important variables seems to have little effect on our results compared to the data
correlation associated with important variables.

Without data correlation, lasso and elastic net have prediction performances similar
to ridge regression and PCR under the sparse situation (see the results for case 1 in
Table 2). This is probably because of the identification of important covariates being
limited by sample size and high dimensionality, causing difficulty for the lasso and
elastic net to outperform the ridge regression and PCR. Under the non-sparse situation,
lasso and elastic net performed even worse in prediction compared to ridge regression
and PCR (see the results for case 1 in Table 3).

Overall, when important covariates are associated with correlated data, our results
showed that the prediction performance is improved across all these four methods
under both sparse and non-sparse situations, and that the prediction performance
flipped to favour the lasso and elastic net over the ridge regression and PCR.

4.2 Covariate Location

Regarding the effects of the covariate location, we find, from the simulation results,
that important variables being more scattered among groups of correlated data tend
to result in better prediction performances. Such observation becomes more obvious
under the non-sparse situation. With the same data correlation setting, all the methods
performed better with 2 clusters of size 500 in Fig. 8, than with 5 clusters of important
variables of size 200 as shown in Fig. 7. Since lasso tends to randomly select covariates
in a group of correlated data, we expect that the lasso is less likely to select nuisance
covariates when most of them are important in such group, thus improving prediction
and variable selection performances. In terms of estimation accuracy, ridge regression
and PCR were largely unaffected as expected, while lasso and elastic net had varying
results. Therefore, the condition of covariate location helping prediction performance
does not seem to necessarily reflect in the parameter estimation.
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Table 2 Complete results of simulation I

Case Indices j : β0
j is generated from N(0,1) Indices j : β0

j is generated from N(0,0.1) Choice of ΣX

Set-up for simulation study I with a sparse situation

1 1–200 NA Ip×p

2 101–200, 701–800 NA V3
3 101–170, 351–420, 701–760 NA V3
4 101–200 201–300 Ip×p

5 251–350 551–650 V3
6 291–310 401–580 V3
7 201–380 591–610 V3

Case Lasso Ridge Elastic Net (0.5) PCR

Average MSE summary of simulation I

1 203.0375 193.0763 200.8516 194.7625

2 46.4572 58.9701 44.8423 53.0762

3 49.8918 61.0208 49.3757 53.6081

4 92.7584 92.2995 91.3694 92.7680

5 21.6402 27.3076 21.5200 25.1636

6 4.3967 6.6928 4.6757 5.3609

7 38.9556 44.9188 37.9353 40.4747

Average MAB summary of simulation I

1 1.1797 0.7910 1.2846 0.7910

2 0.9208 0.8114 0.8986 0.8118

3 0.8537 0.7918 0.8890 0.7922

4 1.3710 0.4368 1.3741 0.4368

5 0.8510 0.4405 0.8764 0.4409

6 0.6222 0.1513 0.6144 0.1514

7 0.8116 0.7217 0.9442 0.7221

Case Lasso Elastic Net (0.5)

Average Power (P) summary of simulation I

1 0.0112 0.0153

2 0.0633 0.0880

3 0.0598 0.0835

4 0.0143 0.0187

5 0.0493 0.0705

6 0.0363 0.0528

7 0.0513 0.0768

Average Small Power (Psmall ) summary of simulation I

4 0.0023 0.0033

5 0.0133 0.0200

6 0.0150 0.0298

7 0.0083 0.0133
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Table 3 Complete results of simulation III

Case Indices j : β0
j is generated from N(0,1) Indices j : β0

j is
generated from N(0,0.1)

Choice of ΣX

Set-up for simulation III with a non-sparse situation

1 1–1000 NA Ip×p

2 51–250, 351–550, 651–850, 951–1150, 1251–1450 NA V5
3 1–500, 801–1300 NA V5
4 1–500, 801–1300 NA V20
5 1–500 501–1000 Ip×p

6 1–500 501–1000 V20
7 101–150 401–1350 V20
8 101–1050 1401–1450 V20

Case Lasso Ridge Elastic Net (0.5) PCR

Average MSE summary of simulation III

1 1107.7110 1057.6660 1091.0470 1069.1520

2 294.8247 294.3531 290.2807 278.7965

3 259.0461 259.3874 255.1258 242.4962

4 265.4878 262.2610 256.5398 249.1404

5 522.7113 507.2834 517.5554 511.7361

6 122.7950 138.4813 121.0770 132.2491

7 14.9461 18.3394 14.9496 16.2734

8 230.4608 240.7334 226.3334 235.7741

Average MAB summary of simulation III

1 1.3913 0.7954 0.9473 0.7957

2 1.1660 0.8035 0.9259 0.8039

3 1.1698 0.7996 0.8868 0.8001

4 1.1487 0.7958 0.9016 0.7960

5 0.7533 0.4345 0.7058 0.4346

6 0.9142 0.4385 0.7920 0.4388

7 0.4784 0.1156 0.4433 0.1157

8 1.1093 0.7633 0.8896 0.7639

Case Lasso Elastic Net (0.5)

Average Power (P) summary of simulation III

1 0.0022 0.0021

2 0.0228 0.0339

3 0.0240 0.0372

4 0.0272 0.0399

5 0.0018 0.0035

6 0.0244 0.0360

7 0.0145 0.0202

8 0.0272 0.0401
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Table 3 continued

Case Lasso Elastic Net (0.5)

Average Small Power (Psmall ) summary of simulation III

Case lasso Elastic Net (0.5)

5 0.0015 0.0025

6 0.0076 0.0121

7 0.0092 0.0134

8 0.0013 0.0020
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Fig. 6 The average MSE and MAB with the data correlation associated with important variables under a
sparse situation

4.3 Effect Size

Given the same number of important covariates, our simulation results (see cases 1 and
4 in Table 2 and cases 1 and 5 in Table 3) suggest that having a smaller overall effect
size helps prediction and parameter estimation performances across all the methods.
This is reasonable since the magnitude of errors is smaller in exchange of harder
detection of covariates, having small contributions to the predictions.

With data correlation, our results also reveal that the overall effect size could alter
our perception of underlying data structures in the non-sparse situation. Figure 9 shows
the performance bar-plots for all the four methods when there were 1000 important
covariates, 950 of which belonging to small effect size. Compared to Figs. 7 and 8 that
both of which had 1000 important covariates of similar effect sizes, Fig. 9 indicates
that the lasso and elastic net tend to perform better than the ridge regression and PCR in
terms of prediction accuracy in this situation. This is probably because selecting some
of those 50 important features associated with large effects is sufficient to explain the
majority of the effects behind, which masks those associated with small effects. Other
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Fig. 7 The average MSE, MAB and power with the data correlation associated with important variables
under a non-sparse situation

than the sparsity level of important covariates, overall covariate effect size seems
to also change the indication of whether an underlying data structure is sparse via
observing prediction performances, especially in a non-sparse situation.

5 Performance of the De-Biased Lasso

Similar to the lasso, sparsity assumptions play a major role in justifying the use of
de-biased lasso. In this section, we evaluate the performance of the de-biased lasso in
prediction, parameter estimation and variable selection, and compare the results with
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Fig. 8 The average MSE, MAB and power with important variables being more concentrated across the
groups of correlated data under a non-sparse situation

the other methods considered in the previous section. We are particularly interested in
understanding how this recently developed method performs when the data dimension
p increases, so we can provide a rough idea of its practicality to emerging challenges
in big data analysis.

In the simulations, we again focus on high dimensional situations with the effects
of data correlation, covariate location and effect size being considered. We use
the sample size n = 40 and let the maximum dimension p to be 600 here. Similar
to the previous simulations, we repeat each simulation case 100 times and calculate
the average values for each performance measure in (6). We should mention that for
calculating P and Psmall both the lasso and elastic net are based on their nature of
variable selection, but the de-biased lasso is based on point-wise statistical inference
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Fig. 9 The averageMSE,MAB, power and small power for the casewith themajority of important covariates
having small contributions among groups of correlated data under a non-sparse situation

[33,37]. This implies that the performance of de-biased lasso on P and Psmall can
encounter multiple hypothesis testing issue on top of curse of dimensionality. To
account for this, we corrected the associated p-values by controlling the family-wise
error rate of the tests via the Bonferroni-Holm approach [16]. To induce correlated
data, we considerΣX = V2. We use the R-package hdi [7] to implement the de-biased
lasso to each generated data set.

The complete simulation results are given in Table 4 below. A part of the results,
presented in Fig. 10, show that in a low dimensional sparse situation with uncorrelated
data, the de-biased lasso outperforms all the other methods in terms of prediction
and parameter estimation. However, the variable selection performance of the de-
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Fig. 10 The average MSE, MAB and power in sparse high dimensional data with dimension p = 50

biased lasso is very similar to the lasso and elastic net. The results shown in Fig. 11
suggest that the prediction by de-biased lasso could still be as good as the lasso and
elastic net in a sparse situation when the dimension p increases, however the de-biased
lasso no longer identifies any important covariates, thus its performance in parameter
estimation cannot be assessed in the case when the dimension p is large. The results
in Fig. 12 show that inducing correlated data seems to help de-biased lasso identify
important covariates, however its performance in prediction and parameter estimation
is no longer comparable to the other methods in the case of correlated data. The
unsatisfactory variable selection performance of the de-biased lasso is probably due to
many hypothesis tests as mentioned above, and its poor performance in prediction and
parameter estimation in the case of correlated data could be due to themulticollinearity
issues causing spurious test results.
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Fig. 11 The average MSE, MAB and power in sparse high dimensional data with dimension p = 600

6 Real Data Example

In this section, we use a real data example to compare the performance of the different
regularisation methods in real-world applications. We consider the riboflavin data
obtained froma high-throughput genomic study concerning the riboflavin (vitamin B2)
production rate. This data set was made publicly available by Bühlmann et al. [3], and
contains n = 71 samples and p = 4088 covariates corresponding to p = 4088 genes.
For each sample, there is a real-valued response variable indicating the logarithm
of the riboflavin production rate along with the logarithm of the expression level of
the p = 4088 genes as the covariates. Further details regarding the dataset and its
availability can be found in [7,17].
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Fig. 12 The average MSE, MAB and power in sparse high dimensional data with dimension p = 600 and
with the presence of correlated data

Table 5 The prediction results from applying all the methods to the riboflavin data

Lasso Ridge regression Elastic net PCR De-biased lasso

The average MSE on the test data

0.2946 0.3953 0.3331 0.3493 0.3278

We applied the de-biased lasso and each of the other methods to the riboflavin
data 100 times through different random partitions of training and testing sets, and
compared their prediction performance using the averageMSEas in (6). The prediction
results are shown in Table 5. The results indicate that while PCR performed as good
if not better than ridge regression, the lasso and elastic net had smaller average MSE
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than both ridge regression and PCR. The MSE of de-biased lasso is similar to the
elastic net and lasso. The potential correlation between genes helps elastic net and
lasso to perform better in prediction, which is consistent with our simulation results
in the previous sections. Also, according to our simulation findings in Sects. 4 and 5,
it seems the underlying structure of the riboflavin dataset is sparse in the sense that
among all the unknown covariates, which contribute to the production rate of vitamin
B2, only a few of them have relatively large effects. We emphasise that this does
not necessarily indicate sparsity on the number of important covariates compared to
the data dimension. The riboflavin dataset has been recently analysed for statistical
inference purposes such as constructing confidence intervals and hypothesis tests by
some researchers including [3,7,17].

7 Conclusions and Discussion

We investigated the effects of data correlation, covariate location and effect size on
the performance of regularisation methods such as lasso, elastic net and ridge regres-
sion when analysing high dimensional data. We particularly evaluated how prediction,
parameter estimation and variable selection by these methods are affected under those
conditions. We also studied the performance of the recently developed de-biased lasso
under such conditions, and furthermore included the PCR in our simulations for com-
parison purposes. We considered different sparse and non-sparse situations in our
simulation studies. The main findings of the simulation results and real data analysis
are summarised below:

• When important covariates are associated with correlated variables, the simulation
results showed that the prediction performance improves across all the methods
considered in the simulations, for both sparse and non-sparse high dimensional
data. The prediction performance flipped to favour the lasso and elastic net over
the ridge regression and PCR.

• When the correlated variables are associated with nuisance and less important
variables, we observed that the prediction performance is generally unaffected
across all the methods compared to the situation when the data correlation is
associated with important variables.

• In the presence of correlated variables, the parameter estimation performance of
the ridge regression, elastic net and PCR was not affected, but the lasso showed a
poorer parameter estimation when moving from sparse data to non-sparse data.

• The variable selection performance of the elastic net was better than the lasso in
the presence of correlated data.

• Regarding the effects of the covariate location, we found that important variables
being more scattered among groups of correlated data tend to result in better
prediction performances. Such behaviour was more obvious for non-sparse data.
The lasso tends to randomly select covariates in a group of correlated data, so it is
less likely to select nuisance covariates when most of them are important in such
group, thus improving prediction and variable selection performances.
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• Unlike in prediction and variable selection, the impact of covariate location was
very small on the parameter estimation performance across all the methods.

• Given the same number of important covariates, the simulation results showed that
having a smaller overall effect size helps the prediction and parameter estimation
performances across all the methods. The simulation results indicated that the
lasso and elastic net tend to perform better than the ridge regression and PCR in
terms of prediction accuracy in such situation. In the presence of data correlation,
the overall effect size could change our indication of whether an underlying data
structure is sparse via observing prediction performances, especially in the non-
sparse situations.

• For the de-biased lasso, the simulation results showed that the de-biased lasso
outperforms all the other methods in terms of prediction and parameter estima-
tion in low dimensional sparse situations with uncorrelated data. When the data
dimension p increases, the prediction by de-biased lasso is as good as the lasso and
elastic net, however the de-biased lasso no longer identifies any important covari-
ates when the dimension p is very large. The results also showed that inducing
correlated data seems to help de-biased lasso identify important covariates when
p is very large, however its performance in prediction and parameter estimation
is no longer comparable to the other methods in the presence of correlated data.

It should be pointed out that we also included the adaptive lasso [39] in our simu-
lation comparisons, however because the results were very similar to the lasso we did
not report them in the simulation section.

We also observed that the curse of dimensionality can yield inconsistent and unde-
sirable feature selection in high dimensional regression. The choice of shrinkage
parameter λ during the cross-validation process was found to be crucial. For high
dimensional data, the error bars were too large for every cross-validated value of λ

and it was mainly due to the lack of sufficient observations compared to the number
of covariates (p � n).

Finally, the de-biased lasso can be used in a similar fashion as the OLS, but in ill-
posed low dimensional problems. It therefore suffers from multicollinearity as well
as the issue of too many hypothesis tests in high dimensional data [3,7,33]. With
many procedures available to tackle issues from multiple hypothesis testing, a more
accurate estimation procedure would be helpful when applying the de-biased lasso to
high dimensional data. It will be very useful to conduct research on how the de-biased
lasso combined with bootstrap [8] performs in high dimensional data under the above
three conditions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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